1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 StringRef SubStr1 = Str1.substr(0, Length); 455 StringRef SubStr2 = Str2.substr(0, Length); 456 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 457 } 458 459 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 460 return B.CreateNeg(B.CreateZExt( 461 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 462 463 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 464 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 465 CI->getType()); 466 467 uint64_t Len1 = GetStringLength(Str1P); 468 if (Len1) 469 annotateDereferenceableBytes(CI, 0, Len1); 470 uint64_t Len2 = GetStringLength(Str2P); 471 if (Len2) 472 annotateDereferenceableBytes(CI, 1, Len2); 473 474 // strncmp to memcmp 475 if (!HasStr1 && HasStr2) { 476 Len2 = std::min(Len2, Length); 477 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 478 return copyFlags( 479 *CI, 480 emitMemCmp(Str1P, Str2P, 481 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 482 B, DL, TLI)); 483 } else if (HasStr1 && !HasStr2) { 484 Len1 = std::min(Len1, Length); 485 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 486 return copyFlags( 487 *CI, 488 emitMemCmp(Str1P, Str2P, 489 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 490 B, DL, TLI)); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 497 Value *Src = CI->getArgOperand(0); 498 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 499 uint64_t SrcLen = GetStringLength(Src); 500 if (SrcLen && Size) { 501 annotateDereferenceableBytes(CI, 0, SrcLen); 502 if (SrcLen <= Size->getZExtValue() + 1) 503 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 504 } 505 506 return nullptr; 507 } 508 509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 510 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 511 if (Dst == Src) // strcpy(x,x) -> x 512 return Src; 513 514 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 515 // See if we can get the length of the input string. 516 uint64_t Len = GetStringLength(Src); 517 if (Len) 518 annotateDereferenceableBytes(CI, 1, Len); 519 else 520 return nullptr; 521 522 // We have enough information to now generate the memcpy call to do the 523 // copy for us. Make a memcpy to copy the nul byte with align = 1. 524 CallInst *NewCI = 525 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 526 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 527 NewCI->setAttributes(CI->getAttributes()); 528 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 529 copyFlags(*CI, NewCI); 530 return Dst; 531 } 532 533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 534 Function *Callee = CI->getCalledFunction(); 535 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 536 537 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 538 if (CI->use_empty()) 539 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 540 541 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 542 Value *StrLen = emitStrLen(Src, B, DL, TLI); 543 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 544 } 545 546 // See if we can get the length of the input string. 547 uint64_t Len = GetStringLength(Src); 548 if (Len) 549 annotateDereferenceableBytes(CI, 1, Len); 550 else 551 return nullptr; 552 553 Type *PT = Callee->getFunctionType()->getParamType(0); 554 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 555 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 556 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 557 558 // We have enough information to now generate the memcpy call to do the 559 // copy for us. Make a memcpy to copy the nul byte with align = 1. 560 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 561 NewCI->setAttributes(CI->getAttributes()); 562 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 563 copyFlags(*CI, NewCI); 564 return DstEnd; 565 } 566 567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 568 Function *Callee = CI->getCalledFunction(); 569 Value *Dst = CI->getArgOperand(0); 570 Value *Src = CI->getArgOperand(1); 571 Value *Size = CI->getArgOperand(2); 572 annotateNonNullNoUndefBasedOnAccess(CI, 0); 573 if (isKnownNonZero(Size, DL)) 574 annotateNonNullNoUndefBasedOnAccess(CI, 1); 575 576 uint64_t Len; 577 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 578 Len = LengthArg->getZExtValue(); 579 else 580 return nullptr; 581 582 // strncpy(x, y, 0) -> x 583 if (Len == 0) 584 return Dst; 585 586 // See if we can get the length of the input string. 587 uint64_t SrcLen = GetStringLength(Src); 588 if (SrcLen) { 589 annotateDereferenceableBytes(CI, 1, SrcLen); 590 --SrcLen; // Unbias length. 591 } else { 592 return nullptr; 593 } 594 595 if (SrcLen == 0) { 596 // strncpy(x, "", y) -> memset(x, '\0', y) 597 Align MemSetAlign = 598 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 599 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 600 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 601 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 602 CI->getContext(), 0, ArgAttrs)); 603 copyFlags(*CI, NewCI); 604 return Dst; 605 } 606 607 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 608 if (Len > SrcLen + 1) { 609 if (Len <= 128) { 610 StringRef Str; 611 if (!getConstantStringInfo(Src, Str)) 612 return nullptr; 613 std::string SrcStr = Str.str(); 614 SrcStr.resize(Len, '\0'); 615 Src = B.CreateGlobalString(SrcStr, "str"); 616 } else { 617 return nullptr; 618 } 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 627 copyFlags(*CI, NewCI); 628 return Dst; 629 } 630 631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 632 unsigned CharSize, 633 Value *Bound) { 634 Value *Src = CI->getArgOperand(0); 635 Type *CharTy = B.getIntNTy(CharSize); 636 637 if (Bound) { 638 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 639 if (BoundCst->isZero()) 640 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 641 return ConstantInt::get(CI->getType(), 0); 642 643 if (BoundCst->isOne()) { 644 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 645 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 646 Value *ZeroChar = ConstantInt::get(CharTy, 0); 647 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 648 return B.CreateZExt(Cmp, CI->getType()); 649 } 650 } 651 } 652 653 if (uint64_t Len = GetStringLength(Src, CharSize)) { 654 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 655 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 656 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 657 if (Bound) 658 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 659 return LenC; 660 } 661 662 if (Bound) 663 // Punt for strnlen for now. 664 return nullptr; 665 666 // If s is a constant pointer pointing to a string literal, we can fold 667 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 668 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 669 // We only try to simplify strlen when the pointer s points to an array 670 // of i8. Otherwise, we would need to scale the offset x before doing the 671 // subtraction. This will make the optimization more complex, and it's not 672 // very useful because calling strlen for a pointer of other types is 673 // very uncommon. 674 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 675 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 676 return nullptr; 677 678 ConstantDataArraySlice Slice; 679 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 680 uint64_t NullTermIdx; 681 if (Slice.Array == nullptr) { 682 NullTermIdx = 0; 683 } else { 684 NullTermIdx = ~((uint64_t)0); 685 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 686 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 687 NullTermIdx = I; 688 break; 689 } 690 } 691 // If the string does not have '\0', leave it to strlen to compute 692 // its length. 693 if (NullTermIdx == ~((uint64_t)0)) 694 return nullptr; 695 } 696 697 Value *Offset = GEP->getOperand(2); 698 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 699 uint64_t ArrSize = 700 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 701 702 // If Offset is not provably in the range [0, NullTermIdx], we can still 703 // optimize if we can prove that the program has undefined behavior when 704 // Offset is outside that range. That is the case when GEP->getOperand(0) 705 // is a pointer to an object whose memory extent is NullTermIdx+1. 706 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 707 (isa<GlobalVariable>(GEP->getOperand(0)) && 708 NullTermIdx == ArrSize - 1)) { 709 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 710 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 711 Offset); 712 } 713 } 714 } 715 716 // strlen(x?"foo":"bars") --> x ? 3 : 4 717 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 718 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 719 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 720 if (LenTrue && LenFalse) { 721 ORE.emit([&]() { 722 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 723 << "folded strlen(select) to select of constants"; 724 }); 725 return B.CreateSelect(SI->getCondition(), 726 ConstantInt::get(CI->getType(), LenTrue - 1), 727 ConstantInt::get(CI->getType(), LenFalse - 1)); 728 } 729 } 730 731 // strlen(x) != 0 --> *x != 0 732 // strlen(x) == 0 --> *x == 0 733 if (isOnlyUsedInZeroEqualityComparison(CI)) 734 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 735 CI->getType()); 736 737 return nullptr; 738 } 739 740 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 741 if (Value *V = optimizeStringLength(CI, B, 8)) 742 return V; 743 annotateNonNullNoUndefBasedOnAccess(CI, 0); 744 return nullptr; 745 } 746 747 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 748 Value *Bound = CI->getArgOperand(1); 749 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 750 return V; 751 752 if (isKnownNonZero(Bound, DL)) 753 annotateNonNullNoUndefBasedOnAccess(CI, 0); 754 return nullptr; 755 } 756 757 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 758 Module &M = *CI->getModule(); 759 unsigned WCharSize = TLI->getWCharSize(M) * 8; 760 // We cannot perform this optimization without wchar_size metadata. 761 if (WCharSize == 0) 762 return nullptr; 763 764 return optimizeStringLength(CI, B, WCharSize); 765 } 766 767 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 768 StringRef S1, S2; 769 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 770 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 771 772 // strpbrk(s, "") -> nullptr 773 // strpbrk("", s) -> nullptr 774 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 775 return Constant::getNullValue(CI->getType()); 776 777 // Constant folding. 778 if (HasS1 && HasS2) { 779 size_t I = S1.find_first_of(S2); 780 if (I == StringRef::npos) // No match. 781 return Constant::getNullValue(CI->getType()); 782 783 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 784 "strpbrk"); 785 } 786 787 // strpbrk(s, "a") -> strchr(s, 'a') 788 if (HasS2 && S2.size() == 1) 789 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 790 791 return nullptr; 792 } 793 794 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 795 Value *EndPtr = CI->getArgOperand(1); 796 if (isa<ConstantPointerNull>(EndPtr)) { 797 // With a null EndPtr, this function won't capture the main argument. 798 // It would be readonly too, except that it still may write to errno. 799 CI->addParamAttr(0, Attribute::NoCapture); 800 } 801 802 return nullptr; 803 } 804 805 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 806 StringRef S1, S2; 807 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 808 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 809 810 // strspn(s, "") -> 0 811 // strspn("", s) -> 0 812 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 813 return Constant::getNullValue(CI->getType()); 814 815 // Constant folding. 816 if (HasS1 && HasS2) { 817 size_t Pos = S1.find_first_not_of(S2); 818 if (Pos == StringRef::npos) 819 Pos = S1.size(); 820 return ConstantInt::get(CI->getType(), Pos); 821 } 822 823 return nullptr; 824 } 825 826 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 827 StringRef S1, S2; 828 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 829 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 830 831 // strcspn("", s) -> 0 832 if (HasS1 && S1.empty()) 833 return Constant::getNullValue(CI->getType()); 834 835 // Constant folding. 836 if (HasS1 && HasS2) { 837 size_t Pos = S1.find_first_of(S2); 838 if (Pos == StringRef::npos) 839 Pos = S1.size(); 840 return ConstantInt::get(CI->getType(), Pos); 841 } 842 843 // strcspn(s, "") -> strlen(s) 844 if (HasS2 && S2.empty()) 845 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 846 847 return nullptr; 848 } 849 850 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 851 // fold strstr(x, x) -> x. 852 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 853 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 854 855 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 856 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 857 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 858 if (!StrLen) 859 return nullptr; 860 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 861 StrLen, B, DL, TLI); 862 if (!StrNCmp) 863 return nullptr; 864 for (User *U : llvm::make_early_inc_range(CI->users())) { 865 ICmpInst *Old = cast<ICmpInst>(U); 866 Value *Cmp = 867 B.CreateICmp(Old->getPredicate(), StrNCmp, 868 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 869 replaceAllUsesWith(Old, Cmp); 870 } 871 return CI; 872 } 873 874 // See if either input string is a constant string. 