1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 return Func == LibFunc::abs || Func == LibFunc::labs || 56 Func == LibFunc::llabs || Func == LibFunc::strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it only matters that the value is equal or not-equal to zero. 92 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality()) 96 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 97 if (C->isNullValue()) 98 continue; 99 // Unknown instruction. 100 return false; 101 } 102 return true; 103 } 104 105 /// Return true if it is only used in equality comparisons with With. 106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 107 for (User *U : V->users()) { 108 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 109 if (IC->isEquality() && IC->getOperand(1) == With) 110 continue; 111 // Unknown instruction. 112 return false; 113 } 114 return true; 115 } 116 117 static bool callHasFloatingPointArgument(const CallInst *CI) { 118 return any_of(CI->operands(), [](const Use &OI) { 119 return OI->getType()->isFloatingPointTy(); 120 }); 121 } 122 123 /// \brief Check whether the overloaded unary floating point function 124 /// corresponding to \a Ty is available. 125 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 126 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 127 LibFunc::Func LongDoubleFn) { 128 switch (Ty->getTypeID()) { 129 case Type::FloatTyID: 130 return TLI->has(FloatFn); 131 case Type::DoubleTyID: 132 return TLI->has(DoubleFn); 133 default: 134 return TLI->has(LongDoubleFn); 135 } 136 } 137 138 //===----------------------------------------------------------------------===// 139 // String and Memory Library Call Optimizations 140 //===----------------------------------------------------------------------===// 141 142 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 143 // Extract some information from the instruction 144 Value *Dst = CI->getArgOperand(0); 145 Value *Src = CI->getArgOperand(1); 146 147 // See if we can get the length of the input string. 148 uint64_t Len = GetStringLength(Src); 149 if (Len == 0) 150 return nullptr; 151 --Len; // Unbias length. 152 153 // Handle the simple, do-nothing case: strcat(x, "") -> x 154 if (Len == 0) 155 return Dst; 156 157 return emitStrLenMemCpy(Src, Dst, Len, B); 158 } 159 160 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 161 IRBuilder<> &B) { 162 // We need to find the end of the destination string. That's where the 163 // memory is to be moved to. We just generate a call to strlen. 164 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 165 if (!DstLen) 166 return nullptr; 167 168 // Now that we have the destination's length, we must index into the 169 // destination's pointer to get the actual memcpy destination (end of 170 // the string .. we're concatenating). 171 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 172 173 // We have enough information to now generate the memcpy call to do the 174 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 175 B.CreateMemCpy(CpyDst, Src, 176 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 177 1); 178 return Dst; 179 } 180 181 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 182 // Extract some information from the instruction. 183 Value *Dst = CI->getArgOperand(0); 184 Value *Src = CI->getArgOperand(1); 185 uint64_t Len; 186 187 // We don't do anything if length is not constant. 188 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 189 Len = LengthArg->getZExtValue(); 190 else 191 return nullptr; 192 193 // See if we can get the length of the input string. 194 uint64_t SrcLen = GetStringLength(Src); 195 if (SrcLen == 0) 196 return nullptr; 197 --SrcLen; // Unbias length. 198 199 // Handle the simple, do-nothing cases: 200 // strncat(x, "", c) -> x 201 // strncat(x, c, 0) -> x 202 if (SrcLen == 0 || Len == 0) 203 return Dst; 204 205 // We don't optimize this case. 206 if (Len < SrcLen) 207 return nullptr; 208 209 // strncat(x, s, c) -> strcat(x, s) 210 // s is constant so the strcat can be optimized further. 211 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 212 } 213 214 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 215 Function *Callee = CI->getCalledFunction(); 216 FunctionType *FT = Callee->getFunctionType(); 217 Value *SrcStr = CI->getArgOperand(0); 218 219 // If the second operand is non-constant, see if we can compute the length 220 // of the input string and turn this into memchr. 221 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 222 if (!CharC) { 223 uint64_t Len = GetStringLength(SrcStr); 224 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 225 return nullptr; 226 227 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 228 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 229 B, DL, TLI); 230 } 231 232 // Otherwise, the character is a constant, see if the first argument is 233 // a string literal. If so, we can constant fold. 234 StringRef Str; 235 if (!getConstantStringInfo(SrcStr, Str)) { 236 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 237 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 238 "strchr"); 239 return nullptr; 240 } 241 242 // Compute the offset, make sure to handle the case when we're searching for 243 // zero (a weird way to spell strlen). 244 size_t I = (0xFF & CharC->getSExtValue()) == 0 245 ? Str.size() 246 : Str.find(CharC->getSExtValue()); 247 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 248 return Constant::getNullValue(CI->getType()); 249 250 // strchr(s+n,c) -> gep(s+n+i,c) 251 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 252 } 253 254 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 255 Value *SrcStr = CI->getArgOperand(0); 256 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 257 258 // Cannot fold anything if we're not looking for a constant. 259 if (!CharC) 260 return nullptr; 261 262 StringRef Str; 263 if (!getConstantStringInfo(SrcStr, Str)) { 264 // strrchr(s, 0) -> strchr(s, 0) 265 if (CharC->isZero()) 266 return emitStrChr(SrcStr, '\0', B, TLI); 267 return nullptr; 268 } 269 270 // Compute the offset. 271 size_t I = (0xFF & CharC->getSExtValue()) == 0 272 ? Str.size() 273 : Str.rfind(CharC->getSExtValue()); 274 if (I == StringRef::npos) // Didn't find the char. Return null. 275 return Constant::getNullValue(CI->getType()); 276 277 // strrchr(s+n,c) -> gep(s+n+i,c) 278 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 279 } 280 281 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 282 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 283 if (Str1P == Str2P) // strcmp(x,x) -> 0 284 return ConstantInt::get(CI->getType(), 0); 285 286 StringRef Str1, Str2; 287 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 288 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 289 290 // strcmp(x, y) -> cnst (if both x and y are constant strings) 291 if (HasStr1 && HasStr2) 292 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 293 294 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 295 return B.CreateNeg( 296 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 297 298 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 299 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 300 301 // strcmp(P, "x") -> memcmp(P, "x", 2) 302 uint64_t Len1 = GetStringLength(Str1P); 303 uint64_t Len2 = GetStringLength(Str2P); 304 if (Len1 && Len2) { 305 return emitMemCmp(Str1P, Str2P, 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 307 std::min(Len1, Len2)), 308 B, DL, TLI); 309 } 310 311 return nullptr; 312 } 313 314 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 315 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 316 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 317 return ConstantInt::get(CI->getType(), 0); 318 319 // Get the length argument if it is constant. 320 uint64_t Length; 321 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 322 Length = LengthArg->getZExtValue(); 323 else 324 return nullptr; 325 326 if (Length == 0) // strncmp(x,y,0) -> 0 327 return ConstantInt::get(CI->getType(), 0); 328 329 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 330 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 331 332 StringRef Str1, Str2; 333 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 334 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 335 336 // strncmp(x, y) -> cnst (if both x and y are constant strings) 337 if (HasStr1 && HasStr2) { 338 StringRef SubStr1 = Str1.substr(0, Length); 339 StringRef SubStr2 = Str2.substr(0, Length); 340 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 341 } 342 343 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 344 return B.CreateNeg( 345 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 346 347 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 348 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 349 350 return nullptr; 351 } 352 353 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 354 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 355 if (Dst == Src) // strcpy(x,x) -> x 356 return Src; 357 358 // See if we can get the length of the input string. 359 uint64_t Len = GetStringLength(Src); 360 if (Len == 0) 361 return nullptr; 362 363 // We have enough information to now generate the memcpy call to do the 364 // copy for us. Make a memcpy to copy the nul byte with align = 1. 365 B.CreateMemCpy(Dst, Src, 366 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 367 return Dst; 368 } 369 370 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 371 Function *Callee = CI->getCalledFunction(); 372 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 373 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 374 Value *StrLen = emitStrLen(Src, B, DL, TLI); 375 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 376 } 377 378 // See if we can get the length of the input string. 379 uint64_t Len = GetStringLength(Src); 380 if (Len == 0) 381 return nullptr; 382 383 Type *PT = Callee->getFunctionType()->getParamType(0); 384 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 385 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 386 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 387 388 // We have enough information to now generate the memcpy call to do the 389 // copy for us. Make a memcpy to copy the nul byte with align = 1. 