1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142                                 const TargetLibraryInfo *TLI) {
143   CallInst *FOpen = dyn_cast<CallInst>(File);
144   if (!FOpen)
145     return false;
146 
147   Function *InnerCallee = FOpen->getCalledFunction();
148   if (!InnerCallee)
149     return false;
150 
151   LibFunc Func;
152   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153       Func != LibFunc_fopen)
154     return false;
155 
156   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157   if (PointerMayBeCaptured(File, true, true))
158     return false;
159 
160   return true;
161 }
162 
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164   for (User *U : V->users()) {
165     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167         if (C->isNullValue())
168           continue;
169     // Unknown instruction.
170     return false;
171   }
172   return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                  const DataLayout &DL) {
177   if (!isOnlyUsedInComparisonWithZero(CI))
178     return false;
179 
180   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
181     return false;
182 
183   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
184     return false;
185 
186   return true;
187 }
188 
189 //===----------------------------------------------------------------------===//
190 // String and Memory Library Call Optimizations
191 //===----------------------------------------------------------------------===//
192 
193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
194   // Extract some information from the instruction
195   Value *Dst = CI->getArgOperand(0);
196   Value *Src = CI->getArgOperand(1);
197 
198   // See if we can get the length of the input string.
199   uint64_t Len = GetStringLength(Src);
200   if (Len == 0)
201     return nullptr;
202   --Len; // Unbias length.
203 
204   // Handle the simple, do-nothing case: strcat(x, "") -> x
205   if (Len == 0)
206     return Dst;
207 
208   return emitStrLenMemCpy(Src, Dst, Len, B);
209 }
210 
211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
212                                            IRBuilder<> &B) {
213   // We need to find the end of the destination string.  That's where the
214   // memory is to be moved to. We just generate a call to strlen.
215   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
216   if (!DstLen)
217     return nullptr;
218 
219   // Now that we have the destination's length, we must index into the
220   // destination's pointer to get the actual memcpy destination (end of
221   // the string .. we're concatenating).
222   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
223 
224   // We have enough information to now generate the memcpy call to do the
225   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
226   B.CreateMemCpy(CpyDst, 1, Src, 1,
227                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
228   return Dst;
229 }
230 
231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
232   // Extract some information from the instruction.
233   Value *Dst = CI->getArgOperand(0);
234   Value *Src = CI->getArgOperand(1);
235   uint64_t Len;
236 
237   // We don't do anything if length is not constant.
238   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
239     Len = LengthArg->getZExtValue();
240   else
241     return nullptr;
242 
243   // See if we can get the length of the input string.
244   uint64_t SrcLen = GetStringLength(Src);
245   if (SrcLen == 0)
246     return nullptr;
247   --SrcLen; // Unbias length.
248 
249   // Handle the simple, do-nothing cases:
250   // strncat(x, "", c) -> x
251   // strncat(x,  c, 0) -> x
252   if (SrcLen == 0 || Len == 0)
253     return Dst;
254 
255   // We don't optimize this case.
256   if (Len < SrcLen)
257     return nullptr;
258 
259   // strncat(x, s, c) -> strcat(x, s)
260   // s is constant so the strcat can be optimized further.
261   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
262 }
263 
264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
265   Function *Callee = CI->getCalledFunction();
266   FunctionType *FT = Callee->getFunctionType();
267   Value *SrcStr = CI->getArgOperand(0);
268 
269   // If the second operand is non-constant, see if we can compute the length
270   // of the input string and turn this into memchr.
271   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
272   if (!CharC) {
273     uint64_t Len = GetStringLength(SrcStr);
274     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
275       return nullptr;
276 
277     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
278                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
279                       B, DL, TLI);
280   }
281 
282   // Otherwise, the character is a constant, see if the first argument is
283   // a string literal.  If so, we can constant fold.
284   StringRef Str;
285   if (!getConstantStringInfo(SrcStr, Str)) {
286     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
287       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
288                          "strchr");
289     return nullptr;
290   }
291 
292   // Compute the offset, make sure to handle the case when we're searching for
293   // zero (a weird way to spell strlen).
294   size_t I = (0xFF & CharC->getSExtValue()) == 0
295                  ? Str.size()
296                  : Str.find(CharC->getSExtValue());
297   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
298     return Constant::getNullValue(CI->getType());
299 
300   // strchr(s+n,c)  -> gep(s+n+i,c)
301   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
302 }
303 
304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
305   Value *SrcStr = CI->getArgOperand(0);
306   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
307 
308   // Cannot fold anything if we're not looking for a constant.
309   if (!CharC)
310     return nullptr;
311 
312   StringRef Str;
313   if (!getConstantStringInfo(SrcStr, Str)) {
314     // strrchr(s, 0) -> strchr(s, 0)
315     if (CharC->isZero())
316       return emitStrChr(SrcStr, '\0', B, TLI);
317     return nullptr;
318   }
319 
320   // Compute the offset.
321   size_t I = (0xFF & CharC->getSExtValue()) == 0
322                  ? Str.size()
323                  : Str.rfind(CharC->getSExtValue());
324   if (I == StringRef::npos) // Didn't find the char. Return null.
325     return Constant::getNullValue(CI->getType());
326 
327   // strrchr(s+n,c) -> gep(s+n+i,c)
328   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
329 }
330 
331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
332   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
333   if (Str1P == Str2P) // strcmp(x,x)  -> 0
334     return ConstantInt::get(CI->getType(), 0);
335 
336   StringRef Str1, Str2;
337   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
338   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
339 
340   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
341   if (HasStr1 && HasStr2)
342     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
343 
344   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
345     return B.CreateNeg(B.CreateZExt(
346         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
347 
348   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
349     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
350                         CI->getType());
351 
352   // strcmp(P, "x") -> memcmp(P, "x", 2)
353   uint64_t Len1 = GetStringLength(Str1P);
354   uint64_t Len2 = GetStringLength(Str2P);
355   if (Len1 && Len2) {
356     return emitMemCmp(Str1P, Str2P,
357                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
358                                        std::min(Len1, Len2)),
359                       B, DL, TLI);
360   }
361 
362   // strcmp to memcmp
363   if (!HasStr1 && HasStr2) {
364     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
365       return emitMemCmp(
366           Str1P, Str2P,
367           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
368           TLI);
369   } else if (HasStr1 && !HasStr2) {
370     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
371       return emitMemCmp(
372           Str1P, Str2P,
373           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
374           TLI);
375   }
376 
377   return nullptr;
378 }
379 
380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
381   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
382   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
383     return ConstantInt::get(CI->getType(), 0);
384 
385   // Get the length argument if it is constant.
386   uint64_t Length;
387   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
388     Length = LengthArg->getZExtValue();
389   else
390     return nullptr;
391 
392   if (Length == 0) // strncmp(x,y,0)   -> 0
393     return ConstantInt::get(CI->getType(), 0);
394 
395   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
396     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
397 
398   StringRef Str1, Str2;
399   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
400   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
401 
402   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
403   if (HasStr1 && HasStr2) {
404     StringRef SubStr1 = Str1.substr(0, Length);
405     StringRef SubStr2 = Str2.substr(0, Length);
406     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
407   }
408 
409   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
410     return B.CreateNeg(B.CreateZExt(
411         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
412 
413   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
414     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
415                         CI->getType());
416 
417   uint64_t Len1 = GetStringLength(Str1P);
418   uint64_t Len2 = GetStringLength(Str2P);
419 
420   // strncmp to memcmp
421   if (!HasStr1 && HasStr2) {
422     Len2 = std::min(Len2, Length);
423     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
424       return emitMemCmp(
425           Str1P, Str2P,
426           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
427           TLI);
428   } else if (HasStr1 && !HasStr2) {
429     Len1 = std::min(Len1, Length);
430     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
431       return emitMemCmp(
432           Str1P, Str2P,
433           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
434           TLI);
435   }
436 
437   return nullptr;
438 }
439 
440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
441   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
442   if (Dst == Src) // strcpy(x,x)  -> x
443     return Src;
444 
445   // See if we can get the length of the input string.
446   uint64_t Len = GetStringLength(Src);
447   if (Len == 0)
448     return nullptr;
449 
450   // We have enough information to now generate the memcpy call to do the
451   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
452   B.CreateMemCpy(Dst, 1, Src, 1,
453                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
454   return Dst;
455 }
456 
457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
458   Function *Callee = CI->getCalledFunction();
459   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
460   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
461     Value *StrLen = emitStrLen(Src, B, DL, TLI);
462     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
463   }
464 
465   // See if we can get the length of the input string.
466   uint64_t Len = GetStringLength(Src);
467   if (Len == 0)
468     return nullptr;
469 
470   Type *PT = Callee->getFunctionType()->getParamType(0);
471   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
472   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
473                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
474 
475   // We have enough information to now generate the memcpy call to do the
476   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
477   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
478   return DstEnd;
479 }
480 
481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
482   Function *Callee = CI->getCalledFunction();
483   Value *Dst = CI->getArgOperand(0);
484   Value *Src = CI->getArgOperand(1);
485   Value *LenOp = CI->getArgOperand(2);
486 
487   // See if we can get the length of the input string.
488   uint64_t SrcLen = GetStringLength(Src);
489   if (SrcLen == 0)
490     return nullptr;
491   --SrcLen;
492 
493   if (SrcLen == 0) {
494     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
495     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
496     return Dst;
497   }
498 
499   uint64_t Len;
500   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
501     Len = LengthArg->getZExtValue();
502   else
503     return nullptr;
504 
505   if (Len == 0)
506     return Dst; // strncpy(x, y, 0) -> x
507 
508   // Let strncpy handle the zero padding
509   if (Len > SrcLen + 1)
510     return nullptr;
511 
512   Type *PT = Callee->getFunctionType()->getParamType(0);
513   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
514   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
515 
516   return Dst;
517 }
518 
519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
520                                                unsigned CharSize) {
521   Value *Src = CI->getArgOperand(0);
522 
523   // Constant folding: strlen("xyz") -> 3
524   if (uint64_t Len = GetStringLength(Src, CharSize))
525     return ConstantInt::get(CI->getType(), Len - 1);
526 
527   // If s is a constant pointer pointing to a string literal, we can fold
528   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
529   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
530   // We only try to simplify strlen when the pointer s points to an array
531   // of i8. Otherwise, we would need to scale the offset x before doing the
532   // subtraction. This will make the optimization more complex, and it's not
533   // very useful because calling strlen for a pointer of other types is
534   // very uncommon.