875 StringRef SearchStr, ToFindStr; 876 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 877 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 878 879 // fold strstr(x, "") -> x. 880 if (HasStr2 && ToFindStr.empty()) 881 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 882 883 // If both strings are known, constant fold it. 884 if (HasStr1 && HasStr2) { 885 size_t Offset = SearchStr.find(ToFindStr); 886 887 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 888 return Constant::getNullValue(CI->getType()); 889 890 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 891 Value *Result = castToCStr(CI->getArgOperand(0), B); 892 Result = 893 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 894 return B.CreateBitCast(Result, CI->getType()); 895 } 896 897 // fold strstr(x, "y") -> strchr(x, 'y'). 898 if (HasStr2 && ToFindStr.size() == 1) { 899 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 900 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 901 } 902 903 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 904 return nullptr; 905 } 906 907 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 908 Value *SrcStr = CI->getArgOperand(0); 909 Value *Size = CI->getArgOperand(2); 910 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 911 Value *CharVal = CI->getArgOperand(1); 912 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 913 Value *NullPtr = Constant::getNullValue(CI->getType()); 914 915 if (LenC) { 916 if (LenC->isZero()) 917 // Fold memrchr(x, y, 0) --> null. 918 return NullPtr; 919 920 if (LenC->isOne()) { 921 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 922 // constant or otherwise. 923 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 924 // Slice off the character's high end bits. 925 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 926 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 927 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 928 } 929 } 930 931 StringRef Str; 932 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 933 return nullptr; 934 935 uint64_t EndOff = UINT64_MAX; 936 if (LenC) { 937 EndOff = LenC->getZExtValue(); 938 if (Str.size() < EndOff) 939 // Punt out-of-bounds accesses to sanitizers and/or libc. 940 return nullptr; 941 } 942 943 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 944 // Fold memrchr(S, C, N) for a constant C. 945 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 946 if (Pos == StringRef::npos) 947 // When the character is not in the source array fold the result 948 // to null regardless of Size. 949 return NullPtr; 950 951 if (LenC) 952 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 953 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 954 955 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 956 // When there is just a single occurrence of C in S, fold 957 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 958 // for nonconstant N. 959 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 960 Pos), 961 "memrchr.cmp"); 962 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 963 "memrchr.ptr_plus"); 964 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 965 } 966 } 967 968 return nullptr; 969 } 970 971 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 972 Value *SrcStr = CI->getArgOperand(0); 973 Value *Size = CI->getArgOperand(2); 974 if (isKnownNonZero(Size, DL)) 975 annotateNonNullNoUndefBasedOnAccess(CI, 0); 976 977 Value *CharVal = CI->getArgOperand(1); 978 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 979 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 980 981 // memchr(x, y, 0) -> null 982 if (LenC) { 983 if (LenC->isZero()) 984 return Constant::getNullValue(CI->getType()); 985 986 if (LenC->isOne()) { 987 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 988 // constant or otherwise. 989 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 990 // Slice off the character's high end bits. 991 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 992 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 993 Value *NullPtr = Constant::getNullValue(CI->getType()); 994 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 995 } 996 } 997 998 StringRef Str; 999 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1000 return nullptr; 1001 1002 if (CharC) { 1003 size_t Pos = Str.find(CharC->getZExtValue()); 1004 if (Pos == StringRef::npos) 1005 // When the character is not in the source array fold the result 1006 // to null regardless of Size. 1007 return Constant::getNullValue(CI->getType()); 1008 1009 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1010 // When the constant Size is less than or equal to the character 1011 // position also fold the result to null. 1012 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1013 "memchr.cmp"); 1014 Value *NullPtr = Constant::getNullValue(CI->getType()); 1015 Value *SrcPlus = 1016 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1017 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1018 } 1019 1020 if (!LenC) 1021 // From now on we need a constant length and constant array. 1022 return nullptr; 1023 1024 // Truncate the string to LenC. 1025 Str = Str.substr(0, LenC->getZExtValue()); 1026 1027 // If the char is variable but the input str and length are not we can turn 1028 // this memchr call into a simple bit field test. Of course this only works 1029 // when the return value is only checked against null. 1030 // 1031 // It would be really nice to reuse switch lowering here but we can't change 1032 // the CFG at this point. 1033 // 1034 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1035 // != 0 1036 // after bounds check. 1037 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1038 return nullptr; 1039 1040 unsigned char Max = 1041 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1042 reinterpret_cast<const unsigned char *>(Str.end())); 1043 1044 // Make sure the bit field we're about to create fits in a register on the 1045 // target. 1046 // FIXME: On a 64 bit architecture this prevents us from using the 1047 // interesting range of alpha ascii chars. We could do better by emitting 1048 // two bitfields or shifting the range by 64 if no lower chars are used. 1049 if (!DL.fitsInLegalInteger(Max + 1)) 1050 return nullptr; 1051 1052 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1053 // creating unnecessary illegal types. 1054 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1055 1056 // Now build the bit field. 1057 APInt Bitfield(Width, 0); 1058 for (char C : Str) 1059 Bitfield.setBit((unsigned char)C); 1060 Value *BitfieldC = B.getInt(Bitfield); 1061 1062 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1063 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1064 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1065 1066 // First check that the bit field access is within bounds. 1067 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1068 "memchr.bounds"); 1069 1070 // Create code that checks if the given bit is set in the field. 1071 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1072 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1073 1074 // Finally merge both checks and cast to pointer type. The inttoptr 1075 // implicitly zexts the i1 to intptr type. 1076 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1077 CI->getType()); 1078 } 1079 1080 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1081 uint64_t Len, IRBuilderBase &B, 1082 const DataLayout &DL) { 1083 if (Len == 0) // memcmp(s1,s2,0) -> 0 1084 return Constant::getNullValue(CI->getType()); 1085 1086 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1087 if (Len == 1) { 1088 Value *LHSV = 1089 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1090 CI->getType(), "lhsv"); 1091 Value *RHSV = 1092 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1093 CI->getType(), "rhsv"); 1094 return B.CreateSub(LHSV, RHSV, "chardiff"); 1095 } 1096 1097 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1098 // TODO: The case where both inputs are constants does not need to be limited 1099 // to legal integers or equality comparison. See block below this. 1100 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1101 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1102 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1103 1104 // First, see if we can fold either argument to a constant. 1105 Value *LHSV = nullptr; 1106 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1107 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1108 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1109 } 1110 Value *RHSV = nullptr; 1111 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1112 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1113 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1114 } 1115 1116 // Don't generate unaligned loads. If either source is constant data, 1117 // alignment doesn't matter for that source because there is no load. 1118 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1119 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1120 if (!LHSV) { 1121 Type *LHSPtrTy = 1122 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1123 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1124 } 1125 if (!RHSV) { 1126 Type *RHSPtrTy = 1127 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1128 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1129 } 1130 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1131 } 1132 } 1133 1134 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1135 // TODO: This is limited to i8 arrays. 1136 StringRef LHSStr, RHSStr; 1137 if (getConstantStringInfo(LHS, LHSStr) && 1138 getConstantStringInfo(RHS, RHSStr)) { 1139 // Make sure we're not reading out-of-bounds memory. 1140 if (Len > LHSStr.size() || Len > RHSStr.size()) 1141 return nullptr; 1142 // Fold the memcmp and normalize the result. This way we get consistent 1143 // results across multiple platforms. 1144 uint64_t Ret = 0; 1145 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1146 if (Cmp < 0) 1147 Ret = -1; 1148 else if (Cmp > 0) 1149 Ret = 1; 1150 return ConstantInt::get(CI->getType(), Ret); 1151 } 1152 1153 return nullptr; 1154 } 1155 1156 // Most simplifications for memcmp also apply to bcmp. 1157 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1158 IRBuilderBase &B) { 1159 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1160 Value *Size = CI->getArgOperand(2); 1161 1162 if (LHS == RHS) // memcmp(s,s,x) -> 0 1163 return Constant::getNullValue(CI->getType()); 1164 1165 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1166 // Handle constant lengths. 1167 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1168 if (!LenC) 1169 return nullptr; 1170 1171 // memcmp(d,s,0) -> 0 1172 if (LenC->getZExtValue() == 0) 1173 return Constant::getNullValue(CI->getType()); 1174 1175 if (Value *Res = 1176 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1177 return Res; 1178 return nullptr; 1179 } 1180 1181 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1182 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1183 return V; 1184 1185 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1186 // bcmp can be more efficient than memcmp because it only has to know that 1187 // there is a difference, not how different one is to the other. 1188 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1189 Value *LHS = CI->getArgOperand(0); 1190 Value *RHS = CI->getArgOperand(1); 1191 Value *Size = CI->getArgOperand(2); 1192 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1193 } 1194 1195 return nullptr; 1196 } 1197 1198 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1199 return optimizeMemCmpBCmpCommon(CI, B); 1200 } 1201 1202 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1203 Value *Size = CI->getArgOperand(2); 1204 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1205 if (isa<IntrinsicInst>(CI)) 1206 return nullptr; 1207 1208 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1209 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1210 CI->getArgOperand(1), Align(1), Size); 1211 NewCI->setAttributes(CI->getAttributes()); 1212 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1213 copyFlags(*CI, NewCI); 1214 return CI->getArgOperand(0); 1215 } 1216 1217 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1218 Value *Dst = CI->getArgOperand(0); 1219 Value *Src = CI->getArgOperand(1); 1220 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1221 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1222 StringRef SrcStr; 1223 if (CI->use_empty() && Dst == Src) 1224 return Dst; 1225 // memccpy(d, s, c, 0) -> nullptr 1226 if (N) { 1227 if (N->isNullValue()) 1228 return Constant::getNullValue(CI->getType()); 1229 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1230 /*TrimAtNul=*/false) || 1231 !StopChar) 1232 return nullptr; 1233 } else { 1234 return nullptr; 1235 } 1236 1237 // Wrap arg 'c' of type int to char 1238 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1239 if (Pos == StringRef::npos) { 1240 if (N->getZExtValue() <= SrcStr.size()) { 1241 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1242 CI->getArgOperand(3))); 1243 return Constant::getNullValue(CI->getType()); 1244 } 1245 return nullptr; 1246 } 1247 1248 Value *NewN = 1249 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1250 // memccpy -> llvm.memcpy 1251 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1252 return Pos + 1 <= N->getZExtValue() 1253 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1254 : Constant::getNullValue(CI->getType()); 1255 } 1256 1257 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1258 Value *Dst = CI->getArgOperand(0); 1259 Value *N = CI->getArgOperand(2); 1260 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1261 CallInst *NewCI = 1262 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1263 // Propagate attributes, but memcpy has no return value, so make sure that 1264 // any return attributes are compliant. 