390 B.CreateMemCpy(Dst, Src, LenV, 1); 391 return DstEnd; 392 } 393 394 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 395 Function *Callee = CI->getCalledFunction(); 396 Value *Dst = CI->getArgOperand(0); 397 Value *Src = CI->getArgOperand(1); 398 Value *LenOp = CI->getArgOperand(2); 399 400 // See if we can get the length of the input string. 401 uint64_t SrcLen = GetStringLength(Src); 402 if (SrcLen == 0) 403 return nullptr; 404 --SrcLen; 405 406 if (SrcLen == 0) { 407 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 408 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 409 return Dst; 410 } 411 412 uint64_t Len; 413 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 414 Len = LengthArg->getZExtValue(); 415 else 416 return nullptr; 417 418 if (Len == 0) 419 return Dst; // strncpy(x, y, 0) -> x 420 421 // Let strncpy handle the zero padding 422 if (Len > SrcLen + 1) 423 return nullptr; 424 425 Type *PT = Callee->getFunctionType()->getParamType(0); 426 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 427 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 428 429 return Dst; 430 } 431 432 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 433 Value *Src = CI->getArgOperand(0); 434 435 // Constant folding: strlen("xyz") -> 3 436 if (uint64_t Len = GetStringLength(Src)) 437 return ConstantInt::get(CI->getType(), Len - 1); 438 439 // If s is a constant pointer pointing to a string literal, we can fold 440 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 441 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 442 // We only try to simplify strlen when the pointer s points to an array 443 // of i8. Otherwise, we would need to scale the offset x before doing the 444 // subtraction. This will make the optimization more complex, and it's not 445 // very useful because calling strlen for a pointer of other types is 446 // very uncommon. 447 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 448 if (!isGEPBasedOnPointerToString(GEP)) 449 return nullptr; 450 451 StringRef Str; 452 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 453 size_t NullTermIdx = Str.find('\0'); 454 455 // If the string does not have '\0', leave it to strlen to compute 456 // its length. 457 if (NullTermIdx == StringRef::npos) 458 return nullptr; 459 460 Value *Offset = GEP->getOperand(2); 461 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 462 APInt KnownZero(BitWidth, 0); 463 APInt KnownOne(BitWidth, 0); 464 computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 465 nullptr); 466 KnownZero.flipAllBits(); 467 size_t ArrSize = 468 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 469 470 // KnownZero's bits are flipped, so zeros in KnownZero now represent 471 // bits known to be zeros in Offset, and ones in KnowZero represent 472 // bits unknown in Offset. Therefore, Offset is known to be in range 473 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 474 // unsigned-less-than NullTermIdx. 475 // 476 // If Offset is not provably in the range [0, NullTermIdx], we can still 477 // optimize if we can prove that the program has undefined behavior when 478 // Offset is outside that range. That is the case when GEP->getOperand(0) 479 // is a pointer to an object whose memory extent is NullTermIdx+1. 480 if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 481 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 482 NullTermIdx == ArrSize - 1)) 483 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 484 Offset); 485 } 486 487 return nullptr; 488 } 489 490 // strlen(x?"foo":"bars") --> x ? 3 : 4 491 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 492 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 493 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 494 if (LenTrue && LenFalse) { 495 Function *Caller = CI->getParent()->getParent(); 496 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 497 SI->getDebugLoc(), 498 "folded strlen(select) to select of constants"); 499 return B.CreateSelect(SI->getCondition(), 500 ConstantInt::get(CI->getType(), LenTrue - 1), 501 ConstantInt::get(CI->getType(), LenFalse - 1)); 502 } 503 } 504 505 // strlen(x) != 0 --> *x != 0 506 // strlen(x) == 0 --> *x == 0 507 if (isOnlyUsedInZeroEqualityComparison(CI)) 508 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 509 510 return nullptr; 511 } 512 513 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 514 StringRef S1, S2; 515 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 516 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 517 518 // strpbrk(s, "") -> nullptr 519 // strpbrk("", s) -> nullptr 520 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 521 return Constant::getNullValue(CI->getType()); 522 523 // Constant folding. 524 if (HasS1 && HasS2) { 525 size_t I = S1.find_first_of(S2); 526 if (I == StringRef::npos) // No match. 527 return Constant::getNullValue(CI->getType()); 528 529 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 530 "strpbrk"); 531 } 532 533 // strpbrk(s, "a") -> strchr(s, 'a') 534 if (HasS2 && S2.size() == 1) 535 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 536 537 return nullptr; 538 } 539 540 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 541 Value *EndPtr = CI->getArgOperand(1); 542 if (isa<ConstantPointerNull>(EndPtr)) { 543 // With a null EndPtr, this function won't capture the main argument. 544 // It would be readonly too, except that it still may write to errno. 545 CI->addAttribute(1, Attribute::NoCapture); 546 } 547 548 return nullptr; 549 } 550 551 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 552 StringRef S1, S2; 553 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 554 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 555 556 // strspn(s, "") -> 0 557 // strspn("", s) -> 0 558 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 559 return Constant::getNullValue(CI->getType()); 560 561 // Constant folding. 562 if (HasS1 && HasS2) { 563 size_t Pos = S1.find_first_not_of(S2); 564 if (Pos == StringRef::npos) 565 Pos = S1.size(); 566 return ConstantInt::get(CI->getType(), Pos); 567 } 568 569 return nullptr; 570 } 571 572 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 573 StringRef S1, S2; 574 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 575 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 576 577 // strcspn("", s) -> 0 578 if (HasS1 && S1.empty()) 579 return Constant::getNullValue(CI->getType()); 580 581 // Constant folding. 582 if (HasS1 && HasS2) { 583 size_t Pos = S1.find_first_of(S2); 584 if (Pos == StringRef::npos) 585 Pos = S1.size(); 586 return ConstantInt::get(CI->getType(), Pos); 587 } 588 589 // strcspn(s, "") -> strlen(s) 590 if (HasS2 && S2.empty()) 591 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 592 593 return nullptr; 594 } 595 596 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 597 // fold strstr(x, x) -> x. 598 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 599 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 600 601 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 602 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 603 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 604 if (!StrLen) 605 return nullptr; 606 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 607 StrLen, B, DL, TLI); 608 if (!StrNCmp) 609 return nullptr; 610 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 611 ICmpInst *Old = cast<ICmpInst>(*UI++); 612 Value *Cmp = 613 B.CreateICmp(Old->getPredicate(), StrNCmp, 614 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 615 replaceAllUsesWith(Old, Cmp); 616 } 617 return CI; 618 } 619 620 // See if either input string is a constant string. 621 StringRef SearchStr, ToFindStr; 622 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 623 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 624 625 // fold strstr(x, "") -> x. 626 if (HasStr2 && ToFindStr.empty()) 627 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 628 629 // If both strings are known, constant fold it. 630 if (HasStr1 && HasStr2) { 631 size_t Offset = SearchStr.find(ToFindStr); 632 633 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 634 return Constant::getNullValue(CI->getType()); 635 636 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 637 Value *Result = castToCStr(CI->getArgOperand(0), B); 638 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 639 return B.CreateBitCast(Result, CI->getType()); 640 } 641 642 // fold strstr(x, "y") -> strchr(x, 'y'). 643 if (HasStr2 && ToFindStr.size() == 1) { 644 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 645 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 646 } 647 return nullptr; 648 } 649 650 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 651 Value *SrcStr = CI->getArgOperand(0); 652 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 653 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 654 655 // memchr(x, y, 0) -> null 656 if (LenC && LenC->isNullValue()) 657 return Constant::getNullValue(CI->getType()); 658 659 // From now on we need at least constant length and string. 660 StringRef Str; 661 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 662 return nullptr; 663 664 // Truncate the string to LenC. If Str is smaller than LenC we will still only 665 // scan the string, as reading past the end of it is undefined and we can just 666 // return null if we don't find the char. 667 Str = Str.substr(0, LenC->getZExtValue()); 668 669 // If the char is variable but the input str and length are not we can turn 670 // this memchr call into a simple bit field test. Of course this only works 671 // when the return value is only checked against null. 672 // 673 // It would be really nice to reuse switch lowering here but we can't change 674 // the CFG at this point. 675 // 676 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 677 // after bounds check. 