535   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
536     if (!isGEPBasedOnPointerToString(GEP, CharSize))
537       return nullptr;
538 
539     ConstantDataArraySlice Slice;
540     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
541       uint64_t NullTermIdx;
542       if (Slice.Array == nullptr) {
543         NullTermIdx = 0;
544       } else {
545         NullTermIdx = ~((uint64_t)0);
546         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
547           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
548             NullTermIdx = I;
549             break;
550           }
551         }
552         // If the string does not have '\0', leave it to strlen to compute
553         // its length.
554         if (NullTermIdx == ~((uint64_t)0))
555           return nullptr;
556       }
557 
558       Value *Offset = GEP->getOperand(2);
559       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
560       Known.Zero.flipAllBits();
561       uint64_t ArrSize =
562              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
563 
564       // KnownZero's bits are flipped, so zeros in KnownZero now represent
565       // bits known to be zeros in Offset, and ones in KnowZero represent
566       // bits unknown in Offset. Therefore, Offset is known to be in range
567       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
568       // unsigned-less-than NullTermIdx.
569       //
570       // If Offset is not provably in the range [0, NullTermIdx], we can still
571       // optimize if we can prove that the program has undefined behavior when
572       // Offset is outside that range. That is the case when GEP->getOperand(0)
573       // is a pointer to an object whose memory extent is NullTermIdx+1.
574       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
575           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
576            NullTermIdx == ArrSize - 1)) {
577         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
578         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
579                            Offset);
580       }
581     }
582 
583     return nullptr;
584   }
585 
586   // strlen(x?"foo":"bars") --> x ? 3 : 4
587   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
588     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
589     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
590     if (LenTrue && LenFalse) {
591       ORE.emit([&]() {
592         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
593                << "folded strlen(select) to select of constants";
594       });
595       return B.CreateSelect(SI->getCondition(),
596                             ConstantInt::get(CI->getType(), LenTrue - 1),
597                             ConstantInt::get(CI->getType(), LenFalse - 1));
598     }
599   }
600 
601   // strlen(x) != 0 --> *x != 0
602   // strlen(x) == 0 --> *x == 0
603   if (isOnlyUsedInZeroEqualityComparison(CI))
604     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
605                         CI->getType());
606 
607   return nullptr;
608 }
609 
610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
611   return optimizeStringLength(CI, B, 8);
612 }
613 
614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
615   Module &M = *CI->getModule();
616   unsigned WCharSize = TLI->getWCharSize(M) * 8;
617   // We cannot perform this optimization without wchar_size metadata.
618   if (WCharSize == 0)
619     return nullptr;
620 
621   return optimizeStringLength(CI, B, WCharSize);
622 }
623 
624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
625   StringRef S1, S2;
626   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
627   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
628 
629   // strpbrk(s, "") -> nullptr
630   // strpbrk("", s) -> nullptr
631   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
632     return Constant::getNullValue(CI->getType());
633 
634   // Constant folding.
635   if (HasS1 && HasS2) {
636     size_t I = S1.find_first_of(S2);
637     if (I == StringRef::npos) // No match.
638       return Constant::getNullValue(CI->getType());
639 
640     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
641                        "strpbrk");
642   }
643 
644   // strpbrk(s, "a") -> strchr(s, 'a')
645   if (HasS2 && S2.size() == 1)
646     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
647 
648   return nullptr;
649 }
650 
651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
652   Value *EndPtr = CI->getArgOperand(1);
653   if (isa<ConstantPointerNull>(EndPtr)) {
654     // With a null EndPtr, this function won't capture the main argument.
655     // It would be readonly too, except that it still may write to errno.
656     CI->addParamAttr(0, Attribute::NoCapture);
657   }
658 
659   return nullptr;
660 }
661 
662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
663   StringRef S1, S2;
664   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
665   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
666 
667   // strspn(s, "") -> 0
668   // strspn("", s) -> 0
669   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
670     return Constant::getNullValue(CI->getType());
671 
672   // Constant folding.
673   if (HasS1 && HasS2) {
674     size_t Pos = S1.find_first_not_of(S2);
675     if (Pos == StringRef::npos)
676       Pos = S1.size();
677     return ConstantInt::get(CI->getType(), Pos);
678   }
679 
680   return nullptr;
681 }
682 
683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
684   StringRef S1, S2;
685   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
686   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
687 
688   // strcspn("", s) -> 0
689   if (HasS1 && S1.empty())
690     return Constant::getNullValue(CI->getType());
691 
692   // Constant folding.
693   if (HasS1 && HasS2) {
694     size_t Pos = S1.find_first_of(S2);
695     if (Pos == StringRef::npos)
696       Pos = S1.size();
697     return ConstantInt::get(CI->getType(), Pos);
698   }
699 
700   // strcspn(s, "") -> strlen(s)
701   if (HasS2 && S2.empty())
702     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
703 
704   return nullptr;
705 }
706 
707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
708   // fold strstr(x, x) -> x.
709   if (CI->getArgOperand(0) == CI->getArgOperand(1))
710     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
711 
712   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
713   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
714     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
715     if (!StrLen)
716       return nullptr;
717     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
718                                  StrLen, B, DL, TLI);
719     if (!StrNCmp)
720       return nullptr;
721     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
722       ICmpInst *Old = cast<ICmpInst>(*UI++);
723       Value *Cmp =
724           B.CreateICmp(Old->getPredicate(), StrNCmp,
725                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
726       replaceAllUsesWith(Old, Cmp);
727     }
728     return CI;
729   }
730 
731   // See if either input string is a constant string.
732   StringRef SearchStr, ToFindStr;
733   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
734   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
735 
736   // fold strstr(x, "") -> x.
737   if (HasStr2 && ToFindStr.empty())
738     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
739 
740   // If both strings are known, constant fold it.
741   if (HasStr1 && HasStr2) {
742     size_t Offset = SearchStr.find(ToFindStr);
743 
744     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
745       return Constant::getNullValue(CI->getType());
746 
747     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
748     Value *Result = castToCStr(CI->getArgOperand(0), B);
749     Result =
750         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
751     return B.CreateBitCast(Result, CI->getType());
752   }
753 
754   // fold strstr(x, "y") -> strchr(x, 'y').
755   if (HasStr2 && ToFindStr.size() == 1) {
756     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
757     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
758   }
759   return nullptr;
760 }
761 
762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
763   Value *SrcStr = CI->getArgOperand(0);
764   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
765   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
766 
767   // memchr(x, y, 0) -> null
768   if (LenC && LenC->isZero())
769     return Constant::getNullValue(CI->getType());
770 
771   // From now on we need at least constant length and string.
772   StringRef Str;
773   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
774     return nullptr;
775 
776   // Truncate the string to LenC. If Str is smaller than LenC we will still only
777   // scan the string, as reading past the end of it is undefined and we can just
778   // return null if we don't find the char.
779   Str = Str.substr(0, LenC->getZExtValue());
780 
781   // If the char is variable but the input str and length are not we can turn
782   // this memchr call into a simple bit field test. Of course this only works
783   // when the return value is only checked against null.
784   //
785   // It would be really nice to reuse switch lowering here but we can't change
786   // the CFG at this point.
787   //
788   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
789   // != 0
790   //   after bounds check.
791   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
792     unsigned char Max =
793         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
794                           reinterpret_cast<const unsigned char *>(Str.end()));
795 
796     // Make sure the bit field we're about to create fits in a register on the
797     // target.
798     // FIXME: On a 64 bit architecture this prevents us from using the
799     // interesting range of alpha ascii chars. We could do better by emitting
800     // two bitfields or shifting the range by 64 if no lower chars are used.
801     if (!DL.fitsInLegalInteger(Max + 1))
802       return nullptr;
803 
804     // For the bit field use a power-of-2 type with at least 8 bits to avoid
805     // creating unnecessary illegal types.
806     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
807 
808     // Now build the bit field.
809     APInt Bitfield(Width, 0);
810     for (char C : Str)
811       Bitfield.setBit((unsigned char)C);
812     Value *BitfieldC = B.getInt(Bitfield);
813 
814     // Adjust width of "C" to the bitfield width, then mask off the high bits.
815     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
816     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
817 
818     // First check that the bit field access is within bounds.
819     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
820                                  "memchr.bounds");
821 
822     // Create code that checks if the given bit is set in the field.
823     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
824     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
825 
826     // Finally merge both checks and cast to pointer type. The inttoptr
827     // implicitly zexts the i1 to intptr type.
828     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
829   }
830 
831   // Check if all arguments are constants.  If so, we can constant fold.
832   if (!CharC)
833     return nullptr;
834 
835   // Compute the offset.
836   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
837   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
838     return Constant::getNullValue(CI->getType());
839 
840   // memchr(s+n,c,l) -> gep(s+n+i,c)
841   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
842 }
843 
844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
845                                          uint64_t Len, IRBuilder<> &B,
846                                          const DataLayout &DL) {
847   if (Len == 0) // memcmp(s1,s2,0) -> 0
848     return Constant::getNullValue(CI->getType());
849 
850   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
851   if (Len == 1) {
852     Value *LHSV =
853         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
854                      CI->getType(), "lhsv");
855     Value *RHSV =
856         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
857                      CI->getType(), "rhsv");
858     return B.CreateSub(LHSV, RHSV, "chardiff");
859   }
860 
861   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
862   // TODO: The case where both inputs are constants does not need to be limited
863   // to legal integers or equality comparison. See block below this.
864   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
865     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
866     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
867 
868     // First, see if we can fold either argument to a constant.
869     Value *LHSV = nullptr;
870     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
871       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
872       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
873     }
874     Value *RHSV = nullptr;
875     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
876       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
877       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
878     }
879 
880     // Don't generate unaligned loads. If either source is constant data,
881     // alignment doesn't matter for that source because there is no load.
882     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
883         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
884       if (!LHSV) {
885         Type *LHSPtrTy =
886             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
887         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
888       }
889       if (!RHSV) {
890         Type *RHSPtrTy =
891             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
892         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
893       }
894       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
895     }
896   }
897 
898   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
899   // TODO: This is limited to i8 arrays.
900   StringRef LHSStr, RHSStr;
901   if (getConstantStringInfo(LHS, LHSStr) &&
902       getConstantStringInfo(RHS, RHSStr)) {
903     // Make sure we're not reading out-of-bounds memory.
904     if (Len > LHSStr.size() || Len > RHSStr.size())
905       return nullptr;
906     // Fold the memcmp and normalize the result.  This way we get consistent
907     // results across multiple platforms.
908     uint64_t Ret = 0;
909     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
910     if (Cmp < 0)
911       Ret = -1;
912     else if (Cmp > 0)
913       Ret = 1;
914     return ConstantInt::get(CI->getType(), Ret);
915   }
916   return nullptr;
917 }
918 
919 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
920   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
921   Value *Size = CI->getArgOperand(2);
922 
923   if (LHS == RHS) // memcmp(s,s,x) -> 0
924     return Constant::getNullValue(CI->getType());
925 
926   // Handle constant lengths.
