1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // String and Memory Library Call Optimizations 191 //===----------------------------------------------------------------------===// 192 193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 194 // Extract some information from the instruction 195 Value *Dst = CI->getArgOperand(0); 196 Value *Src = CI->getArgOperand(1); 197 198 // See if we can get the length of the input string. 199 uint64_t Len = GetStringLength(Src); 200 if (Len == 0) 201 return nullptr; 202 --Len; // Unbias length. 203 204 // Handle the simple, do-nothing case: strcat(x, "") -> x 205 if (Len == 0) 206 return Dst; 207 208 return emitStrLenMemCpy(Src, Dst, Len, B); 209 } 210 211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 212 IRBuilder<> &B) { 213 // We need to find the end of the destination string. That's where the 214 // memory is to be moved to. We just generate a call to strlen. 215 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 216 if (!DstLen) 217 return nullptr; 218 219 // Now that we have the destination's length, we must index into the 220 // destination's pointer to get the actual memcpy destination (end of 221 // the string .. we're concatenating). 222 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 223 224 // We have enough information to now generate the memcpy call to do the 225 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 226 B.CreateMemCpy(CpyDst, 1, Src, 1, 227 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 228 return Dst; 229 } 230 231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 232 // Extract some information from the instruction. 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 uint64_t Len; 236 237 // We don't do anything if length is not constant. 238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 239 Len = LengthArg->getZExtValue(); 240 else 241 return nullptr; 242 243 // See if we can get the length of the input string. 244 uint64_t SrcLen = GetStringLength(Src); 245 if (SrcLen == 0) 246 return nullptr; 247 --SrcLen; // Unbias length. 248 249 // Handle the simple, do-nothing cases: 250 // strncat(x, "", c) -> x 251 // strncat(x, c, 0) -> x 252 if (SrcLen == 0 || Len == 0) 253 return Dst; 254 255 // We don't optimize this case. 256 if (Len < SrcLen) 257 return nullptr; 258 259 // strncat(x, s, c) -> strcat(x, s) 260 // s is constant so the strcat can be optimized further. 261 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 262 } 263 264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 265 Function *Callee = CI->getCalledFunction(); 266 FunctionType *FT = Callee->getFunctionType(); 267 Value *SrcStr = CI->getArgOperand(0); 268 269 // If the second operand is non-constant, see if we can compute the length 270 // of the input string and turn this into memchr. 271 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 272 if (!CharC) { 273 uint64_t Len = GetStringLength(SrcStr); 274 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 275 return nullptr; 276 277 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 278 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 279 B, DL, TLI); 280 } 281 282 // Otherwise, the character is a constant, see if the first argument is 283 // a string literal. If so, we can constant fold. 284 StringRef Str; 285 if (!getConstantStringInfo(SrcStr, Str)) { 286 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 287 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 288 "strchr"); 289 return nullptr; 290 } 291 292 // Compute the offset, make sure to handle the case when we're searching for 293 // zero (a weird way to spell strlen). 294 size_t I = (0xFF & CharC->getSExtValue()) == 0 295 ? Str.size() 296 : Str.find(CharC->getSExtValue()); 297 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 298 return Constant::getNullValue(CI->getType()); 299 300 // strchr(s+n,c) -> gep(s+n+i,c) 301 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 302 } 303 304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 305 Value *SrcStr = CI->getArgOperand(0); 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 308 // Cannot fold anything if we're not looking for a constant. 309 if (!CharC) 310 return nullptr; 311 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 // strrchr(s, 0) -> strchr(s, 0) 315 if (CharC->isZero()) 316 return emitStrChr(SrcStr, '\0', B, TLI); 317 return nullptr; 318 } 319 320 // Compute the offset. 321 size_t I = (0xFF & CharC->getSExtValue()) == 0 322 ? Str.size() 323 : Str.rfind(CharC->getSExtValue()); 324 if (I == StringRef::npos) // Didn't find the char. Return null. 325 return Constant::getNullValue(CI->getType()); 326 327 // strrchr(s+n,c) -> gep(s+n+i,c) 328 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 329 } 330 331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 332 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 333 if (Str1P == Str2P) // strcmp(x,x) -> 0 334 return ConstantInt::get(CI->getType(), 0); 335 336 StringRef Str1, Str2; 337 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 338 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 339 340 // strcmp(x, y) -> cnst (if both x and y are constant strings) 341 if (HasStr1 && HasStr2) 342 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 343 344 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 345 return B.CreateNeg(B.CreateZExt( 346 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 347 348 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 349 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 350 CI->getType()); 351 352 // strcmp(P, "x") -> memcmp(P, "x", 2) 353 uint64_t Len1 = GetStringLength(Str1P); 354 uint64_t Len2 = GetStringLength(Str2P); 355 if (Len1 && Len2) { 356 return emitMemCmp(Str1P, Str2P, 357 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 358 std::min(Len1, Len2)), 359 B, DL, TLI); 360 } 361 362 // strcmp to memcmp 363 if (!HasStr1 && HasStr2) { 364 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 365 return emitMemCmp( 366 Str1P, Str2P, 367 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 368 TLI); 369 } else if (HasStr1 && !HasStr2) { 370 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 371 return emitMemCmp( 372 Str1P, Str2P, 373 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 374 TLI); 375 } 376 377 return nullptr; 378 } 379 380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 381 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 382 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 383 return ConstantInt::get(CI->getType(), 0); 384 385 // Get the length argument if it is constant. 386 uint64_t Length; 387 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 388 Length = LengthArg->getZExtValue(); 389 else 390 return nullptr; 391 392 if (Length == 0) // strncmp(x,y,0) -> 0 393 return ConstantInt::get(CI->getType(), 0); 394 395 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 396 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 397 398 StringRef Str1, Str2; 399 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 400 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 401 402 // strncmp(x, y) -> cnst (if both x and y are constant strings) 403 if (HasStr1 && HasStr2) { 404 StringRef SubStr1 = Str1.substr(0, Length); 405 StringRef SubStr2 = Str2.substr(0, Length); 406 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 407 } 408 409 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 410 return B.CreateNeg(B.CreateZExt( 411 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 412 413 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 414 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 415 CI->getType()); 416 417 uint64_t Len1 = GetStringLength(Str1P); 418 uint64_t Len2 = GetStringLength(Str2P); 419 420 // strncmp to memcmp 421 if (!HasStr1 && HasStr2) { 422 Len2 = std::min(Len2, Length); 423 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 424 return emitMemCmp( 425 Str1P, Str2P, 426 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 427 TLI); 428 } else if (HasStr1 && !HasStr2) { 429 Len1 = std::min(Len1, Length); 430 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 431 return emitMemCmp( 432 Str1P, Str2P, 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 434 TLI); 435 } 436 437 return nullptr; 438 } 439 440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // See if we can get the length of the input string. 446 uint64_t Len = GetStringLength(Src); 447 if (Len == 0) 448 return nullptr; 449 450 // We have enough information to now generate the memcpy call to do the 451 // copy for us. Make a memcpy to copy the nul byte with align = 1. 452 B.CreateMemCpy(Dst, 1, Src, 1, 453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 454 return Dst; 455 } 456 457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 458 Function *Callee = CI->getCalledFunction(); 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 461 Value *StrLen = emitStrLen(Src, B, DL, TLI); 462 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 463 } 464 465 // See if we can get the length of the input string. 466 uint64_t Len = GetStringLength(Src); 467 if (Len == 0) 468 return nullptr; 469 470 Type *PT = Callee->getFunctionType()->getParamType(0); 471 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 472 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 473 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 478 return DstEnd; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 482 Function *Callee = CI->getCalledFunction(); 483 Value *Dst = CI->getArgOperand(0); 484 Value *Src = CI->getArgOperand(1); 485 Value *LenOp = CI->getArgOperand(2); 486 487 // See if we can get the length of the input string. 488 uint64_t SrcLen = GetStringLength(Src); 489 if (SrcLen == 0) 490 return nullptr; 491 --SrcLen; 492 493 if (SrcLen == 0) { 494 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 495 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 496 return Dst; 497 } 498 499 uint64_t Len; 500 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 501 Len = LengthArg->getZExtValue(); 502 else 503 return nullptr; 504 505 if (Len == 0) 506 return Dst; // strncpy(x, y, 0) -> x 507 508 // Let strncpy handle the zero padding 509 if (Len > SrcLen + 1) 510 return nullptr; 511 512 Type *PT = Callee->getFunctionType()->getParamType(0); 513 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 514 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 515 516 return Dst; 517 } 518 519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 520 unsigned CharSize) { 521 Value *Src = CI->getArgOperand(0); 522 523 // Constant folding: strlen("xyz") -> 3 524 if (uint64_t Len = GetStringLength(Src, CharSize)) 525 return ConstantInt::get(CI->getType(), Len - 1); 526 527 // If s is a constant pointer pointing to a string literal, we can fold 528 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 529 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 530 // We only try to simplify strlen when the pointer s points to an array 531 // of i8. Otherwise, we would need to scale the offset x before doing the 532 // subtraction. This will make the optimization more complex, and it's not 533 // very useful because calling strlen for a pointer of other types is 534 // very uncommon. 535 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 536 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 537 return nullptr; 538 539 ConstantDataArraySlice Slice; 540 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 541 uint64_t NullTermIdx; 542 if (Slice.Array == nullptr) { 543 NullTermIdx = 0; 544 } else { 545 NullTermIdx = ~((uint64_t)0); 546 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 547 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 548 NullTermIdx = I; 549 break; 550 } 551 } 552 // If the string does not have '\0', leave it to strlen to compute 553 // its length. 