1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the library calls simplifier. It does not implement 11 // any pass, but can't be used by other passes to do simplifications. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Transforms/Utils/BuildLibCalls.h" 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 static cl::opt<bool> 43 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 44 cl::init(false), 45 cl::desc("Enable unsafe double to float " 46 "shrinking for math lib calls")); 47 48 49 //===----------------------------------------------------------------------===// 50 // Helper Functions 51 //===----------------------------------------------------------------------===// 52 53 static bool ignoreCallingConv(LibFunc Func) { 54 return Func == LibFunc_abs || Func == LibFunc_labs || 55 Func == LibFunc_llabs || Func == LibFunc_strlen; 56 } 57 58 static bool isCallingConvCCompatible(CallInst *CI) { 59 switch(CI->getCallingConv()) { 60 default: 61 return false; 62 case llvm::CallingConv::C: 63 return true; 64 case llvm::CallingConv::ARM_APCS: 65 case llvm::CallingConv::ARM_AAPCS: 66 case llvm::CallingConv::ARM_AAPCS_VFP: { 67 68 // The iOS ABI diverges from the standard in some cases, so for now don't 69 // try to simplify those calls. 70 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 71 return false; 72 73 auto *FuncTy = CI->getFunctionType(); 74 75 if (!FuncTy->getReturnType()->isPointerTy() && 76 !FuncTy->getReturnType()->isIntegerTy() && 77 !FuncTy->getReturnType()->isVoidTy()) 78 return false; 79 80 for (auto Param : FuncTy->params()) { 81 if (!Param->isPointerTy() && !Param->isIntegerTy()) 82 return false; 83 } 84 return true; 85 } 86 } 87 return false; 88 } 89 90 /// Return true if it is only used in equality comparisons with With. 91 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 92 for (User *U : V->users()) { 93 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 94 if (IC->isEquality() && IC->getOperand(1) == With) 95 continue; 96 // Unknown instruction. 97 return false; 98 } 99 return true; 100 } 101 102 static bool callHasFloatingPointArgument(const CallInst *CI) { 103 return any_of(CI->operands(), [](const Use &OI) { 104 return OI->getType()->isFloatingPointTy(); 105 }); 106 } 107 108 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 109 if (Base < 2 || Base > 36) 110 // handle special zero base 111 if (Base != 0) 112 return nullptr; 113 114 char *End; 115 std::string nptr = Str.str(); 116 errno = 0; 117 long long int Result = strtoll(nptr.c_str(), &End, Base); 118 if (errno) 119 return nullptr; 120 121 // if we assume all possible target locales are ASCII supersets, 122 // then if strtoll successfully parses a number on the host, 123 // it will also successfully parse the same way on the target 124 if (*End != '\0') 125 return nullptr; 126 127 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 128 return nullptr; 129 130 return ConstantInt::get(CI->getType(), Result); 131 } 132 133 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 134 const TargetLibraryInfo *TLI) { 135 CallInst *FOpen = dyn_cast<CallInst>(File); 136 if (!FOpen) 137 return false; 138 139 Function *InnerCallee = FOpen->getCalledFunction(); 140 if (!InnerCallee) 141 return false; 142 143 LibFunc Func; 144 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 145 Func != LibFunc_fopen) 146 return false; 147 148 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 149 if (PointerMayBeCaptured(File, true, true)) 150 return false; 151 152 return true; 153 } 154 155 static bool isOnlyUsedInComparisonWithZero(Value *V) { 156 for (User *U : V->users()) { 157 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 158 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 159 if (C->isNullValue()) 160 continue; 161 // Unknown instruction. 162 return false; 163 } 164 return true; 165 } 166 167 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 168 const DataLayout &DL) { 169 if (!isOnlyUsedInComparisonWithZero(CI)) 170 return false; 171 172 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 173 return false; 174 175 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 176 return false; 177 178 return true; 179 } 180 181 //===----------------------------------------------------------------------===// 182 // String and Memory Library Call Optimizations 183 //===----------------------------------------------------------------------===// 184 185 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 186 // Extract some information from the instruction 187 Value *Dst = CI->getArgOperand(0); 188 Value *Src = CI->getArgOperand(1); 189 190 // See if we can get the length of the input string. 191 uint64_t Len = GetStringLength(Src); 192 if (Len == 0) 193 return nullptr; 194 --Len; // Unbias length. 195 196 // Handle the simple, do-nothing case: strcat(x, "") -> x 197 if (Len == 0) 198 return Dst; 199 200 return emitStrLenMemCpy(Src, Dst, Len, B); 201 } 202 203 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 204 IRBuilder<> &B) { 205 // We need to find the end of the destination string. That's where the 206 // memory is to be moved to. We just generate a call to strlen. 207 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 208 if (!DstLen) 209 return nullptr; 210 211 // Now that we have the destination's length, we must index into the 212 // destination's pointer to get the actual memcpy destination (end of 213 // the string .. we're concatenating). 