927   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size))
928     if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS,
929                                                 LenC->getZExtValue(), B, DL))
930       return Res;
931 
932   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
933   // `bcmp` can be more efficient than memcmp because it only has to know that
934   // there is a difference, not where it is.
935   if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) {
936     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
937   }
938 
939   return nullptr;
940 }
941 
942 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
943   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
944   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
945                  CI->getArgOperand(2));
946   return CI->getArgOperand(0);
947 }
948 
949 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
950   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
951   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
952                   CI->getArgOperand(2));
953   return CI->getArgOperand(0);
954 }
955 
956 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
957 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
958   // This has to be a memset of zeros (bzero).
959   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
960   if (!FillValue || FillValue->getZExtValue() != 0)
961     return nullptr;
962 
963   // TODO: We should handle the case where the malloc has more than one use.
964   // This is necessary to optimize common patterns such as when the result of
965   // the malloc is checked against null or when a memset intrinsic is used in
966   // place of a memset library call.
967   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
968   if (!Malloc || !Malloc->hasOneUse())
969     return nullptr;
970 
971   // Is the inner call really malloc()?
972   Function *InnerCallee = Malloc->getCalledFunction();
973   if (!InnerCallee)
974     return nullptr;
975 
976   LibFunc Func;
977   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
978       Func != LibFunc_malloc)
979     return nullptr;
980 
981   // The memset must cover the same number of bytes that are malloc'd.
982   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
983     return nullptr;
984 
985   // Replace the malloc with a calloc. We need the data layout to know what the
986   // actual size of a 'size_t' parameter is.
987   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
988   const DataLayout &DL = Malloc->getModule()->getDataLayout();
989   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
990   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
991                              Malloc->getArgOperand(0), Malloc->getAttributes(),
992                              B, *TLI);
993   if (!Calloc)
994     return nullptr;
995 
996   Malloc->replaceAllUsesWith(Calloc);
997   eraseFromParent(Malloc);
998 
999   return Calloc;
1000 }
1001 
1002 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1003   if (auto *Calloc = foldMallocMemset(CI, B))
1004     return Calloc;
1005 
1006   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1007   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1008   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
1009   return CI->getArgOperand(0);
1010 }
1011 
1012 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1013   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1014     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1015 
1016   return nullptr;
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 // Math Library Optimizations
1021 //===----------------------------------------------------------------------===//
1022 
1023 // Replace a libcall \p CI with a call to intrinsic \p IID
1024 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1025   // Propagate fast-math flags from the existing call to the new call.
1026   IRBuilder<>::FastMathFlagGuard Guard(B);
1027   B.setFastMathFlags(CI->getFastMathFlags());
1028 
1029   Module *M = CI->getModule();
1030   Value *V = CI->getArgOperand(0);
1031   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1032   CallInst *NewCall = B.CreateCall(F, V);
1033   NewCall->takeName(CI);
1034   return NewCall;
1035 }
1036 
1037 /// Return a variant of Val with float type.
1038 /// Currently this works in two cases: If Val is an FPExtension of a float
1039 /// value to something bigger, simply return the operand.
1040 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1041 /// loss of precision do so.
1042 static Value *valueHasFloatPrecision(Value *Val) {
1043   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1044     Value *Op = Cast->getOperand(0);
1045     if (Op->getType()->isFloatTy())
1046       return Op;
1047   }
1048   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1049     APFloat F = Const->getValueAPF();
1050     bool losesInfo;
1051     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1052                     &losesInfo);
1053     if (!losesInfo)
1054       return ConstantFP::get(Const->getContext(), F);
1055   }
1056   return nullptr;
1057 }
1058 
1059 /// Shrink double -> float functions.
1060 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1061                                bool isBinary, bool isPrecise = false) {
1062   if (!CI->getType()->isDoubleTy())
1063     return nullptr;
1064 
1065   // If not all the uses of the function are converted to float, then bail out.
1066   // This matters if the precision of the result is more important than the
1067   // precision of the arguments.
1068   if (isPrecise)
1069     for (User *U : CI->users()) {
1070       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1071       if (!Cast || !Cast->getType()->isFloatTy())
1072         return nullptr;
1073     }
1074 
1075   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1076   Value *V[2];
1077   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1078   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1079   if (!V[0] || (isBinary && !V[1]))
1080     return nullptr;
1081 
1082   // If call isn't an intrinsic, check that it isn't within a function with the
1083   // same name as the float version of this call, otherwise the result is an
1084   // infinite loop.  For example, from MinGW-w64:
1085   //
1086   // float expf(float val) { return (float) exp((double) val); }
1087   Function *CalleeFn = CI->getCalledFunction();
1088   StringRef CalleeNm = CalleeFn->getName();
1089   AttributeList CalleeAt = CalleeFn->getAttributes();
1090   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1091     const Function *Fn = CI->getFunction();
1092     StringRef FnName = Fn->getName();
1093     if (FnName.back() == 'f' &&
1094         FnName.size() == (CalleeNm.size() + 1) &&
1095         FnName.startswith(CalleeNm))
1096       return nullptr;
1097   }
1098 
1099   // Propagate the math semantics from the current function to the new function.
1100   IRBuilder<>::FastMathFlagGuard Guard(B);
1101   B.setFastMathFlags(CI->getFastMathFlags());
1102 
1103   // g((double) float) -> (double) gf(float)
1104   Value *R;
1105   if (CalleeFn->isIntrinsic()) {
1106     Module *M = CI->getModule();
1107     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1108     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1109     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1110   }
1111   else
1112     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1113                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1114 
1115   return B.CreateFPExt(R, B.getDoubleTy());
1116 }
1117 
1118 /// Shrink double -> float for unary functions.
1119 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1120                                     bool isPrecise = false) {
1121   return optimizeDoubleFP(CI, B, false, isPrecise);
1122 }
1123 
1124 /// Shrink double -> float for binary functions.
1125 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1126                                      bool isPrecise = false) {
1127   return optimizeDoubleFP(CI, B, true, isPrecise);
1128 }
1129 
1130 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1131 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1132   if (!CI->isFast())
1133     return nullptr;
1134 
1135   // Propagate fast-math flags from the existing call to new instructions.
1136   IRBuilder<>::FastMathFlagGuard Guard(B);
1137   B.setFastMathFlags(CI->getFastMathFlags());
1138 
1139   Value *Real, *Imag;
1140   if (CI->getNumArgOperands() == 1) {
1141     Value *Op = CI->getArgOperand(0);
1142     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1143     Real = B.CreateExtractValue(Op, 0, "real");
1144     Imag = B.CreateExtractValue(Op, 1, "imag");
1145   } else {
1146     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1147     Real = CI->getArgOperand(0);
1148     Imag = CI->getArgOperand(1);
1149   }
1150 
1151   Value *RealReal = B.CreateFMul(Real, Real);
1152   Value *ImagImag = B.CreateFMul(Imag, Imag);
1153 
1154   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1155                                               CI->getType());
1156   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1157 }
1158 
1159 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1160                                       IRBuilder<> &B) {
1161   if (!isa<FPMathOperator>(Call))
1162     return nullptr;
1163 
1164   IRBuilder<>::FastMathFlagGuard Guard(B);
1165   B.setFastMathFlags(Call->getFastMathFlags());
1166 
1167   // TODO: Can this be shared to also handle LLVM intrinsics?
1168   Value *X;
1169   switch (Func) {
1170   case LibFunc_sin:
1171   case LibFunc_sinf:
1172   case LibFunc_sinl:
1173   case LibFunc_tan:
1174   case LibFunc_tanf:
1175   case LibFunc_tanl:
1176     // sin(-X) --> -sin(X)
1177     // tan(-X) --> -tan(X)
1178     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1179       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1180     break;
1181   case LibFunc_cos:
1182   case LibFunc_cosf:
1183   case LibFunc_cosl:
1184     // cos(-X) --> cos(X)
1185     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1186       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1187     break;
1188   default:
1189     break;
1190   }
1191   return nullptr;
1192 }
1193 
1194 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1195   // Multiplications calculated using Addition Chains.
1196   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1197 
1198   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1199 
1200   if (InnerChain[Exp])
1201     return InnerChain[Exp];
1202 
1203   static const unsigned AddChain[33][2] = {
1204       {0, 0}, // Unused.
1205       {0, 0}, // Unused (base case = pow1).
1206       {1, 1}, // Unused (pre-computed).
1207       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1208       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1209       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1210       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1211       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1212   };
1213 
1214   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1215                                  getPow(InnerChain, AddChain[Exp][1], B));
1216   return InnerChain[Exp];
1217 }
1218 
1219 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1220 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
1221 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1222   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1223   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1224   Module *Mod = Pow->getModule();
1225   Type *Ty = Pow->getType();
1226   bool Ignored;
1227 
1228   // Evaluate special cases related to a nested function as the base.
1229 
1230   // pow(exp(x), y) -> exp(x * y)
1231   // pow(exp2(x), y) -> exp2(x * y)
1232   // If exp{,2}() is used only once, it is better to fold two transcendental
1233   // math functions into one.  If used again, exp{,2}() would still have to be
1234   // called with the original argument, then keep both original transcendental
1235   // functions.  However, this transformation is only safe with fully relaxed
1236   // math semantics, since, besides rounding differences, it changes overflow
1237   // and underflow behavior quite dramatically.  For example:
1238   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1239   // Whereas:
1240   //   exp(1000 * 0.001) = exp(1)
1241   // TODO: Loosen the requirement for fully relaxed math semantics.
1242   // TODO: Handle exp10() when more targets have it available.
1243   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1244   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1245     LibFunc LibFn;
1246 
1247     Function *CalleeFn = BaseFn->getCalledFunction();
1248     if (CalleeFn &&
1249         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1250       StringRef ExpName;
1251       Intrinsic::ID ID;
1252       Value *ExpFn;
1253       LibFunc LibFnFloat;
1254       LibFunc LibFnDouble;
1255       LibFunc LibFnLongDouble;
1256 
1257       switch (LibFn) {
1258       default:
1259         return nullptr;
1260       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1261         ExpName = TLI->getName(LibFunc_exp);
1262         ID = Intrinsic::exp;
1263         LibFnFloat = LibFunc_expf;
1264         LibFnDouble = LibFunc_exp;
1265         LibFnLongDouble = LibFunc_expl;
1266         break;
1267       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1268         ExpName = TLI->getName(LibFunc_exp2);
1269         ID = Intrinsic::exp2;
1270         LibFnFloat = LibFunc_exp2f;
1271         LibFnDouble = LibFunc_exp2;
1272         LibFnLongDouble = LibFunc_exp2l;
1273         break;
1274       }
1275 
1276       // Create new exp{,2}() with the product as its argument.