554 if (NullTermIdx == ~((uint64_t)0)) 555 return nullptr; 556 } 557 558 Value *Offset = GEP->getOperand(2); 559 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 560 Known.Zero.flipAllBits(); 561 uint64_t ArrSize = 562 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 563 564 // KnownZero's bits are flipped, so zeros in KnownZero now represent 565 // bits known to be zeros in Offset, and ones in KnowZero represent 566 // bits unknown in Offset. Therefore, Offset is known to be in range 567 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 568 // unsigned-less-than NullTermIdx. 569 // 570 // If Offset is not provably in the range [0, NullTermIdx], we can still 571 // optimize if we can prove that the program has undefined behavior when 572 // Offset is outside that range. That is the case when GEP->getOperand(0) 573 // is a pointer to an object whose memory extent is NullTermIdx+1. 574 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 575 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 576 NullTermIdx == ArrSize - 1)) { 577 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 578 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 579 Offset); 580 } 581 } 582 583 return nullptr; 584 } 585 586 // strlen(x?"foo":"bars") --> x ? 3 : 4 587 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 588 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 589 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 590 if (LenTrue && LenFalse) { 591 ORE.emit([&]() { 592 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 593 << "folded strlen(select) to select of constants"; 594 }); 595 return B.CreateSelect(SI->getCondition(), 596 ConstantInt::get(CI->getType(), LenTrue - 1), 597 ConstantInt::get(CI->getType(), LenFalse - 1)); 598 } 599 } 600 601 // strlen(x) != 0 --> *x != 0 602 // strlen(x) == 0 --> *x == 0 603 if (isOnlyUsedInZeroEqualityComparison(CI)) 604 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 605 CI->getType()); 606 607 return nullptr; 608 } 609 610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 611 return optimizeStringLength(CI, B, 8); 612 } 613 614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 615 Module &M = *CI->getModule(); 616 unsigned WCharSize = TLI->getWCharSize(M) * 8; 617 // We cannot perform this optimization without wchar_size metadata. 618 if (WCharSize == 0) 619 return nullptr; 620 621 return optimizeStringLength(CI, B, WCharSize); 622 } 623 624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 625 StringRef S1, S2; 626 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 627 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 628 629 // strpbrk(s, "") -> nullptr 630 // strpbrk("", s) -> nullptr 631 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 632 return Constant::getNullValue(CI->getType()); 633 634 // Constant folding. 635 if (HasS1 && HasS2) { 636 size_t I = S1.find_first_of(S2); 637 if (I == StringRef::npos) // No match. 638 return Constant::getNullValue(CI->getType()); 639 640 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 641 "strpbrk"); 642 } 643 644 // strpbrk(s, "a") -> strchr(s, 'a') 645 if (HasS2 && S2.size() == 1) 646 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 652 Value *EndPtr = CI->getArgOperand(1); 653 if (isa<ConstantPointerNull>(EndPtr)) { 654 // With a null EndPtr, this function won't capture the main argument. 655 // It would be readonly too, except that it still may write to errno. 656 CI->addParamAttr(0, Attribute::NoCapture); 657 } 658 659 return nullptr; 660 } 661 662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 663 StringRef S1, S2; 664 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 665 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 666 667 // strspn(s, "") -> 0 668 // strspn("", s) -> 0 669 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 670 return Constant::getNullValue(CI->getType()); 671 672 // Constant folding. 673 if (HasS1 && HasS2) { 674 size_t Pos = S1.find_first_not_of(S2); 675 if (Pos == StringRef::npos) 676 Pos = S1.size(); 677 return ConstantInt::get(CI->getType(), Pos); 678 } 679 680 return nullptr; 681 } 682 683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 684 StringRef S1, S2; 685 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 686 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 687 688 // strcspn("", s) -> 0 689 if (HasS1 && S1.empty()) 690 return Constant::getNullValue(CI->getType()); 691 692 // Constant folding. 693 if (HasS1 && HasS2) { 694 size_t Pos = S1.find_first_of(S2); 695 if (Pos == StringRef::npos) 696 Pos = S1.size(); 697 return ConstantInt::get(CI->getType(), Pos); 698 } 699 700 // strcspn(s, "") -> strlen(s) 701 if (HasS2 && S2.empty()) 702 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 703 704 return nullptr; 705 } 706 707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 708 // fold strstr(x, x) -> x. 709 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 711 712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 714 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 715 if (!StrLen) 716 return nullptr; 717 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 718 StrLen, B, DL, TLI); 719 if (!StrNCmp) 720 return nullptr; 721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 722 ICmpInst *Old = cast<ICmpInst>(*UI++); 723 Value *Cmp = 724 B.CreateICmp(Old->getPredicate(), StrNCmp, 725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 726 replaceAllUsesWith(Old, Cmp); 727 } 728 return CI; 729 } 730 731 // See if either input string is a constant string. 732 StringRef SearchStr, ToFindStr; 733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 735 736 // fold strstr(x, "") -> x. 737 if (HasStr2 && ToFindStr.empty()) 738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 739 740 // If both strings are known, constant fold it. 741 if (HasStr1 && HasStr2) { 742 size_t Offset = SearchStr.find(ToFindStr); 743 744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 745 return Constant::getNullValue(CI->getType()); 746 747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 748 Value *Result = castToCStr(CI->getArgOperand(0), B); 749 Result = 750 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 751 return B.CreateBitCast(Result, CI->getType()); 752 } 753 754 // fold strstr(x, "y") -> strchr(x, 'y'). 755 if (HasStr2 && ToFindStr.size() == 1) { 756 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 757 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 758 } 759 return nullptr; 760 } 761 762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 763 Value *SrcStr = CI->getArgOperand(0); 764 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 765 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 766 767 // memchr(x, y, 0) -> null 768 if (LenC && LenC->isZero()) 769 return Constant::getNullValue(CI->getType()); 770 771 // From now on we need at least constant length and string. 772 StringRef Str; 773 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 774 return nullptr; 775 776 // Truncate the string to LenC. If Str is smaller than LenC we will still only 777 // scan the string, as reading past the end of it is undefined and we can just 778 // return null if we don't find the char. 779 Str = Str.substr(0, LenC->getZExtValue()); 780 781 // If the char is variable but the input str and length are not we can turn 782 // this memchr call into a simple bit field test. Of course this only works 783 // when the return value is only checked against null. 784 // 785 // It would be really nice to reuse switch lowering here but we can't change 786 // the CFG at this point. 787 // 788 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 789 // != 0 790 // after bounds check. 791 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 792 unsigned char Max = 793 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 794 reinterpret_cast<const unsigned char *>(Str.end())); 795 796 // Make sure the bit field we're about to create fits in a register on the 797 // target. 798 // FIXME: On a 64 bit architecture this prevents us from using the 799 // interesting range of alpha ascii chars. We could do better by emitting 800 // two bitfields or shifting the range by 64 if no lower chars are used. 801 if (!DL.fitsInLegalInteger(Max + 1)) 802 return nullptr; 803 804 // For the bit field use a power-of-2 type with at least 8 bits to avoid 805 // creating unnecessary illegal types. 806 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 807 808 // Now build the bit field. 809 APInt Bitfield(Width, 0); 810 for (char C : Str) 811 Bitfield.setBit((unsigned char)C); 812 Value *BitfieldC = B.getInt(Bitfield); 813 814 // Adjust width of "C" to the bitfield width, then mask off the high bits. 815 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 816 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 817 818 // First check that the bit field access is within bounds. 819 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 820 "memchr.bounds"); 821 822 // Create code that checks if the given bit is set in the field. 823 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 824 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 825 826 // Finally merge both checks and cast to pointer type. The inttoptr 827 // implicitly zexts the i1 to intptr type. 828 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 829 } 830 831 // Check if all arguments are constants. If so, we can constant fold. 832 if (!CharC) 833 return nullptr; 834 835 // Compute the offset. 836 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 837 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 838 return Constant::getNullValue(CI->getType()); 839 840 // memchr(s+n,c,l) -> gep(s+n+i,c) 841 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 842 } 843 844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 845 uint64_t Len, IRBuilder<> &B, 846 const DataLayout &DL) { 847 if (Len == 0) // memcmp(s1,s2,0) -> 0 848 return Constant::getNullValue(CI->getType()); 849 850 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 851 if (Len == 1) { 852 Value *LHSV = 853 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 854 CI->getType(), "lhsv"); 855 Value *RHSV = 856 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 857 CI->getType(), "rhsv"); 858 return B.CreateSub(LHSV, RHSV, "chardiff"); 859 } 860 861 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 862 // TODO: The case where both inputs are constants does not need to be limited 863 // to legal integers or equality comparison. See block below this. 864 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 865 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 866 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 867 868 // First, see if we can fold either argument to a constant. 869 Value *LHSV = nullptr; 870 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 871 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 872 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 873 } 874 Value *RHSV = nullptr; 875 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 876 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 877 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 878 } 879 880 // Don't generate unaligned loads. If either source is constant data, 881 // alignment doesn't matter for that source because there is no load. 882 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 883 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 884 if (!LHSV) { 885 Type *LHSPtrTy = 886 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 887 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 888 } 889 if (!RHSV) { 890 Type *RHSPtrTy = 891 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 892 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 893 } 894 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 895 } 896 } 897 898 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 899 // TODO: This is limited to i8 arrays. 900 StringRef LHSStr, RHSStr; 901 if (getConstantStringInfo(LHS, LHSStr) && 902 getConstantStringInfo(RHS, RHSStr)) { 903 // Make sure we're not reading out-of-bounds memory. 