678 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 679 unsigned char Max = 680 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 681 reinterpret_cast<const unsigned char *>(Str.end())); 682 683 // Make sure the bit field we're about to create fits in a register on the 684 // target. 685 // FIXME: On a 64 bit architecture this prevents us from using the 686 // interesting range of alpha ascii chars. We could do better by emitting 687 // two bitfields or shifting the range by 64 if no lower chars are used. 688 if (!DL.fitsInLegalInteger(Max + 1)) 689 return nullptr; 690 691 // For the bit field use a power-of-2 type with at least 8 bits to avoid 692 // creating unnecessary illegal types. 693 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 694 695 // Now build the bit field. 696 APInt Bitfield(Width, 0); 697 for (char C : Str) 698 Bitfield.setBit((unsigned char)C); 699 Value *BitfieldC = B.getInt(Bitfield); 700 701 // First check that the bit field access is within bounds. 702 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 703 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 704 "memchr.bounds"); 705 706 // Create code that checks if the given bit is set in the field. 707 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 708 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 709 710 // Finally merge both checks and cast to pointer type. The inttoptr 711 // implicitly zexts the i1 to intptr type. 712 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 713 } 714 715 // Check if all arguments are constants. If so, we can constant fold. 716 if (!CharC) 717 return nullptr; 718 719 // Compute the offset. 720 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 721 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 722 return Constant::getNullValue(CI->getType()); 723 724 // memchr(s+n,c,l) -> gep(s+n+i,c) 725 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 726 } 727 728 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 729 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 730 731 if (LHS == RHS) // memcmp(s,s,x) -> 0 732 return Constant::getNullValue(CI->getType()); 733 734 // Make sure we have a constant length. 735 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 736 if (!LenC) 737 return nullptr; 738 uint64_t Len = LenC->getZExtValue(); 739 740 if (Len == 0) // memcmp(s1,s2,0) -> 0 741 return Constant::getNullValue(CI->getType()); 742 743 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 744 if (Len == 1) { 745 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 746 CI->getType(), "lhsv"); 747 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 748 CI->getType(), "rhsv"); 749 return B.CreateSub(LHSV, RHSV, "chardiff"); 750 } 751 752 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 753 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 754 755 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 756 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 757 758 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 759 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 760 761 Type *LHSPtrTy = 762 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 763 Type *RHSPtrTy = 764 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 765 766 Value *LHSV = 767 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 768 Value *RHSV = 769 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 770 771 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 772 } 773 } 774 775 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 776 StringRef LHSStr, RHSStr; 777 if (getConstantStringInfo(LHS, LHSStr) && 778 getConstantStringInfo(RHS, RHSStr)) { 779 // Make sure we're not reading out-of-bounds memory. 780 if (Len > LHSStr.size() || Len > RHSStr.size()) 781 return nullptr; 782 // Fold the memcmp and normalize the result. This way we get consistent 783 // results across multiple platforms. 784 uint64_t Ret = 0; 785 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 786 if (Cmp < 0) 787 Ret = -1; 788 else if (Cmp > 0) 789 Ret = 1; 790 return ConstantInt::get(CI->getType(), Ret); 791 } 792 793 return nullptr; 794 } 795 796 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 797 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 798 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 799 CI->getArgOperand(2), 1); 800 return CI->getArgOperand(0); 801 } 802 803 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 804 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 805 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 806 CI->getArgOperand(2), 1); 807 return CI->getArgOperand(0); 808 } 809 810 // TODO: Does this belong in BuildLibCalls or should all of those similar 811 // functions be moved here? 812 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, 813 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 814 LibFunc::Func Func; 815 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 816 return nullptr; 817 818 Module *M = B.GetInsertBlock()->getModule(); 819 const DataLayout &DL = M->getDataLayout(); 820 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 821 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 822 PtrType, PtrType, nullptr); 823 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 824 825 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 826 CI->setCallingConv(F->getCallingConv()); 827 828 return CI; 829 } 830 831 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 832 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 833 const TargetLibraryInfo &TLI) { 834 // This has to be a memset of zeros (bzero). 835 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 836 if (!FillValue || FillValue->getZExtValue() != 0) 837 return nullptr; 838 839 // TODO: We should handle the case where the malloc has more than one use. 840 // This is necessary to optimize common patterns such as when the result of 841 // the malloc is checked against null or when a memset intrinsic is used in 842 // place of a memset library call. 843 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 844 if (!Malloc || !Malloc->hasOneUse()) 845 return nullptr; 846 847 // Is the inner call really malloc()? 848 Function *InnerCallee = Malloc->getCalledFunction(); 849 LibFunc::Func Func; 850 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 851 Func != LibFunc::malloc) 852 return nullptr; 853 854 // The memset must cover the same number of bytes that are malloc'd. 855 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 856 return nullptr; 857 858 // Replace the malloc with a calloc. We need the data layout to know what the 859 // actual size of a 'size_t' parameter is. 860 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 861 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 862 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 863 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 864 Malloc->getArgOperand(0), Malloc->getAttributes(), 865 B, TLI); 866 if (!Calloc) 867 return nullptr; 868 869 Malloc->replaceAllUsesWith(Calloc); 870 Malloc->eraseFromParent(); 871 872 return Calloc; 873 } 874 875 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 876 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 877 return Calloc; 878 879 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 880 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 881 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 882 return CI->getArgOperand(0); 883 } 884 885 //===----------------------------------------------------------------------===// 886 // Math Library Optimizations 887 //===----------------------------------------------------------------------===// 888 889 /// Return a variant of Val with float type. 890 /// Currently this works in two cases: If Val is an FPExtension of a float 891 /// value to something bigger, simply return the operand. 892 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 893 /// loss of precision do so. 894 static Value *valueHasFloatPrecision(Value *Val) { 895 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 896 Value *Op = Cast->getOperand(0); 897 if (Op->getType()->isFloatTy()) 898 return Op; 899 } 900 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 901 APFloat F = Const->getValueAPF(); 902 bool losesInfo; 903 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 904 &losesInfo); 905 if (!losesInfo) 906 return ConstantFP::get(Const->getContext(), F); 907 } 908 return nullptr; 909 } 910 911 /// Shrink double -> float for unary functions like 'floor'. 912 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 913 bool CheckRetType) { 914 Function *Callee = CI->getCalledFunction(); 915 // We know this libcall has a valid prototype, but we don't know which. 916 if (!CI->getType()->isDoubleTy()) 917 return nullptr; 918 919 if (CheckRetType) { 920 // Check if all the uses for function like 'sin' are converted to float. 921 for (User *U : CI->users()) { 922 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 923 if (!Cast || !Cast->getType()->isFloatTy()) 924 return nullptr; 925 } 926 } 927 928 // If this is something like 'floor((double)floatval)', convert to floorf. 929 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 930 if (V == nullptr) 931 return nullptr; 932 933 // Propagate fast-math flags from the existing call to the new call. 934 IRBuilder<>::FastMathFlagGuard Guard(B); 935 B.setFastMathFlags(CI->getFastMathFlags()); 936 937 // floor((double)floatval) -> (double)floorf(floatval) 938 if (Callee->isIntrinsic()) { 939 Module *M = CI->getModule(); 940 Intrinsic::ID IID = Callee->getIntrinsicID(); 941 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 942 V = B.CreateCall(F, V); 943 } else { 944 // The call is a library call rather than an intrinsic. 945 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 946 } 947 948 return B.CreateFPExt(V, B.getDoubleTy()); 949 } 950 951 /// Shrink double -> float for binary functions like 'fmin/fmax'. 952 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 953 Function *Callee = CI->getCalledFunction(); 954 // We know this libcall has a valid prototype, but we don't know which. 