214 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 215 216 // We have enough information to now generate the memcpy call to do the 217 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 218 B.CreateMemCpy(CpyDst, 1, Src, 1, 219 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 220 return Dst; 221 } 222 223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 224 // Extract some information from the instruction. 225 Value *Dst = CI->getArgOperand(0); 226 Value *Src = CI->getArgOperand(1); 227 uint64_t Len; 228 229 // We don't do anything if length is not constant. 230 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 231 Len = LengthArg->getZExtValue(); 232 else 233 return nullptr; 234 235 // See if we can get the length of the input string. 236 uint64_t SrcLen = GetStringLength(Src); 237 if (SrcLen == 0) 238 return nullptr; 239 --SrcLen; // Unbias length. 240 241 // Handle the simple, do-nothing cases: 242 // strncat(x, "", c) -> x 243 // strncat(x, c, 0) -> x 244 if (SrcLen == 0 || Len == 0) 245 return Dst; 246 247 // We don't optimize this case. 248 if (Len < SrcLen) 249 return nullptr; 250 251 // strncat(x, s, c) -> strcat(x, s) 252 // s is constant so the strcat can be optimized further. 253 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 254 } 255 256 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 257 Function *Callee = CI->getCalledFunction(); 258 FunctionType *FT = Callee->getFunctionType(); 259 Value *SrcStr = CI->getArgOperand(0); 260 261 // If the second operand is non-constant, see if we can compute the length 262 // of the input string and turn this into memchr. 263 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 264 if (!CharC) { 265 uint64_t Len = GetStringLength(SrcStr); 266 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 267 return nullptr; 268 269 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 270 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 271 B, DL, TLI); 272 } 273 274 // Otherwise, the character is a constant, see if the first argument is 275 // a string literal. If so, we can constant fold. 276 StringRef Str; 277 if (!getConstantStringInfo(SrcStr, Str)) { 278 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 279 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 280 "strchr"); 281 return nullptr; 282 } 283 284 // Compute the offset, make sure to handle the case when we're searching for 285 // zero (a weird way to spell strlen). 286 size_t I = (0xFF & CharC->getSExtValue()) == 0 287 ? Str.size() 288 : Str.find(CharC->getSExtValue()); 289 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 290 return Constant::getNullValue(CI->getType()); 291 292 // strchr(s+n,c) -> gep(s+n+i,c) 293 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 294 } 295 296 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 297 Value *SrcStr = CI->getArgOperand(0); 298 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 299 300 // Cannot fold anything if we're not looking for a constant. 301 if (!CharC) 302 return nullptr; 303 304 StringRef Str; 305 if (!getConstantStringInfo(SrcStr, Str)) { 306 // strrchr(s, 0) -> strchr(s, 0) 307 if (CharC->isZero()) 308 return emitStrChr(SrcStr, '\0', B, TLI); 309 return nullptr; 310 } 311 312 // Compute the offset. 313 size_t I = (0xFF & CharC->getSExtValue()) == 0 314 ? Str.size() 315 : Str.rfind(CharC->getSExtValue()); 316 if (I == StringRef::npos) // Didn't find the char. Return null. 317 return Constant::getNullValue(CI->getType()); 318 319 // strrchr(s+n,c) -> gep(s+n+i,c) 320 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 321 } 322 323 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 324 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 325 if (Str1P == Str2P) // strcmp(x,x) -> 0 326 return ConstantInt::get(CI->getType(), 0); 327 328 StringRef Str1, Str2; 329 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 330 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 331 332 // strcmp(x, y) -> cnst (if both x and y are constant strings) 333 if (HasStr1 && HasStr2) 334 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 335 336 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 337 return B.CreateNeg( 338 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 339 340 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 341 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 342 343 // strcmp(P, "x") -> memcmp(P, "x", 2) 344 uint64_t Len1 = GetStringLength(Str1P); 345 uint64_t Len2 = GetStringLength(Str2P); 346 if (Len1 && Len2) { 347 return emitMemCmp(Str1P, Str2P, 348 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 349 std::min(Len1, Len2)), 350 B, DL, TLI); 351 } 352 353 // strcmp to memcmp 354 if (!HasStr1 && HasStr2) { 355 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 356 return emitMemCmp( 357 Str1P, Str2P, 358 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 359 TLI); 360 } else if (HasStr1 && !HasStr2) { 361 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 362 return emitMemCmp( 363 Str1P, Str2P, 364 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 365 TLI); 366 } 367 368 return nullptr; 369 } 370 371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 372 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 373 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 374 return ConstantInt::get(CI->getType(), 0); 375 376 // Get the length argument if it is constant. 