904 if (Len > LHSStr.size() || Len > RHSStr.size()) 905 return nullptr; 906 // Fold the memcmp and normalize the result. This way we get consistent 907 // results across multiple platforms. 908 uint64_t Ret = 0; 909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 910 if (Cmp < 0) 911 Ret = -1; 912 else if (Cmp > 0) 913 Ret = 1; 914 return ConstantInt::get(CI->getType(), Ret); 915 } 916 return nullptr; 917 } 918 919 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 920 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 921 Value *Size = CI->getArgOperand(2); 922 923 if (LHS == RHS) // memcmp(s,s,x) -> 0 924 return Constant::getNullValue(CI->getType()); 925 926 // Handle constant lengths. 927 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 928 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 929 LenC->getZExtValue(), B, DL)) 930 return Res; 931 932 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 933 // `bcmp` can be more efficient than memcmp because it only has to know that 934 // there is a difference, not where it is. 935 if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) { 936 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 937 } 938 939 return nullptr; 940 } 941 942 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 943 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 944 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 945 CI->getArgOperand(2)); 946 return CI->getArgOperand(0); 947 } 948 949 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 950 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 951 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 952 CI->getArgOperand(2)); 953 return CI->getArgOperand(0); 954 } 955 956 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 957 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 958 // This has to be a memset of zeros (bzero). 959 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 960 if (!FillValue || FillValue->getZExtValue() != 0) 961 return nullptr; 962 963 // TODO: We should handle the case where the malloc has more than one use. 964 // This is necessary to optimize common patterns such as when the result of 965 // the malloc is checked against null or when a memset intrinsic is used in 966 // place of a memset library call. 967 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 968 if (!Malloc || !Malloc->hasOneUse()) 969 return nullptr; 970 971 // Is the inner call really malloc()? 972 Function *InnerCallee = Malloc->getCalledFunction(); 973 if (!InnerCallee) 974 return nullptr; 975 976 LibFunc Func; 977 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 978 Func != LibFunc_malloc) 979 return nullptr; 980 981 // The memset must cover the same number of bytes that are malloc'd. 982 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 983 return nullptr; 984 985 // Replace the malloc with a calloc. We need the data layout to know what the 986 // actual size of a 'size_t' parameter is. 987 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 988 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 989 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 990 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 991 Malloc->getArgOperand(0), Malloc->getAttributes(), 992 B, *TLI); 993 if (!Calloc) 994 return nullptr; 995 996 Malloc->replaceAllUsesWith(Calloc); 997 eraseFromParent(Malloc); 998 999 return Calloc; 1000 } 1001 1002 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1003 if (auto *Calloc = foldMallocMemset(CI, B)) 1004 return Calloc; 1005 1006 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1007 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1008 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1009 return CI->getArgOperand(0); 1010 } 1011 1012 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1013 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1014 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1015 1016 return nullptr; 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // Math Library Optimizations 1021 //===----------------------------------------------------------------------===// 1022 1023 // Replace a libcall \p CI with a call to intrinsic \p IID 1024 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1025 // Propagate fast-math flags from the existing call to the new call. 1026 IRBuilder<>::FastMathFlagGuard Guard(B); 1027 B.setFastMathFlags(CI->getFastMathFlags()); 1028 1029 Module *M = CI->getModule(); 1030 Value *V = CI->getArgOperand(0); 1031 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1032 CallInst *NewCall = B.CreateCall(F, V); 1033 NewCall->takeName(CI); 1034 return NewCall; 1035 } 1036 1037 /// Return a variant of Val with float type. 1038 /// Currently this works in two cases: If Val is an FPExtension of a float 1039 /// value to something bigger, simply return the operand. 1040 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1041 /// loss of precision do so. 1042 static Value *valueHasFloatPrecision(Value *Val) { 1043 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1044 Value *Op = Cast->getOperand(0); 1045 if (Op->getType()->isFloatTy()) 1046 return Op; 1047 } 1048 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1049 APFloat F = Const->getValueAPF(); 1050 bool losesInfo; 1051 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1052 &losesInfo); 1053 if (!losesInfo) 1054 return ConstantFP::get(Const->getContext(), F); 1055 } 1056 return nullptr; 1057 } 1058 1059 /// Shrink double -> float functions. 1060 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1061 bool isBinary, bool isPrecise = false) { 1062 if (!CI->getType()->isDoubleTy()) 1063 return nullptr; 1064 1065 // If not all the uses of the function are converted to float, then bail out. 1066 // This matters if the precision of the result is more important than the 1067 // precision of the arguments. 1068 if (isPrecise) 1069 for (User *U : CI->users()) { 1070 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1071 if (!Cast || !Cast->getType()->isFloatTy()) 1072 return nullptr; 1073 } 1074 1075 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1076 Value *V[2]; 1077 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1078 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1079 if (!V[0] || (isBinary && !V[1])) 1080 return nullptr; 1081 1082 // If call isn't an intrinsic, check that it isn't within a function with the 1083 // same name as the float version of this call, otherwise the result is an 1084 // infinite loop. For example, from MinGW-w64: 1085 // 1086 // float expf(float val) { return (float) exp((double) val); } 1087 Function *CalleeFn = CI->getCalledFunction(); 1088 StringRef CalleeNm = CalleeFn->getName(); 1089 AttributeList CalleeAt = CalleeFn->getAttributes(); 1090 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1091 const Function *Fn = CI->getFunction(); 1092 StringRef FnName = Fn->getName(); 1093 if (FnName.back() == 'f' && 1094 FnName.size() == (CalleeNm.size() + 1) && 1095 FnName.startswith(CalleeNm)) 1096 return nullptr; 1097 } 1098 1099 // Propagate the math semantics from the current function to the new function. 1100 IRBuilder<>::FastMathFlagGuard Guard(B); 1101 B.setFastMathFlags(CI->getFastMathFlags()); 1102 1103 // g((double) float) -> (double) gf(float) 1104 Value *R; 1105 if (CalleeFn->isIntrinsic()) { 1106 Module *M = CI->getModule(); 1107 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1108 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1109 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1110 } 1111 else 1112 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1113 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1114 1115 return B.CreateFPExt(R, B.getDoubleTy()); 1116 } 1117 1118 /// Shrink double -> float for unary functions. 1119 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1120 bool isPrecise = false) { 1121 return optimizeDoubleFP(CI, B, false, isPrecise); 1122 } 1123 1124 /// Shrink double -> float for binary functions. 1125 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1126 bool isPrecise = false) { 1127 return optimizeDoubleFP(CI, B, true, isPrecise); 1128 } 1129 1130 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1131 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1132 if (!CI->isFast()) 1133 return nullptr; 1134 1135 // Propagate fast-math flags from the existing call to new instructions. 1136 IRBuilder<>::FastMathFlagGuard Guard(B); 1137 B.setFastMathFlags(CI->getFastMathFlags()); 1138 1139 Value *Real, *Imag; 1140 if (CI->getNumArgOperands() == 1) { 1141 Value *Op = CI->getArgOperand(0); 1142 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1143 Real = B.CreateExtractValue(Op, 0, "real"); 1144 Imag = B.CreateExtractValue(Op, 1, "imag"); 1145 } else { 1146 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1147 Real = CI->getArgOperand(0); 1148 Imag = CI->getArgOperand(1); 1149 } 1150 1151 Value *RealReal = B.CreateFMul(Real, Real); 1152 Value *ImagImag = B.CreateFMul(Imag, Imag); 1153 1154 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1155 CI->getType()); 1156 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1157 } 1158 1159 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1160 IRBuilder<> &B) { 1161 if (!isa<FPMathOperator>(Call)) 1162 return nullptr; 1163 1164 IRBuilder<>::FastMathFlagGuard Guard(B); 1165 B.setFastMathFlags(Call->getFastMathFlags()); 1166 1167 // TODO: Can this be shared to also handle LLVM intrinsics? 1168 Value *X; 1169 switch (Func) { 1170 case LibFunc_sin: 1171 case LibFunc_sinf: 1172 case LibFunc_sinl: 1173 case LibFunc_tan: 1174 case LibFunc_tanf: 1175 case LibFunc_tanl: 1176 // sin(-X) --> -sin(X) 1177 // tan(-X) --> -tan(X) 1178 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1179 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1180 break; 1181 case LibFunc_cos: 1182 case LibFunc_cosf: 1183 case LibFunc_cosl: 1184 // cos(-X) --> cos(X) 1185 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1186 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1187 break; 1188 default: 1189 break; 1190 } 1191 return nullptr; 1192 } 1193 1194 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1195 // Multiplications calculated using Addition Chains. 1196 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1197 1198 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1199 1200 if (InnerChain[Exp]) 1201 return InnerChain[Exp]; 1202 1203 static const unsigned AddChain[33][2] = { 1204 {0, 0}, // Unused. 1205 {0, 0}, // Unused (base case = pow1). 1206 {1, 1}, // Unused (pre-computed). 1207 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1208 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1209 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1210 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1211 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1212 }; 1213 1214 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1215 getPow(InnerChain, AddChain[Exp][1], B)); 1216 return InnerChain[Exp]; 1217 } 1218 1219 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1220 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1221 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1222 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1223 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1224 Module *Mod = Pow->getModule(); 1225 Type *Ty = Pow->getType(); 1226 bool Ignored; 1227 1228 // Evaluate special cases related to a nested function as the base. 1229 1230 // pow(exp(x), y) -> exp(x * y) 1231 // pow(exp2(x), y) -> exp2(x * y) 1232 // If exp{,2}() is used only once, it is better to fold two transcendental 1233 // math functions into one. If used again, exp{,2}() would still have to be 1234 // called with the original argument, then keep both original transcendental 1235 // functions. However, this transformation is only safe with fully relaxed 1236 // math semantics, since, besides rounding differences, it changes overflow 1237 // and underflow behavior quite dramatically. For example: 1238 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1239 // Whereas: 1240 // exp(1000 * 0.001) = exp(1) 1241 // TODO: Loosen the requirement for fully relaxed math semantics. 