955 if (!CI->getType()->isDoubleTy()) 956 return nullptr; 957 958 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 959 // or fmin(1.0, (double)floatval), then we convert it to fminf. 960 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 961 if (V1 == nullptr) 962 return nullptr; 963 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 964 if (V2 == nullptr) 965 return nullptr; 966 967 // Propagate fast-math flags from the existing call to the new call. 968 IRBuilder<>::FastMathFlagGuard Guard(B); 969 B.setFastMathFlags(CI->getFastMathFlags()); 970 971 // fmin((double)floatval1, (double)floatval2) 972 // -> (double)fminf(floatval1, floatval2) 973 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 974 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 975 Callee->getAttributes()); 976 return B.CreateFPExt(V, B.getDoubleTy()); 977 } 978 979 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 980 Function *Callee = CI->getCalledFunction(); 981 Value *Ret = nullptr; 982 StringRef Name = Callee->getName(); 983 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 984 Ret = optimizeUnaryDoubleFP(CI, B, true); 985 986 // cos(-x) -> cos(x) 987 Value *Op1 = CI->getArgOperand(0); 988 if (BinaryOperator::isFNeg(Op1)) { 989 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 990 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 991 } 992 return Ret; 993 } 994 995 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 996 // Multiplications calculated using Addition Chains. 997 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 998 999 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1000 1001 if (InnerChain[Exp]) 1002 return InnerChain[Exp]; 1003 1004 static const unsigned AddChain[33][2] = { 1005 {0, 0}, // Unused. 1006 {0, 0}, // Unused (base case = pow1). 1007 {1, 1}, // Unused (pre-computed). 1008 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1009 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1010 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1011 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1012 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1013 }; 1014 1015 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1016 getPow(InnerChain, AddChain[Exp][1], B)); 1017 return InnerChain[Exp]; 1018 } 1019 1020 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1021 Function *Callee = CI->getCalledFunction(); 1022 Value *Ret = nullptr; 1023 StringRef Name = Callee->getName(); 1024 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1025 Ret = optimizeUnaryDoubleFP(CI, B, true); 1026 1027 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1028 1029 // pow(1.0, x) -> 1.0 1030 if (match(Op1, m_SpecificFP(1.0))) 1031 return Op1; 1032 // pow(2.0, x) -> llvm.exp2(x) 1033 if (match(Op1, m_SpecificFP(2.0))) { 1034 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1035 CI->getType()); 1036 return B.CreateCall(Exp2, Op2, "exp2"); 1037 } 1038 1039 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1040 // be one. 1041 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1042 // pow(10.0, x) -> exp10(x) 1043 if (Op1C->isExactlyValue(10.0) && 1044 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1045 LibFunc::exp10l)) 1046 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1047 Callee->getAttributes()); 1048 } 1049 1050 // pow(exp(x), y) -> exp(x * y) 1051 // pow(exp2(x), y) -> exp2(x * y) 1052 // We enable these only with fast-math. Besides rounding differences, the 1053 // transformation changes overflow and underflow behavior quite dramatically. 1054 // Example: x = 1000, y = 0.001. 1055 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1056 auto *OpC = dyn_cast<CallInst>(Op1); 1057 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1058 LibFunc::Func Func; 1059 Function *OpCCallee = OpC->getCalledFunction(); 1060 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1061 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { 1062 IRBuilder<>::FastMathFlagGuard Guard(B); 1063 B.setFastMathFlags(CI->getFastMathFlags()); 1064 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1065 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1066 OpCCallee->getAttributes()); 1067 } 1068 } 1069 1070 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1071 if (!Op2C) 1072 return Ret; 1073 1074 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1075 return ConstantFP::get(CI->getType(), 1.0); 1076 1077 if (Op2C->isExactlyValue(0.5) && 1078 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1079 LibFunc::sqrtl) && 1080 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1081 LibFunc::fabsl)) { 1082 1083 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1084 if (CI->hasUnsafeAlgebra()) { 1085 IRBuilder<>::FastMathFlagGuard Guard(B); 1086 B.setFastMathFlags(CI->getFastMathFlags()); 1087 1088 // Unlike other math intrinsics, sqrt has differerent semantics 1089 // from the libc function. See LangRef for details. 1090 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1091 Callee->getAttributes()); 1092 } 1093 1094 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1095 // This is faster than calling pow, and still handles negative zero 1096 // and negative infinity correctly. 1097 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1098 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1099 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1100 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1101 Value *FAbs = 1102 emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1103 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1104 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1105 return Sel; 1106 } 1107 1108 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1109 return Op1; 1110 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1111 return B.CreateFMul(Op1, Op1, "pow2"); 1112 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1113 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1114 1115 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1116 if (CI->hasUnsafeAlgebra()) { 1117 APFloat V = abs(Op2C->getValueAPF()); 1118 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1119 // This transformation applies to integer exponents only. 1120 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1121 !V.isInteger()) 1122 return nullptr; 1123 1124 // We will memoize intermediate products of the Addition Chain. 1125 Value *InnerChain[33] = {nullptr}; 1126 InnerChain[1] = Op1; 1127 InnerChain[2] = B.CreateFMul(Op1, Op1); 1128 1129 // We cannot readily convert a non-double type (like float) to a double. 1130 // So we first convert V to something which could be converted to double. 1131 bool ignored; 1132 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1133 1134 // TODO: Should the new instructions propagate the 'fast' flag of the pow()? 1135 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1136 // For negative exponents simply compute the reciprocal. 1137 if (Op2C->isNegative()) 1138 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1139 return FMul; 1140 } 1141 1142 return nullptr; 1143 } 1144 1145 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1146 Function *Callee = CI->getCalledFunction(); 1147 Value *Ret = nullptr; 1148 StringRef Name = Callee->getName(); 1149 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1150 Ret = optimizeUnaryDoubleFP(CI, B, true); 1151 1152 Value *Op = CI->getArgOperand(0); 1153 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1154 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1155 LibFunc::Func LdExp = LibFunc::ldexpl; 1156 if (Op->getType()->isFloatTy()) 1157 LdExp = LibFunc::ldexpf; 1158 else if (Op->getType()->isDoubleTy()) 1159 LdExp = LibFunc::ldexp; 1160 1161 if (TLI->has(LdExp)) { 1162 Value *LdExpArg = nullptr; 1163 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1164 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1165 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1166 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1167 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1168 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1169 } 1170 1171 if (LdExpArg) { 1172 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1173 if (!Op->getType()->isFloatTy()) 1174 One = ConstantExpr::getFPExtend(One, Op->getType()); 1175 1176 Module *M = CI->getModule(); 1177 Value *NewCallee = 1178 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1179 Op->getType(), B.getInt32Ty(), nullptr); 1180 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1181 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1182 CI->setCallingConv(F->getCallingConv()); 1183 1184 return CI; 1185 } 1186 } 1187 return Ret; 1188 } 1189 1190 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1191 Function *Callee = CI->getCalledFunction(); 1192 Value *Ret = nullptr; 1193 StringRef Name = Callee->getName(); 1194 if (Name == "fabs" && hasFloatVersion(Name)) 1195 Ret = optimizeUnaryDoubleFP(CI, B, false); 1196 1197 Value *Op = CI->getArgOperand(0); 1198 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1199 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1200 if (I->getOpcode() == Instruction::FMul) 1201 if (I->getOperand(0) == I->getOperand(1)) 1202 return Op; 1203 } 1204 return Ret; 1205 } 1206 1207 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1208 Function *Callee = CI->getCalledFunction(); 1209 // If we can shrink the call to a float function rather than a double 1210 // function, do that first. 1211 StringRef Name = Callee->getName(); 1212 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1213 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1214 return Ret; 1215 1216 IRBuilder<>::FastMathFlagGuard Guard(B); 1217 FastMathFlags FMF; 1218 if (CI->hasUnsafeAlgebra()) { 1219 // Unsafe algebra sets all fast-math-flags to true. 1220 FMF.setUnsafeAlgebra(); 1221 } else { 1222 // At a minimum, no-nans-fp-math must be true. 1223 if (!CI->hasNoNaNs()) 1224 return nullptr; 1225 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1226 // "Ideally, fmax would be sensitive to the sign of zero, for example 1227 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1228 // might be impractical." 