1277       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1278       ExpFn = BaseFn->doesNotAccessMemory()
1279               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1280                              FMul, ExpName)
1281               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1282                                      LibFnLongDouble, B,
1283                                      BaseFn->getAttributes());
1284 
1285       // Since the new exp{,2}() is different from the original one, dead code
1286       // elimination cannot be trusted to remove it, since it may have side
1287       // effects (e.g., errno).  When the only consumer for the original
1288       // exp{,2}() is pow(), then it has to be explicitly erased.
1289       BaseFn->replaceAllUsesWith(ExpFn);
1290       eraseFromParent(BaseFn);
1291 
1292       return ExpFn;
1293     }
1294   }
1295 
1296   // Evaluate special cases related to a constant base.
1297 
1298   const APFloat *BaseF;
1299   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1300     return nullptr;
1301 
1302   // pow(2.0 ** n, x) -> exp2(n * x)
1303   if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1304     APFloat BaseR = APFloat(1.0);
1305     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1306     BaseR = BaseR / *BaseF;
1307     bool IsInteger    = BaseF->isInteger(),
1308          IsReciprocal = BaseR.isInteger();
1309     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1310     APSInt NI(64, false);
1311     if ((IsInteger || IsReciprocal) &&
1312         !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
1313         NI > 1 && NI.isPowerOf2()) {
1314       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1315       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1316       if (Pow->doesNotAccessMemory())
1317         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1318                             FMul, "exp2");
1319       else
1320         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1321                                     LibFunc_exp2l, B, Attrs);
1322     }
1323   }
1324 
1325   // pow(10.0, x) -> exp10(x)
1326   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1327   if (match(Base, m_SpecificFP(10.0)) &&
1328       hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1329     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1330                                 LibFunc_exp10l, B, Attrs);
1331 
1332   return nullptr;
1333 }
1334 
1335 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1336                           Module *M, IRBuilder<> &B,
1337                           const TargetLibraryInfo *TLI) {
1338   // If errno is never set, then use the intrinsic for sqrt().
1339   if (NoErrno) {
1340     Function *SqrtFn =
1341         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1342     return B.CreateCall(SqrtFn, V, "sqrt");
1343   }
1344 
1345   // Otherwise, use the libcall for sqrt().
1346   if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1347                       LibFunc_sqrtl))
1348     // TODO: We also should check that the target can in fact lower the sqrt()
1349     // libcall. We currently have no way to ask this question, so we ask if
1350     // the target has a sqrt() libcall, which is not exactly the same.
1351     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1352                                 LibFunc_sqrtl, B, Attrs);
1353 
1354   return nullptr;
1355 }
1356 
1357 /// Use square root in place of pow(x, +/-0.5).
1358 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1359   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1360   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1361   Module *Mod = Pow->getModule();
1362   Type *Ty = Pow->getType();
1363 
1364   const APFloat *ExpoF;
1365   if (!match(Expo, m_APFloat(ExpoF)) ||
1366       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1367     return nullptr;
1368 
1369   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1370   if (!Sqrt)
1371     return nullptr;
1372 
1373   // Handle signed zero base by expanding to fabs(sqrt(x)).
1374   if (!Pow->hasNoSignedZeros()) {
1375     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1376     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1377   }
1378 
1379   // Handle non finite base by expanding to
1380   // (x == -infinity ? +infinity : sqrt(x)).
1381   if (!Pow->hasNoInfs()) {
1382     Value *PosInf = ConstantFP::getInfinity(Ty),
1383           *NegInf = ConstantFP::getInfinity(Ty, true);
1384     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1385     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1386   }
1387 
1388   // If the exponent is negative, then get the reciprocal.
1389   if (ExpoF->isNegative())
1390     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1391 
1392   return Sqrt;
1393 }
1394 
1395 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1396   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1397   Function *Callee = Pow->getCalledFunction();
1398   StringRef Name = Callee->getName();
1399   Type *Ty = Pow->getType();
1400   Value *Shrunk = nullptr;
1401   bool Ignored;
1402 
1403   // Bail out if simplifying libcalls to pow() is disabled.
1404   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1405     return nullptr;
1406 
1407   // Propagate the math semantics from the call to any created instructions.
1408   IRBuilder<>::FastMathFlagGuard Guard(B);
1409   B.setFastMathFlags(Pow->getFastMathFlags());
1410 
1411   // Shrink pow() to powf() if the arguments are single precision,
1412   // unless the result is expected to be double precision.
1413   if (UnsafeFPShrink &&
1414       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1415     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1416 
1417   // Evaluate special cases related to the base.
1418 
1419   // pow(1.0, x) -> 1.0
1420   if (match(Base, m_FPOne()))
1421     return Base;
1422 
1423   if (Value *Exp = replacePowWithExp(Pow, B))
1424     return Exp;
1425 
1426   // Evaluate special cases related to the exponent.
1427 
1428   // pow(x, -1.0) -> 1.0 / x
1429   if (match(Expo, m_SpecificFP(-1.0)))
1430     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1431 
1432   // pow(x, 0.0) -> 1.0
1433   if (match(Expo, m_SpecificFP(0.0)))
1434       return ConstantFP::get(Ty, 1.0);
1435 
1436   // pow(x, 1.0) -> x
1437   if (match(Expo, m_FPOne()))
1438     return Base;
1439 
1440   // pow(x, 2.0) -> x * x
1441   if (match(Expo, m_SpecificFP(2.0)))
1442     return B.CreateFMul(Base, Base, "square");
1443 
1444   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1445     return Sqrt;
1446 
1447   // pow(x, n) -> x * x * x * ...
1448   const APFloat *ExpoF;
1449   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1450     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1451     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1452     // additional fmul.
1453     // TODO: This whole transformation should be backend specific (e.g. some
1454     //       backends might prefer libcalls or the limit for the exponent might
1455     //       be different) and it should also consider optimizing for size.
1456     APFloat LimF(ExpoF->getSemantics(), 33.0),
1457             ExpoA(abs(*ExpoF));
1458     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1459       // This transformation applies to integer or integer+0.5 exponents only.
1460       // For integer+0.5, we create a sqrt(Base) call.
1461       Value *Sqrt = nullptr;
1462       if (!ExpoA.isInteger()) {
1463         APFloat Expo2 = ExpoA;
1464         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1465         // is no floating point exception and the result is an integer, then
1466         // ExpoA == integer + 0.5
1467         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1468           return nullptr;
1469 
1470         if (!Expo2.isInteger())
1471           return nullptr;
1472 
1473         Sqrt =
1474             getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1475                         Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI);
1476       }
1477 
1478       // We will memoize intermediate products of the Addition Chain.
1479       Value *InnerChain[33] = {nullptr};
1480       InnerChain[1] = Base;
1481       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1482 
1483       // We cannot readily convert a non-double type (like float) to a double.
1484       // So we first convert it to something which could be converted to double.
1485       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1486       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1487 
1488       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1489       if (Sqrt)
1490         FMul = B.CreateFMul(FMul, Sqrt);
1491 
1492       // If the exponent is negative, then get the reciprocal.
1493       if (ExpoF->isNegative())
1494         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1495 
1496       return FMul;
1497     }
1498   }
1499 
1500   return Shrunk;
1501 }
1502 
1503 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1504   Function *Callee = CI->getCalledFunction();
1505   Value *Ret = nullptr;
1506   StringRef Name = Callee->getName();
1507   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1508     Ret = optimizeUnaryDoubleFP(CI, B, true);
1509 
1510   Value *Op = CI->getArgOperand(0);
1511   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1512   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1513   LibFunc LdExp = LibFunc_ldexpl;
1514   if (Op->getType()->isFloatTy())
1515     LdExp = LibFunc_ldexpf;
1516   else if (Op->getType()->isDoubleTy())
1517     LdExp = LibFunc_ldexp;
1518 
1519   if (TLI->has(LdExp)) {
1520     Value *LdExpArg = nullptr;
1521     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1522       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1523         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1524     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1525       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1526         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1527     }
1528 
1529     if (LdExpArg) {
1530       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1531       if (!Op->getType()->isFloatTy())
1532         One = ConstantExpr::getFPExtend(One, Op->getType());
1533 
1534       Module *M = CI->getModule();
1535       FunctionCallee NewCallee = M->getOrInsertFunction(
1536           TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty());
1537       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1538       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1539         CI->setCallingConv(F->getCallingConv());
1540 
1541       return CI;
1542     }
1543   }
1544   return Ret;
1545 }
1546 
1547 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1548   Function *Callee = CI->getCalledFunction();
1549   // If we can shrink the call to a float function rather than a double
1550   // function, do that first.
1551   StringRef Name = Callee->getName();
1552   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1553     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1554       return Ret;
1555 
1556   IRBuilder<>::FastMathFlagGuard Guard(B);
1557   FastMathFlags FMF;
1558   if (CI->isFast()) {
1559     // If the call is 'fast', then anything we create here will also be 'fast'.
1560     FMF.setFast();
1561   } else {
1562     // At a minimum, no-nans-fp-math must be true.
1563     if (!CI->hasNoNaNs())
1564       return nullptr;
1565     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1566     // "Ideally, fmax would be sensitive to the sign of zero, for example
1567     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1568     // might be impractical."
1569     FMF.setNoSignedZeros();
1570     FMF.setNoNaNs();
1571   }
1572   B.setFastMathFlags(FMF);
1573 
1574   // We have a relaxed floating-point environment. We can ignore NaN-handling
1575   // and transform to a compare and select. We do not have to consider errno or
1576   // exceptions, because fmin/fmax do not have those.
1577   Value *Op0 = CI->getArgOperand(0);
1578   Value *Op1 = CI->getArgOperand(1);
1579   Value *Cmp = Callee->getName().startswith("fmin") ?
1580     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1581   return B.CreateSelect(Cmp, Op0, Op1);
1582 }
1583 
1584 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1585   Function *Callee = CI->getCalledFunction();
1586   Value *Ret = nullptr;
1587   StringRef Name = Callee->getName();
1588   if (UnsafeFPShrink && hasFloatVersion(Name))
1589     Ret = optimizeUnaryDoubleFP(CI, B, true);
1590 
1591   if (!CI->isFast())
1592     return Ret;
1593   Value *Op1 = CI->getArgOperand(0);
1594   auto *OpC = dyn_cast<CallInst>(Op1);
1595 
1596   // The earlier call must also be 'fast' in order to do these transforms.
1597   if (!OpC || !OpC->isFast())
1598     return Ret;
1599 
1600   // log(pow(x,y)) -> y*log(x)
1601   // This is only applicable to log, log2, log10.