1242 // TODO: Handle exp10() when more targets have it available. 1243 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1244 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1245 LibFunc LibFn; 1246 1247 Function *CalleeFn = BaseFn->getCalledFunction(); 1248 if (CalleeFn && 1249 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1250 StringRef ExpName; 1251 Intrinsic::ID ID; 1252 Value *ExpFn; 1253 LibFunc LibFnFloat; 1254 LibFunc LibFnDouble; 1255 LibFunc LibFnLongDouble; 1256 1257 switch (LibFn) { 1258 default: 1259 return nullptr; 1260 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1261 ExpName = TLI->getName(LibFunc_exp); 1262 ID = Intrinsic::exp; 1263 LibFnFloat = LibFunc_expf; 1264 LibFnDouble = LibFunc_exp; 1265 LibFnLongDouble = LibFunc_expl; 1266 break; 1267 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1268 ExpName = TLI->getName(LibFunc_exp2); 1269 ID = Intrinsic::exp2; 1270 LibFnFloat = LibFunc_exp2f; 1271 LibFnDouble = LibFunc_exp2; 1272 LibFnLongDouble = LibFunc_exp2l; 1273 break; 1274 } 1275 1276 // Create new exp{,2}() with the product as its argument. 1277 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1278 ExpFn = BaseFn->doesNotAccessMemory() 1279 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1280 FMul, ExpName) 1281 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1282 LibFnLongDouble, B, 1283 BaseFn->getAttributes()); 1284 1285 // Since the new exp{,2}() is different from the original one, dead code 1286 // elimination cannot be trusted to remove it, since it may have side 1287 // effects (e.g., errno). When the only consumer for the original 1288 // exp{,2}() is pow(), then it has to be explicitly erased. 1289 BaseFn->replaceAllUsesWith(ExpFn); 1290 eraseFromParent(BaseFn); 1291 1292 return ExpFn; 1293 } 1294 } 1295 1296 // Evaluate special cases related to a constant base. 1297 1298 const APFloat *BaseF; 1299 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1300 return nullptr; 1301 1302 // pow(2.0 ** n, x) -> exp2(n * x) 1303 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1304 APFloat BaseR = APFloat(1.0); 1305 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1306 BaseR = BaseR / *BaseF; 1307 bool IsInteger = BaseF->isInteger(), 1308 IsReciprocal = BaseR.isInteger(); 1309 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1310 APSInt NI(64, false); 1311 if ((IsInteger || IsReciprocal) && 1312 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1313 NI > 1 && NI.isPowerOf2()) { 1314 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1315 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1316 if (Pow->doesNotAccessMemory()) 1317 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1318 FMul, "exp2"); 1319 else 1320 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1321 LibFunc_exp2l, B, Attrs); 1322 } 1323 } 1324 1325 // pow(10.0, x) -> exp10(x) 1326 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1327 if (match(Base, m_SpecificFP(10.0)) && 1328 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1329 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1330 LibFunc_exp10l, B, Attrs); 1331 1332 return nullptr; 1333 } 1334 1335 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1336 Module *M, IRBuilder<> &B, 1337 const TargetLibraryInfo *TLI) { 1338 // If errno is never set, then use the intrinsic for sqrt(). 1339 if (NoErrno) { 1340 Function *SqrtFn = 1341 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1342 return B.CreateCall(SqrtFn, V, "sqrt"); 1343 } 1344 1345 // Otherwise, use the libcall for sqrt(). 1346 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1347 LibFunc_sqrtl)) 1348 // TODO: We also should check that the target can in fact lower the sqrt() 1349 // libcall. We currently have no way to ask this question, so we ask if 1350 // the target has a sqrt() libcall, which is not exactly the same. 1351 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1352 LibFunc_sqrtl, B, Attrs); 1353 1354 return nullptr; 1355 } 1356 1357 /// Use square root in place of pow(x, +/-0.5). 1358 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1359 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1360 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1361 Module *Mod = Pow->getModule(); 1362 Type *Ty = Pow->getType(); 1363 1364 const APFloat *ExpoF; 1365 if (!match(Expo, m_APFloat(ExpoF)) || 1366 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1367 return nullptr; 1368 1369 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1370 if (!Sqrt) 1371 return nullptr; 1372 1373 // Handle signed zero base by expanding to fabs(sqrt(x)). 1374 if (!Pow->hasNoSignedZeros()) { 1375 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1376 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1377 } 1378 1379 // Handle non finite base by expanding to 1380 // (x == -infinity ? +infinity : sqrt(x)). 1381 if (!Pow->hasNoInfs()) { 1382 Value *PosInf = ConstantFP::getInfinity(Ty), 1383 *NegInf = ConstantFP::getInfinity(Ty, true); 1384 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1385 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1386 } 1387 1388 // If the exponent is negative, then get the reciprocal. 1389 if (ExpoF->isNegative()) 1390 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1391 1392 return Sqrt; 1393 } 1394 1395 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1396 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1397 Function *Callee = Pow->getCalledFunction(); 1398 StringRef Name = Callee->getName(); 1399 Type *Ty = Pow->getType(); 1400 Value *Shrunk = nullptr; 1401 bool Ignored; 1402 1403 // Bail out if simplifying libcalls to pow() is disabled. 1404 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1405 return nullptr; 1406 1407 // Propagate the math semantics from the call to any created instructions. 1408 IRBuilder<>::FastMathFlagGuard Guard(B); 1409 B.setFastMathFlags(Pow->getFastMathFlags()); 1410 1411 // Shrink pow() to powf() if the arguments are single precision, 1412 // unless the result is expected to be double precision. 1413 if (UnsafeFPShrink && 1414 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1415 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1416 1417 // Evaluate special cases related to the base. 1418 1419 // pow(1.0, x) -> 1.0 1420 if (match(Base, m_FPOne())) 1421 return Base; 1422 1423 if (Value *Exp = replacePowWithExp(Pow, B)) 1424 return Exp; 1425 1426 // Evaluate special cases related to the exponent. 1427 1428 // pow(x, -1.0) -> 1.0 / x 1429 if (match(Expo, m_SpecificFP(-1.0))) 1430 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1431 1432 // pow(x, 0.0) -> 1.0 1433 if (match(Expo, m_SpecificFP(0.0))) 1434 return ConstantFP::get(Ty, 1.0); 1435 1436 // pow(x, 1.0) -> x 1437 if (match(Expo, m_FPOne())) 1438 return Base; 1439 1440 // pow(x, 2.0) -> x * x 1441 if (match(Expo, m_SpecificFP(2.0))) 1442 return B.CreateFMul(Base, Base, "square"); 1443 1444 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1445 return Sqrt; 1446 1447 // pow(x, n) -> x * x * x * ... 1448 const APFloat *ExpoF; 1449 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1450 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1451 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1452 // additional fmul. 1453 // TODO: This whole transformation should be backend specific (e.g. some 1454 // backends might prefer libcalls or the limit for the exponent might 1455 // be different) and it should also consider optimizing for size. 1456 APFloat LimF(ExpoF->getSemantics(), 33.0), 1457 ExpoA(abs(*ExpoF)); 1458 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1459 // This transformation applies to integer or integer+0.5 exponents only. 1460 // For integer+0.5, we create a sqrt(Base) call. 1461 Value *Sqrt = nullptr; 1462 if (!ExpoA.isInteger()) { 1463 APFloat Expo2 = ExpoA; 1464 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1465 // is no floating point exception and the result is an integer, then 1466 // ExpoA == integer + 0.5 1467 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1468 return nullptr; 1469 1470 if (!Expo2.isInteger()) 1471 return nullptr; 1472 1473 Sqrt = 1474 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1475 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1476 } 1477 1478 // We will memoize intermediate products of the Addition Chain. 1479 Value *InnerChain[33] = {nullptr}; 1480 InnerChain[1] = Base; 1481 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1482 1483 // We cannot readily convert a non-double type (like float) to a double. 1484 // So we first convert it to something which could be converted to double. 1485 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1486 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1487 1488 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1489 if (Sqrt) 1490 FMul = B.CreateFMul(FMul, Sqrt); 1491 1492 // If the exponent is negative, then get the reciprocal. 1493 if (ExpoF->isNegative()) 1494 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1495 1496 return FMul; 1497 } 1498 } 1499 1500 return Shrunk; 1501 } 1502 1503 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1504 Function *Callee = CI->getCalledFunction(); 1505 Value *Ret = nullptr; 1506 StringRef Name = Callee->getName(); 1507 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1508 Ret = optimizeUnaryDoubleFP(CI, B, true); 1509 1510 Value *Op = CI->getArgOperand(0); 1511 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1512 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1513 LibFunc LdExp = LibFunc_ldexpl; 1514 if (Op->getType()->isFloatTy()) 1515 LdExp = LibFunc_ldexpf; 1516 else if (Op->getType()->isDoubleTy()) 1517 LdExp = LibFunc_ldexp; 1518 1519 if (TLI->has(LdExp)) { 1520 Value *LdExpArg = nullptr; 1521 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1522 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1523 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1524 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1525 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1526 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1527 } 1528 1529 if (LdExpArg) { 1530 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1531 if (!Op->getType()->isFloatTy()) 1532 One = ConstantExpr::getFPExtend(One, Op->getType()); 1533 1534 Module *M = CI->getModule(); 1535 FunctionCallee NewCallee = M->getOrInsertFunction( 1536 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); 1537 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1538 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1539 CI->setCallingConv(F->getCallingConv()); 1540 1541 return CI; 1542 } 1543 } 1544 return Ret; 1545 } 1546 1547 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1548 Function *Callee = CI->getCalledFunction(); 1549 // If we can shrink the call to a float function rather than a double 1550 // function, do that first. 1551 StringRef Name = Callee->getName(); 1552 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1553 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1554 return Ret; 1555 1556 IRBuilder<>::FastMathFlagGuard Guard(B); 1557 FastMathFlags FMF; 1558 if (CI->isFast()) { 1559 // If the call is 'fast', then anything we create here will also be 'fast'. 1560 FMF.setFast(); 1561 } else { 1562 // At a minimum, no-nans-fp-math must be true. 1563 if (!CI->hasNoNaNs()) 1564 return nullptr; 1565 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1566 // "Ideally, fmax would be sensitive to the sign of zero, for example 1567 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1568 // might be impractical." 