377 uint64_t Length; 378 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 379 Length = LengthArg->getZExtValue(); 380 else 381 return nullptr; 382 383 if (Length == 0) // strncmp(x,y,0) -> 0 384 return ConstantInt::get(CI->getType(), 0); 385 386 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 387 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 388 389 StringRef Str1, Str2; 390 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 391 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 392 393 // strncmp(x, y) -> cnst (if both x and y are constant strings) 394 if (HasStr1 && HasStr2) { 395 StringRef SubStr1 = Str1.substr(0, Length); 396 StringRef SubStr2 = Str2.substr(0, Length); 397 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 398 } 399 400 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 401 return B.CreateNeg( 402 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 403 404 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 405 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 406 407 uint64_t Len1 = GetStringLength(Str1P); 408 uint64_t Len2 = GetStringLength(Str2P); 409 410 // strncmp to memcmp 411 if (!HasStr1 && HasStr2) { 412 Len2 = std::min(Len2, Length); 413 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 414 return emitMemCmp( 415 Str1P, Str2P, 416 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 417 TLI); 418 } else if (HasStr1 && !HasStr2) { 419 Len1 = std::min(Len1, Length); 420 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 421 return emitMemCmp( 422 Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 424 TLI); 425 } 426 427 return nullptr; 428 } 429 430 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 431 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 432 if (Dst == Src) // strcpy(x,x) -> x 433 return Src; 434 435 // See if we can get the length of the input string. 436 uint64_t Len = GetStringLength(Src); 437 if (Len == 0) 438 return nullptr; 439 440 // We have enough information to now generate the memcpy call to do the 441 // copy for us. Make a memcpy to copy the nul byte with align = 1. 442 B.CreateMemCpy(Dst, 1, Src, 1, 443 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 444 return Dst; 445 } 446 447 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 448 Function *Callee = CI->getCalledFunction(); 449 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 450 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 451 Value *StrLen = emitStrLen(Src, B, DL, TLI); 452 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 453 } 454 455 // See if we can get the length of the input string. 456 uint64_t Len = GetStringLength(Src); 457 if (Len == 0) 458 return nullptr; 459 460 Type *PT = Callee->getFunctionType()->getParamType(0); 461 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 462 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 463 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 464 465 // We have enough information to now generate the memcpy call to do the 466 // copy for us. Make a memcpy to copy the nul byte with align = 1. 467 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 468 return DstEnd; 469 } 470 471 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 472 Function *Callee = CI->getCalledFunction(); 473 Value *Dst = CI->getArgOperand(0); 474 Value *Src = CI->getArgOperand(1); 475 Value *LenOp = CI->getArgOperand(2); 476 477 // See if we can get the length of the input string. 478 uint64_t SrcLen = GetStringLength(Src); 479 if (SrcLen == 0) 480 return nullptr; 481 --SrcLen; 482 483 if (SrcLen == 0) { 484 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 485 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 486 return Dst; 487 } 488 489 uint64_t Len; 490 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 491 Len = LengthArg->getZExtValue(); 492 else 493 return nullptr; 494 495 if (Len == 0) 496 return Dst; // strncpy(x, y, 0) -> x 497 498 // Let strncpy handle the zero padding 499 if (Len > SrcLen + 1) 500 return nullptr; 501 502 Type *PT = Callee->getFunctionType()->getParamType(0); 503 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 504 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 505 506 return Dst; 507 } 508 509 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 510 unsigned CharSize) { 511 Value *Src = CI->getArgOperand(0); 512 513 // Constant folding: strlen("xyz") -> 3 514 if (uint64_t Len = GetStringLength(Src, CharSize)) 515 return ConstantInt::get(CI->getType(), Len - 1); 516 517 // If s is a constant pointer pointing to a string literal, we can fold 518 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 519 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 520 // We only try to simplify strlen when the pointer s points to an array 521 // of i8. Otherwise, we would need to scale the offset x before doing the 522 // subtraction. This will make the optimization more complex, and it's not 523 // very useful because calling strlen for a pointer of other types is 524 // very uncommon. 525 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 526 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 527 return nullptr; 528 529 ConstantDataArraySlice Slice; 530 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 531 uint64_t NullTermIdx; 532 if (Slice.Array == nullptr) { 533 NullTermIdx = 0; 534 } else { 535 NullTermIdx = ~((uint64_t)0); 536 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 537 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 538 NullTermIdx = I; 539 break; 540 } 541 } 542 // If the string does not have '\0', leave it to strlen to compute 543 // its length. 