1229 FMF.setNoSignedZeros(); 1230 FMF.setNoNaNs(); 1231 } 1232 B.setFastMathFlags(FMF); 1233 1234 // We have a relaxed floating-point environment. We can ignore NaN-handling 1235 // and transform to a compare and select. We do not have to consider errno or 1236 // exceptions, because fmin/fmax do not have those. 1237 Value *Op0 = CI->getArgOperand(0); 1238 Value *Op1 = CI->getArgOperand(1); 1239 Value *Cmp = Callee->getName().startswith("fmin") ? 1240 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1241 return B.CreateSelect(Cmp, Op0, Op1); 1242 } 1243 1244 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1245 Function *Callee = CI->getCalledFunction(); 1246 Value *Ret = nullptr; 1247 StringRef Name = Callee->getName(); 1248 if (UnsafeFPShrink && hasFloatVersion(Name)) 1249 Ret = optimizeUnaryDoubleFP(CI, B, true); 1250 1251 if (!CI->hasUnsafeAlgebra()) 1252 return Ret; 1253 Value *Op1 = CI->getArgOperand(0); 1254 auto *OpC = dyn_cast<CallInst>(Op1); 1255 1256 // The earlier call must also be unsafe in order to do these transforms. 1257 if (!OpC || !OpC->hasUnsafeAlgebra()) 1258 return Ret; 1259 1260 // log(pow(x,y)) -> y*log(x) 1261 // This is only applicable to log, log2, log10. 1262 if (Name != "log" && Name != "log2" && Name != "log10") 1263 return Ret; 1264 1265 IRBuilder<>::FastMathFlagGuard Guard(B); 1266 FastMathFlags FMF; 1267 FMF.setUnsafeAlgebra(); 1268 B.setFastMathFlags(FMF); 1269 1270 LibFunc::Func Func; 1271 Function *F = OpC->getCalledFunction(); 1272 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1273 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1274 return B.CreateFMul(OpC->getArgOperand(1), 1275 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1276 Callee->getAttributes()), "mul"); 1277 1278 // log(exp2(y)) -> y*log(2) 1279 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1280 TLI->has(Func) && Func == LibFunc::exp2) 1281 return B.CreateFMul( 1282 OpC->getArgOperand(0), 1283 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1284 Callee->getName(), B, Callee->getAttributes()), 1285 "logmul"); 1286 return Ret; 1287 } 1288 1289 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1290 Function *Callee = CI->getCalledFunction(); 1291 Value *Ret = nullptr; 1292 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1293 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1294 Ret = optimizeUnaryDoubleFP(CI, B, true); 1295 1296 if (!CI->hasUnsafeAlgebra()) 1297 return Ret; 1298 1299 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1300 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1301 return Ret; 1302 1303 // We're looking for a repeated factor in a multiplication tree, 1304 // so we can do this fold: sqrt(x * x) -> fabs(x); 1305 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1306 Value *Op0 = I->getOperand(0); 1307 Value *Op1 = I->getOperand(1); 1308 Value *RepeatOp = nullptr; 1309 Value *OtherOp = nullptr; 1310 if (Op0 == Op1) { 1311 // Simple match: the operands of the multiply are identical. 1312 RepeatOp = Op0; 1313 } else { 1314 // Look for a more complicated pattern: one of the operands is itself 1315 // a multiply, so search for a common factor in that multiply. 1316 // Note: We don't bother looking any deeper than this first level or for 1317 // variations of this pattern because instcombine's visitFMUL and/or the 1318 // reassociation pass should give us this form. 1319 Value *OtherMul0, *OtherMul1; 1320 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1321 // Pattern: sqrt((x * y) * z) 1322 if (OtherMul0 == OtherMul1 && 1323 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1324 // Matched: sqrt((x * x) * z) 1325 RepeatOp = OtherMul0; 1326 OtherOp = Op1; 1327 } 1328 } 1329 } 1330 if (!RepeatOp) 1331 return Ret; 1332 1333 // Fast math flags for any created instructions should match the sqrt 1334 // and multiply. 1335 IRBuilder<>::FastMathFlagGuard Guard(B); 1336 B.setFastMathFlags(I->getFastMathFlags()); 1337 1338 // If we found a repeated factor, hoist it out of the square root and 1339 // replace it with the fabs of that factor. 1340 Module *M = Callee->getParent(); 1341 Type *ArgType = I->getType(); 1342 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1343 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1344 if (OtherOp) { 1345 // If we found a non-repeated factor, we still need to get its square 1346 // root. We then multiply that by the value that was simplified out 1347 // of the square root calculation. 1348 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1349 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1350 return B.CreateFMul(FabsCall, SqrtCall); 1351 } 1352 return FabsCall; 1353 } 1354 1355 // TODO: Generalize to handle any trig function and its inverse. 1356 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1357 Function *Callee = CI->getCalledFunction(); 1358 Value *Ret = nullptr; 1359 StringRef Name = Callee->getName(); 1360 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1361 Ret = optimizeUnaryDoubleFP(CI, B, true); 1362 1363 Value *Op1 = CI->getArgOperand(0); 1364 auto *OpC = dyn_cast<CallInst>(Op1); 1365 if (!OpC) 1366 return Ret; 1367 1368 // Both calls must allow unsafe optimizations in order to remove them. 1369 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1370 return Ret; 1371 1372 // tan(atan(x)) -> x 1373 // tanf(atanf(x)) -> x 1374 // tanl(atanl(x)) -> x 1375 LibFunc::Func Func; 1376 Function *F = OpC->getCalledFunction(); 1377 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1378 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1379 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1380 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1381 Ret = OpC->getArgOperand(0); 1382 return Ret; 1383 } 1384 1385 static bool isTrigLibCall(CallInst *CI) { 1386 // We can only hope to do anything useful if we can ignore things like errno 1387 // and floating-point exceptions. 1388 // We already checked the prototype. 1389 return CI->hasFnAttr(Attribute::NoUnwind) && 1390 CI->hasFnAttr(Attribute::ReadNone); 1391 } 1392 1393 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1394 bool UseFloat, Value *&Sin, Value *&Cos, 1395 Value *&SinCos) { 1396 Type *ArgTy = Arg->getType(); 1397 Type *ResTy; 1398 StringRef Name; 1399 1400 Triple T(OrigCallee->getParent()->getTargetTriple()); 1401 if (UseFloat) { 1402 Name = "__sincospif_stret"; 1403 1404 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1405 // x86_64 can't use {float, float} since that would be returned in both 1406 // xmm0 and xmm1, which isn't what a real struct would do. 1407 ResTy = T.getArch() == Triple::x86_64 1408 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1409 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1410 } else { 1411 Name = "__sincospi_stret"; 1412 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1413 } 1414 1415 Module *M = OrigCallee->getParent(); 1416 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1417 ResTy, ArgTy, nullptr); 1418 1419 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1420 // If the argument is an instruction, it must dominate all uses so put our 1421 // sincos call there. 1422 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1423 } else { 1424 // Otherwise (e.g. for a constant) the beginning of the function is as 1425 // good a place as any. 1426 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1427 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1428 } 1429 1430 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1431 1432 if (SinCos->getType()->isStructTy()) { 1433 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1434 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1435 } else { 1436 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1437 "sinpi"); 1438 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1439 "cospi"); 1440 } 1441 } 1442 1443 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1444 // Make sure the prototype is as expected, otherwise the rest of the 1445 // function is probably invalid and likely to abort. 1446 if (!isTrigLibCall(CI)) 1447 return nullptr; 1448 1449 Value *Arg = CI->getArgOperand(0); 1450 SmallVector<CallInst *, 1> SinCalls; 1451 SmallVector<CallInst *, 1> CosCalls; 1452 SmallVector<CallInst *, 1> SinCosCalls; 1453 1454 bool IsFloat = Arg->getType()->isFloatTy(); 1455 1456 // Look for all compatible sinpi, cospi and sincospi calls with the same 1457 // argument. If there are enough (in some sense) we can make the 1458 // substitution. 1459 Function *F = CI->getFunction(); 1460 for (User *U : Arg->users()) 1461 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1462 1463 // It's only worthwhile if both sinpi and cospi are actually used. 1464 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1465 return nullptr; 1466 1467 Value *Sin, *Cos, *SinCos; 1468 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1469 1470 replaceTrigInsts(SinCalls, Sin); 1471 replaceTrigInsts(CosCalls, Cos); 1472 replaceTrigInsts(SinCosCalls, SinCos); 1473 1474 return nullptr; 1475 } 1476 1477 void LibCallSimplifier::classifyArgUse( 1478 Value *Val, Function *F, bool IsFloat, 1479 SmallVectorImpl<CallInst *> &SinCalls, 1480 SmallVectorImpl<CallInst *> &CosCalls, 1481 SmallVectorImpl<CallInst *> &SinCosCalls) { 1482 CallInst *CI = dyn_cast<CallInst>(Val); 1483 1484 if (!CI) 1485 return; 1486 1487 // Don't consider calls in other functions. 