1569 FMF.setNoSignedZeros(); 1570 FMF.setNoNaNs(); 1571 } 1572 B.setFastMathFlags(FMF); 1573 1574 // We have a relaxed floating-point environment. We can ignore NaN-handling 1575 // and transform to a compare and select. We do not have to consider errno or 1576 // exceptions, because fmin/fmax do not have those. 1577 Value *Op0 = CI->getArgOperand(0); 1578 Value *Op1 = CI->getArgOperand(1); 1579 Value *Cmp = Callee->getName().startswith("fmin") ? 1580 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1581 return B.CreateSelect(Cmp, Op0, Op1); 1582 } 1583 1584 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1585 Function *Callee = CI->getCalledFunction(); 1586 Value *Ret = nullptr; 1587 StringRef Name = Callee->getName(); 1588 if (UnsafeFPShrink && hasFloatVersion(Name)) 1589 Ret = optimizeUnaryDoubleFP(CI, B, true); 1590 1591 if (!CI->isFast()) 1592 return Ret; 1593 Value *Op1 = CI->getArgOperand(0); 1594 auto *OpC = dyn_cast<CallInst>(Op1); 1595 1596 // The earlier call must also be 'fast' in order to do these transforms. 1597 if (!OpC || !OpC->isFast()) 1598 return Ret; 1599 1600 // log(pow(x,y)) -> y*log(x) 1601 // This is only applicable to log, log2, log10. 1602 if (Name != "log" && Name != "log2" && Name != "log10") 1603 return Ret; 1604 1605 IRBuilder<>::FastMathFlagGuard Guard(B); 1606 FastMathFlags FMF; 1607 FMF.setFast(); 1608 B.setFastMathFlags(FMF); 1609 1610 LibFunc Func; 1611 Function *F = OpC->getCalledFunction(); 1612 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1613 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1614 return B.CreateFMul(OpC->getArgOperand(1), 1615 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1616 Callee->getAttributes()), "mul"); 1617 1618 // log(exp2(y)) -> y*log(2) 1619 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1620 TLI->has(Func) && Func == LibFunc_exp2) 1621 return B.CreateFMul( 1622 OpC->getArgOperand(0), 1623 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1624 Callee->getName(), B, Callee->getAttributes()), 1625 "logmul"); 1626 return Ret; 1627 } 1628 1629 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1630 Function *Callee = CI->getCalledFunction(); 1631 Value *Ret = nullptr; 1632 // TODO: Once we have a way (other than checking for the existince of the 1633 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1634 // condition below. 1635 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1636 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1637 Ret = optimizeUnaryDoubleFP(CI, B, true); 1638 1639 if (!CI->isFast()) 1640 return Ret; 1641 1642 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1643 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1644 return Ret; 1645 1646 // We're looking for a repeated factor in a multiplication tree, 1647 // so we can do this fold: sqrt(x * x) -> fabs(x); 1648 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1649 Value *Op0 = I->getOperand(0); 1650 Value *Op1 = I->getOperand(1); 1651 Value *RepeatOp = nullptr; 1652 Value *OtherOp = nullptr; 1653 if (Op0 == Op1) { 1654 // Simple match: the operands of the multiply are identical. 1655 RepeatOp = Op0; 1656 } else { 1657 // Look for a more complicated pattern: one of the operands is itself 1658 // a multiply, so search for a common factor in that multiply. 1659 // Note: We don't bother looking any deeper than this first level or for 1660 // variations of this pattern because instcombine's visitFMUL and/or the 1661 // reassociation pass should give us this form. 1662 Value *OtherMul0, *OtherMul1; 1663 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1664 // Pattern: sqrt((x * y) * z) 1665 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1666 // Matched: sqrt((x * x) * z) 1667 RepeatOp = OtherMul0; 1668 OtherOp = Op1; 1669 } 1670 } 1671 } 1672 if (!RepeatOp) 1673 return Ret; 1674 1675 // Fast math flags for any created instructions should match the sqrt 1676 // and multiply. 1677 IRBuilder<>::FastMathFlagGuard Guard(B); 1678 B.setFastMathFlags(I->getFastMathFlags()); 1679 1680 // If we found a repeated factor, hoist it out of the square root and 1681 // replace it with the fabs of that factor. 1682 Module *M = Callee->getParent(); 1683 Type *ArgType = I->getType(); 1684 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1685 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1686 if (OtherOp) { 1687 // If we found a non-repeated factor, we still need to get its square 1688 // root. We then multiply that by the value that was simplified out 1689 // of the square root calculation. 1690 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1691 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1692 return B.CreateFMul(FabsCall, SqrtCall); 1693 } 1694 return FabsCall; 1695 } 1696 1697 // TODO: Generalize to handle any trig function and its inverse. 1698 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1699 Function *Callee = CI->getCalledFunction(); 1700 Value *Ret = nullptr; 1701 StringRef Name = Callee->getName(); 1702 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1703 Ret = optimizeUnaryDoubleFP(CI, B, true); 1704 1705 Value *Op1 = CI->getArgOperand(0); 1706 auto *OpC = dyn_cast<CallInst>(Op1); 1707 if (!OpC) 1708 return Ret; 1709 1710 // Both calls must be 'fast' in order to remove them. 1711 if (!CI->isFast() || !OpC->isFast()) 1712 return Ret; 1713 1714 // tan(atan(x)) -> x 1715 // tanf(atanf(x)) -> x 1716 // tanl(atanl(x)) -> x 1717 LibFunc Func; 1718 Function *F = OpC->getCalledFunction(); 1719 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1720 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1721 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1722 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1723 Ret = OpC->getArgOperand(0); 1724 return Ret; 1725 } 1726 1727 static bool isTrigLibCall(CallInst *CI) { 1728 // We can only hope to do anything useful if we can ignore things like errno 1729 // and floating-point exceptions. 1730 // We already checked the prototype. 1731 return CI->hasFnAttr(Attribute::NoUnwind) && 1732 CI->hasFnAttr(Attribute::ReadNone); 1733 } 1734 1735 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1736 bool UseFloat, Value *&Sin, Value *&Cos, 1737 Value *&SinCos) { 1738 Type *ArgTy = Arg->getType(); 1739 Type *ResTy; 1740 StringRef Name; 1741 1742 Triple T(OrigCallee->getParent()->getTargetTriple()); 1743 if (UseFloat) { 1744 Name = "__sincospif_stret"; 1745 1746 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1747 // x86_64 can't use {float, float} since that would be returned in both 1748 // xmm0 and xmm1, which isn't what a real struct would do. 1749 ResTy = T.getArch() == Triple::x86_64 1750 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1751 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1752 } else { 1753 Name = "__sincospi_stret"; 1754 ResTy = StructType::get(ArgTy, ArgTy); 1755 } 1756 1757 Module *M = OrigCallee->getParent(); 1758 FunctionCallee Callee = 1759 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1760 1761 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1762 // If the argument is an instruction, it must dominate all uses so put our 1763 // sincos call there. 1764 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1765 } else { 1766 // Otherwise (e.g. for a constant) the beginning of the function is as 1767 // good a place as any. 1768 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1769 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1770 } 1771 1772 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1773 1774 if (SinCos->getType()->isStructTy()) { 1775 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1776 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1777 } else { 1778 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1779 "sinpi"); 1780 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1781 "cospi"); 1782 } 1783 } 1784 1785 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1786 // Make sure the prototype is as expected, otherwise the rest of the 1787 // function is probably invalid and likely to abort. 1788 if (!isTrigLibCall(CI)) 1789 return nullptr; 1790 1791 Value *Arg = CI->getArgOperand(0); 1792 SmallVector<CallInst *, 1> SinCalls; 1793 SmallVector<CallInst *, 1> CosCalls; 1794 SmallVector<CallInst *, 1> SinCosCalls; 1795 1796 bool IsFloat = Arg->getType()->isFloatTy(); 1797 1798 // Look for all compatible sinpi, cospi and sincospi calls with the same 1799 // argument. If there are enough (in some sense) we can make the 1800 // substitution. 1801 Function *F = CI->getFunction(); 1802 for (User *U : Arg->users()) 1803 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1804 1805 // It's only worthwhile if both sinpi and cospi are actually used. 1806 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1807 return nullptr; 1808 1809 Value *Sin, *Cos, *SinCos; 1810 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1811 1812 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1813 Value *Res) { 1814 for (CallInst *C : Calls) 1815 replaceAllUsesWith(C, Res); 1816 }; 1817 1818 replaceTrigInsts(SinCalls, Sin); 1819 replaceTrigInsts(CosCalls, Cos); 1820 replaceTrigInsts(SinCosCalls, SinCos); 1821 1822 return nullptr; 1823 } 1824 1825 void LibCallSimplifier::classifyArgUse( 1826 Value *Val, Function *F, bool IsFloat, 1827 SmallVectorImpl<CallInst *> &SinCalls, 1828 SmallVectorImpl<CallInst *> &CosCalls, 1829 SmallVectorImpl<CallInst *> &SinCosCalls) { 1830 CallInst *CI = dyn_cast<CallInst>(Val); 1831 1832 if (!CI) 1833 return; 1834 1835 // Don't consider calls in other functions. 1836 if (CI->getFunction() != F) 1837 return; 1838 1839 Function *Callee = CI->getCalledFunction(); 1840 LibFunc Func; 1841 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1842 !isTrigLibCall(CI)) 1843 return; 1844 1845 if (IsFloat) { 1846 if (Func == LibFunc_sinpif) 1847 SinCalls.push_back(CI); 1848 else if (Func == LibFunc_cospif) 1849 CosCalls.push_back(CI); 1850 else if (Func == LibFunc_sincospif_stret) 1851 SinCosCalls.push_back(CI); 1852 } else { 1853 if (Func == LibFunc_sinpi) 1854 SinCalls.push_back(CI); 1855 else if (Func == LibFunc_cospi) 1856 CosCalls.push_back(CI); 1857 else if (Func == LibFunc_sincospi_stret) 1858 SinCosCalls.push_back(CI); 1859 } 1860 } 1861 1862 //===----------------------------------------------------------------------===// 1863 // Integer Library Call Optimizations 1864 //===----------------------------------------------------------------------===// 1865 1866 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1867 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1868 Value *Op = CI->getArgOperand(0); 1869 Type *ArgType = Op->getType(); 1870 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1871 Intrinsic::cttz, ArgType); 1872 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1873 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1874 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1875 1876 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1877 return B.CreateSelect(Cond, V, B.getInt32(0)); 1878 } 1879 1880 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1881 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1882 Value *Op = CI->getArgOperand(0); 1883 Type *ArgType = Op->getType(); 1884 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1885 Intrinsic::ctlz, ArgType); 1886 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1887 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1888 V); 1889 return B.CreateIntCast(V, CI->getType(), false); 1890 } 1891 1892 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1893 // abs(x) -> x <s 0 ? -x : x 1894 // The negation has 'nsw' because abs of INT_MIN is undefined. 