1265 // TODO: Attach return value attributes to the 1st operand to preserve them? 1266 NewCI->setAttributes(CI->getAttributes()); 1267 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1268 copyFlags(*CI, NewCI); 1269 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1270 } 1271 1272 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1273 Value *Size = CI->getArgOperand(2); 1274 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1275 if (isa<IntrinsicInst>(CI)) 1276 return nullptr; 1277 1278 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1279 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1280 CI->getArgOperand(1), Align(1), Size); 1281 NewCI->setAttributes(CI->getAttributes()); 1282 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1283 copyFlags(*CI, NewCI); 1284 return CI->getArgOperand(0); 1285 } 1286 1287 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1288 Value *Size = CI->getArgOperand(2); 1289 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1290 if (isa<IntrinsicInst>(CI)) 1291 return nullptr; 1292 1293 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1294 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1295 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1296 NewCI->setAttributes(CI->getAttributes()); 1297 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1298 copyFlags(*CI, NewCI); 1299 return CI->getArgOperand(0); 1300 } 1301 1302 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1303 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1304 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1305 1306 return nullptr; 1307 } 1308 1309 //===----------------------------------------------------------------------===// 1310 // Math Library Optimizations 1311 //===----------------------------------------------------------------------===// 1312 1313 // Replace a libcall \p CI with a call to intrinsic \p IID 1314 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1315 Intrinsic::ID IID) { 1316 // Propagate fast-math flags from the existing call to the new call. 1317 IRBuilderBase::FastMathFlagGuard Guard(B); 1318 B.setFastMathFlags(CI->getFastMathFlags()); 1319 1320 Module *M = CI->getModule(); 1321 Value *V = CI->getArgOperand(0); 1322 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1323 CallInst *NewCall = B.CreateCall(F, V); 1324 NewCall->takeName(CI); 1325 return copyFlags(*CI, NewCall); 1326 } 1327 1328 /// Return a variant of Val with float type. 1329 /// Currently this works in two cases: If Val is an FPExtension of a float 1330 /// value to something bigger, simply return the operand. 1331 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1332 /// loss of precision do so. 1333 static Value *valueHasFloatPrecision(Value *Val) { 1334 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1335 Value *Op = Cast->getOperand(0); 1336 if (Op->getType()->isFloatTy()) 1337 return Op; 1338 } 1339 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1340 APFloat F = Const->getValueAPF(); 1341 bool losesInfo; 1342 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1343 &losesInfo); 1344 if (!losesInfo) 1345 return ConstantFP::get(Const->getContext(), F); 1346 } 1347 return nullptr; 1348 } 1349 1350 /// Shrink double -> float functions. 1351 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1352 bool isBinary, bool isPrecise = false) { 1353 Function *CalleeFn = CI->getCalledFunction(); 1354 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1355 return nullptr; 1356 1357 // If not all the uses of the function are converted to float, then bail out. 1358 // This matters if the precision of the result is more important than the 1359 // precision of the arguments. 1360 if (isPrecise) 1361 for (User *U : CI->users()) { 1362 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1363 if (!Cast || !Cast->getType()->isFloatTy()) 1364 return nullptr; 1365 } 1366 1367 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1368 Value *V[2]; 1369 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1370 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1371 if (!V[0] || (isBinary && !V[1])) 1372 return nullptr; 1373 1374 // If call isn't an intrinsic, check that it isn't within a function with the 1375 // same name as the float version of this call, otherwise the result is an 1376 // infinite loop. For example, from MinGW-w64: 1377 // 1378 // float expf(float val) { return (float) exp((double) val); } 1379 StringRef CalleeName = CalleeFn->getName(); 1380 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1381 if (!IsIntrinsic) { 1382 StringRef CallerName = CI->getFunction()->getName(); 1383 if (!CallerName.empty() && CallerName.back() == 'f' && 1384 CallerName.size() == (CalleeName.size() + 1) && 1385 CallerName.startswith(CalleeName)) 1386 return nullptr; 1387 } 1388 1389 // Propagate the math semantics from the current function to the new function. 1390 IRBuilderBase::FastMathFlagGuard Guard(B); 1391 B.setFastMathFlags(CI->getFastMathFlags()); 1392 1393 // g((double) float) -> (double) gf(float) 1394 Value *R; 1395 if (IsIntrinsic) { 1396 Module *M = CI->getModule(); 1397 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1398 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1399 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1400 } else { 1401 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1402 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1403 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1404 } 1405 return B.CreateFPExt(R, B.getDoubleTy()); 1406 } 1407 1408 /// Shrink double -> float for unary functions. 1409 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1410 bool isPrecise = false) { 1411 return optimizeDoubleFP(CI, B, false, isPrecise); 1412 } 1413 1414 /// Shrink double -> float for binary functions. 1415 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1416 bool isPrecise = false) { 1417 return optimizeDoubleFP(CI, B, true, isPrecise); 1418 } 1419 1420 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1421 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1422 if (!CI->isFast()) 1423 return nullptr; 1424 1425 // Propagate fast-math flags from the existing call to new instructions. 1426 IRBuilderBase::FastMathFlagGuard Guard(B); 1427 B.setFastMathFlags(CI->getFastMathFlags()); 1428 1429 Value *Real, *Imag; 1430 if (CI->arg_size() == 1) { 1431 Value *Op = CI->getArgOperand(0); 1432 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1433 Real = B.CreateExtractValue(Op, 0, "real"); 1434 Imag = B.CreateExtractValue(Op, 1, "imag"); 1435 } else { 1436 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1437 Real = CI->getArgOperand(0); 1438 Imag = CI->getArgOperand(1); 1439 } 1440 1441 Value *RealReal = B.CreateFMul(Real, Real); 1442 Value *ImagImag = B.CreateFMul(Imag, Imag); 1443 1444 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1445 CI->getType()); 1446 return copyFlags( 1447 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1448 } 1449 1450 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1451 IRBuilderBase &B) { 1452 if (!isa<FPMathOperator>(Call)) 1453 return nullptr; 1454 1455 IRBuilderBase::FastMathFlagGuard Guard(B); 1456 B.setFastMathFlags(Call->getFastMathFlags()); 1457 1458 // TODO: Can this be shared to also handle LLVM intrinsics? 1459 Value *X; 1460 switch (Func) { 1461 case LibFunc_sin: 1462 case LibFunc_sinf: 1463 case LibFunc_sinl: 1464 case LibFunc_tan: 1465 case LibFunc_tanf: 1466 case LibFunc_tanl: 1467 // sin(-X) --> -sin(X) 1468 // tan(-X) --> -tan(X) 1469 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1470 return B.CreateFNeg( 1471 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1472 break; 1473 case LibFunc_cos: 1474 case LibFunc_cosf: 1475 case LibFunc_cosl: 1476 // cos(-X) --> cos(X) 1477 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1478 return copyFlags(*Call, 1479 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1480 break; 1481 default: 1482 break; 1483 } 1484 return nullptr; 1485 } 1486 1487 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1488 // Multiplications calculated using Addition Chains. 1489 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1490 1491 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1492 1493 if (InnerChain[Exp]) 1494 return InnerChain[Exp]; 1495 1496 static const unsigned AddChain[33][2] = { 1497 {0, 0}, // Unused. 1498 {0, 0}, // Unused (base case = pow1). 1499 {1, 1}, // Unused (pre-computed). 1500 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1501 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1502 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1503 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1504 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1505 }; 1506 1507 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1508 getPow(InnerChain, AddChain[Exp][1], B)); 1509 return InnerChain[Exp]; 1510 } 1511 1512 // Return a properly extended integer (DstWidth bits wide) if the operation is 1513 // an itofp. 1514 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1515 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1516 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1517 // Make sure that the exponent fits inside an "int" of size DstWidth, 1518 // thus avoiding any range issues that FP has not. 1519 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1520 if (BitWidth < DstWidth || 1521 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1522 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1523 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1524 } 1525 1526 return nullptr; 1527 } 1528 1529 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1530 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1531 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1532 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1533 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1534 AttributeList Attrs; // Attributes are only meaningful on the original call 1535 Module *Mod = Pow->getModule(); 1536 Type *Ty = Pow->getType(); 1537 bool Ignored; 1538 1539 // Evaluate special cases related to a nested function as the base. 1540 1541 // pow(exp(x), y) -> exp(x * y) 1542 // pow(exp2(x), y) -> exp2(x * y) 1543 // If exp{,2}() is used only once, it is better to fold two transcendental 1544 // math functions into one. If used again, exp{,2}() would still have to be 1545 // called with the original argument, then keep both original transcendental 1546 // functions. However, this transformation is only safe with fully relaxed 1547 // math semantics, since, besides rounding differences, it changes overflow 1548 // and underflow behavior quite dramatically. For example: 1549 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1550 // Whereas: 1551 // exp(1000 * 0.001) = exp(1) 1552 // TODO: Loosen the requirement for fully relaxed math semantics. 1553 // TODO: Handle exp10() when more targets have it available. 1554 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1555 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1556 LibFunc LibFn; 1557 1558 Function *CalleeFn = BaseFn->getCalledFunction(); 1559 if (CalleeFn && 1560 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1561 StringRef ExpName; 1562 Intrinsic::ID ID; 1563 Value *ExpFn; 1564 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1565 1566 switch (LibFn) { 1567 default: 1568 return nullptr; 1569 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1570 ExpName = TLI->getName(LibFunc_exp); 1571 ID = Intrinsic::exp; 1572 LibFnFloat = LibFunc_expf; 1573 LibFnDouble = LibFunc_exp; 1574 LibFnLongDouble = LibFunc_expl; 1575 break; 1576 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1577 ExpName = TLI->getName(LibFunc_exp2); 1578 ID = Intrinsic::exp2; 1579 LibFnFloat = LibFunc_exp2f; 1580 LibFnDouble = LibFunc_exp2; 1581 LibFnLongDouble = LibFunc_exp2l; 1582 break; 1583 } 1584 1585 // Create new exp{,2}() with the product as its argument. 1586 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1587 ExpFn = BaseFn->doesNotAccessMemory() 1588 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1589 FMul, ExpName) 1590 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1591 LibFnLongDouble, B, 1592 BaseFn->getAttributes()); 1593 1594 // Since the new exp{,2}() is different from the original one, dead code 1595 // elimination cannot be trusted to remove it, since it may have side 1596 // effects (e.g., errno). When the only consumer for the original 1597 // exp{,2}() is pow(), then it has to be explicitly erased. 1598 substituteInParent(BaseFn, ExpFn); 1599 return ExpFn; 1600 } 1601 } 1602 1603 // Evaluate special cases related to a constant base. 1604 1605 const APFloat *BaseF; 1606 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1607 return nullptr; 1608 1609 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1610 if (match(Base, m_SpecificFP(2.0)) && 1611 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1612 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1613 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1614 return copyFlags(*Pow, 1615 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1616 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1617 LibFunc_ldexpl, B, Attrs)); 1618 } 1619 1620 // pow(2.0 ** n, x) -> exp2(n * x) 1621 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1622 APFloat BaseR = APFloat(1.0); 1623 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1624 BaseR = BaseR / *BaseF; 1625 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1626 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1627 APSInt NI(64, false); 1628 if ((IsInteger || IsReciprocal) && 1629 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1630 APFloat::opOK && 1631 NI > 1 && NI.isPowerOf2()) { 1632 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1633 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1634 if (Pow->doesNotAccessMemory()) 1635 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1636 Mod, Intrinsic::exp2, Ty), 1637 FMul, "exp2")); 1638 else 1639 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1640 LibFunc_exp2f, 1641 LibFunc_exp2l, B, Attrs)); 1642 } 1643 } 1644 1645 // pow(10.0, x) -> exp10(x) 1646 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1647 if (match(Base, m_SpecificFP(10.0)) && 1648 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1649 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1650 LibFunc_exp10f, LibFunc_exp10l, 1651 B, Attrs)); 1652 1653 // pow(x, y) -> exp2(log2(x) * y) 1654 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1655 !BaseF->isNegative()) { 1656 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1657 // Luckily optimizePow has already handled the x == 1 case. 1658 assert(!match(Base, m_FPOne()) && 1659 "pow(1.0, y) should have been simplified earlier!"); 1660 1661 Value *Log = nullptr; 1662 if (Ty->isFloatTy()) 1663 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1664 else if (Ty->isDoubleTy()) 1665 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1666 1667 if (Log) { 1668 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1669 if (Pow->doesNotAccessMemory()) 1670 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1671 Mod, Intrinsic::exp2, Ty), 1672 FMul, "exp2")); 1673 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1674 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1675 LibFunc_exp2f, 1676 LibFunc_exp2l, B, Attrs)); 1677 } 1678 } 1679 1680 return nullptr; 1681 } 1682 1683 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1684 Module *M, IRBuilderBase &B, 1685 const TargetLibraryInfo *TLI) { 1686 // If errno is never set, then use the intrinsic for sqrt(). 