1602   if (Name != "log" && Name != "log2" && Name != "log10")
1603     return Ret;
1604 
1605   IRBuilder<>::FastMathFlagGuard Guard(B);
1606   FastMathFlags FMF;
1607   FMF.setFast();
1608   B.setFastMathFlags(FMF);
1609 
1610   LibFunc Func;
1611   Function *F = OpC->getCalledFunction();
1612   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1613       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1614     return B.CreateFMul(OpC->getArgOperand(1),
1615       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1616                            Callee->getAttributes()), "mul");
1617 
1618   // log(exp2(y)) -> y*log(2)
1619   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1620       TLI->has(Func) && Func == LibFunc_exp2)
1621     return B.CreateFMul(
1622         OpC->getArgOperand(0),
1623         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1624                              Callee->getName(), B, Callee->getAttributes()),
1625         "logmul");
1626   return Ret;
1627 }
1628 
1629 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1630   Function *Callee = CI->getCalledFunction();
1631   Value *Ret = nullptr;
1632   // TODO: Once we have a way (other than checking for the existince of the
1633   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1634   // condition below.
1635   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1636                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1637     Ret = optimizeUnaryDoubleFP(CI, B, true);
1638 
1639   if (!CI->isFast())
1640     return Ret;
1641 
1642   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1643   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1644     return Ret;
1645 
1646   // We're looking for a repeated factor in a multiplication tree,
1647   // so we can do this fold: sqrt(x * x) -> fabs(x);
1648   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1649   Value *Op0 = I->getOperand(0);
1650   Value *Op1 = I->getOperand(1);
1651   Value *RepeatOp = nullptr;
1652   Value *OtherOp = nullptr;
1653   if (Op0 == Op1) {
1654     // Simple match: the operands of the multiply are identical.
1655     RepeatOp = Op0;
1656   } else {
1657     // Look for a more complicated pattern: one of the operands is itself
1658     // a multiply, so search for a common factor in that multiply.
1659     // Note: We don't bother looking any deeper than this first level or for
1660     // variations of this pattern because instcombine's visitFMUL and/or the
1661     // reassociation pass should give us this form.
1662     Value *OtherMul0, *OtherMul1;
1663     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1664       // Pattern: sqrt((x * y) * z)
1665       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1666         // Matched: sqrt((x * x) * z)
1667         RepeatOp = OtherMul0;
1668         OtherOp = Op1;
1669       }
1670     }
1671   }
1672   if (!RepeatOp)
1673     return Ret;
1674 
1675   // Fast math flags for any created instructions should match the sqrt
1676   // and multiply.
1677   IRBuilder<>::FastMathFlagGuard Guard(B);
1678   B.setFastMathFlags(I->getFastMathFlags());
1679 
1680   // If we found a repeated factor, hoist it out of the square root and
1681   // replace it with the fabs of that factor.
1682   Module *M = Callee->getParent();
1683   Type *ArgType = I->getType();
1684   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1685   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1686   if (OtherOp) {
1687     // If we found a non-repeated factor, we still need to get its square
1688     // root. We then multiply that by the value that was simplified out
1689     // of the square root calculation.
1690     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1691     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1692     return B.CreateFMul(FabsCall, SqrtCall);
1693   }
1694   return FabsCall;
1695 }
1696 
1697 // TODO: Generalize to handle any trig function and its inverse.
1698 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1699   Function *Callee = CI->getCalledFunction();
1700   Value *Ret = nullptr;
1701   StringRef Name = Callee->getName();
1702   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1703     Ret = optimizeUnaryDoubleFP(CI, B, true);
1704 
1705   Value *Op1 = CI->getArgOperand(0);
1706   auto *OpC = dyn_cast<CallInst>(Op1);
1707   if (!OpC)
1708     return Ret;
1709 
1710   // Both calls must be 'fast' in order to remove them.
1711   if (!CI->isFast() || !OpC->isFast())
1712     return Ret;
1713 
1714   // tan(atan(x)) -> x
1715   // tanf(atanf(x)) -> x
1716   // tanl(atanl(x)) -> x
1717   LibFunc Func;
1718   Function *F = OpC->getCalledFunction();
1719   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1720       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1721        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1722        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1723     Ret = OpC->getArgOperand(0);
1724   return Ret;
1725 }
1726 
1727 static bool isTrigLibCall(CallInst *CI) {
1728   // We can only hope to do anything useful if we can ignore things like errno
1729   // and floating-point exceptions.
1730   // We already checked the prototype.
1731   return CI->hasFnAttr(Attribute::NoUnwind) &&
1732          CI->hasFnAttr(Attribute::ReadNone);
1733 }
1734 
1735 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1736                              bool UseFloat, Value *&Sin, Value *&Cos,
1737                              Value *&SinCos) {
1738   Type *ArgTy = Arg->getType();
1739   Type *ResTy;
1740   StringRef Name;
1741 
1742   Triple T(OrigCallee->getParent()->getTargetTriple());
1743   if (UseFloat) {
1744     Name = "__sincospif_stret";
1745 
1746     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1747     // x86_64 can't use {float, float} since that would be returned in both
1748     // xmm0 and xmm1, which isn't what a real struct would do.
1749     ResTy = T.getArch() == Triple::x86_64
1750                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1751                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1752   } else {
1753     Name = "__sincospi_stret";
1754     ResTy = StructType::get(ArgTy, ArgTy);
1755   }
1756 
1757   Module *M = OrigCallee->getParent();
1758   FunctionCallee Callee =
1759       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
1760 
1761   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1762     // If the argument is an instruction, it must dominate all uses so put our
1763     // sincos call there.
1764     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1765   } else {
1766     // Otherwise (e.g. for a constant) the beginning of the function is as
1767     // good a place as any.
1768     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1769     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1770   }
1771 
1772   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1773 
1774   if (SinCos->getType()->isStructTy()) {
1775     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1776     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1777   } else {
1778     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1779                                  "sinpi");
1780     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1781                                  "cospi");
1782   }
1783 }
1784 
1785 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1786   // Make sure the prototype is as expected, otherwise the rest of the
1787   // function is probably invalid and likely to abort.
1788   if (!isTrigLibCall(CI))
1789     return nullptr;
1790 
1791   Value *Arg = CI->getArgOperand(0);
1792   SmallVector<CallInst *, 1> SinCalls;
1793   SmallVector<CallInst *, 1> CosCalls;
1794   SmallVector<CallInst *, 1> SinCosCalls;
1795 
1796   bool IsFloat = Arg->getType()->isFloatTy();
1797 
1798   // Look for all compatible sinpi, cospi and sincospi calls with the same
1799   // argument. If there are enough (in some sense) we can make the
1800   // substitution.
1801   Function *F = CI->getFunction();
1802   for (User *U : Arg->users())
1803     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1804 
1805   // It's only worthwhile if both sinpi and cospi are actually used.
1806   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1807     return nullptr;
1808 
1809   Value *Sin, *Cos, *SinCos;
1810   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1811 
1812   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1813                                  Value *Res) {
1814     for (CallInst *C : Calls)
1815       replaceAllUsesWith(C, Res);
1816   };
1817 
1818   replaceTrigInsts(SinCalls, Sin);
1819   replaceTrigInsts(CosCalls, Cos);
1820   replaceTrigInsts(SinCosCalls, SinCos);
1821 
1822   return nullptr;
1823 }
1824 
1825 void LibCallSimplifier::classifyArgUse(
1826     Value *Val, Function *F, bool IsFloat,
1827     SmallVectorImpl<CallInst *> &SinCalls,
1828     SmallVectorImpl<CallInst *> &CosCalls,
1829     SmallVectorImpl<CallInst *> &SinCosCalls) {
1830   CallInst *CI = dyn_cast<CallInst>(Val);
1831 
1832   if (!CI)
1833     return;
1834 
1835   // Don't consider calls in other functions.
1836   if (CI->getFunction() != F)
1837     return;
1838 
1839   Function *Callee = CI->getCalledFunction();
1840   LibFunc Func;
1841   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1842       !isTrigLibCall(CI))
1843     return;
1844 
1845   if (IsFloat) {
1846     if (Func == LibFunc_sinpif)
1847       SinCalls.push_back(CI);
1848     else if (Func == LibFunc_cospif)
1849       CosCalls.push_back(CI);
1850     else if (Func == LibFunc_sincospif_stret)
1851       SinCosCalls.push_back(CI);
1852   } else {
1853     if (Func == LibFunc_sinpi)
1854       SinCalls.push_back(CI);
1855     else if (Func == LibFunc_cospi)
1856       CosCalls.push_back(CI);
1857     else if (Func == LibFunc_sincospi_stret)
1858       SinCosCalls.push_back(CI);
1859   }
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 // Integer Library Call Optimizations
1864 //===----------------------------------------------------------------------===//
1865 
1866 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1867   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1868   Value *Op = CI->getArgOperand(0);
1869   Type *ArgType = Op->getType();
1870   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1871                                           Intrinsic::cttz, ArgType);
1872   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1873   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1874   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1875 
1876   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1877   return B.CreateSelect(Cond, V, B.getInt32(0));
1878 }
1879 
1880 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1881   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1882   Value *Op = CI->getArgOperand(0);
1883   Type *ArgType = Op->getType();
1884   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1885                                           Intrinsic::ctlz, ArgType);
1886   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1887   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1888                   V);
1889   return B.CreateIntCast(V, CI->getType(), false);
1890 }
1891 
1892 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1893   // abs(x) -> x <s 0 ? -x : x
1894   // The negation has 'nsw' because abs of INT_MIN is undefined.
1895   Value *X = CI->getArgOperand(0);
1896   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1897   Value *NegX = B.CreateNSWNeg(X, "neg");
1898   return B.CreateSelect(IsNeg, NegX, X);
1899 }
1900 
1901 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1902   // isdigit(c) -> (c-'0') <u 10
1903   Value *Op = CI->getArgOperand(0);
1904   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1905   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1906   return B.CreateZExt(Op, CI->getType());
1907 }
1908 
1909 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1910   // isascii(c) -> c <u 128
1911   Value *Op = CI->getArgOperand(0);
1912   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1913   return B.CreateZExt(Op, CI->getType());
1914 }
1915 
1916 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1917   // toascii(c) -> c & 0x7f
1918   return B.CreateAnd(CI->getArgOperand(0),
1919                      ConstantInt::get(CI->getType(), 0x7F));
1920 }
1921 
1922 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1923   StringRef Str;
1924   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1925     return nullptr;
1926 
1927   return convertStrToNumber(CI, Str, 10);
1928 }
1929 
1930 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1931   StringRef Str;
1932   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1933     return nullptr;
1934 
1935   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1936     return nullptr;
1937 
1938   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1939     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1940   }
1941 
1942   return nullptr;
1943 }
1944 
1945 //===----------------------------------------------------------------------===//
1946 // Formatting and IO Library Call Optimizations
1947 //===----------------------------------------------------------------------===//
1948 
1949 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1950 
1951 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1952                                                  int StreamArg) {
1953   Function *Callee = CI->getCalledFunction();
1954   // Error reporting calls should be cold, mark them as such.