1895 Value *X = CI->getArgOperand(0); 1896 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1897 Value *NegX = B.CreateNSWNeg(X, "neg"); 1898 return B.CreateSelect(IsNeg, NegX, X); 1899 } 1900 1901 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1902 // isdigit(c) -> (c-'0') <u 10 1903 Value *Op = CI->getArgOperand(0); 1904 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1905 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1906 return B.CreateZExt(Op, CI->getType()); 1907 } 1908 1909 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1910 // isascii(c) -> c <u 128 1911 Value *Op = CI->getArgOperand(0); 1912 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1913 return B.CreateZExt(Op, CI->getType()); 1914 } 1915 1916 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1917 // toascii(c) -> c & 0x7f 1918 return B.CreateAnd(CI->getArgOperand(0), 1919 ConstantInt::get(CI->getType(), 0x7F)); 1920 } 1921 1922 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1923 StringRef Str; 1924 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1925 return nullptr; 1926 1927 return convertStrToNumber(CI, Str, 10); 1928 } 1929 1930 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1931 StringRef Str; 1932 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1933 return nullptr; 1934 1935 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1936 return nullptr; 1937 1938 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1939 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1940 } 1941 1942 return nullptr; 1943 } 1944 1945 //===----------------------------------------------------------------------===// 1946 // Formatting and IO Library Call Optimizations 1947 //===----------------------------------------------------------------------===// 1948 1949 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1950 1951 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1952 int StreamArg) { 1953 Function *Callee = CI->getCalledFunction(); 1954 // Error reporting calls should be cold, mark them as such. 1955 // This applies even to non-builtin calls: it is only a hint and applies to 1956 // functions that the frontend might not understand as builtins. 1957 1958 // This heuristic was suggested in: 1959 // Improving Static Branch Prediction in a Compiler 1960 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1961 // Proceedings of PACT'98, Oct. 1998, IEEE 1962 if (!CI->hasFnAttr(Attribute::Cold) && 1963 isReportingError(Callee, CI, StreamArg)) { 1964 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1965 } 1966 1967 return nullptr; 1968 } 1969 1970 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1971 if (!Callee || !Callee->isDeclaration()) 1972 return false; 1973 1974 if (StreamArg < 0) 1975 return true; 1976 1977 // These functions might be considered cold, but only if their stream 1978 // argument is stderr. 1979 1980 if (StreamArg >= (int)CI->getNumArgOperands()) 1981 return false; 1982 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1983 if (!LI) 1984 return false; 1985 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1986 if (!GV || !GV->isDeclaration()) 1987 return false; 1988 return GV->getName() == "stderr"; 1989 } 1990 1991 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1992 // Check for a fixed format string. 1993 StringRef FormatStr; 1994 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1995 return nullptr; 1996 1997 // Empty format string -> noop. 1998 if (FormatStr.empty()) // Tolerate printf's declared void. 1999 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2000 2001 // Do not do any of the following transformations if the printf return value 2002 // is used, in general the printf return value is not compatible with either 2003 // putchar() or puts(). 2004 if (!CI->use_empty()) 2005 return nullptr; 2006 2007 // printf("x") -> putchar('x'), even for "%" and "%%". 2008 if (FormatStr.size() == 1 || FormatStr == "%%") 2009 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2010 2011 // printf("%s", "a") --> putchar('a') 2012 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2013 StringRef ChrStr; 2014 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2015 return nullptr; 2016 if (ChrStr.size() != 1) 2017 return nullptr; 2018 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2019 } 2020 2021 // printf("foo\n") --> puts("foo") 2022 if (FormatStr[FormatStr.size() - 1] == '\n' && 2023 FormatStr.find('%') == StringRef::npos) { // No format characters. 2024 // Create a string literal with no \n on it. We expect the constant merge 2025 // pass to be run after this pass, to merge duplicate strings. 2026 FormatStr = FormatStr.drop_back(); 2027 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2028 return emitPutS(GV, B, TLI); 2029 } 2030 2031 // Optimize specific format strings. 2032 // printf("%c", chr) --> putchar(chr) 2033 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2034 CI->getArgOperand(1)->getType()->isIntegerTy()) 2035 return emitPutChar(CI->getArgOperand(1), B, TLI); 2036 2037 // printf("%s\n", str) --> puts(str) 2038 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2039 CI->getArgOperand(1)->getType()->isPointerTy()) 2040 return emitPutS(CI->getArgOperand(1), B, TLI); 2041 return nullptr; 2042 } 2043 2044 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2045 2046 Function *Callee = CI->getCalledFunction(); 2047 FunctionType *FT = Callee->getFunctionType(); 2048 if (Value *V = optimizePrintFString(CI, B)) { 2049 return V; 2050 } 2051 2052 // printf(format, ...) -> iprintf(format, ...) if no floating point 2053 // arguments. 2054 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2055 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2056 FunctionCallee IPrintFFn = 2057 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2058 CallInst *New = cast<CallInst>(CI->clone()); 2059 New->setCalledFunction(IPrintFFn); 2060 B.Insert(New); 2061 return New; 2062 } 2063 2064 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2065 // arguments. 2066 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2067 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2068 auto SmallPrintFFn = 2069 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2070 FT, Callee->getAttributes()); 2071 CallInst *New = cast<CallInst>(CI->clone()); 2072 New->setCalledFunction(SmallPrintFFn); 2073 B.Insert(New); 2074 return New; 2075 } 2076 2077 return nullptr; 2078 } 2079 2080 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2081 // Check for a fixed format string. 2082 StringRef FormatStr; 2083 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2084 return nullptr; 2085 2086 // If we just have a format string (nothing else crazy) transform it. 2087 if (CI->getNumArgOperands() == 2) { 2088 // Make sure there's no % in the constant array. We could try to handle 2089 // %% -> % in the future if we cared. 2090 if (FormatStr.find('%') != StringRef::npos) 2091 return nullptr; // we found a format specifier, bail out. 2092 2093 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2094 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2095 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2096 FormatStr.size() + 1)); // Copy the null byte. 2097 return ConstantInt::get(CI->getType(), FormatStr.size()); 2098 } 2099 2100 // The remaining optimizations require the format string to be "%s" or "%c" 2101 // and have an extra operand. 2102 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2103 CI->getNumArgOperands() < 3) 2104 return nullptr; 2105 2106 // Decode the second character of the format string. 2107 if (FormatStr[1] == 'c') { 2108 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2109 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2110 return nullptr; 2111 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2112 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2113 B.CreateStore(V, Ptr); 2114 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2115 B.CreateStore(B.getInt8(0), Ptr); 2116 2117 return ConstantInt::get(CI->getType(), 1); 2118 } 2119 2120 if (FormatStr[1] == 's') { 2121 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2122 // strlen(str)+1) 2123 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2124 return nullptr; 2125 2126 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2127 if (!Len) 2128 return nullptr; 2129 Value *IncLen = 2130 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2131 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2132 2133 // The sprintf result is the unincremented number of bytes in the string. 2134 return B.CreateIntCast(Len, CI->getType(), false); 2135 } 2136 return nullptr; 2137 } 2138 2139 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2140 Function *Callee = CI->getCalledFunction(); 2141 FunctionType *FT = Callee->getFunctionType(); 2142 if (Value *V = optimizeSPrintFString(CI, B)) { 2143 return V; 2144 } 2145 2146 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2147 // point arguments. 2148 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2149 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2150 FunctionCallee SIPrintFFn = 2151 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2152 CallInst *New = cast<CallInst>(CI->clone()); 2153 New->setCalledFunction(SIPrintFFn); 2154 B.Insert(New); 2155 return New; 2156 } 2157 2158 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2159 // floating point arguments. 2160 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2161 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2162 auto SmallSPrintFFn = 2163 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2164 FT, Callee->getAttributes()); 2165 CallInst *New = cast<CallInst>(CI->clone()); 2166 New->setCalledFunction(SmallSPrintFFn); 2167 B.Insert(New); 2168 return New; 2169 } 2170 2171 return nullptr; 2172 } 2173 2174 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2175 // Check for a fixed format string. 2176 StringRef FormatStr; 2177 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2178 return nullptr; 2179 2180 // Check for size 2181 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2182 if (!Size) 2183 return nullptr; 2184 2185 uint64_t N = Size->getZExtValue(); 2186 2187 // If we just have a format string (nothing else crazy) transform it. 2188 if (CI->getNumArgOperands() == 3) { 2189 // Make sure there's no % in the constant array. We could try to handle 2190 // %% -> % in the future if we cared. 2191 if (FormatStr.find('%') != StringRef::npos) 2192 return nullptr; // we found a format specifier, bail out. 2193 2194 if (N == 0) 2195 return ConstantInt::get(CI->getType(), FormatStr.size()); 2196 else if (N < FormatStr.size() + 1) 2197 return nullptr; 2198 2199 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2200 // strlen(fmt)+1) 2201 B.CreateMemCpy( 2202 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2203 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2204 FormatStr.size() + 1)); // Copy the null byte. 2205 return ConstantInt::get(CI->getType(), FormatStr.size()); 2206 } 2207 2208 // The remaining optimizations require the format string to be "%s" or "%c" 2209 // and have an extra operand. 2210 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2211 CI->getNumArgOperands() == 4) { 2212 2213 // Decode the second character of the format string. 2214 if (FormatStr[1] == 'c') { 2215 if (N == 0) 2216 return ConstantInt::get(CI->getType(), 1); 2217 else if (N == 1) 2218 return nullptr; 2219 2220 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2221 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2222 return nullptr; 2223 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2224 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2225 B.CreateStore(V, Ptr); 2226 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2227 B.CreateStore(B.getInt8(0), Ptr); 2228 2229 return ConstantInt::get(CI->getType(), 1); 2230 } 2231 2232 if (FormatStr[1] == 's') { 2233 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2234 StringRef Str; 2235 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2236 return nullptr; 2237 2238 if (N == 0) 2239 return ConstantInt::get(CI->getType(), Str.size()); 2240 else if (N < Str.size() + 1) 2241 return nullptr; 2242 2243 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2244 ConstantInt::get(CI->getType(), Str.size() + 1)); 2245 2246 // The snprintf result is the unincremented number of bytes in the string. 