1687 if (NoErrno) { 1688 Function *SqrtFn = 1689 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1690 return B.CreateCall(SqrtFn, V, "sqrt"); 1691 } 1692 1693 // Otherwise, use the libcall for sqrt(). 1694 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1695 // TODO: We also should check that the target can in fact lower the sqrt() 1696 // libcall. We currently have no way to ask this question, so we ask if 1697 // the target has a sqrt() libcall, which is not exactly the same. 1698 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1699 LibFunc_sqrtl, B, Attrs); 1700 1701 return nullptr; 1702 } 1703 1704 /// Use square root in place of pow(x, +/-0.5). 1705 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1706 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1707 AttributeList Attrs; // Attributes are only meaningful on the original call 1708 Module *Mod = Pow->getModule(); 1709 Type *Ty = Pow->getType(); 1710 1711 const APFloat *ExpoF; 1712 if (!match(Expo, m_APFloat(ExpoF)) || 1713 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1714 return nullptr; 1715 1716 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1717 // so that requires fast-math-flags (afn or reassoc). 1718 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1719 return nullptr; 1720 1721 // If we have a pow() library call (accesses memory) and we can't guarantee 1722 // that the base is not an infinity, give up: 1723 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1724 // errno), but sqrt(-Inf) is required by various standards to set errno. 1725 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1726 !isKnownNeverInfinity(Base, TLI)) 1727 return nullptr; 1728 1729 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1730 if (!Sqrt) 1731 return nullptr; 1732 1733 // Handle signed zero base by expanding to fabs(sqrt(x)). 1734 if (!Pow->hasNoSignedZeros()) { 1735 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1736 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1737 } 1738 1739 Sqrt = copyFlags(*Pow, Sqrt); 1740 1741 // Handle non finite base by expanding to 1742 // (x == -infinity ? +infinity : sqrt(x)). 1743 if (!Pow->hasNoInfs()) { 1744 Value *PosInf = ConstantFP::getInfinity(Ty), 1745 *NegInf = ConstantFP::getInfinity(Ty, true); 1746 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1747 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1748 } 1749 1750 // If the exponent is negative, then get the reciprocal. 1751 if (ExpoF->isNegative()) 1752 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1753 1754 return Sqrt; 1755 } 1756 1757 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1758 IRBuilderBase &B) { 1759 Value *Args[] = {Base, Expo}; 1760 Type *Types[] = {Base->getType(), Expo->getType()}; 1761 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1762 return B.CreateCall(F, Args); 1763 } 1764 1765 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1766 Value *Base = Pow->getArgOperand(0); 1767 Value *Expo = Pow->getArgOperand(1); 1768 Function *Callee = Pow->getCalledFunction(); 1769 StringRef Name = Callee->getName(); 1770 Type *Ty = Pow->getType(); 1771 Module *M = Pow->getModule(); 1772 bool AllowApprox = Pow->hasApproxFunc(); 1773 bool Ignored; 1774 1775 // Propagate the math semantics from the call to any created instructions. 1776 IRBuilderBase::FastMathFlagGuard Guard(B); 1777 B.setFastMathFlags(Pow->getFastMathFlags()); 1778 // Evaluate special cases related to the base. 1779 1780 // pow(1.0, x) -> 1.0 1781 if (match(Base, m_FPOne())) 1782 return Base; 1783 1784 if (Value *Exp = replacePowWithExp(Pow, B)) 1785 return Exp; 1786 1787 // Evaluate special cases related to the exponent. 1788 1789 // pow(x, -1.0) -> 1.0 / x 1790 if (match(Expo, m_SpecificFP(-1.0))) 1791 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1792 1793 // pow(x, +/-0.0) -> 1.0 1794 if (match(Expo, m_AnyZeroFP())) 1795 return ConstantFP::get(Ty, 1.0); 1796 1797 // pow(x, 1.0) -> x 1798 if (match(Expo, m_FPOne())) 1799 return Base; 1800 1801 // pow(x, 2.0) -> x * x 1802 if (match(Expo, m_SpecificFP(2.0))) 1803 return B.CreateFMul(Base, Base, "square"); 1804 1805 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1806 return Sqrt; 1807 1808 // pow(x, n) -> x * x * x * ... 1809 const APFloat *ExpoF; 1810 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1811 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1812 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1813 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1814 // additional fmul. 1815 // TODO: This whole transformation should be backend specific (e.g. some 1816 // backends might prefer libcalls or the limit for the exponent might 1817 // be different) and it should also consider optimizing for size. 1818 APFloat LimF(ExpoF->getSemantics(), 33), 1819 ExpoA(abs(*ExpoF)); 1820 if (ExpoA < LimF) { 1821 // This transformation applies to integer or integer+0.5 exponents only. 1822 // For integer+0.5, we create a sqrt(Base) call. 1823 Value *Sqrt = nullptr; 1824 if (!ExpoA.isInteger()) { 1825 APFloat Expo2 = ExpoA; 1826 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1827 // is no floating point exception and the result is an integer, then 1828 // ExpoA == integer + 0.5 1829 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1830 return nullptr; 1831 1832 if (!Expo2.isInteger()) 1833 return nullptr; 1834 1835 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1836 Pow->doesNotAccessMemory(), M, B, TLI); 1837 if (!Sqrt) 1838 return nullptr; 1839 } 1840 1841 // We will memoize intermediate products of the Addition Chain. 1842 Value *InnerChain[33] = {nullptr}; 1843 InnerChain[1] = Base; 1844 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1845 1846 // We cannot readily convert a non-double type (like float) to a double. 1847 // So we first convert it to something which could be converted to double. 1848 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1849 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1850 1851 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1852 if (Sqrt) 1853 FMul = B.CreateFMul(FMul, Sqrt); 1854 1855 // If the exponent is negative, then get the reciprocal. 1856 if (ExpoF->isNegative()) 1857 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1858 1859 return FMul; 1860 } 1861 1862 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1863 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1864 if (ExpoF->isInteger() && 1865 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1866 APFloat::opOK) { 1867 return copyFlags( 1868 *Pow, 1869 createPowWithIntegerExponent( 1870 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1871 M, B)); 1872 } 1873 } 1874 1875 // powf(x, itofp(y)) -> powi(x, y) 1876 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1877 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1878 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1879 } 1880 1881 // Shrink pow() to powf() if the arguments are single precision, 1882 // unless the result is expected to be double precision. 1883 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1884 hasFloatVersion(Name)) { 1885 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1886 return Shrunk; 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1893 Function *Callee = CI->getCalledFunction(); 1894 AttributeList Attrs; // Attributes are only meaningful on the original call 1895 StringRef Name = Callee->getName(); 1896 Value *Ret = nullptr; 1897 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1898 hasFloatVersion(Name)) 1899 Ret = optimizeUnaryDoubleFP(CI, B, true); 1900 1901 Type *Ty = CI->getType(); 1902 Value *Op = CI->getArgOperand(0); 1903 1904 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1905 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1906 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1907 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1908 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1909 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1910 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1911 B, Attrs); 1912 } 1913 1914 return Ret; 1915 } 1916 1917 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1918 // If we can shrink the call to a float function rather than a double 1919 // function, do that first. 1920 Function *Callee = CI->getCalledFunction(); 1921 StringRef Name = Callee->getName(); 1922 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1923 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1924 return Ret; 1925 1926 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1927 // the intrinsics for improved optimization (for example, vectorization). 1928 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1929 // From the C standard draft WG14/N1256: 1930 // "Ideally, fmax would be sensitive to the sign of zero, for example 1931 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1932 // might be impractical." 1933 IRBuilderBase::FastMathFlagGuard Guard(B); 1934 FastMathFlags FMF = CI->getFastMathFlags(); 1935 FMF.setNoSignedZeros(); 1936 B.setFastMathFlags(FMF); 1937 1938 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1939 : Intrinsic::maxnum; 1940 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1941 return copyFlags( 1942 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1943 } 1944 1945 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1946 Function *LogFn = Log->getCalledFunction(); 1947 AttributeList Attrs; // Attributes are only meaningful on the original call 1948 StringRef LogNm = LogFn->getName(); 1949 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1950 Module *Mod = Log->getModule(); 1951 Type *Ty = Log->getType(); 1952 Value *Ret = nullptr; 1953 1954 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1955 Ret = optimizeUnaryDoubleFP(Log, B, true); 1956 1957 // The earlier call must also be 'fast' in order to do these transforms. 1958 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1959 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1960 return Ret; 1961 1962 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1963 1964 // This is only applicable to log(), log2(), log10(). 1965 if (TLI->getLibFunc(LogNm, LogLb)) 1966 switch (LogLb) { 1967 case LibFunc_logf: 1968 LogID = Intrinsic::log; 1969 ExpLb = LibFunc_expf; 1970 Exp2Lb = LibFunc_exp2f; 1971 Exp10Lb = LibFunc_exp10f; 1972 PowLb = LibFunc_powf; 1973 break; 1974 case LibFunc_log: 1975 LogID = Intrinsic::log; 1976 ExpLb = LibFunc_exp; 1977 Exp2Lb = LibFunc_exp2; 1978 Exp10Lb = LibFunc_exp10; 1979 PowLb = LibFunc_pow; 1980 break; 1981 case LibFunc_logl: 1982 LogID = Intrinsic::log; 1983 ExpLb = LibFunc_expl; 1984 Exp2Lb = LibFunc_exp2l; 1985 Exp10Lb = LibFunc_exp10l; 1986 PowLb = LibFunc_powl; 1987 break; 1988 case LibFunc_log2f: 1989 LogID = Intrinsic::log2; 1990 ExpLb = LibFunc_expf; 1991 Exp2Lb = LibFunc_exp2f; 1992 Exp10Lb = LibFunc_exp10f; 1993 PowLb = LibFunc_powf; 1994 break; 1995 case LibFunc_log2: 1996 LogID = Intrinsic::log2; 1997 ExpLb = LibFunc_exp; 1998 Exp2Lb = LibFunc_exp2; 1999 Exp10Lb = LibFunc_exp10; 2000 PowLb = LibFunc_pow; 2001 break; 2002 case LibFunc_log2l: 2003 LogID = Intrinsic::log2; 2004 ExpLb = LibFunc_expl; 2005 Exp2Lb = LibFunc_exp2l; 2006 Exp10Lb = LibFunc_exp10l; 2007 PowLb = LibFunc_powl; 2008 break; 2009 case LibFunc_log10f: 2010 LogID = Intrinsic::log10; 2011 ExpLb = LibFunc_expf; 2012 Exp2Lb = LibFunc_exp2f; 2013 Exp10Lb = LibFunc_exp10f; 2014 PowLb = LibFunc_powf; 2015 break; 2016 case LibFunc_log10: 2017 LogID = Intrinsic::log10; 2018 ExpLb = LibFunc_exp; 2019 Exp2Lb = LibFunc_exp2; 2020 Exp10Lb = LibFunc_exp10; 2021 PowLb = LibFunc_pow; 2022 break; 2023 case LibFunc_log10l: 2024 LogID = Intrinsic::log10; 2025 ExpLb = LibFunc_expl; 2026 Exp2Lb = LibFunc_exp2l; 2027 Exp10Lb = LibFunc_exp10l; 2028 PowLb = LibFunc_powl; 2029 break; 2030 default: 2031 return Ret; 2032 } 2033 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2034 LogID == Intrinsic::log10) { 2035 if (Ty->getScalarType()->isFloatTy()) { 2036 ExpLb = LibFunc_expf; 2037 Exp2Lb = LibFunc_exp2f; 2038 Exp10Lb = LibFunc_exp10f; 2039 PowLb = LibFunc_powf; 2040 } else if (Ty->getScalarType()->isDoubleTy()) { 2041 ExpLb = LibFunc_exp; 2042 Exp2Lb = LibFunc_exp2; 2043 Exp10Lb = LibFunc_exp10; 2044 PowLb = LibFunc_pow; 2045 } else 2046 return Ret; 2047 } else 2048 return Ret; 2049 2050 IRBuilderBase::FastMathFlagGuard Guard(B); 2051 B.setFastMathFlags(FastMathFlags::getFast()); 2052 2053 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2054 LibFunc ArgLb = NotLibFunc; 2055 TLI->getLibFunc(*Arg, ArgLb); 2056 2057 // log(pow(x,y)) -> y*log(x) 2058 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2059 Value *LogX = 2060 Log->doesNotAccessMemory() 2061 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2062 Arg->getOperand(0), "log") 2063 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 2064 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2065 // Since pow() may have side effects, e.g. errno, 2066 // dead code elimination may not be trusted to remove it. 2067 substituteInParent(Arg, MulY); 2068 return MulY; 2069 } 2070 2071 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2072 // TODO: There is no exp10() intrinsic yet. 2073 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2074 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2075 Constant *Eul; 2076 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2077 // FIXME: Add more precise value of e for long double. 