1488 if (CI->getFunction() != F) 1489 return; 1490 1491 Function *Callee = CI->getCalledFunction(); 1492 LibFunc::Func Func; 1493 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1494 !isTrigLibCall(CI)) 1495 return; 1496 1497 if (IsFloat) { 1498 if (Func == LibFunc::sinpif) 1499 SinCalls.push_back(CI); 1500 else if (Func == LibFunc::cospif) 1501 CosCalls.push_back(CI); 1502 else if (Func == LibFunc::sincospif_stret) 1503 SinCosCalls.push_back(CI); 1504 } else { 1505 if (Func == LibFunc::sinpi) 1506 SinCalls.push_back(CI); 1507 else if (Func == LibFunc::cospi) 1508 CosCalls.push_back(CI); 1509 else if (Func == LibFunc::sincospi_stret) 1510 SinCosCalls.push_back(CI); 1511 } 1512 } 1513 1514 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1515 Value *Res) { 1516 for (CallInst *C : Calls) 1517 replaceAllUsesWith(C, Res); 1518 } 1519 1520 //===----------------------------------------------------------------------===// 1521 // Integer Library Call Optimizations 1522 //===----------------------------------------------------------------------===// 1523 1524 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1525 Function *Callee = CI->getCalledFunction(); 1526 Value *Op = CI->getArgOperand(0); 1527 1528 // Constant fold. 1529 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1530 if (CI->isZero()) // ffs(0) -> 0. 1531 return B.getInt32(0); 1532 // ffs(c) -> cttz(c)+1 1533 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1534 } 1535 1536 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1537 Type *ArgType = Op->getType(); 1538 Value *F = 1539 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1540 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1541 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1542 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1543 1544 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1545 return B.CreateSelect(Cond, V, B.getInt32(0)); 1546 } 1547 1548 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1549 // abs(x) -> x >s -1 ? x : -x 1550 Value *Op = CI->getArgOperand(0); 1551 Value *Pos = 1552 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1553 Value *Neg = B.CreateNeg(Op, "neg"); 1554 return B.CreateSelect(Pos, Op, Neg); 1555 } 1556 1557 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1558 // isdigit(c) -> (c-'0') <u 10 1559 Value *Op = CI->getArgOperand(0); 1560 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1561 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1562 return B.CreateZExt(Op, CI->getType()); 1563 } 1564 1565 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1566 // isascii(c) -> c <u 128 1567 Value *Op = CI->getArgOperand(0); 1568 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1569 return B.CreateZExt(Op, CI->getType()); 1570 } 1571 1572 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1573 // toascii(c) -> c & 0x7f 1574 return B.CreateAnd(CI->getArgOperand(0), 1575 ConstantInt::get(CI->getType(), 0x7F)); 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Formatting and IO Library Call Optimizations 1580 //===----------------------------------------------------------------------===// 1581 1582 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1583 1584 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1585 int StreamArg) { 1586 Function *Callee = CI->getCalledFunction(); 1587 // Error reporting calls should be cold, mark them as such. 1588 // This applies even to non-builtin calls: it is only a hint and applies to 1589 // functions that the frontend might not understand as builtins. 1590 1591 // This heuristic was suggested in: 1592 // Improving Static Branch Prediction in a Compiler 1593 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1594 // Proceedings of PACT'98, Oct. 1998, IEEE 1595 if (!CI->hasFnAttr(Attribute::Cold) && 1596 isReportingError(Callee, CI, StreamArg)) { 1597 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1598 } 1599 1600 return nullptr; 1601 } 1602 1603 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1604 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1605 return false; 1606 1607 if (StreamArg < 0) 1608 return true; 1609 1610 // These functions might be considered cold, but only if their stream 1611 // argument is stderr. 1612 1613 if (StreamArg >= (int)CI->getNumArgOperands()) 1614 return false; 1615 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1616 if (!LI) 1617 return false; 1618 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1619 if (!GV || !GV->isDeclaration()) 1620 return false; 1621 return GV->getName() == "stderr"; 1622 } 1623 1624 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1625 // Check for a fixed format string. 1626 StringRef FormatStr; 1627 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1628 return nullptr; 1629 1630 // Empty format string -> noop. 1631 if (FormatStr.empty()) // Tolerate printf's declared void. 1632 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1633 1634 // Do not do any of the following transformations if the printf return value 1635 // is used, in general the printf return value is not compatible with either 1636 // putchar() or puts(). 1637 if (!CI->use_empty()) 1638 return nullptr; 1639 1640 // printf("x") -> putchar('x'), even for "%" and "%%". 1641 if (FormatStr.size() == 1 || FormatStr == "%%") 1642 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1643 1644 // printf("%s", "a") --> putchar('a') 1645 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1646 StringRef ChrStr; 1647 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1648 return nullptr; 1649 if (ChrStr.size() != 1) 1650 return nullptr; 1651 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1652 } 1653 1654 // printf("foo\n") --> puts("foo") 1655 if (FormatStr[FormatStr.size() - 1] == '\n' && 1656 FormatStr.find('%') == StringRef::npos) { // No format characters. 1657 // Create a string literal with no \n on it. We expect the constant merge 1658 // pass to be run after this pass, to merge duplicate strings. 1659 FormatStr = FormatStr.drop_back(); 1660 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1661 return emitPutS(GV, B, TLI); 1662 } 1663 1664 // Optimize specific format strings. 1665 // printf("%c", chr) --> putchar(chr) 1666 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1667 CI->getArgOperand(1)->getType()->isIntegerTy()) 1668 return emitPutChar(CI->getArgOperand(1), B, TLI); 1669 1670 // printf("%s\n", str) --> puts(str) 1671 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1672 CI->getArgOperand(1)->getType()->isPointerTy()) 1673 return emitPutS(CI->getArgOperand(1), B, TLI); 1674 return nullptr; 1675 } 1676 1677 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1678 1679 Function *Callee = CI->getCalledFunction(); 1680 FunctionType *FT = Callee->getFunctionType(); 1681 if (Value *V = optimizePrintFString(CI, B)) { 1682 return V; 1683 } 1684 1685 // printf(format, ...) -> iprintf(format, ...) if no floating point 1686 // arguments. 1687 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1688 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1689 Constant *IPrintFFn = 1690 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1691 CallInst *New = cast<CallInst>(CI->clone()); 1692 New->setCalledFunction(IPrintFFn); 1693 B.Insert(New); 1694 return New; 1695 } 1696 return nullptr; 1697 } 1698 1699 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1700 // Check for a fixed format string. 1701 StringRef FormatStr; 1702 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1703 return nullptr; 1704 1705 // If we just have a format string (nothing else crazy) transform it. 1706 if (CI->getNumArgOperands() == 2) { 1707 // Make sure there's no % in the constant array. We could try to handle 1708 // %% -> % in the future if we cared. 1709 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1710 if (FormatStr[i] == '%') 1711 return nullptr; // we found a format specifier, bail out. 1712 1713 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1714 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1715 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1716 FormatStr.size() + 1), 1717 1); // Copy the null byte. 1718 return ConstantInt::get(CI->getType(), FormatStr.size()); 1719 } 1720 1721 // The remaining optimizations require the format string to be "%s" or "%c" 1722 // and have an extra operand. 1723 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1724 CI->getNumArgOperands() < 3) 1725 return nullptr; 1726 1727 // Decode the second character of the format string. 1728 if (FormatStr[1] == 'c') { 1729 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1730 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1731 return nullptr; 1732 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1733 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1734 B.CreateStore(V, Ptr); 1735 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1736 B.CreateStore(B.getInt8(0), Ptr); 1737 1738 return ConstantInt::get(CI->getType(), 1); 1739 } 1740 1741 if (FormatStr[1] == 's') { 1742 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1743 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1744 return nullptr; 1745 1746 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1747 if (!Len) 1748 return nullptr; 1749 Value *IncLen = 1750 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1751 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1752 1753 // The sprintf result is the unincremented number of bytes in the string. 1754 return B.CreateIntCast(Len, CI->getType(), false); 1755 } 1756 return nullptr; 1757 } 1758 1759 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1760 Function *Callee = CI->getCalledFunction(); 1761 FunctionType *FT = Callee->getFunctionType(); 1762 if (Value *V = optimizeSPrintFString(CI, B)) { 1763 return V; 1764 } 1765 1766 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1767 // point arguments. 1768 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1769 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1770 Constant *SIPrintFFn = 1771 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1772 CallInst *New = cast<CallInst>(CI->clone()); 1773 New->setCalledFunction(SIPrintFFn); 1774 B.Insert(New); 1775 return New; 1776 } 1777 return nullptr; 1778 } 1779 1780 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1781 optimizeErrorReporting(CI, B, 0); 1782 1783 // All the optimizations depend on the format string. 