1955   // This applies even to non-builtin calls: it is only a hint and applies to
1956   // functions that the frontend might not understand as builtins.
1957 
1958   // This heuristic was suggested in:
1959   // Improving Static Branch Prediction in a Compiler
1960   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1961   // Proceedings of PACT'98, Oct. 1998, IEEE
1962   if (!CI->hasFnAttr(Attribute::Cold) &&
1963       isReportingError(Callee, CI, StreamArg)) {
1964     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1965   }
1966 
1967   return nullptr;
1968 }
1969 
1970 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1971   if (!Callee || !Callee->isDeclaration())
1972     return false;
1973 
1974   if (StreamArg < 0)
1975     return true;
1976 
1977   // These functions might be considered cold, but only if their stream
1978   // argument is stderr.
1979 
1980   if (StreamArg >= (int)CI->getNumArgOperands())
1981     return false;
1982   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1983   if (!LI)
1984     return false;
1985   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1986   if (!GV || !GV->isDeclaration())
1987     return false;
1988   return GV->getName() == "stderr";
1989 }
1990 
1991 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1992   // Check for a fixed format string.
1993   StringRef FormatStr;
1994   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1995     return nullptr;
1996 
1997   // Empty format string -> noop.
1998   if (FormatStr.empty()) // Tolerate printf's declared void.
1999     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2000 
2001   // Do not do any of the following transformations if the printf return value
2002   // is used, in general the printf return value is not compatible with either
2003   // putchar() or puts().
2004   if (!CI->use_empty())
2005     return nullptr;
2006 
2007   // printf("x") -> putchar('x'), even for "%" and "%%".
2008   if (FormatStr.size() == 1 || FormatStr == "%%")
2009     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2010 
2011   // printf("%s", "a") --> putchar('a')
2012   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2013     StringRef ChrStr;
2014     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2015       return nullptr;
2016     if (ChrStr.size() != 1)
2017       return nullptr;
2018     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2019   }
2020 
2021   // printf("foo\n") --> puts("foo")
2022   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2023       FormatStr.find('%') == StringRef::npos) { // No format characters.
2024     // Create a string literal with no \n on it.  We expect the constant merge
2025     // pass to be run after this pass, to merge duplicate strings.
2026     FormatStr = FormatStr.drop_back();
2027     Value *GV = B.CreateGlobalString(FormatStr, "str");
2028     return emitPutS(GV, B, TLI);
2029   }
2030 
2031   // Optimize specific format strings.
2032   // printf("%c", chr) --> putchar(chr)
2033   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2034       CI->getArgOperand(1)->getType()->isIntegerTy())
2035     return emitPutChar(CI->getArgOperand(1), B, TLI);
2036 
2037   // printf("%s\n", str) --> puts(str)
2038   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2039       CI->getArgOperand(1)->getType()->isPointerTy())
2040     return emitPutS(CI->getArgOperand(1), B, TLI);
2041   return nullptr;
2042 }
2043 
2044 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2045 
2046   Function *Callee = CI->getCalledFunction();
2047   FunctionType *FT = Callee->getFunctionType();
2048   if (Value *V = optimizePrintFString(CI, B)) {
2049     return V;
2050   }
2051 
2052   // printf(format, ...) -> iprintf(format, ...) if no floating point
2053   // arguments.
2054   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2055     Module *M = B.GetInsertBlock()->getParent()->getParent();
2056     FunctionCallee IPrintFFn =
2057         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2058     CallInst *New = cast<CallInst>(CI->clone());
2059     New->setCalledFunction(IPrintFFn);
2060     B.Insert(New);
2061     return New;
2062   }
2063 
2064   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2065   // arguments.
2066   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2067     Module *M = B.GetInsertBlock()->getParent()->getParent();
2068     auto SmallPrintFFn =
2069         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2070                                FT, Callee->getAttributes());
2071     CallInst *New = cast<CallInst>(CI->clone());
2072     New->setCalledFunction(SmallPrintFFn);
2073     B.Insert(New);
2074     return New;
2075   }
2076 
2077   return nullptr;
2078 }
2079 
2080 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2081   // Check for a fixed format string.
2082   StringRef FormatStr;
2083   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2084     return nullptr;
2085 
2086   // If we just have a format string (nothing else crazy) transform it.
2087   if (CI->getNumArgOperands() == 2) {
2088     // Make sure there's no % in the constant array.  We could try to handle
2089     // %% -> % in the future if we cared.
2090     if (FormatStr.find('%') != StringRef::npos)
2091       return nullptr; // we found a format specifier, bail out.
2092 
2093     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2094     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2095                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2096                                     FormatStr.size() + 1)); // Copy the null byte.
2097     return ConstantInt::get(CI->getType(), FormatStr.size());
2098   }
2099 
2100   // The remaining optimizations require the format string to be "%s" or "%c"
2101   // and have an extra operand.
2102   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2103       CI->getNumArgOperands() < 3)
2104     return nullptr;
2105 
2106   // Decode the second character of the format string.
2107   if (FormatStr[1] == 'c') {
2108     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2109     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2110       return nullptr;
2111     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2112     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2113     B.CreateStore(V, Ptr);
2114     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2115     B.CreateStore(B.getInt8(0), Ptr);
2116 
2117     return ConstantInt::get(CI->getType(), 1);
2118   }
2119 
2120   if (FormatStr[1] == 's') {
2121     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2122     // strlen(str)+1)
2123     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2124       return nullptr;
2125 
2126     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2127     if (!Len)
2128       return nullptr;
2129     Value *IncLen =
2130         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2131     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2132 
2133     // The sprintf result is the unincremented number of bytes in the string.
2134     return B.CreateIntCast(Len, CI->getType(), false);
2135   }
2136   return nullptr;
2137 }
2138 
2139 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2140   Function *Callee = CI->getCalledFunction();
2141   FunctionType *FT = Callee->getFunctionType();
2142   if (Value *V = optimizeSPrintFString(CI, B)) {
2143     return V;
2144   }
2145 
2146   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2147   // point arguments.
2148   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2149     Module *M = B.GetInsertBlock()->getParent()->getParent();
2150     FunctionCallee SIPrintFFn =
2151         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2152     CallInst *New = cast<CallInst>(CI->clone());
2153     New->setCalledFunction(SIPrintFFn);
2154     B.Insert(New);
2155     return New;
2156   }
2157 
2158   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2159   // floating point arguments.
2160   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2161     Module *M = B.GetInsertBlock()->getParent()->getParent();
2162     auto SmallSPrintFFn =
2163         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2164                                FT, Callee->getAttributes());
2165     CallInst *New = cast<CallInst>(CI->clone());
2166     New->setCalledFunction(SmallSPrintFFn);
2167     B.Insert(New);
2168     return New;
2169   }
2170 
2171   return nullptr;
2172 }
2173 
2174 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2175   // Check for a fixed format string.
2176   StringRef FormatStr;
2177   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2178     return nullptr;
2179 
2180   // Check for size
2181   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2182   if (!Size)
2183     return nullptr;
2184 
2185   uint64_t N = Size->getZExtValue();
2186 
2187   // If we just have a format string (nothing else crazy) transform it.
2188   if (CI->getNumArgOperands() == 3) {
2189     // Make sure there's no % in the constant array.  We could try to handle
2190     // %% -> % in the future if we cared.
2191     if (FormatStr.find('%') != StringRef::npos)
2192       return nullptr; // we found a format specifier, bail out.
2193 
2194     if (N == 0)
2195       return ConstantInt::get(CI->getType(), FormatStr.size());
2196     else if (N < FormatStr.size() + 1)
2197       return nullptr;
2198 
2199     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2200     // strlen(fmt)+1)
2201     B.CreateMemCpy(
2202         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2203         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2204                          FormatStr.size() + 1)); // Copy the null byte.
2205     return ConstantInt::get(CI->getType(), FormatStr.size());
2206   }
2207 
2208   // The remaining optimizations require the format string to be "%s" or "%c"
2209   // and have an extra operand.
2210   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2211       CI->getNumArgOperands() == 4) {
2212 
2213     // Decode the second character of the format string.
2214     if (FormatStr[1] == 'c') {
2215       if (N == 0)
2216         return ConstantInt::get(CI->getType(), 1);
2217       else if (N == 1)
2218         return nullptr;
2219 
2220       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2221       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2222         return nullptr;
2223       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2224       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2225       B.CreateStore(V, Ptr);
2226       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2227       B.CreateStore(B.getInt8(0), Ptr);
2228 
2229       return ConstantInt::get(CI->getType(), 1);
2230     }
2231 
2232     if (FormatStr[1] == 's') {
2233       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2234       StringRef Str;
2235       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2236         return nullptr;
2237 
2238       if (N == 0)
2239         return ConstantInt::get(CI->getType(), Str.size());
2240       else if (N < Str.size() + 1)
2241         return nullptr;
2242 
2243       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2244                      ConstantInt::get(CI->getType(), Str.size() + 1));
2245 
2246       // The snprintf result is the unincremented number of bytes in the string.
2247       return ConstantInt::get(CI->getType(), Str.size());
2248     }
2249   }
2250   return nullptr;
2251 }
2252 
2253 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2254   if (Value *V = optimizeSnPrintFString(CI, B)) {
2255     return V;
2256   }
2257 
2258   return nullptr;
2259 }
2260 
2261 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2262   optimizeErrorReporting(CI, B, 0);
2263 
2264   // All the optimizations depend on the format string.
2265   StringRef FormatStr;
2266   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2267     return nullptr;
2268 
2269   // Do not do any of the following transformations if the fprintf return
2270   // value is used, in general the fprintf return value is not compatible
2271   // with fwrite(), fputc() or fputs().
2272   if (!CI->use_empty())
2273     return nullptr;
2274 
2275   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2276   if (CI->getNumArgOperands() == 2) {
2277     // Could handle %% -> % if we cared.
2278     if (FormatStr.find('%') != StringRef::npos)
2279       return nullptr; // We found a format specifier.
2280 
2281     return emitFWrite(
2282         CI->getArgOperand(1),
2283         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2284         CI->getArgOperand(0), B, DL, TLI);
2285   }
2286 
2287   // The remaining optimizations require the format string to be "%s" or "%c"
2288   // and have an extra operand.
2289   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2290       CI->getNumArgOperands() < 3)
2291     return nullptr;
2292 
2293   // Decode the second character of the format string.