2078 Eul = ConstantFP::get(Log->getType(), numbers::e); 2079 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2080 Eul = ConstantFP::get(Log->getType(), 2.0); 2081 else 2082 Eul = ConstantFP::get(Log->getType(), 10.0); 2083 Value *LogE = Log->doesNotAccessMemory() 2084 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2085 Eul, "log") 2086 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2087 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2088 // Since exp() may have side effects, e.g. errno, 2089 // dead code elimination may not be trusted to remove it. 2090 substituteInParent(Arg, MulY); 2091 return MulY; 2092 } 2093 2094 return Ret; 2095 } 2096 2097 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2098 Function *Callee = CI->getCalledFunction(); 2099 Value *Ret = nullptr; 2100 // TODO: Once we have a way (other than checking for the existince of the 2101 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2102 // condition below. 2103 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2104 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2105 Ret = optimizeUnaryDoubleFP(CI, B, true); 2106 2107 if (!CI->isFast()) 2108 return Ret; 2109 2110 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2111 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2112 return Ret; 2113 2114 // We're looking for a repeated factor in a multiplication tree, 2115 // so we can do this fold: sqrt(x * x) -> fabs(x); 2116 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2117 Value *Op0 = I->getOperand(0); 2118 Value *Op1 = I->getOperand(1); 2119 Value *RepeatOp = nullptr; 2120 Value *OtherOp = nullptr; 2121 if (Op0 == Op1) { 2122 // Simple match: the operands of the multiply are identical. 2123 RepeatOp = Op0; 2124 } else { 2125 // Look for a more complicated pattern: one of the operands is itself 2126 // a multiply, so search for a common factor in that multiply. 2127 // Note: We don't bother looking any deeper than this first level or for 2128 // variations of this pattern because instcombine's visitFMUL and/or the 2129 // reassociation pass should give us this form. 2130 Value *OtherMul0, *OtherMul1; 2131 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2132 // Pattern: sqrt((x * y) * z) 2133 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2134 // Matched: sqrt((x * x) * z) 2135 RepeatOp = OtherMul0; 2136 OtherOp = Op1; 2137 } 2138 } 2139 } 2140 if (!RepeatOp) 2141 return Ret; 2142 2143 // Fast math flags for any created instructions should match the sqrt 2144 // and multiply. 2145 IRBuilderBase::FastMathFlagGuard Guard(B); 2146 B.setFastMathFlags(I->getFastMathFlags()); 2147 2148 // If we found a repeated factor, hoist it out of the square root and 2149 // replace it with the fabs of that factor. 2150 Module *M = Callee->getParent(); 2151 Type *ArgType = I->getType(); 2152 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2153 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2154 if (OtherOp) { 2155 // If we found a non-repeated factor, we still need to get its square 2156 // root. We then multiply that by the value that was simplified out 2157 // of the square root calculation. 2158 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2159 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2160 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2161 } 2162 return copyFlags(*CI, FabsCall); 2163 } 2164 2165 // TODO: Generalize to handle any trig function and its inverse. 2166 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2167 Function *Callee = CI->getCalledFunction(); 2168 Value *Ret = nullptr; 2169 StringRef Name = Callee->getName(); 2170 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2171 Ret = optimizeUnaryDoubleFP(CI, B, true); 2172 2173 Value *Op1 = CI->getArgOperand(0); 2174 auto *OpC = dyn_cast<CallInst>(Op1); 2175 if (!OpC) 2176 return Ret; 2177 2178 // Both calls must be 'fast' in order to remove them. 2179 if (!CI->isFast() || !OpC->isFast()) 2180 return Ret; 2181 2182 // tan(atan(x)) -> x 2183 // tanf(atanf(x)) -> x 2184 // tanl(atanl(x)) -> x 2185 LibFunc Func; 2186 Function *F = OpC->getCalledFunction(); 2187 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2188 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2189 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2190 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2191 Ret = OpC->getArgOperand(0); 2192 return Ret; 2193 } 2194 2195 static bool isTrigLibCall(CallInst *CI) { 2196 // We can only hope to do anything useful if we can ignore things like errno 2197 // and floating-point exceptions. 2198 // We already checked the prototype. 2199 return CI->hasFnAttr(Attribute::NoUnwind) && 2200 CI->hasFnAttr(Attribute::ReadNone); 2201 } 2202 2203 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2204 bool UseFloat, Value *&Sin, Value *&Cos, 2205 Value *&SinCos) { 2206 Type *ArgTy = Arg->getType(); 2207 Type *ResTy; 2208 StringRef Name; 2209 2210 Triple T(OrigCallee->getParent()->getTargetTriple()); 2211 if (UseFloat) { 2212 Name = "__sincospif_stret"; 2213 2214 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2215 // x86_64 can't use {float, float} since that would be returned in both 2216 // xmm0 and xmm1, which isn't what a real struct would do. 2217 ResTy = T.getArch() == Triple::x86_64 2218 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2219 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2220 } else { 2221 Name = "__sincospi_stret"; 2222 ResTy = StructType::get(ArgTy, ArgTy); 2223 } 2224 2225 Module *M = OrigCallee->getParent(); 2226 FunctionCallee Callee = 2227 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2228 2229 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2230 // If the argument is an instruction, it must dominate all uses so put our 2231 // sincos call there. 2232 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2233 } else { 2234 // Otherwise (e.g. for a constant) the beginning of the function is as 2235 // good a place as any. 2236 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2237 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2238 } 2239 2240 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2241 2242 if (SinCos->getType()->isStructTy()) { 2243 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2244 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2245 } else { 2246 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2247 "sinpi"); 2248 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2249 "cospi"); 2250 } 2251 } 2252 2253 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2254 // Make sure the prototype is as expected, otherwise the rest of the 2255 // function is probably invalid and likely to abort. 2256 if (!isTrigLibCall(CI)) 2257 return nullptr; 2258 2259 Value *Arg = CI->getArgOperand(0); 2260 SmallVector<CallInst *, 1> SinCalls; 2261 SmallVector<CallInst *, 1> CosCalls; 2262 SmallVector<CallInst *, 1> SinCosCalls; 2263 2264 bool IsFloat = Arg->getType()->isFloatTy(); 2265 2266 // Look for all compatible sinpi, cospi and sincospi calls with the same 2267 // argument. If there are enough (in some sense) we can make the 2268 // substitution. 2269 Function *F = CI->getFunction(); 2270 for (User *U : Arg->users()) 2271 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2272 2273 // It's only worthwhile if both sinpi and cospi are actually used. 2274 if (SinCalls.empty() || CosCalls.empty()) 2275 return nullptr; 2276 2277 Value *Sin, *Cos, *SinCos; 2278 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2279 2280 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2281 Value *Res) { 2282 for (CallInst *C : Calls) 2283 replaceAllUsesWith(C, Res); 2284 }; 2285 2286 replaceTrigInsts(SinCalls, Sin); 2287 replaceTrigInsts(CosCalls, Cos); 2288 replaceTrigInsts(SinCosCalls, SinCos); 2289 2290 return nullptr; 2291 } 2292 2293 void LibCallSimplifier::classifyArgUse( 2294 Value *Val, Function *F, bool IsFloat, 2295 SmallVectorImpl<CallInst *> &SinCalls, 2296 SmallVectorImpl<CallInst *> &CosCalls, 2297 SmallVectorImpl<CallInst *> &SinCosCalls) { 2298 CallInst *CI = dyn_cast<CallInst>(Val); 2299 2300 if (!CI || CI->use_empty()) 2301 return; 2302 2303 // Don't consider calls in other functions. 2304 if (CI->getFunction() != F) 2305 return; 2306 2307 Function *Callee = CI->getCalledFunction(); 2308 LibFunc Func; 2309 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2310 !isTrigLibCall(CI)) 2311 return; 2312 2313 if (IsFloat) { 2314 if (Func == LibFunc_sinpif) 2315 SinCalls.push_back(CI); 2316 else if (Func == LibFunc_cospif) 2317 CosCalls.push_back(CI); 2318 else if (Func == LibFunc_sincospif_stret) 2319 SinCosCalls.push_back(CI); 2320 } else { 2321 if (Func == LibFunc_sinpi) 2322 SinCalls.push_back(CI); 2323 else if (Func == LibFunc_cospi) 2324 CosCalls.push_back(CI); 2325 else if (Func == LibFunc_sincospi_stret) 2326 SinCosCalls.push_back(CI); 2327 } 2328 } 2329 2330 //===----------------------------------------------------------------------===// 2331 // Integer Library Call Optimizations 2332 //===----------------------------------------------------------------------===// 2333 2334 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2335 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2336 Value *Op = CI->getArgOperand(0); 2337 Type *ArgType = Op->getType(); 2338 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2339 Intrinsic::cttz, ArgType); 2340 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2341 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2342 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2343 2344 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2345 return B.CreateSelect(Cond, V, B.getInt32(0)); 2346 } 2347 2348 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2349 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2350 Value *Op = CI->getArgOperand(0); 2351 Type *ArgType = Op->getType(); 2352 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2353 Intrinsic::ctlz, ArgType); 2354 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2355 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2356 V); 2357 return B.CreateIntCast(V, CI->getType(), false); 2358 } 2359 2360 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2361 // abs(x) -> x <s 0 ? -x : x 2362 // The negation has 'nsw' because abs of INT_MIN is undefined. 2363 Value *X = CI->getArgOperand(0); 2364 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2365 Value *NegX = B.CreateNSWNeg(X, "neg"); 2366 return B.CreateSelect(IsNeg, NegX, X); 2367 } 2368 2369 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2370 // isdigit(c) -> (c-'0') <u 10 2371 Value *Op = CI->getArgOperand(0); 2372 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2373 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2374 return B.CreateZExt(Op, CI->getType()); 2375 } 2376 2377 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2378 // isascii(c) -> c <u 128 2379 Value *Op = CI->getArgOperand(0); 2380 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2381 return B.CreateZExt(Op, CI->getType()); 2382 } 2383 2384 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2385 // toascii(c) -> c & 0x7f 2386 return B.CreateAnd(CI->getArgOperand(0), 2387 ConstantInt::get(CI->getType(), 0x7F)); 2388 } 2389 2390 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2391 StringRef Str; 2392 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2393 return nullptr; 2394 2395 return convertStrToNumber(CI, Str, 10); 2396 } 2397 2398 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2399 StringRef Str; 2400 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2401 return nullptr; 2402 2403 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2404 return nullptr; 2405 2406 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2407 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2408 } 2409 2410 return nullptr; 2411 } 2412 2413 //===----------------------------------------------------------------------===// 2414 // Formatting and IO Library Call Optimizations 2415 //===----------------------------------------------------------------------===// 2416 2417 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2418 2419 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2420 int StreamArg) { 2421 Function *Callee = CI->getCalledFunction(); 2422 // Error reporting calls should be cold, mark them as such. 2423 // This applies even to non-builtin calls: it is only a hint and applies to 2424 // functions that the frontend might not understand as builtins. 