2247 return ConstantInt::get(CI->getType(), Str.size()); 2248 } 2249 } 2250 return nullptr; 2251 } 2252 2253 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2254 if (Value *V = optimizeSnPrintFString(CI, B)) { 2255 return V; 2256 } 2257 2258 return nullptr; 2259 } 2260 2261 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2262 optimizeErrorReporting(CI, B, 0); 2263 2264 // All the optimizations depend on the format string. 2265 StringRef FormatStr; 2266 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2267 return nullptr; 2268 2269 // Do not do any of the following transformations if the fprintf return 2270 // value is used, in general the fprintf return value is not compatible 2271 // with fwrite(), fputc() or fputs(). 2272 if (!CI->use_empty()) 2273 return nullptr; 2274 2275 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2276 if (CI->getNumArgOperands() == 2) { 2277 // Could handle %% -> % if we cared. 2278 if (FormatStr.find('%') != StringRef::npos) 2279 return nullptr; // We found a format specifier. 2280 2281 return emitFWrite( 2282 CI->getArgOperand(1), 2283 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2284 CI->getArgOperand(0), B, DL, TLI); 2285 } 2286 2287 // The remaining optimizations require the format string to be "%s" or "%c" 2288 // and have an extra operand. 2289 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2290 CI->getNumArgOperands() < 3) 2291 return nullptr; 2292 2293 // Decode the second character of the format string. 2294 if (FormatStr[1] == 'c') { 2295 // fprintf(F, "%c", chr) --> fputc(chr, F) 2296 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2297 return nullptr; 2298 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2299 } 2300 2301 if (FormatStr[1] == 's') { 2302 // fprintf(F, "%s", str) --> fputs(str, F) 2303 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2304 return nullptr; 2305 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2306 } 2307 return nullptr; 2308 } 2309 2310 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2311 Function *Callee = CI->getCalledFunction(); 2312 FunctionType *FT = Callee->getFunctionType(); 2313 if (Value *V = optimizeFPrintFString(CI, B)) { 2314 return V; 2315 } 2316 2317 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2318 // floating point arguments. 2319 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2320 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2321 FunctionCallee FIPrintFFn = 2322 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2323 CallInst *New = cast<CallInst>(CI->clone()); 2324 New->setCalledFunction(FIPrintFFn); 2325 B.Insert(New); 2326 return New; 2327 } 2328 2329 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2330 // 128-bit floating point arguments. 2331 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2332 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2333 auto SmallFPrintFFn = 2334 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2335 FT, Callee->getAttributes()); 2336 CallInst *New = cast<CallInst>(CI->clone()); 2337 New->setCalledFunction(SmallFPrintFFn); 2338 B.Insert(New); 2339 return New; 2340 } 2341 2342 return nullptr; 2343 } 2344 2345 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2346 optimizeErrorReporting(CI, B, 3); 2347 2348 // Get the element size and count. 2349 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2350 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2351 if (SizeC && CountC) { 2352 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2353 2354 // If this is writing zero records, remove the call (it's a noop). 2355 if (Bytes == 0) 2356 return ConstantInt::get(CI->getType(), 0); 2357 2358 // If this is writing one byte, turn it into fputc. 2359 // This optimisation is only valid, if the return value is unused. 2360 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2361 Value *Char = B.CreateLoad(B.getInt8Ty(), 2362 castToCStr(CI->getArgOperand(0), B), "char"); 2363 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2364 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2365 } 2366 } 2367 2368 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2369 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2370 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2371 TLI); 2372 2373 return nullptr; 2374 } 2375 2376 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2377 optimizeErrorReporting(CI, B, 1); 2378 2379 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2380 // requires more arguments and thus extra MOVs are required. 2381 bool OptForSize = CI->getFunction()->hasOptSize() || 2382 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2383 if (OptForSize) 2384 return nullptr; 2385 2386 // Check if has any use 2387 if (!CI->use_empty()) { 2388 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2389 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2390 TLI); 2391 else 2392 // We can't optimize if return value is used. 2393 return nullptr; 2394 } 2395 2396 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2397 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2398 if (!Len) 2399 return nullptr; 2400 2401 // Known to have no uses (see above). 2402 return emitFWrite( 2403 CI->getArgOperand(0), 2404 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2405 CI->getArgOperand(1), B, DL, TLI); 2406 } 2407 2408 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2409 optimizeErrorReporting(CI, B, 1); 2410 2411 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2412 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2413 TLI); 2414 2415 return nullptr; 2416 } 2417 2418 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2419 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2420 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2421 2422 return nullptr; 2423 } 2424 2425 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2426 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2427 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2428 CI->getArgOperand(2), B, TLI); 2429 2430 return nullptr; 2431 } 2432 2433 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2434 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2435 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2436 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2437 TLI); 2438 2439 return nullptr; 2440 } 2441 2442 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2443 if (!CI->use_empty()) 2444 return nullptr; 2445 2446 // Check for a constant string. 2447 // puts("") -> putchar('\n') 2448 StringRef Str; 2449 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2450 return emitPutChar(B.getInt32('\n'), B, TLI); 2451 2452 return nullptr; 2453 } 2454 2455 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2456 LibFunc Func; 2457 SmallString<20> FloatFuncName = FuncName; 2458 FloatFuncName += 'f'; 2459 if (TLI->getLibFunc(FloatFuncName, Func)) 2460 return TLI->has(Func); 2461 return false; 2462 } 2463 2464 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2465 IRBuilder<> &Builder) { 2466 LibFunc Func; 2467 Function *Callee = CI->getCalledFunction(); 2468 // Check for string/memory library functions. 2469 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2470 // Make sure we never change the calling convention. 2471 assert((ignoreCallingConv(Func) || 2472 isCallingConvCCompatible(CI)) && 2473 "Optimizing string/memory libcall would change the calling convention"); 2474 switch (Func) { 2475 case LibFunc_strcat: 2476 return optimizeStrCat(CI, Builder); 2477 case LibFunc_strncat: 2478 return optimizeStrNCat(CI, Builder); 2479 case LibFunc_strchr: 2480 return optimizeStrChr(CI, Builder); 2481 case LibFunc_strrchr: 2482 return optimizeStrRChr(CI, Builder); 2483 case LibFunc_strcmp: 2484 return optimizeStrCmp(CI, Builder); 2485 case LibFunc_strncmp: 2486 return optimizeStrNCmp(CI, Builder); 2487 case LibFunc_strcpy: 2488 return optimizeStrCpy(CI, Builder); 2489 case LibFunc_stpcpy: 2490 return optimizeStpCpy(CI, Builder); 2491 case LibFunc_strncpy: 2492 return optimizeStrNCpy(CI, Builder); 2493 case LibFunc_strlen: 2494 return optimizeStrLen(CI, Builder); 2495 case LibFunc_strpbrk: 2496 return optimizeStrPBrk(CI, Builder); 2497 case LibFunc_strtol: 2498 case LibFunc_strtod: 2499 case LibFunc_strtof: 2500 case LibFunc_strtoul: 2501 case LibFunc_strtoll: 2502 case LibFunc_strtold: 2503 case LibFunc_strtoull: 2504 return optimizeStrTo(CI, Builder); 2505 case LibFunc_strspn: 2506 return optimizeStrSpn(CI, Builder); 2507 case LibFunc_strcspn: 2508 return optimizeStrCSpn(CI, Builder); 2509 case LibFunc_strstr: 2510 return optimizeStrStr(CI, Builder); 2511 case LibFunc_memchr: 2512 return optimizeMemChr(CI, Builder); 2513 case LibFunc_memcmp: 2514 return optimizeMemCmp(CI, Builder); 2515 case LibFunc_memcpy: 2516 return optimizeMemCpy(CI, Builder); 2517 case LibFunc_memmove: 2518 return optimizeMemMove(CI, Builder); 2519 case LibFunc_memset: 2520 return optimizeMemSet(CI, Builder); 2521 case LibFunc_realloc: 2522 return optimizeRealloc(CI, Builder); 2523 case LibFunc_wcslen: 2524 return optimizeWcslen(CI, Builder); 2525 default: 2526 break; 2527 } 2528 } 2529 return nullptr; 2530 } 2531 2532 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2533 LibFunc Func, 2534 IRBuilder<> &Builder) { 2535 // Don't optimize calls that require strict floating point semantics. 2536 if (CI->isStrictFP()) 2537 return nullptr; 2538 2539 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2540 return V; 2541 2542 switch (Func) { 2543 case LibFunc_sinpif: 2544 case LibFunc_sinpi: 2545 case LibFunc_cospif: 2546 case LibFunc_cospi: 2547 return optimizeSinCosPi(CI, Builder); 2548 case LibFunc_powf: 2549 case LibFunc_pow: 2550 case LibFunc_powl: 2551 return optimizePow(CI, Builder); 2552 case LibFunc_exp2l: 2553 case LibFunc_exp2: 2554 case LibFunc_exp2f: 2555 return optimizeExp2(CI, Builder); 2556 case LibFunc_fabsf: 2557 case LibFunc_fabs: 2558 case LibFunc_fabsl: 2559 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2560 case LibFunc_sqrtf: 2561 case LibFunc_sqrt: 2562 case LibFunc_sqrtl: 2563 return optimizeSqrt(CI, Builder); 2564 case LibFunc_log: 2565 case LibFunc_log10: 2566 case LibFunc_log1p: 2567 case LibFunc_log2: 2568 case LibFunc_logb: 2569 return optimizeLog(CI, Builder); 2570 case LibFunc_tan: 2571 case LibFunc_tanf: 2572 case LibFunc_tanl: 2573 return optimizeTan(CI, Builder); 2574 case LibFunc_ceil: 2575 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2576 case LibFunc_floor: 2577 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2578 case LibFunc_round: 2579 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2580 case LibFunc_nearbyint: 2581 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2582 case LibFunc_rint: 2583 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2584 case LibFunc_trunc: 2585 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2586 case LibFunc_acos: 2587 case LibFunc_acosh: 2588 case LibFunc_asin: 2589 case LibFunc_asinh: 2590 case LibFunc_atan: 2591 case LibFunc_atanh: 2592 case LibFunc_cbrt: 2593 case LibFunc_cosh: 2594 case LibFunc_exp: 2595 case LibFunc_exp10: 2596 case LibFunc_expm1: 2597 case LibFunc_cos: 2598 case LibFunc_sin: 2599 case LibFunc_sinh: 2600 case LibFunc_tanh: 2601 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2602 return optimizeUnaryDoubleFP(CI, Builder, true); 2603 return nullptr; 2604 case LibFunc_copysign: 2605 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2606 return optimizeBinaryDoubleFP(CI, Builder); 2607 return nullptr; 2608 case LibFunc_fminf: 2609 case LibFunc_fmin: 2610 case LibFunc_fminl: 2611 case LibFunc_fmaxf: 2612 case LibFunc_fmax: 2613 case LibFunc_fmaxl: 2614 return optimizeFMinFMax(CI, Builder); 2615 case LibFunc_cabs: 2616 case LibFunc_cabsf: 2617 case LibFunc_cabsl: 2618 return optimizeCAbs(CI, Builder); 2619 default: 2620 return nullptr; 2621 } 2622 } 2623 2624 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2625 // TODO: Split out the code below that operates on FP calls so that 2626 // we can all non-FP calls with the StrictFP attribute to be 2627 // optimized. 