2294   if (FormatStr[1] == 'c') {
2295     // fprintf(F, "%c", chr) --> fputc(chr, F)
2296     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2297       return nullptr;
2298     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2299   }
2300 
2301   if (FormatStr[1] == 's') {
2302     // fprintf(F, "%s", str) --> fputs(str, F)
2303     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2304       return nullptr;
2305     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2306   }
2307   return nullptr;
2308 }
2309 
2310 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2311   Function *Callee = CI->getCalledFunction();
2312   FunctionType *FT = Callee->getFunctionType();
2313   if (Value *V = optimizeFPrintFString(CI, B)) {
2314     return V;
2315   }
2316 
2317   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2318   // floating point arguments.
2319   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2320     Module *M = B.GetInsertBlock()->getParent()->getParent();
2321     FunctionCallee FIPrintFFn =
2322         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2323     CallInst *New = cast<CallInst>(CI->clone());
2324     New->setCalledFunction(FIPrintFFn);
2325     B.Insert(New);
2326     return New;
2327   }
2328 
2329   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2330   // 128-bit floating point arguments.
2331   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2332     Module *M = B.GetInsertBlock()->getParent()->getParent();
2333     auto SmallFPrintFFn =
2334         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2335                                FT, Callee->getAttributes());
2336     CallInst *New = cast<CallInst>(CI->clone());
2337     New->setCalledFunction(SmallFPrintFFn);
2338     B.Insert(New);
2339     return New;
2340   }
2341 
2342   return nullptr;
2343 }
2344 
2345 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2346   optimizeErrorReporting(CI, B, 3);
2347 
2348   // Get the element size and count.
2349   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2350   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2351   if (SizeC && CountC) {
2352     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2353 
2354     // If this is writing zero records, remove the call (it's a noop).
2355     if (Bytes == 0)
2356       return ConstantInt::get(CI->getType(), 0);
2357 
2358     // If this is writing one byte, turn it into fputc.
2359     // This optimisation is only valid, if the return value is unused.
2360     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2361       Value *Char = B.CreateLoad(B.getInt8Ty(),
2362                                  castToCStr(CI->getArgOperand(0), B), "char");
2363       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2364       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2365     }
2366   }
2367 
2368   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2369     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2370                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2371                               TLI);
2372 
2373   return nullptr;
2374 }
2375 
2376 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2377   optimizeErrorReporting(CI, B, 1);
2378 
2379   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2380   // requires more arguments and thus extra MOVs are required.
2381   bool OptForSize = CI->getFunction()->hasOptSize() ||
2382                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
2383   if (OptForSize)
2384     return nullptr;
2385 
2386   // Check if has any use
2387   if (!CI->use_empty()) {
2388     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2389       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2390                                TLI);
2391     else
2392       // We can't optimize if return value is used.
2393       return nullptr;
2394   }
2395 
2396   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2397   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2398   if (!Len)
2399     return nullptr;
2400 
2401   // Known to have no uses (see above).
2402   return emitFWrite(
2403       CI->getArgOperand(0),
2404       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2405       CI->getArgOperand(1), B, DL, TLI);
2406 }
2407 
2408 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2409   optimizeErrorReporting(CI, B, 1);
2410 
2411   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2412     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2413                              TLI);
2414 
2415   return nullptr;
2416 }
2417 
2418 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2419   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2420     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2421 
2422   return nullptr;
2423 }
2424 
2425 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2426   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2427     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2428                              CI->getArgOperand(2), B, TLI);
2429 
2430   return nullptr;
2431 }
2432 
2433 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2434   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2435     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2436                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2437                              TLI);
2438 
2439   return nullptr;
2440 }
2441 
2442 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2443   if (!CI->use_empty())
2444     return nullptr;
2445 
2446   // Check for a constant string.
2447   // puts("") -> putchar('\n')
2448   StringRef Str;
2449   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2450     return emitPutChar(B.getInt32('\n'), B, TLI);
2451 
2452   return nullptr;
2453 }
2454 
2455 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2456   LibFunc Func;
2457   SmallString<20> FloatFuncName = FuncName;
2458   FloatFuncName += 'f';
2459   if (TLI->getLibFunc(FloatFuncName, Func))
2460     return TLI->has(Func);
2461   return false;
2462 }
2463 
2464 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2465                                                       IRBuilder<> &Builder) {
2466   LibFunc Func;
2467   Function *Callee = CI->getCalledFunction();
2468   // Check for string/memory library functions.
2469   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2470     // Make sure we never change the calling convention.
2471     assert((ignoreCallingConv(Func) ||
2472             isCallingConvCCompatible(CI)) &&
2473       "Optimizing string/memory libcall would change the calling convention");
2474     switch (Func) {
2475     case LibFunc_strcat:
2476       return optimizeStrCat(CI, Builder);
2477     case LibFunc_strncat:
2478       return optimizeStrNCat(CI, Builder);
2479     case LibFunc_strchr:
2480       return optimizeStrChr(CI, Builder);
2481     case LibFunc_strrchr:
2482       return optimizeStrRChr(CI, Builder);
2483     case LibFunc_strcmp:
2484       return optimizeStrCmp(CI, Builder);
2485     case LibFunc_strncmp:
2486       return optimizeStrNCmp(CI, Builder);
2487     case LibFunc_strcpy:
2488       return optimizeStrCpy(CI, Builder);
2489     case LibFunc_stpcpy:
2490       return optimizeStpCpy(CI, Builder);
2491     case LibFunc_strncpy:
2492       return optimizeStrNCpy(CI, Builder);
2493     case LibFunc_strlen:
2494       return optimizeStrLen(CI, Builder);
2495     case LibFunc_strpbrk:
2496       return optimizeStrPBrk(CI, Builder);
2497     case LibFunc_strtol:
2498     case LibFunc_strtod:
2499     case LibFunc_strtof:
2500     case LibFunc_strtoul:
2501     case LibFunc_strtoll:
2502     case LibFunc_strtold:
2503     case LibFunc_strtoull:
2504       return optimizeStrTo(CI, Builder);
2505     case LibFunc_strspn:
2506       return optimizeStrSpn(CI, Builder);
2507     case LibFunc_strcspn:
2508       return optimizeStrCSpn(CI, Builder);
2509     case LibFunc_strstr:
2510       return optimizeStrStr(CI, Builder);
2511     case LibFunc_memchr:
2512       return optimizeMemChr(CI, Builder);
2513     case LibFunc_memcmp:
2514       return optimizeMemCmp(CI, Builder);
2515     case LibFunc_memcpy:
2516       return optimizeMemCpy(CI, Builder);
2517     case LibFunc_memmove:
2518       return optimizeMemMove(CI, Builder);
2519     case LibFunc_memset:
2520       return optimizeMemSet(CI, Builder);
2521     case LibFunc_realloc:
2522       return optimizeRealloc(CI, Builder);
2523     case LibFunc_wcslen:
2524       return optimizeWcslen(CI, Builder);
2525     default:
2526       break;
2527     }
2528   }
2529   return nullptr;
2530 }
2531 
2532 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2533                                                        LibFunc Func,
2534                                                        IRBuilder<> &Builder) {
2535   // Don't optimize calls that require strict floating point semantics.
2536   if (CI->isStrictFP())
2537     return nullptr;
2538 
2539   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2540     return V;
2541 
2542   switch (Func) {
2543   case LibFunc_sinpif:
2544   case LibFunc_sinpi:
2545   case LibFunc_cospif:
2546   case LibFunc_cospi:
2547     return optimizeSinCosPi(CI, Builder);
2548   case LibFunc_powf:
2549   case LibFunc_pow:
2550   case LibFunc_powl:
2551     return optimizePow(CI, Builder);
2552   case LibFunc_exp2l:
2553   case LibFunc_exp2:
2554   case LibFunc_exp2f:
2555     return optimizeExp2(CI, Builder);
2556   case LibFunc_fabsf:
2557   case LibFunc_fabs:
2558   case LibFunc_fabsl:
2559     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2560   case LibFunc_sqrtf:
2561   case LibFunc_sqrt:
2562   case LibFunc_sqrtl:
2563     return optimizeSqrt(CI, Builder);
2564   case LibFunc_log:
2565   case LibFunc_log10:
2566   case LibFunc_log1p:
2567   case LibFunc_log2:
2568   case LibFunc_logb:
2569     return optimizeLog(CI, Builder);
2570   case LibFunc_tan:
2571   case LibFunc_tanf:
2572   case LibFunc_tanl:
2573     return optimizeTan(CI, Builder);
2574   case LibFunc_ceil:
2575     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2576   case LibFunc_floor:
2577     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2578   case LibFunc_round:
2579     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2580   case LibFunc_nearbyint:
2581     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2582   case LibFunc_rint:
2583     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2584   case LibFunc_trunc:
2585     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2586   case LibFunc_acos:
2587   case LibFunc_acosh:
2588   case LibFunc_asin:
2589   case LibFunc_asinh:
2590   case LibFunc_atan:
2591   case LibFunc_atanh:
2592   case LibFunc_cbrt:
2593   case LibFunc_cosh:
2594   case LibFunc_exp:
2595   case LibFunc_exp10:
2596   case LibFunc_expm1:
2597   case LibFunc_cos:
2598   case LibFunc_sin:
2599   case LibFunc_sinh:
2600   case LibFunc_tanh:
2601     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2602       return optimizeUnaryDoubleFP(CI, Builder, true);
2603     return nullptr;
2604   case LibFunc_copysign:
2605     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2606       return optimizeBinaryDoubleFP(CI, Builder);
2607     return nullptr;
2608   case LibFunc_fminf:
2609   case LibFunc_fmin:
2610   case LibFunc_fminl:
2611   case LibFunc_fmaxf:
2612   case LibFunc_fmax:
2613   case LibFunc_fmaxl:
2614     return optimizeFMinFMax(CI, Builder);
2615   case LibFunc_cabs:
2616   case LibFunc_cabsf:
2617   case LibFunc_cabsl:
2618     return optimizeCAbs(CI, Builder);
2619   default:
2620     return nullptr;
2621   }
2622 }
2623 
2624 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2625   // TODO: Split out the code below that operates on FP calls so that
2626   //       we can all non-FP calls with the StrictFP attribute to be
2627   //       optimized.
2628   if (CI->isNoBuiltin())
2629     return nullptr;
2630 
2631   LibFunc Func;
2632   Function *Callee = CI->getCalledFunction();
2633 
2634   SmallVector<OperandBundleDef, 2> OpBundles;
2635   CI->getOperandBundlesAsDefs(OpBundles);
2636   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2637   bool isCallingConvC = isCallingConvCCompatible(CI);
2638 
2639   // Command-line parameter overrides instruction attribute.
2640   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2641   // used by the intrinsic optimizations.