2425 2426 // This heuristic was suggested in: 2427 // Improving Static Branch Prediction in a Compiler 2428 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2429 // Proceedings of PACT'98, Oct. 1998, IEEE 2430 if (!CI->hasFnAttr(Attribute::Cold) && 2431 isReportingError(Callee, CI, StreamArg)) { 2432 CI->addFnAttr(Attribute::Cold); 2433 } 2434 2435 return nullptr; 2436 } 2437 2438 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2439 if (!Callee || !Callee->isDeclaration()) 2440 return false; 2441 2442 if (StreamArg < 0) 2443 return true; 2444 2445 // These functions might be considered cold, but only if their stream 2446 // argument is stderr. 2447 2448 if (StreamArg >= (int)CI->arg_size()) 2449 return false; 2450 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2451 if (!LI) 2452 return false; 2453 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2454 if (!GV || !GV->isDeclaration()) 2455 return false; 2456 return GV->getName() == "stderr"; 2457 } 2458 2459 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2460 // Check for a fixed format string. 2461 StringRef FormatStr; 2462 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2463 return nullptr; 2464 2465 // Empty format string -> noop. 2466 if (FormatStr.empty()) // Tolerate printf's declared void. 2467 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2468 2469 // Do not do any of the following transformations if the printf return value 2470 // is used, in general the printf return value is not compatible with either 2471 // putchar() or puts(). 2472 if (!CI->use_empty()) 2473 return nullptr; 2474 2475 // printf("x") -> putchar('x'), even for "%" and "%%". 2476 if (FormatStr.size() == 1 || FormatStr == "%%") 2477 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2478 2479 // Try to remove call or emit putchar/puts. 2480 if (FormatStr == "%s" && CI->arg_size() > 1) { 2481 StringRef OperandStr; 2482 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2483 return nullptr; 2484 // printf("%s", "") --> NOP 2485 if (OperandStr.empty()) 2486 return (Value *)CI; 2487 // printf("%s", "a") --> putchar('a') 2488 if (OperandStr.size() == 1) 2489 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2490 // printf("%s", str"\n") --> puts(str) 2491 if (OperandStr.back() == '\n') { 2492 OperandStr = OperandStr.drop_back(); 2493 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2494 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2495 } 2496 return nullptr; 2497 } 2498 2499 // printf("foo\n") --> puts("foo") 2500 if (FormatStr.back() == '\n' && 2501 !FormatStr.contains('%')) { // No format characters. 2502 // Create a string literal with no \n on it. We expect the constant merge 2503 // pass to be run after this pass, to merge duplicate strings. 2504 FormatStr = FormatStr.drop_back(); 2505 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2506 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2507 } 2508 2509 // Optimize specific format strings. 2510 // printf("%c", chr) --> putchar(chr) 2511 if (FormatStr == "%c" && CI->arg_size() > 1 && 2512 CI->getArgOperand(1)->getType()->isIntegerTy()) 2513 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2514 2515 // printf("%s\n", str) --> puts(str) 2516 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2517 CI->getArgOperand(1)->getType()->isPointerTy()) 2518 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2519 return nullptr; 2520 } 2521 2522 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2523 2524 Function *Callee = CI->getCalledFunction(); 2525 FunctionType *FT = Callee->getFunctionType(); 2526 if (Value *V = optimizePrintFString(CI, B)) { 2527 return V; 2528 } 2529 2530 // printf(format, ...) -> iprintf(format, ...) if no floating point 2531 // arguments. 2532 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2533 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2534 FunctionCallee IPrintFFn = 2535 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2536 CallInst *New = cast<CallInst>(CI->clone()); 2537 New->setCalledFunction(IPrintFFn); 2538 B.Insert(New); 2539 return New; 2540 } 2541 2542 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2543 // arguments. 2544 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2545 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2546 auto SmallPrintFFn = 2547 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2548 FT, Callee->getAttributes()); 2549 CallInst *New = cast<CallInst>(CI->clone()); 2550 New->setCalledFunction(SmallPrintFFn); 2551 B.Insert(New); 2552 return New; 2553 } 2554 2555 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2556 return nullptr; 2557 } 2558 2559 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2560 IRBuilderBase &B) { 2561 // Check for a fixed format string. 2562 StringRef FormatStr; 2563 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2564 return nullptr; 2565 2566 // If we just have a format string (nothing else crazy) transform it. 2567 Value *Dest = CI->getArgOperand(0); 2568 if (CI->arg_size() == 2) { 2569 // Make sure there's no % in the constant array. We could try to handle 2570 // %% -> % in the future if we cared. 2571 if (FormatStr.contains('%')) 2572 return nullptr; // we found a format specifier, bail out. 2573 2574 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2575 B.CreateMemCpy( 2576 Dest, Align(1), CI->getArgOperand(1), Align(1), 2577 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2578 FormatStr.size() + 1)); // Copy the null byte. 2579 return ConstantInt::get(CI->getType(), FormatStr.size()); 2580 } 2581 2582 // The remaining optimizations require the format string to be "%s" or "%c" 2583 // and have an extra operand. 2584 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2585 return nullptr; 2586 2587 // Decode the second character of the format string. 2588 if (FormatStr[1] == 'c') { 2589 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2590 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2591 return nullptr; 2592 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2593 Value *Ptr = castToCStr(Dest, B); 2594 B.CreateStore(V, Ptr); 2595 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2596 B.CreateStore(B.getInt8(0), Ptr); 2597 2598 return ConstantInt::get(CI->getType(), 1); 2599 } 2600 2601 if (FormatStr[1] == 's') { 2602 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2603 // strlen(str)+1) 2604 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2605 return nullptr; 2606 2607 if (CI->use_empty()) 2608 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2609 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2610 2611 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2612 if (SrcLen) { 2613 B.CreateMemCpy( 2614 Dest, Align(1), CI->getArgOperand(2), Align(1), 2615 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2616 // Returns total number of characters written without null-character. 2617 return ConstantInt::get(CI->getType(), SrcLen - 1); 2618 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2619 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2620 // Handle mismatched pointer types (goes away with typeless pointers?). 2621 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2622 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2623 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2624 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2625 } 2626 2627 bool OptForSize = CI->getFunction()->hasOptSize() || 2628 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2629 PGSOQueryType::IRPass); 2630 if (OptForSize) 2631 return nullptr; 2632 2633 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2634 if (!Len) 2635 return nullptr; 2636 Value *IncLen = 2637 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2638 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2639 2640 // The sprintf result is the unincremented number of bytes in the string. 2641 return B.CreateIntCast(Len, CI->getType(), false); 2642 } 2643 return nullptr; 2644 } 2645 2646 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2647 Function *Callee = CI->getCalledFunction(); 2648 FunctionType *FT = Callee->getFunctionType(); 2649 if (Value *V = optimizeSPrintFString(CI, B)) { 2650 return V; 2651 } 2652 2653 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2654 // point arguments. 2655 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2656 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2657 FunctionCallee SIPrintFFn = 2658 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2659 CallInst *New = cast<CallInst>(CI->clone()); 2660 New->setCalledFunction(SIPrintFFn); 2661 B.Insert(New); 2662 return New; 2663 } 2664 2665 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2666 // floating point arguments. 2667 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2668 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2669 auto SmallSPrintFFn = 2670 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2671 FT, Callee->getAttributes()); 2672 CallInst *New = cast<CallInst>(CI->clone()); 2673 New->setCalledFunction(SmallSPrintFFn); 2674 B.Insert(New); 2675 return New; 2676 } 2677 2678 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2679 return nullptr; 2680 } 2681 2682 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2683 IRBuilderBase &B) { 2684 // Check for size 2685 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2686 if (!Size) 2687 return nullptr; 2688 2689 uint64_t N = Size->getZExtValue(); 2690 // Check for a fixed format string. 2691 StringRef FormatStr; 2692 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2693 return nullptr; 2694 2695 // If we just have a format string (nothing else crazy) transform it. 2696 if (CI->arg_size() == 3) { 2697 // Make sure there's no % in the constant array. We could try to handle 2698 // %% -> % in the future if we cared. 2699 if (FormatStr.contains('%')) 2700 return nullptr; // we found a format specifier, bail out. 2701 2702 if (N == 0) 2703 return ConstantInt::get(CI->getType(), FormatStr.size()); 2704 else if (N < FormatStr.size() + 1) 2705 return nullptr; 2706 2707 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2708 // strlen(fmt)+1) 2709 copyFlags( 2710 *CI, 2711 B.CreateMemCpy( 2712 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2713 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2714 FormatStr.size() + 1))); // Copy the null byte. 2715 return ConstantInt::get(CI->getType(), FormatStr.size()); 2716 } 2717 2718 // The remaining optimizations require the format string to be "%s" or "%c" 2719 // and have an extra operand. 2720 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2721 2722 // Decode the second character of the format string. 2723 if (FormatStr[1] == 'c') { 2724 if (N == 0) 2725 return ConstantInt::get(CI->getType(), 1); 2726 else if (N == 1) 2727 return nullptr; 2728 2729 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2730 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2731 return nullptr; 2732 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2733 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2734 B.CreateStore(V, Ptr); 2735 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2736 B.CreateStore(B.getInt8(0), Ptr); 2737 2738 return ConstantInt::get(CI->getType(), 1); 2739 } 2740 2741 if (FormatStr[1] == 's') { 2742 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2743 StringRef Str; 2744 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2745 return nullptr; 2746 2747 if (N == 0) 2748 return ConstantInt::get(CI->getType(), Str.size()); 2749 else if (N < Str.size() + 1) 2750 return nullptr; 2751 2752 copyFlags( 2753 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2754 CI->getArgOperand(3), Align(1), 2755 ConstantInt::get(CI->getType(), Str.size() + 1))); 2756 2757 // The snprintf result is the unincremented number of bytes in the string. 2758 return ConstantInt::get(CI->getType(), Str.size()); 2759 } 2760 } 2761 return nullptr; 2762 } 2763 2764 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2765 if (Value *V = optimizeSnPrintFString(CI, B)) { 2766 return V; 2767 } 2768 2769 if (isKnownNonZero(CI->getOperand(1), DL)) 2770 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2771 return nullptr; 2772 } 2773 2774 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2775 IRBuilderBase &B) { 2776 optimizeErrorReporting(CI, B, 0); 2777 2778 // All the optimizations depend on the format string. 2779 StringRef FormatStr; 2780 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2781 return nullptr; 2782 2783 // Do not do any of the following transformations if the fprintf return 2784 // value is used, in general the fprintf return value is not compatible 2785 // with fwrite(), fputc() or fputs(). 2786 if (!CI->use_empty()) 2787 return nullptr; 2788 2789 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2790 if (CI->arg_size() == 2) { 2791 // Could handle %% -> % if we cared. 2792 if (FormatStr.contains('%')) 2793 return nullptr; // We found a format specifier. 2794 2795 return copyFlags( 2796 *CI, emitFWrite(CI->getArgOperand(1), 2797 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2798 FormatStr.size()), 2799 CI->getArgOperand(0), B, DL, TLI)); 2800 } 2801 2802 // The remaining optimizations require the format string to be "%s" or "%c" 2803 // and have an extra operand. 2804 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2805 return nullptr; 2806 2807 // Decode the second character of the format string. 2808 if (FormatStr[1] == 'c') { 2809 // fprintf(F, "%c", chr) --> fputc(chr, F) 2810 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2811 return nullptr; 2812 return copyFlags( 2813 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2814 } 2815 2816 if (FormatStr[1] == 's') { 2817 // fprintf(F, "%s", str) --> fputs(str, F) 2818 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2819 return nullptr; 2820 return copyFlags( 2821 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2822 } 2823 return nullptr; 2824 } 2825 2826 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2827 Function *Callee = CI->getCalledFunction(); 2828 FunctionType *FT = Callee->getFunctionType(); 2829 if (Value *V = optimizeFPrintFString(CI, B)) { 2830 return V; 2831 } 2832 2833 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2834 // floating point arguments. 