544 if (NullTermIdx == ~((uint64_t)0)) 545 return nullptr; 546 } 547 548 Value *Offset = GEP->getOperand(2); 549 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 550 Known.Zero.flipAllBits(); 551 uint64_t ArrSize = 552 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 553 554 // KnownZero's bits are flipped, so zeros in KnownZero now represent 555 // bits known to be zeros in Offset, and ones in KnowZero represent 556 // bits unknown in Offset. Therefore, Offset is known to be in range 557 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 558 // unsigned-less-than NullTermIdx. 559 // 560 // If Offset is not provably in the range [0, NullTermIdx], we can still 561 // optimize if we can prove that the program has undefined behavior when 562 // Offset is outside that range. That is the case when GEP->getOperand(0) 563 // is a pointer to an object whose memory extent is NullTermIdx+1. 564 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 565 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 566 NullTermIdx == ArrSize - 1)) { 567 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 568 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 569 Offset); 570 } 571 } 572 573 return nullptr; 574 } 575 576 // strlen(x?"foo":"bars") --> x ? 3 : 4 577 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 578 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 579 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 580 if (LenTrue && LenFalse) { 581 ORE.emit([&]() { 582 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 583 << "folded strlen(select) to select of constants"; 584 }); 585 return B.CreateSelect(SI->getCondition(), 586 ConstantInt::get(CI->getType(), LenTrue - 1), 587 ConstantInt::get(CI->getType(), LenFalse - 1)); 588 } 589 } 590 591 // strlen(x) != 0 --> *x != 0 592 // strlen(x) == 0 --> *x == 0 593 if (isOnlyUsedInZeroEqualityComparison(CI)) 594 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 595 596 return nullptr; 597 } 598 599 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 600 return optimizeStringLength(CI, B, 8); 601 } 602 603 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 604 Module &M = *CI->getModule(); 605 unsigned WCharSize = TLI->getWCharSize(M) * 8; 606 // We cannot perform this optimization without wchar_size metadata. 607 if (WCharSize == 0) 608 return nullptr; 609 610 return optimizeStringLength(CI, B, WCharSize); 611 } 612 613 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 614 StringRef S1, S2; 615 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 616 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 617 618 // strpbrk(s, "") -> nullptr 619 // strpbrk("", s) -> nullptr 620 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 621 return Constant::getNullValue(CI->getType()); 622 623 // Constant folding. 624 if (HasS1 && HasS2) { 625 size_t I = S1.find_first_of(S2); 626 if (I == StringRef::npos) // No match. 627 return Constant::getNullValue(CI->getType()); 628 629 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 630 "strpbrk"); 631 } 632 633 // strpbrk(s, "a") -> strchr(s, 'a') 634 if (HasS2 && S2.size() == 1) 635 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 636 637 return nullptr; 638 } 639 640 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 641 Value *EndPtr = CI->getArgOperand(1); 642 if (isa<ConstantPointerNull>(EndPtr)) { 643 // With a null EndPtr, this function won't capture the main argument. 644 // It would be readonly too, except that it still may write to errno. 645 CI->addParamAttr(0, Attribute::NoCapture); 646 } 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 652 StringRef S1, S2; 653 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 654 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 655 656 // strspn(s, "") -> 0 657 // strspn("", s) -> 0 658 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 659 return Constant::getNullValue(CI->getType()); 660 661 // Constant folding. 662 if (HasS1 && HasS2) { 663 size_t Pos = S1.find_first_not_of(S2); 664 if (Pos == StringRef::npos) 665 Pos = S1.size(); 666 return ConstantInt::get(CI->getType(), Pos); 667 } 668 669 return nullptr; 670 } 671 672 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 673 StringRef S1, S2; 674 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 675 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 676 677 // strcspn("", s) -> 0 678 if (HasS1 && S1.empty()) 679 return Constant::getNullValue(CI->getType()); 680 681 // Constant folding. 682 if (HasS1 && HasS2) { 683 size_t Pos = S1.find_first_of(S2); 684 if (Pos == StringRef::npos) 685 Pos = S1.size(); 686 return ConstantInt::get(CI->getType(), Pos); 687 } 688 689 // strcspn(s, "") -> strlen(s) 690 if (HasS2 && S2.empty()) 691 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 692 693 return nullptr; 694 } 695 696 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 697 // fold strstr(x, x) -> x. 698 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 699 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 700 701 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 702 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 703 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 704 if (!StrLen) 705 return nullptr; 706 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 707 StrLen, B, DL, TLI); 708 if (!StrNCmp) 709 return nullptr; 710 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 711 ICmpInst *Old = cast<ICmpInst>(*UI++); 712 Value *Cmp = 713 B.CreateICmp(Old->getPredicate(), StrNCmp, 714 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 715 replaceAllUsesWith(Old, Cmp); 716 } 717 return CI; 718 } 719 720 // See if either input string is a constant string. 