2642   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2643     UnsafeFPShrink = EnableUnsafeFPShrink;
2644   else if (isa<FPMathOperator>(CI) && CI->isFast())
2645     UnsafeFPShrink = true;
2646 
2647   // First, check for intrinsics.
2648   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2649     if (!isCallingConvC)
2650       return nullptr;
2651     // The FP intrinsics have corresponding constrained versions so we don't
2652     // need to check for the StrictFP attribute here.
2653     switch (II->getIntrinsicID()) {
2654     case Intrinsic::pow:
2655       return optimizePow(CI, Builder);
2656     case Intrinsic::exp2:
2657       return optimizeExp2(CI, Builder);
2658     case Intrinsic::log:
2659       return optimizeLog(CI, Builder);
2660     case Intrinsic::sqrt:
2661       return optimizeSqrt(CI, Builder);
2662     // TODO: Use foldMallocMemset() with memset intrinsic.
2663     default:
2664       return nullptr;
2665     }
2666   }
2667 
2668   // Also try to simplify calls to fortified library functions.
2669   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2670     // Try to further simplify the result.
2671     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2672     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2673       // Use an IR Builder from SimplifiedCI if available instead of CI
2674       // to guarantee we reach all uses we might replace later on.
2675       IRBuilder<> TmpBuilder(SimplifiedCI);
2676       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2677         // If we were able to further simplify, remove the now redundant call.
2678         SimplifiedCI->replaceAllUsesWith(V);
2679         eraseFromParent(SimplifiedCI);
2680         return V;
2681       }
2682     }
2683     return SimplifiedFortifiedCI;
2684   }
2685 
2686   // Then check for known library functions.
2687   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2688     // We never change the calling convention.
2689     if (!ignoreCallingConv(Func) && !isCallingConvC)
2690       return nullptr;
2691     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2692       return V;
2693     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2694       return V;
2695     switch (Func) {
2696     case LibFunc_ffs:
2697     case LibFunc_ffsl:
2698     case LibFunc_ffsll:
2699       return optimizeFFS(CI, Builder);
2700     case LibFunc_fls:
2701     case LibFunc_flsl:
2702     case LibFunc_flsll:
2703       return optimizeFls(CI, Builder);
2704     case LibFunc_abs:
2705     case LibFunc_labs:
2706     case LibFunc_llabs:
2707       return optimizeAbs(CI, Builder);
2708     case LibFunc_isdigit:
2709       return optimizeIsDigit(CI, Builder);
2710     case LibFunc_isascii:
2711       return optimizeIsAscii(CI, Builder);
2712     case LibFunc_toascii:
2713       return optimizeToAscii(CI, Builder);
2714     case LibFunc_atoi:
2715     case LibFunc_atol:
2716     case LibFunc_atoll:
2717       return optimizeAtoi(CI, Builder);
2718     case LibFunc_strtol:
2719     case LibFunc_strtoll:
2720       return optimizeStrtol(CI, Builder);
2721     case LibFunc_printf:
2722       return optimizePrintF(CI, Builder);
2723     case LibFunc_sprintf:
2724       return optimizeSPrintF(CI, Builder);
2725     case LibFunc_snprintf:
2726       return optimizeSnPrintF(CI, Builder);
2727     case LibFunc_fprintf:
2728       return optimizeFPrintF(CI, Builder);
2729     case LibFunc_fwrite:
2730       return optimizeFWrite(CI, Builder);
2731     case LibFunc_fread:
2732       return optimizeFRead(CI, Builder);
2733     case LibFunc_fputs:
2734       return optimizeFPuts(CI, Builder);
2735     case LibFunc_fgets:
2736       return optimizeFGets(CI, Builder);
2737     case LibFunc_fputc:
2738       return optimizeFPutc(CI, Builder);
2739     case LibFunc_fgetc:
2740       return optimizeFGetc(CI, Builder);
2741     case LibFunc_puts:
2742       return optimizePuts(CI, Builder);
2743     case LibFunc_perror:
2744       return optimizeErrorReporting(CI, Builder);
2745     case LibFunc_vfprintf:
2746     case LibFunc_fiprintf:
2747       return optimizeErrorReporting(CI, Builder, 0);
2748     default:
2749       return nullptr;
2750     }
2751   }
2752   return nullptr;
2753 }
2754 
2755 LibCallSimplifier::LibCallSimplifier(
2756     const DataLayout &DL, const TargetLibraryInfo *TLI,
2757     OptimizationRemarkEmitter &ORE,
2758     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
2759     function_ref<void(Instruction *, Value *)> Replacer,
2760     function_ref<void(Instruction *)> Eraser)
2761     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
2762       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
2763 
2764 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2765   // Indirect through the replacer used in this instance.
2766   Replacer(I, With);
2767 }
2768 
2769 void LibCallSimplifier::eraseFromParent(Instruction *I) {
2770   Eraser(I);
2771 }
2772 
2773 // TODO:
2774 //   Additional cases that we need to add to this file:
2775 //
2776 // cbrt:
2777 //   * cbrt(expN(X))  -> expN(x/3)
2778 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2779 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2780 //
2781 // exp, expf, expl:
2782 //   * exp(log(x))  -> x
2783 //
2784 // log, logf, logl:
2785 //   * log(exp(x))   -> x
2786 //   * log(exp(y))   -> y*log(e)
2787 //   * log(exp10(y)) -> y*log(10)
2788 //   * log(sqrt(x))  -> 0.5*log(x)
2789 //
2790 // pow, powf, powl:
2791 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2792 //   * pow(pow(x,y),z)-> pow(x,y*z)
2793 //
2794 // signbit:
2795 //   * signbit(cnst) -> cnst'
2796 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2797 //
2798 // sqrt, sqrtf, sqrtl:
2799 //   * sqrt(expN(x))  -> expN(x*0.5)
2800 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2801 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2802 //
2803 
2804 //===----------------------------------------------------------------------===//
2805 // Fortified Library Call Optimizations
2806 //===----------------------------------------------------------------------===//
2807 
2808 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2809                                                          unsigned ObjSizeOp,
2810                                                          unsigned SizeOp,
2811                                                          bool isString) {
2812   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2813     return true;
2814   if (ConstantInt *ObjSizeCI =
2815           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2816     if (ObjSizeCI->isMinusOne())
2817       return true;
2818     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2819     if (OnlyLowerUnknownSize)
2820       return false;
2821     if (isString) {
2822       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2823       // If the length is 0 we don't know how long it is and so we can't
2824       // remove the check.
2825       if (Len == 0)
2826         return false;
2827       return ObjSizeCI->getZExtValue() >= Len;
2828     }
2829     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2830       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2831   }
2832   return false;
2833 }
2834 
2835 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2836                                                      IRBuilder<> &B) {
2837   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2838     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2839                    CI->getArgOperand(2));
2840     return CI->getArgOperand(0);
2841   }
2842   return nullptr;
2843 }
2844 
2845 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2846                                                       IRBuilder<> &B) {
2847   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2848     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2849                     CI->getArgOperand(2));
2850     return CI->getArgOperand(0);
2851   }
2852   return nullptr;
2853 }
2854 
2855 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2856                                                      IRBuilder<> &B) {
2857   // TODO: Try foldMallocMemset() here.
2858 
2859   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2860     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2861     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2862     return CI->getArgOperand(0);
2863   }
2864   return nullptr;
2865 }
2866 
2867 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2868                                                       IRBuilder<> &B,
2869                                                       LibFunc Func) {
2870   Function *Callee = CI->getCalledFunction();
2871   StringRef Name = Callee->getName();
2872   const DataLayout &DL = CI->getModule()->getDataLayout();
2873   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2874         *ObjSize = CI->getArgOperand(2);
2875 
2876   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2877   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2878     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2879     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2880   }
2881 
2882   // If a) we don't have any length information, or b) we know this will
2883   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2884   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2885   // TODO: It might be nice to get a maximum length out of the possible
2886   // string lengths for varying.
2887   if (isFortifiedCallFoldable(CI, 2, 1, true))
2888     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2889 
2890   if (OnlyLowerUnknownSize)
2891     return nullptr;
2892 
2893   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2894   uint64_t Len = GetStringLength(Src);
2895   if (Len == 0)
2896     return nullptr;
2897 
2898   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2899   Value *LenV = ConstantInt::get(SizeTTy, Len);
2900   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2901   // If the function was an __stpcpy_chk, and we were able to fold it into
2902   // a __memcpy_chk, we still need to return the correct end pointer.
2903   if (Ret && Func == LibFunc_stpcpy_chk)
2904     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2905   return Ret;
2906 }
2907 
2908 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2909                                                        IRBuilder<> &B,
2910                                                        LibFunc Func) {
2911   Function *Callee = CI->getCalledFunction();
2912   StringRef Name = Callee->getName();
2913   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2914     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2915                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2916     return Ret;
2917   }
2918   return nullptr;
2919 }
2920 
2921 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2922   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2923   // Some clang users checked for _chk libcall availability using:
2924   //   __has_builtin(__builtin___memcpy_chk)
2925   // When compiling with -fno-builtin, this is always true.
2926   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2927   // end up with fortified libcalls, which isn't acceptable in a freestanding
2928   // environment which only provides their non-fortified counterparts.
2929   //
2930   // Until we change clang and/or teach external users to check for availability
2931   // differently, disregard the "nobuiltin" attribute and TLI::has.
2932   //
2933   // PR23093.
2934 
2935   LibFunc Func;
2936   Function *Callee = CI->getCalledFunction();
2937 
2938   SmallVector<OperandBundleDef, 2> OpBundles;
2939   CI->getOperandBundlesAsDefs(OpBundles);
2940   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2941   bool isCallingConvC = isCallingConvCCompatible(CI);
2942 
2943   // First, check that this is a known library functions and that the prototype
2944   // is correct.
2945   if (!TLI->getLibFunc(*Callee, Func))
2946     return nullptr;
2947 
2948   // We never change the calling convention.
2949   if (!ignoreCallingConv(Func) && !isCallingConvC)
2950     return nullptr;
2951 
2952   switch (Func) {
2953   case LibFunc_memcpy_chk:
2954     return optimizeMemCpyChk(CI, Builder);
2955   case LibFunc_memmove_chk:
2956     return optimizeMemMoveChk(CI, Builder);
2957   case LibFunc_memset_chk:
2958     return optimizeMemSetChk(CI, Builder);
2959   case LibFunc_stpcpy_chk:
2960   case LibFunc_strcpy_chk:
2961     return optimizeStrpCpyChk(CI, Builder, Func);
2962   case LibFunc_stpncpy_chk:
2963   case LibFunc_strncpy_chk:
2964     return optimizeStrpNCpyChk(CI, Builder, Func);
2965   default:
2966     break;
2967   }
2968   return nullptr;
2969 }
2970 
2971 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2972     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2973     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2974