2835 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2836 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2837 FunctionCallee FIPrintFFn = 2838 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2839 CallInst *New = cast<CallInst>(CI->clone()); 2840 New->setCalledFunction(FIPrintFFn); 2841 B.Insert(New); 2842 return New; 2843 } 2844 2845 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2846 // 128-bit floating point arguments. 2847 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2848 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2849 auto SmallFPrintFFn = 2850 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2851 FT, Callee->getAttributes()); 2852 CallInst *New = cast<CallInst>(CI->clone()); 2853 New->setCalledFunction(SmallFPrintFFn); 2854 B.Insert(New); 2855 return New; 2856 } 2857 2858 return nullptr; 2859 } 2860 2861 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2862 optimizeErrorReporting(CI, B, 3); 2863 2864 // Get the element size and count. 2865 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2866 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2867 if (SizeC && CountC) { 2868 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2869 2870 // If this is writing zero records, remove the call (it's a noop). 2871 if (Bytes == 0) 2872 return ConstantInt::get(CI->getType(), 0); 2873 2874 // If this is writing one byte, turn it into fputc. 2875 // This optimisation is only valid, if the return value is unused. 2876 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2877 Value *Char = B.CreateLoad(B.getInt8Ty(), 2878 castToCStr(CI->getArgOperand(0), B), "char"); 2879 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2880 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2881 } 2882 } 2883 2884 return nullptr; 2885 } 2886 2887 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2888 optimizeErrorReporting(CI, B, 1); 2889 2890 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2891 // requires more arguments and thus extra MOVs are required. 2892 bool OptForSize = CI->getFunction()->hasOptSize() || 2893 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2894 PGSOQueryType::IRPass); 2895 if (OptForSize) 2896 return nullptr; 2897 2898 // We can't optimize if return value is used. 2899 if (!CI->use_empty()) 2900 return nullptr; 2901 2902 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2903 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2904 if (!Len) 2905 return nullptr; 2906 2907 // Known to have no uses (see above). 2908 return copyFlags( 2909 *CI, 2910 emitFWrite(CI->getArgOperand(0), 2911 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2912 CI->getArgOperand(1), B, DL, TLI)); 2913 } 2914 2915 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2916 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2917 if (!CI->use_empty()) 2918 return nullptr; 2919 2920 // Check for a constant string. 2921 // puts("") -> putchar('\n') 2922 StringRef Str; 2923 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2924 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2925 2926 return nullptr; 2927 } 2928 2929 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2930 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2931 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2932 CI->getArgOperand(0), Align(1), 2933 CI->getArgOperand(2))); 2934 } 2935 2936 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2937 LibFunc Func; 2938 SmallString<20> FloatFuncName = FuncName; 2939 FloatFuncName += 'f'; 2940 if (TLI->getLibFunc(FloatFuncName, Func)) 2941 return TLI->has(Func); 2942 return false; 2943 } 2944 2945 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2946 IRBuilderBase &Builder) { 2947 LibFunc Func; 2948 Function *Callee = CI->getCalledFunction(); 2949 // Check for string/memory library functions. 2950 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2951 // Make sure we never change the calling convention. 2952 assert( 2953 (ignoreCallingConv(Func) || 2954 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2955 "Optimizing string/memory libcall would change the calling convention"); 2956 switch (Func) { 2957 case LibFunc_strcat: 2958 return optimizeStrCat(CI, Builder); 2959 case LibFunc_strncat: 2960 return optimizeStrNCat(CI, Builder); 2961 case LibFunc_strchr: 2962 return optimizeStrChr(CI, Builder); 2963 case LibFunc_strrchr: 2964 return optimizeStrRChr(CI, Builder); 2965 case LibFunc_strcmp: 2966 return optimizeStrCmp(CI, Builder); 2967 case LibFunc_strncmp: 2968 return optimizeStrNCmp(CI, Builder); 2969 case LibFunc_strcpy: 2970 return optimizeStrCpy(CI, Builder); 2971 case LibFunc_stpcpy: 2972 return optimizeStpCpy(CI, Builder); 2973 case LibFunc_strncpy: 2974 return optimizeStrNCpy(CI, Builder); 2975 case LibFunc_strlen: 2976 return optimizeStrLen(CI, Builder); 2977 case LibFunc_strnlen: 2978 return optimizeStrNLen(CI, Builder); 2979 case LibFunc_strpbrk: 2980 return optimizeStrPBrk(CI, Builder); 2981 case LibFunc_strndup: 2982 return optimizeStrNDup(CI, Builder); 2983 case LibFunc_strtol: 2984 case LibFunc_strtod: 2985 case LibFunc_strtof: 2986 case LibFunc_strtoul: 2987 case LibFunc_strtoll: 2988 case LibFunc_strtold: 2989 case LibFunc_strtoull: 2990 return optimizeStrTo(CI, Builder); 2991 case LibFunc_strspn: 2992 return optimizeStrSpn(CI, Builder); 2993 case LibFunc_strcspn: 2994 return optimizeStrCSpn(CI, Builder); 2995 case LibFunc_strstr: 2996 return optimizeStrStr(CI, Builder); 2997 case LibFunc_memchr: 2998 return optimizeMemChr(CI, Builder); 2999 case LibFunc_memrchr: 3000 return optimizeMemRChr(CI, Builder); 3001 case LibFunc_bcmp: 3002 return optimizeBCmp(CI, Builder); 3003 case LibFunc_memcmp: 3004 return optimizeMemCmp(CI, Builder); 3005 case LibFunc_memcpy: 3006 return optimizeMemCpy(CI, Builder); 3007 case LibFunc_memccpy: 3008 return optimizeMemCCpy(CI, Builder); 3009 case LibFunc_mempcpy: 3010 return optimizeMemPCpy(CI, Builder); 3011 case LibFunc_memmove: 3012 return optimizeMemMove(CI, Builder); 3013 case LibFunc_memset: 3014 return optimizeMemSet(CI, Builder); 3015 case LibFunc_realloc: 3016 return optimizeRealloc(CI, Builder); 3017 case LibFunc_wcslen: 3018 return optimizeWcslen(CI, Builder); 3019 case LibFunc_bcopy: 3020 return optimizeBCopy(CI, Builder); 3021 default: 3022 break; 3023 } 3024 } 3025 return nullptr; 3026 } 3027 3028 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3029 LibFunc Func, 3030 IRBuilderBase &Builder) { 3031 // Don't optimize calls that require strict floating point semantics. 3032 if (CI->isStrictFP()) 3033 return nullptr; 3034 3035 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3036 return V; 3037 3038 switch (Func) { 3039 case LibFunc_sinpif: 3040 case LibFunc_sinpi: 3041 case LibFunc_cospif: 3042 case LibFunc_cospi: 3043 return optimizeSinCosPi(CI, Builder); 3044 case LibFunc_powf: 3045 case LibFunc_pow: 3046 case LibFunc_powl: 3047 return optimizePow(CI, Builder); 3048 case LibFunc_exp2l: 3049 case LibFunc_exp2: 3050 case LibFunc_exp2f: 3051 return optimizeExp2(CI, Builder); 3052 case LibFunc_fabsf: 3053 case LibFunc_fabs: 3054 case LibFunc_fabsl: 3055 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3056 case LibFunc_sqrtf: 3057 case LibFunc_sqrt: 3058 case LibFunc_sqrtl: 3059 return optimizeSqrt(CI, Builder); 3060 case LibFunc_logf: 3061 case LibFunc_log: 3062 case LibFunc_logl: 3063 case LibFunc_log10f: 3064 case LibFunc_log10: 3065 case LibFunc_log10l: 3066 case LibFunc_log1pf: 3067 case LibFunc_log1p: 3068 case LibFunc_log1pl: 3069 case LibFunc_log2f: 3070 case LibFunc_log2: 3071 case LibFunc_log2l: 3072 case LibFunc_logbf: 3073 case LibFunc_logb: 3074 case LibFunc_logbl: 3075 return optimizeLog(CI, Builder); 3076 case LibFunc_tan: 3077 case LibFunc_tanf: 3078 case LibFunc_tanl: 3079 return optimizeTan(CI, Builder); 3080 case LibFunc_ceil: 3081 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3082 case LibFunc_floor: 3083 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3084 case LibFunc_round: 3085 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3086 case LibFunc_roundeven: 3087 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3088 case LibFunc_nearbyint: 3089 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3090 case LibFunc_rint: 3091 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3092 case LibFunc_trunc: 3093 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3094 case LibFunc_acos: 3095 case LibFunc_acosh: 3096 case LibFunc_asin: 3097 case LibFunc_asinh: 3098 case LibFunc_atan: 3099 case LibFunc_atanh: 3100 case LibFunc_cbrt: 3101 case LibFunc_cosh: 3102 case LibFunc_exp: 3103 case LibFunc_exp10: 3104 case LibFunc_expm1: 3105 case LibFunc_cos: 3106 case LibFunc_sin: 3107 case LibFunc_sinh: 3108 case LibFunc_tanh: 3109 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3110 return optimizeUnaryDoubleFP(CI, Builder, true); 3111 return nullptr; 3112 case LibFunc_copysign: 3113 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3114 return optimizeBinaryDoubleFP(CI, Builder); 3115 return nullptr; 3116 case LibFunc_fminf: 3117 case LibFunc_fmin: 3118 case LibFunc_fminl: 3119 case LibFunc_fmaxf: 3120 case LibFunc_fmax: 3121 case LibFunc_fmaxl: 3122 return optimizeFMinFMax(CI, Builder); 3123 case LibFunc_cabs: 3124 case LibFunc_cabsf: 3125 case LibFunc_cabsl: 3126 return optimizeCAbs(CI, Builder); 3127 default: 3128 return nullptr; 3129 } 3130 } 3131 3132 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3133 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3134 3135 // TODO: Split out the code below that operates on FP calls so that 3136 // we can all non-FP calls with the StrictFP attribute to be 3137 // optimized. 3138 if (CI->isNoBuiltin()) 3139 return nullptr; 3140 3141 LibFunc Func; 3142 Function *Callee = CI->getCalledFunction(); 3143 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3144 3145 SmallVector<OperandBundleDef, 2> OpBundles; 3146 CI->getOperandBundlesAsDefs(OpBundles); 3147 3148 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3149 Builder.setDefaultOperandBundles(OpBundles); 3150 3151 // Command-line parameter overrides instruction attribute. 3152 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3153 // used by the intrinsic optimizations. 3154 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3155 UnsafeFPShrink = EnableUnsafeFPShrink; 3156 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3157 UnsafeFPShrink = true; 3158 3159 // First, check for intrinsics. 3160 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3161 if (!IsCallingConvC) 3162 return nullptr; 3163 // The FP intrinsics have corresponding constrained versions so we don't 3164 // need to check for the StrictFP attribute here. 3165 switch (II->getIntrinsicID()) { 3166 case Intrinsic::pow: 3167 return optimizePow(CI, Builder); 3168 case Intrinsic::exp2: 3169 return optimizeExp2(CI, Builder); 3170 case Intrinsic::log: 3171 case Intrinsic::log2: 3172 case Intrinsic::log10: 3173 return optimizeLog(CI, Builder); 3174 case Intrinsic::sqrt: 3175 return optimizeSqrt(CI, Builder); 3176 case Intrinsic::memset: 3177 return optimizeMemSet(CI, Builder); 3178 case Intrinsic::memcpy: 3179 return optimizeMemCpy(CI, Builder); 3180 case Intrinsic::memmove: 3181 return optimizeMemMove(CI, Builder); 3182 default: 3183 return nullptr; 3184 } 3185 } 3186 3187 // Also try to simplify calls to fortified library functions. 3188 if (Value *SimplifiedFortifiedCI = 3189 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3190 // Try to further simplify the result. 3191 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3192 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3193 // Ensure that SimplifiedCI's uses are complete, since some calls have 3194 // their uses analyzed. 3195 replaceAllUsesWith(CI, SimplifiedCI); 3196 3197 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3198 // we might replace later on. 3199 IRBuilderBase::InsertPointGuard Guard(Builder); 3200 Builder.SetInsertPoint(SimplifiedCI); 3201 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3202 // If we were able to further simplify, remove the now redundant call. 3203 substituteInParent(SimplifiedCI, V); 3204 return V; 3205 } 3206 } 3207 return SimplifiedFortifiedCI; 3208 } 3209 3210 // Then check for known library functions. 3211 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3212 // We never change the calling convention. 3213 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3214 return nullptr; 3215 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3216 return V; 3217 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3218 return V; 3219 switch (Func) { 3220 case LibFunc_ffs: 3221 case LibFunc_ffsl: 3222 case LibFunc_ffsll: 3223 return optimizeFFS(CI, Builder); 3224 case LibFunc_fls: 3225 case LibFunc_flsl: 3226 case LibFunc_flsll: 3227 return optimizeFls(CI, Builder); 3228 case LibFunc_abs: 3229 case LibFunc_labs: 3230 case LibFunc_llabs: 3231 return optimizeAbs(CI, Builder); 3232 case LibFunc_isdigit: 3233 return optimizeIsDigit(CI, Builder); 3234 case LibFunc_isascii: 3235 return optimizeIsAscii(CI, Builder); 3236 case LibFunc_toascii: 3237 return optimizeToAscii(CI, Builder); 3238 case LibFunc_atoi: 3239 case LibFunc_atol: 3240 case LibFunc_atoll: 3241 return optimizeAtoi(CI, Builder); 3242 case LibFunc_strtol: 3243 case LibFunc_strtoll: 3244 return optimizeStrtol(CI, Builder); 3245 case LibFunc_printf: 3246 return optimizePrintF(CI, Builder); 3247 case LibFunc_sprintf: 3248 return optimizeSPrintF(CI, Builder); 3249 case LibFunc_snprintf: 3250 return optimizeSnPrintF(CI, Builder); 3251 case LibFunc_fprintf: 3252 return optimizeFPrintF(CI, Builder); 3253 case LibFunc_fwrite: 3254 return optimizeFWrite(CI, Builder); 3255 case LibFunc_fputs: 3256 return optimizeFPuts(CI, Builder); 3257 case LibFunc_puts: 3258 return optimizePuts(CI, Builder); 3259 case LibFunc_perror: 3260 return optimizeErrorReporting(CI, Builder); 3261 case LibFunc_vfprintf: 3262 case LibFunc_fiprintf: 3263 return optimizeErrorReporting(CI, Builder, 0); 3264 default: 3265 return nullptr; 3266 } 3267 } 3268 return nullptr; 3269 } 3270 3271 LibCallSimplifier::LibCallSimplifier( 3272 const DataLayout &DL, const TargetLibraryInfo *TLI, 3273 OptimizationRemarkEmitter &ORE, 3274 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3275 function_ref<void(Instruction *, Value *)> Replacer, 3276 function_ref<void(Instruction *)> Eraser) 3277 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3278 Replacer(Replacer), Eraser(Eraser) {} 3279 3280 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3281 // Indirect through the replacer used in this instance. 