1784 StringRef FormatStr; 1785 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1786 return nullptr; 1787 1788 // Do not do any of the following transformations if the fprintf return 1789 // value is used, in general the fprintf return value is not compatible 1790 // with fwrite(), fputc() or fputs(). 1791 if (!CI->use_empty()) 1792 return nullptr; 1793 1794 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1795 if (CI->getNumArgOperands() == 2) { 1796 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1797 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1798 return nullptr; // We found a format specifier. 1799 1800 return emitFWrite( 1801 CI->getArgOperand(1), 1802 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1803 CI->getArgOperand(0), B, DL, TLI); 1804 } 1805 1806 // The remaining optimizations require the format string to be "%s" or "%c" 1807 // and have an extra operand. 1808 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1809 CI->getNumArgOperands() < 3) 1810 return nullptr; 1811 1812 // Decode the second character of the format string. 1813 if (FormatStr[1] == 'c') { 1814 // fprintf(F, "%c", chr) --> fputc(chr, F) 1815 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1816 return nullptr; 1817 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1818 } 1819 1820 if (FormatStr[1] == 's') { 1821 // fprintf(F, "%s", str) --> fputs(str, F) 1822 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1823 return nullptr; 1824 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1825 } 1826 return nullptr; 1827 } 1828 1829 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1830 Function *Callee = CI->getCalledFunction(); 1831 FunctionType *FT = Callee->getFunctionType(); 1832 if (Value *V = optimizeFPrintFString(CI, B)) { 1833 return V; 1834 } 1835 1836 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1837 // floating point arguments. 1838 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1839 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1840 Constant *FIPrintFFn = 1841 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1842 CallInst *New = cast<CallInst>(CI->clone()); 1843 New->setCalledFunction(FIPrintFFn); 1844 B.Insert(New); 1845 return New; 1846 } 1847 return nullptr; 1848 } 1849 1850 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1851 optimizeErrorReporting(CI, B, 3); 1852 1853 // Get the element size and count. 1854 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1855 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1856 if (!SizeC || !CountC) 1857 return nullptr; 1858 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1859 1860 // If this is writing zero records, remove the call (it's a noop). 1861 if (Bytes == 0) 1862 return ConstantInt::get(CI->getType(), 0); 1863 1864 // If this is writing one byte, turn it into fputc. 1865 // This optimisation is only valid, if the return value is unused. 1866 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1867 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1868 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1869 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1870 } 1871 1872 return nullptr; 1873 } 1874 1875 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1876 optimizeErrorReporting(CI, B, 1); 1877 1878 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1879 // requires more arguments and thus extra MOVs are required. 1880 if (CI->getParent()->getParent()->optForSize()) 1881 return nullptr; 1882 1883 // We can't optimize if return value is used. 1884 if (!CI->use_empty()) 1885 return nullptr; 1886 1887 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1888 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1889 if (!Len) 1890 return nullptr; 1891 1892 // Known to have no uses (see above). 1893 return emitFWrite( 1894 CI->getArgOperand(0), 1895 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1896 CI->getArgOperand(1), B, DL, TLI); 1897 } 1898 1899 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1900 // Check for a constant string. 1901 StringRef Str; 1902 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1903 return nullptr; 1904 1905 if (Str.empty() && CI->use_empty()) { 1906 // puts("") -> putchar('\n') 1907 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1908 if (CI->use_empty() || !Res) 1909 return Res; 1910 return B.CreateIntCast(Res, CI->getType(), true); 1911 } 1912 1913 return nullptr; 1914 } 1915 1916 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1917 LibFunc::Func Func; 1918 SmallString<20> FloatFuncName = FuncName; 1919 FloatFuncName += 'f'; 1920 if (TLI->getLibFunc(FloatFuncName, Func)) 1921 return TLI->has(Func); 1922 return false; 1923 } 1924 1925 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1926 IRBuilder<> &Builder) { 1927 LibFunc::Func Func; 1928 Function *Callee = CI->getCalledFunction(); 1929 // Check for string/memory library functions. 1930 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 1931 // Make sure we never change the calling convention. 1932 assert((ignoreCallingConv(Func) || 1933 isCallingConvCCompatible(CI)) && 1934 "Optimizing string/memory libcall would change the calling convention"); 1935 switch (Func) { 1936 case LibFunc::strcat: 1937 return optimizeStrCat(CI, Builder); 1938 case LibFunc::strncat: 1939 return optimizeStrNCat(CI, Builder); 1940 case LibFunc::strchr: 1941 return optimizeStrChr(CI, Builder); 1942 case LibFunc::strrchr: 1943 return optimizeStrRChr(CI, Builder); 1944 case LibFunc::strcmp: 1945 return optimizeStrCmp(CI, Builder); 1946 case LibFunc::strncmp: 1947 return optimizeStrNCmp(CI, Builder); 1948 case LibFunc::strcpy: 1949 return optimizeStrCpy(CI, Builder); 1950 case LibFunc::stpcpy: 1951 return optimizeStpCpy(CI, Builder); 1952 case LibFunc::strncpy: 1953 return optimizeStrNCpy(CI, Builder); 1954 case LibFunc::strlen: 1955 return optimizeStrLen(CI, Builder); 1956 case LibFunc::strpbrk: 1957 return optimizeStrPBrk(CI, Builder); 1958 case LibFunc::strtol: 1959 case LibFunc::strtod: 1960 case LibFunc::strtof: 1961 case LibFunc::strtoul: 1962 case LibFunc::strtoll: 1963 case LibFunc::strtold: 1964 case LibFunc::strtoull: 1965 return optimizeStrTo(CI, Builder); 1966 case LibFunc::strspn: 1967 return optimizeStrSpn(CI, Builder); 1968 case LibFunc::strcspn: 1969 return optimizeStrCSpn(CI, Builder); 1970 case LibFunc::strstr: 1971 return optimizeStrStr(CI, Builder); 1972 case LibFunc::memchr: 1973 return optimizeMemChr(CI, Builder); 1974 case LibFunc::memcmp: 1975 return optimizeMemCmp(CI, Builder); 1976 case LibFunc::memcpy: 1977 return optimizeMemCpy(CI, Builder); 1978 case LibFunc::memmove: 1979 return optimizeMemMove(CI, Builder); 1980 case LibFunc::memset: 1981 return optimizeMemSet(CI, Builder); 1982 default: 1983 break; 1984 } 1985 } 1986 return nullptr; 1987 } 1988 1989 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 1990 if (CI->isNoBuiltin()) 1991 return nullptr; 1992 1993 LibFunc::Func Func; 1994 Function *Callee = CI->getCalledFunction(); 1995 StringRef FuncName = Callee->getName(); 1996 1997 SmallVector<OperandBundleDef, 2> OpBundles; 1998 CI->getOperandBundlesAsDefs(OpBundles); 1999 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2000 bool isCallingConvC = isCallingConvCCompatible(CI); 2001 2002 // Command-line parameter overrides instruction attribute. 2003 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2004 UnsafeFPShrink = EnableUnsafeFPShrink; 2005 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2006 UnsafeFPShrink = true; 2007 2008 // First, check for intrinsics. 2009 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2010 if (!isCallingConvC) 2011 return nullptr; 2012 switch (II->getIntrinsicID()) { 2013 case Intrinsic::pow: 2014 return optimizePow(CI, Builder); 2015 case Intrinsic::exp2: 2016 return optimizeExp2(CI, Builder); 2017 case Intrinsic::fabs: 2018 return optimizeFabs(CI, Builder); 2019 case Intrinsic::log: 2020 return optimizeLog(CI, Builder); 2021 case Intrinsic::sqrt: 2022 return optimizeSqrt(CI, Builder); 2023 // TODO: Use foldMallocMemset() with memset intrinsic. 2024 default: 2025 return nullptr; 2026 } 2027 } 2028 2029 // Also try to simplify calls to fortified library functions. 2030 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2031 // Try to further simplify the result. 2032 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2033 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2034 // Use an IR Builder from SimplifiedCI if available instead of CI 2035 // to guarantee we reach all uses we might replace later on. 2036 IRBuilder<> TmpBuilder(SimplifiedCI); 2037 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2038 // If we were able to further simplify, remove the now redundant call. 2039 SimplifiedCI->replaceAllUsesWith(V); 2040 SimplifiedCI->eraseFromParent(); 2041 return V; 2042 } 2043 } 2044 return SimplifiedFortifiedCI; 2045 } 2046 2047 // Then check for known library functions. 2048 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2049 // We never change the calling convention. 