2628 if (CI->isNoBuiltin()) 2629 return nullptr; 2630 2631 LibFunc Func; 2632 Function *Callee = CI->getCalledFunction(); 2633 2634 SmallVector<OperandBundleDef, 2> OpBundles; 2635 CI->getOperandBundlesAsDefs(OpBundles); 2636 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2637 bool isCallingConvC = isCallingConvCCompatible(CI); 2638 2639 // Command-line parameter overrides instruction attribute. 2640 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2641 // used by the intrinsic optimizations. 2642 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2643 UnsafeFPShrink = EnableUnsafeFPShrink; 2644 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2645 UnsafeFPShrink = true; 2646 2647 // First, check for intrinsics. 2648 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2649 if (!isCallingConvC) 2650 return nullptr; 2651 // The FP intrinsics have corresponding constrained versions so we don't 2652 // need to check for the StrictFP attribute here. 2653 switch (II->getIntrinsicID()) { 2654 case Intrinsic::pow: 2655 return optimizePow(CI, Builder); 2656 case Intrinsic::exp2: 2657 return optimizeExp2(CI, Builder); 2658 case Intrinsic::log: 2659 return optimizeLog(CI, Builder); 2660 case Intrinsic::sqrt: 2661 return optimizeSqrt(CI, Builder); 2662 // TODO: Use foldMallocMemset() with memset intrinsic. 2663 default: 2664 return nullptr; 2665 } 2666 } 2667 2668 // Also try to simplify calls to fortified library functions. 2669 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2670 // Try to further simplify the result. 2671 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2672 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2673 // Use an IR Builder from SimplifiedCI if available instead of CI 2674 // to guarantee we reach all uses we might replace later on. 2675 IRBuilder<> TmpBuilder(SimplifiedCI); 2676 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2677 // If we were able to further simplify, remove the now redundant call. 2678 SimplifiedCI->replaceAllUsesWith(V); 2679 eraseFromParent(SimplifiedCI); 2680 return V; 2681 } 2682 } 2683 return SimplifiedFortifiedCI; 2684 } 2685 2686 // Then check for known library functions. 2687 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2688 // We never change the calling convention. 2689 if (!ignoreCallingConv(Func) && !isCallingConvC) 2690 return nullptr; 2691 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2692 return V; 2693 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2694 return V; 2695 switch (Func) { 2696 case LibFunc_ffs: 2697 case LibFunc_ffsl: 2698 case LibFunc_ffsll: 2699 return optimizeFFS(CI, Builder); 2700 case LibFunc_fls: 2701 case LibFunc_flsl: 2702 case LibFunc_flsll: 2703 return optimizeFls(CI, Builder); 2704 case LibFunc_abs: 2705 case LibFunc_labs: 2706 case LibFunc_llabs: 2707 return optimizeAbs(CI, Builder); 2708 case LibFunc_isdigit: 2709 return optimizeIsDigit(CI, Builder); 2710 case LibFunc_isascii: 2711 return optimizeIsAscii(CI, Builder); 2712 case LibFunc_toascii: 2713 return optimizeToAscii(CI, Builder); 2714 case LibFunc_atoi: 2715 case LibFunc_atol: 2716 case LibFunc_atoll: 2717 return optimizeAtoi(CI, Builder); 2718 case LibFunc_strtol: 2719 case LibFunc_strtoll: 2720 return optimizeStrtol(CI, Builder); 2721 case LibFunc_printf: 2722 return optimizePrintF(CI, Builder); 2723 case LibFunc_sprintf: 2724 return optimizeSPrintF(CI, Builder); 2725 case LibFunc_snprintf: 2726 return optimizeSnPrintF(CI, Builder); 2727 case LibFunc_fprintf: 2728 return optimizeFPrintF(CI, Builder); 2729 case LibFunc_fwrite: 2730 return optimizeFWrite(CI, Builder); 2731 case LibFunc_fread: 2732 return optimizeFRead(CI, Builder); 2733 case LibFunc_fputs: 2734 return optimizeFPuts(CI, Builder); 2735 case LibFunc_fgets: 2736 return optimizeFGets(CI, Builder); 2737 case LibFunc_fputc: 2738 return optimizeFPutc(CI, Builder); 2739 case LibFunc_fgetc: 2740 return optimizeFGetc(CI, Builder); 2741 case LibFunc_puts: 2742 return optimizePuts(CI, Builder); 2743 case LibFunc_perror: 2744 return optimizeErrorReporting(CI, Builder); 2745 case LibFunc_vfprintf: 2746 case LibFunc_fiprintf: 2747 return optimizeErrorReporting(CI, Builder, 0); 2748 default: 2749 return nullptr; 2750 } 2751 } 2752 return nullptr; 2753 } 2754 2755 LibCallSimplifier::LibCallSimplifier( 2756 const DataLayout &DL, const TargetLibraryInfo *TLI, 2757 OptimizationRemarkEmitter &ORE, 2758 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2759 function_ref<void(Instruction *, Value *)> Replacer, 2760 function_ref<void(Instruction *)> Eraser) 2761 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2762 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2763 2764 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2765 // Indirect through the replacer used in this instance. 2766 Replacer(I, With); 2767 } 2768 2769 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2770 Eraser(I); 2771 } 2772 2773 // TODO: 2774 // Additional cases that we need to add to this file: 2775 // 2776 // cbrt: 2777 // * cbrt(expN(X)) -> expN(x/3) 2778 // * cbrt(sqrt(x)) -> pow(x,1/6) 2779 // * cbrt(cbrt(x)) -> pow(x,1/9) 2780 // 2781 // exp, expf, expl: 2782 // * exp(log(x)) -> x 2783 // 2784 // log, logf, logl: 2785 // * log(exp(x)) -> x 2786 // * log(exp(y)) -> y*log(e) 2787 // * log(exp10(y)) -> y*log(10) 2788 // * log(sqrt(x)) -> 0.5*log(x) 2789 // 2790 // pow, powf, powl: 2791 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2792 // * pow(pow(x,y),z)-> pow(x,y*z) 2793 // 2794 // signbit: 2795 // * signbit(cnst) -> cnst' 2796 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2797 // 2798 // sqrt, sqrtf, sqrtl: 2799 // * sqrt(expN(x)) -> expN(x*0.5) 2800 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2801 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2802 // 2803 2804 //===----------------------------------------------------------------------===// 2805 // Fortified Library Call Optimizations 2806 //===----------------------------------------------------------------------===// 2807 2808 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2809 unsigned ObjSizeOp, 2810 unsigned SizeOp, 2811 bool isString) { 2812 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2813 return true; 2814 if (ConstantInt *ObjSizeCI = 2815 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2816 if (ObjSizeCI->isMinusOne()) 2817 return true; 2818 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2819 if (OnlyLowerUnknownSize) 2820 return false; 2821 if (isString) { 2822 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2823 // If the length is 0 we don't know how long it is and so we can't 2824 // remove the check. 2825 if (Len == 0) 2826 return false; 2827 return ObjSizeCI->getZExtValue() >= Len; 2828 } 2829 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2830 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2831 } 2832 return false; 2833 } 2834 2835 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2836 IRBuilder<> &B) { 2837 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2838 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2839 CI->getArgOperand(2)); 2840 return CI->getArgOperand(0); 2841 } 2842 return nullptr; 2843 } 2844 2845 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2846 IRBuilder<> &B) { 2847 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2848 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2849 CI->getArgOperand(2)); 2850 return CI->getArgOperand(0); 2851 } 2852 return nullptr; 2853 } 2854 2855 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2856 IRBuilder<> &B) { 2857 // TODO: Try foldMallocMemset() here. 2858 2859 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2860 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2861 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2862 return CI->getArgOperand(0); 2863 } 2864 return nullptr; 2865 } 2866 2867 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2868 IRBuilder<> &B, 2869 LibFunc Func) { 2870 Function *Callee = CI->getCalledFunction(); 2871 StringRef Name = Callee->getName(); 2872 const DataLayout &DL = CI->getModule()->getDataLayout(); 2873 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2874 *ObjSize = CI->getArgOperand(2); 2875 2876 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2877 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2878 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2879 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2880 } 2881 2882 // If a) we don't have any length information, or b) we know this will 2883 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2884 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2885 // TODO: It might be nice to get a maximum length out of the possible 2886 // string lengths for varying. 2887 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2888 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2889 2890 if (OnlyLowerUnknownSize) 2891 return nullptr; 2892 2893 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2894 uint64_t Len = GetStringLength(Src); 2895 if (Len == 0) 2896 return nullptr; 2897 2898 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2899 Value *LenV = ConstantInt::get(SizeTTy, Len); 2900 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2901 // If the function was an __stpcpy_chk, and we were able to fold it into 2902 // a __memcpy_chk, we still need to return the correct end pointer. 2903 if (Ret && Func == LibFunc_stpcpy_chk) 2904 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2905 return Ret; 2906 } 2907 2908 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2909 IRBuilder<> &B, 2910 LibFunc Func) { 2911 Function *Callee = CI->getCalledFunction(); 2912 StringRef Name = Callee->getName(); 2913 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2914 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2915 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2916 return Ret; 2917 } 2918 return nullptr; 2919 } 2920 2921 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2922 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2923 // Some clang users checked for _chk libcall availability using: 2924 // __has_builtin(__builtin___memcpy_chk) 2925 // When compiling with -fno-builtin, this is always true. 2926 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2927 // end up with fortified libcalls, which isn't acceptable in a freestanding 2928 // environment which only provides their non-fortified counterparts. 2929 // 2930 // Until we change clang and/or teach external users to check for availability 2931 // differently, disregard the "nobuiltin" attribute and TLI::has. 2932 // 2933 // PR23093. 2934 2935 LibFunc Func; 2936 Function *Callee = CI->getCalledFunction(); 2937 2938 SmallVector<OperandBundleDef, 2> OpBundles; 2939 CI->getOperandBundlesAsDefs(OpBundles); 2940 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2941 bool isCallingConvC = isCallingConvCCompatible(CI); 2942 2943 // First, check that this is a known library functions and that the prototype 2944 // is correct. 2945 if (!TLI->getLibFunc(*Callee, Func)) 2946 return nullptr; 2947 2948 // We never change the calling convention. 2949 if (!ignoreCallingConv(Func) && !isCallingConvC) 2950 return nullptr; 2951 2952 switch (Func) { 2953 case LibFunc_memcpy_chk: 2954 return optimizeMemCpyChk(CI, Builder); 2955 case LibFunc_memmove_chk: 2956 return optimizeMemMoveChk(CI, Builder); 2957 case LibFunc_memset_chk: 2958 return optimizeMemSetChk(CI, Builder); 2959 case LibFunc_stpcpy_chk: 2960 case LibFunc_strcpy_chk: 2961 return optimizeStrpCpyChk(CI, Builder, Func); 2962 case LibFunc_stpncpy_chk: 2963 case LibFunc_strncpy_chk: 2964 return optimizeStrpNCpyChk(CI, Builder, Func); 2965 default: 2966 break; 2967 } 2968 return nullptr; 2969 } 2970 2971 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2972 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2973 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2974