3282 Replacer(I, With); 3283 } 3284 3285 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3286 Eraser(I); 3287 } 3288 3289 // TODO: 3290 // Additional cases that we need to add to this file: 3291 // 3292 // cbrt: 3293 // * cbrt(expN(X)) -> expN(x/3) 3294 // * cbrt(sqrt(x)) -> pow(x,1/6) 3295 // * cbrt(cbrt(x)) -> pow(x,1/9) 3296 // 3297 // exp, expf, expl: 3298 // * exp(log(x)) -> x 3299 // 3300 // log, logf, logl: 3301 // * log(exp(x)) -> x 3302 // * log(exp(y)) -> y*log(e) 3303 // * log(exp10(y)) -> y*log(10) 3304 // * log(sqrt(x)) -> 0.5*log(x) 3305 // 3306 // pow, powf, powl: 3307 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3308 // * pow(pow(x,y),z)-> pow(x,y*z) 3309 // 3310 // signbit: 3311 // * signbit(cnst) -> cnst' 3312 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3313 // 3314 // sqrt, sqrtf, sqrtl: 3315 // * sqrt(expN(x)) -> expN(x*0.5) 3316 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3317 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3318 // 3319 3320 //===----------------------------------------------------------------------===// 3321 // Fortified Library Call Optimizations 3322 //===----------------------------------------------------------------------===// 3323 3324 bool 3325 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3326 unsigned ObjSizeOp, 3327 Optional<unsigned> SizeOp, 3328 Optional<unsigned> StrOp, 3329 Optional<unsigned> FlagOp) { 3330 // If this function takes a flag argument, the implementation may use it to 3331 // perform extra checks. Don't fold into the non-checking variant. 3332 if (FlagOp) { 3333 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3334 if (!Flag || !Flag->isZero()) 3335 return false; 3336 } 3337 3338 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3339 return true; 3340 3341 if (ConstantInt *ObjSizeCI = 3342 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3343 if (ObjSizeCI->isMinusOne()) 3344 return true; 3345 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3346 if (OnlyLowerUnknownSize) 3347 return false; 3348 if (StrOp) { 3349 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3350 // If the length is 0 we don't know how long it is and so we can't 3351 // remove the check. 3352 if (Len) 3353 annotateDereferenceableBytes(CI, *StrOp, Len); 3354 else 3355 return false; 3356 return ObjSizeCI->getZExtValue() >= Len; 3357 } 3358 3359 if (SizeOp) { 3360 if (ConstantInt *SizeCI = 3361 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3362 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3363 } 3364 } 3365 return false; 3366 } 3367 3368 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3369 IRBuilderBase &B) { 3370 if (isFortifiedCallFoldable(CI, 3, 2)) { 3371 CallInst *NewCI = 3372 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3373 Align(1), CI->getArgOperand(2)); 3374 NewCI->setAttributes(CI->getAttributes()); 3375 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3376 copyFlags(*CI, NewCI); 3377 return CI->getArgOperand(0); 3378 } 3379 return nullptr; 3380 } 3381 3382 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3383 IRBuilderBase &B) { 3384 if (isFortifiedCallFoldable(CI, 3, 2)) { 3385 CallInst *NewCI = 3386 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3387 Align(1), CI->getArgOperand(2)); 3388 NewCI->setAttributes(CI->getAttributes()); 3389 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3390 copyFlags(*CI, NewCI); 3391 return CI->getArgOperand(0); 3392 } 3393 return nullptr; 3394 } 3395 3396 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3397 IRBuilderBase &B) { 3398 if (isFortifiedCallFoldable(CI, 3, 2)) { 3399 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3400 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3401 CI->getArgOperand(2), Align(1)); 3402 NewCI->setAttributes(CI->getAttributes()); 3403 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3404 copyFlags(*CI, NewCI); 3405 return CI->getArgOperand(0); 3406 } 3407 return nullptr; 3408 } 3409 3410 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3411 IRBuilderBase &B) { 3412 const DataLayout &DL = CI->getModule()->getDataLayout(); 3413 if (isFortifiedCallFoldable(CI, 3, 2)) 3414 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3415 CI->getArgOperand(2), B, DL, TLI)) { 3416 CallInst *NewCI = cast<CallInst>(Call); 3417 NewCI->setAttributes(CI->getAttributes()); 3418 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3419 return copyFlags(*CI, NewCI); 3420 } 3421 return nullptr; 3422 } 3423 3424 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3425 IRBuilderBase &B, 3426 LibFunc Func) { 3427 const DataLayout &DL = CI->getModule()->getDataLayout(); 3428 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3429 *ObjSize = CI->getArgOperand(2); 3430 3431 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3432 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3433 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3434 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3435 } 3436 3437 // If a) we don't have any length information, or b) we know this will 3438 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3439 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3440 // TODO: It might be nice to get a maximum length out of the possible 3441 // string lengths for varying. 3442 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3443 if (Func == LibFunc_strcpy_chk) 3444 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3445 else 3446 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3447 } 3448 3449 if (OnlyLowerUnknownSize) 3450 return nullptr; 3451 3452 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3453 uint64_t Len = GetStringLength(Src); 3454 if (Len) 3455 annotateDereferenceableBytes(CI, 1, Len); 3456 else 3457 return nullptr; 3458 3459 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3460 // sizeof(int*) for every target. So the assumption used here to derive the 3461 // SizeTBits based on the size of an integer pointer in address space zero 3462 // isn't always valid. 3463 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3464 Value *LenV = ConstantInt::get(SizeTTy, Len); 3465 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3466 // If the function was an __stpcpy_chk, and we were able to fold it into 3467 // a __memcpy_chk, we still need to return the correct end pointer. 3468 if (Ret && Func == LibFunc_stpcpy_chk) 3469 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3470 return copyFlags(*CI, cast<CallInst>(Ret)); 3471 } 3472 3473 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3474 IRBuilderBase &B) { 3475 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3476 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3477 CI->getModule()->getDataLayout(), TLI)); 3478 return nullptr; 3479 } 3480 3481 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3482 IRBuilderBase &B, 3483 LibFunc Func) { 3484 if (isFortifiedCallFoldable(CI, 3, 2)) { 3485 if (Func == LibFunc_strncpy_chk) 3486 return copyFlags(*CI, 3487 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3488 CI->getArgOperand(2), B, TLI)); 3489 else 3490 return copyFlags(*CI, 3491 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3492 CI->getArgOperand(2), B, TLI)); 3493 } 3494 3495 return nullptr; 3496 } 3497 3498 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3499 IRBuilderBase &B) { 3500 if (isFortifiedCallFoldable(CI, 4, 3)) 3501 return copyFlags( 3502 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3503 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3504 3505 return nullptr; 3506 } 3507 3508 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3509 IRBuilderBase &B) { 3510 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3511 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3512 return copyFlags(*CI, 3513 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3514 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3515 } 3516 3517 return nullptr; 3518 } 3519 3520 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3521 IRBuilderBase &B) { 3522 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3523 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3524 return copyFlags(*CI, 3525 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3526 VariadicArgs, B, TLI)); 3527 } 3528 3529 return nullptr; 3530 } 3531 3532 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3533 IRBuilderBase &B) { 3534 if (isFortifiedCallFoldable(CI, 2)) 3535 return copyFlags( 3536 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3537 3538 return nullptr; 3539 } 3540 3541 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3542 IRBuilderBase &B) { 3543 if (isFortifiedCallFoldable(CI, 3)) 3544 return copyFlags(*CI, 3545 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3546 CI->getArgOperand(2), B, TLI)); 3547 3548 return nullptr; 3549 } 3550 3551 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3552 IRBuilderBase &B) { 3553 if (isFortifiedCallFoldable(CI, 3)) 3554 return copyFlags(*CI, 3555 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3556 CI->getArgOperand(2), B, TLI)); 3557 3558 return nullptr; 3559 } 3560 3561 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3562 IRBuilderBase &B) { 3563 if (isFortifiedCallFoldable(CI, 3)) 3564 return copyFlags(*CI, 3565 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3566 CI->getArgOperand(2), B, TLI)); 3567 3568 return nullptr; 3569 } 3570 3571 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3572 IRBuilderBase &B) { 3573 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3574 return copyFlags( 3575 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3576 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3577 3578 return nullptr; 3579 } 3580 3581 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3582 IRBuilderBase &B) { 3583 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3584 return copyFlags(*CI, 3585 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3586 CI->getArgOperand(4), B, TLI)); 3587 3588 return nullptr; 3589 } 3590 3591 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3592 IRBuilderBase &Builder) { 3593 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3594 // Some clang users checked for _chk libcall availability using: 3595 // __has_builtin(__builtin___memcpy_chk) 3596 // When compiling with -fno-builtin, this is always true. 3597 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3598 // end up with fortified libcalls, which isn't acceptable in a freestanding 3599 // environment which only provides their non-fortified counterparts. 3600 // 3601 // Until we change clang and/or teach external users to check for availability 3602 // differently, disregard the "nobuiltin" attribute and TLI::has. 3603 // 3604 // PR23093. 3605 3606 LibFunc Func; 3607 Function *Callee = CI->getCalledFunction(); 3608 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3609 3610 SmallVector<OperandBundleDef, 2> OpBundles; 3611 CI->getOperandBundlesAsDefs(OpBundles); 3612 3613 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3614 Builder.setDefaultOperandBundles(OpBundles); 3615 3616 // First, check that this is a known library functions and that the prototype 3617 // is correct. 3618 if (!TLI->getLibFunc(*Callee, Func)) 3619 return nullptr; 3620 3621 // We never change the calling convention. 3622 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3623 return nullptr; 3624 3625 switch (Func) { 3626 case LibFunc_memcpy_chk: 3627 return optimizeMemCpyChk(CI, Builder); 3628 case LibFunc_mempcpy_chk: 3629 return optimizeMemPCpyChk(CI, Builder); 3630 case LibFunc_memmove_chk: 3631 return optimizeMemMoveChk(CI, Builder); 3632 case LibFunc_memset_chk: 3633 return optimizeMemSetChk(CI, Builder); 3634 case LibFunc_stpcpy_chk: 3635 case LibFunc_strcpy_chk: 3636 return optimizeStrpCpyChk(CI, Builder, Func); 3637 case LibFunc_strlen_chk: 3638 return optimizeStrLenChk(CI, Builder); 3639 case LibFunc_stpncpy_chk: 3640 case LibFunc_strncpy_chk: 3641 return optimizeStrpNCpyChk(CI, Builder, Func); 3642 case LibFunc_memccpy_chk: 3643 return optimizeMemCCpyChk(CI, Builder); 3644 case LibFunc_snprintf_chk: 3645 return optimizeSNPrintfChk(CI, Builder); 3646 case LibFunc_sprintf_chk: 3647 return optimizeSPrintfChk(CI, Builder); 3648 case LibFunc_strcat_chk: 3649 return optimizeStrCatChk(CI, Builder); 3650 case LibFunc_strlcat_chk: 3651 return optimizeStrLCat(CI, Builder); 3652 case LibFunc_strncat_chk: 3653 return optimizeStrNCatChk(CI, Builder); 3654 case LibFunc_strlcpy_chk: 3655 return optimizeStrLCpyChk(CI, Builder); 3656 case LibFunc_vsnprintf_chk: 3657 return optimizeVSNPrintfChk(CI, Builder); 3658 case LibFunc_vsprintf_chk: 3659 return optimizeVSPrintfChk(CI, Builder); 3660 default: 3661 break; 3662 } 3663 return nullptr; 3664 } 3665 3666 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3667 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3668 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3669