2050 if (!ignoreCallingConv(Func) && !isCallingConvC) 2051 return nullptr; 2052 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2053 return V; 2054 switch (Func) { 2055 case LibFunc::cosf: 2056 case LibFunc::cos: 2057 case LibFunc::cosl: 2058 return optimizeCos(CI, Builder); 2059 case LibFunc::sinpif: 2060 case LibFunc::sinpi: 2061 case LibFunc::cospif: 2062 case LibFunc::cospi: 2063 return optimizeSinCosPi(CI, Builder); 2064 case LibFunc::powf: 2065 case LibFunc::pow: 2066 case LibFunc::powl: 2067 return optimizePow(CI, Builder); 2068 case LibFunc::exp2l: 2069 case LibFunc::exp2: 2070 case LibFunc::exp2f: 2071 return optimizeExp2(CI, Builder); 2072 case LibFunc::fabsf: 2073 case LibFunc::fabs: 2074 case LibFunc::fabsl: 2075 return optimizeFabs(CI, Builder); 2076 case LibFunc::sqrtf: 2077 case LibFunc::sqrt: 2078 case LibFunc::sqrtl: 2079 return optimizeSqrt(CI, Builder); 2080 case LibFunc::ffs: 2081 case LibFunc::ffsl: 2082 case LibFunc::ffsll: 2083 return optimizeFFS(CI, Builder); 2084 case LibFunc::abs: 2085 case LibFunc::labs: 2086 case LibFunc::llabs: 2087 return optimizeAbs(CI, Builder); 2088 case LibFunc::isdigit: 2089 return optimizeIsDigit(CI, Builder); 2090 case LibFunc::isascii: 2091 return optimizeIsAscii(CI, Builder); 2092 case LibFunc::toascii: 2093 return optimizeToAscii(CI, Builder); 2094 case LibFunc::printf: 2095 return optimizePrintF(CI, Builder); 2096 case LibFunc::sprintf: 2097 return optimizeSPrintF(CI, Builder); 2098 case LibFunc::fprintf: 2099 return optimizeFPrintF(CI, Builder); 2100 case LibFunc::fwrite: 2101 return optimizeFWrite(CI, Builder); 2102 case LibFunc::fputs: 2103 return optimizeFPuts(CI, Builder); 2104 case LibFunc::log: 2105 case LibFunc::log10: 2106 case LibFunc::log1p: 2107 case LibFunc::log2: 2108 case LibFunc::logb: 2109 return optimizeLog(CI, Builder); 2110 case LibFunc::puts: 2111 return optimizePuts(CI, Builder); 2112 case LibFunc::tan: 2113 case LibFunc::tanf: 2114 case LibFunc::tanl: 2115 return optimizeTan(CI, Builder); 2116 case LibFunc::perror: 2117 return optimizeErrorReporting(CI, Builder); 2118 case LibFunc::vfprintf: 2119 case LibFunc::fiprintf: 2120 return optimizeErrorReporting(CI, Builder, 0); 2121 case LibFunc::fputc: 2122 return optimizeErrorReporting(CI, Builder, 1); 2123 case LibFunc::ceil: 2124 case LibFunc::floor: 2125 case LibFunc::rint: 2126 case LibFunc::round: 2127 case LibFunc::nearbyint: 2128 case LibFunc::trunc: 2129 if (hasFloatVersion(FuncName)) 2130 return optimizeUnaryDoubleFP(CI, Builder, false); 2131 return nullptr; 2132 case LibFunc::acos: 2133 case LibFunc::acosh: 2134 case LibFunc::asin: 2135 case LibFunc::asinh: 2136 case LibFunc::atan: 2137 case LibFunc::atanh: 2138 case LibFunc::cbrt: 2139 case LibFunc::cosh: 2140 case LibFunc::exp: 2141 case LibFunc::exp10: 2142 case LibFunc::expm1: 2143 case LibFunc::sin: 2144 case LibFunc::sinh: 2145 case LibFunc::tanh: 2146 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2147 return optimizeUnaryDoubleFP(CI, Builder, true); 2148 return nullptr; 2149 case LibFunc::copysign: 2150 if (hasFloatVersion(FuncName)) 2151 return optimizeBinaryDoubleFP(CI, Builder); 2152 return nullptr; 2153 case LibFunc::fminf: 2154 case LibFunc::fmin: 2155 case LibFunc::fminl: 2156 case LibFunc::fmaxf: 2157 case LibFunc::fmax: 2158 case LibFunc::fmaxl: 2159 return optimizeFMinFMax(CI, Builder); 2160 default: 2161 return nullptr; 2162 } 2163 } 2164 return nullptr; 2165 } 2166 2167 LibCallSimplifier::LibCallSimplifier( 2168 const DataLayout &DL, const TargetLibraryInfo *TLI, 2169 function_ref<void(Instruction *, Value *)> Replacer) 2170 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2171 Replacer(Replacer) {} 2172 2173 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2174 // Indirect through the replacer used in this instance. 2175 Replacer(I, With); 2176 } 2177 2178 // TODO: 2179 // Additional cases that we need to add to this file: 2180 // 2181 // cbrt: 2182 // * cbrt(expN(X)) -> expN(x/3) 2183 // * cbrt(sqrt(x)) -> pow(x,1/6) 2184 // * cbrt(cbrt(x)) -> pow(x,1/9) 2185 // 2186 // exp, expf, expl: 2187 // * exp(log(x)) -> x 2188 // 2189 // log, logf, logl: 2190 // * log(exp(x)) -> x 2191 // * log(exp(y)) -> y*log(e) 2192 // * log(exp10(y)) -> y*log(10) 2193 // * log(sqrt(x)) -> 0.5*log(x) 2194 // 2195 // lround, lroundf, lroundl: 2196 // * lround(cnst) -> cnst' 2197 // 2198 // pow, powf, powl: 2199 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2200 // * pow(pow(x,y),z)-> pow(x,y*z) 2201 // 2202 // round, roundf, roundl: 2203 // * round(cnst) -> cnst' 2204 // 2205 // signbit: 2206 // * signbit(cnst) -> cnst' 2207 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2208 // 2209 // sqrt, sqrtf, sqrtl: 2210 // * sqrt(expN(x)) -> expN(x*0.5) 2211 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2212 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2213 // 2214 // trunc, truncf, truncl: 2215 // * trunc(cnst) -> cnst' 2216 // 2217 // 2218 2219 //===----------------------------------------------------------------------===// 2220 // Fortified Library Call Optimizations 2221 //===----------------------------------------------------------------------===// 2222 2223 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2224 unsigned ObjSizeOp, 2225 unsigned SizeOp, 2226 bool isString) { 2227 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2228 return true; 2229 if (ConstantInt *ObjSizeCI = 2230 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2231 if (ObjSizeCI->isAllOnesValue()) 2232 return true; 2233 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2234 if (OnlyLowerUnknownSize) 2235 return false; 2236 if (isString) { 2237 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2238 // If the length is 0 we don't know how long it is and so we can't 2239 // remove the check. 2240 if (Len == 0) 2241 return false; 2242 return ObjSizeCI->getZExtValue() >= Len; 2243 } 2244 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2245 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2246 } 2247 return false; 2248 } 2249 2250 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2251 IRBuilder<> &B) { 2252 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2253 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2254 CI->getArgOperand(2), 1); 2255 return CI->getArgOperand(0); 2256 } 2257 return nullptr; 2258 } 2259 2260 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2261 IRBuilder<> &B) { 2262 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2263 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2264 CI->getArgOperand(2), 1); 2265 return CI->getArgOperand(0); 2266 } 2267 return nullptr; 2268 } 2269 2270 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2271 IRBuilder<> &B) { 2272 // TODO: Try foldMallocMemset() here. 2273 2274 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2275 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2276 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2277 return CI->getArgOperand(0); 2278 } 2279 return nullptr; 2280 } 2281 2282 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2283 IRBuilder<> &B, 2284 LibFunc::Func Func) { 2285 Function *Callee = CI->getCalledFunction(); 2286 StringRef Name = Callee->getName(); 2287 const DataLayout &DL = CI->getModule()->getDataLayout(); 2288 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2289 *ObjSize = CI->getArgOperand(2); 2290 2291 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2292 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2293 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2294 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2295 } 2296 2297 // If a) we don't have any length information, or b) we know this will 2298 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2299 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2300 // TODO: It might be nice to get a maximum length out of the possible 2301 // string lengths for varying. 2302 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2303 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2304 2305 if (OnlyLowerUnknownSize) 2306 return nullptr; 2307 2308 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2309 uint64_t Len = GetStringLength(Src); 2310 if (Len == 0) 2311 return nullptr; 2312 2313 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2314 Value *LenV = ConstantInt::get(SizeTTy, Len); 2315 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2316 // If the function was an __stpcpy_chk, and we were able to fold it into 2317 // a __memcpy_chk, we still need to return the correct end pointer. 2318 if (Ret && Func == LibFunc::stpcpy_chk) 2319 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2320 return Ret; 2321 } 2322 2323 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2324 IRBuilder<> &B, 2325 LibFunc::Func Func) { 2326 Function *Callee = CI->getCalledFunction(); 2327 StringRef Name = Callee->getName(); 2328 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2329 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2330 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2331 return Ret; 2332 } 2333 return nullptr; 2334 } 2335 2336 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2337 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2338 // Some clang users checked for _chk libcall availability using: 2339 // __has_builtin(__builtin___memcpy_chk) 2340 // When compiling with -fno-builtin, this is always true. 2341 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2342 // end up with fortified libcalls, which isn't acceptable in a freestanding 2343 // environment which only provides their non-fortified counterparts. 2344 // 2345 // Until we change clang and/or teach external users to check for availability 2346 // differently, disregard the "nobuiltin" attribute and TLI::has. 2347 // 2348 // PR23093. 2349 2350 LibFunc::Func Func; 2351 Function *Callee = CI->getCalledFunction(); 2352 2353 SmallVector<OperandBundleDef, 2> OpBundles; 2354 CI->getOperandBundlesAsDefs(OpBundles); 2355 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2356 bool isCallingConvC = isCallingConvCCompatible(CI); 2357 2358 // First, check that this is a known library functions and that the prototype 2359 // is correct. 2360 if (!TLI->getLibFunc(*Callee, Func)) 2361 return nullptr; 2362 2363 // We never change the calling convention. 2364 if (!ignoreCallingConv(Func) && !isCallingConvC) 2365 return nullptr; 2366 2367 switch (Func) { 2368 case LibFunc::memcpy_chk: 2369 return optimizeMemCpyChk(CI, Builder); 2370 case LibFunc::memmove_chk: 2371 return optimizeMemMoveChk(CI, Builder); 2372 case LibFunc::memset_chk: 2373 return optimizeMemSetChk(CI, Builder); 2374 case LibFunc::stpcpy_chk: 2375 case LibFunc::strcpy_chk: 2376 return optimizeStrpCpyChk(CI, Builder, Func); 2377 case LibFunc::stpncpy_chk: 2378 case LibFunc::strncpy_chk: 2379 return optimizeStrpNCpyChk(CI, Builder, Func); 2380 default: 2381 break; 2382 } 2383 return nullptr; 2384 } 2385 2386 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2387 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2388 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2389