721 StringRef SearchStr, ToFindStr; 722 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 723 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 724 725 // fold strstr(x, "") -> x. 726 if (HasStr2 && ToFindStr.empty()) 727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 728 729 // If both strings are known, constant fold it. 730 if (HasStr1 && HasStr2) { 731 size_t Offset = SearchStr.find(ToFindStr); 732 733 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 734 return Constant::getNullValue(CI->getType()); 735 736 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 737 Value *Result = castToCStr(CI->getArgOperand(0), B); 738 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 739 return B.CreateBitCast(Result, CI->getType()); 740 } 741 742 // fold strstr(x, "y") -> strchr(x, 'y'). 743 if (HasStr2 && ToFindStr.size() == 1) { 744 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 745 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 746 } 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 751 Value *SrcStr = CI->getArgOperand(0); 752 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 753 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 754 755 // memchr(x, y, 0) -> null 756 if (LenC && LenC->isZero()) 757 return Constant::getNullValue(CI->getType()); 758 759 // From now on we need at least constant length and string. 760 StringRef Str; 761 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 762 return nullptr; 763 764 // Truncate the string to LenC. If Str is smaller than LenC we will still only 765 // scan the string, as reading past the end of it is undefined and we can just 766 // return null if we don't find the char. 767 Str = Str.substr(0, LenC->getZExtValue()); 768 769 // If the char is variable but the input str and length are not we can turn 770 // this memchr call into a simple bit field test. Of course this only works 771 // when the return value is only checked against null. 772 // 773 // It would be really nice to reuse switch lowering here but we can't change 774 // the CFG at this point. 775 // 776 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 777 // after bounds check. 778 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 779 unsigned char Max = 780 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 781 reinterpret_cast<const unsigned char *>(Str.end())); 782 783 // Make sure the bit field we're about to create fits in a register on the 784 // target. 785 // FIXME: On a 64 bit architecture this prevents us from using the 786 // interesting range of alpha ascii chars. We could do better by emitting 787 // two bitfields or shifting the range by 64 if no lower chars are used. 788 if (!DL.fitsInLegalInteger(Max + 1)) 789 return nullptr; 790 791 // For the bit field use a power-of-2 type with at least 8 bits to avoid 792 // creating unnecessary illegal types. 793 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 794 795 // Now build the bit field. 796 APInt Bitfield(Width, 0); 797 for (char C : Str) 798 Bitfield.setBit((unsigned char)C); 799 Value *BitfieldC = B.getInt(Bitfield); 800 801 // First check that the bit field access is within bounds. 802 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 803 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 804 "memchr.bounds"); 805 806 // Create code that checks if the given bit is set in the field. 807 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 808 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 809 810 // Finally merge both checks and cast to pointer type. The inttoptr 811 // implicitly zexts the i1 to intptr type. 812 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 813 } 814 815 // Check if all arguments are constants. If so, we can constant fold. 816 if (!CharC) 817 return nullptr; 818 819 // Compute the offset. 820 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 821 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 822 return Constant::getNullValue(CI->getType()); 823 824 // memchr(s+n,c,l) -> gep(s+n+i,c) 825 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 826 } 827 828 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 829 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 830 831 if (LHS == RHS) // memcmp(s,s,x) -> 0 832 return Constant::getNullValue(CI->getType()); 833 834 // Make sure we have a constant length. 835 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 836 if (!LenC) 837 return nullptr; 838 839 uint64_t Len = LenC->getZExtValue(); 840 if (Len == 0) // memcmp(s1,s2,0) -> 0 841 return Constant::getNullValue(CI->getType()); 842 843 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 844 if (Len == 1) { 845 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 846 CI->getType(), "lhsv"); 847 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 848 CI->getType(), "rhsv"); 849 return B.CreateSub(LHSV, RHSV, "chardiff"); 850 } 851 852 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 853 // TODO: The case where both inputs are constants does not need to be limited 854 // to legal integers or equality comparison. See block below this. 855 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 856 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 857 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 858 859 // First, see if we can fold either argument to a constant. 860 Value *LHSV = nullptr; 861 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 862 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 863 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 864 } 865 Value *RHSV = nullptr; 866 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 867 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 868 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 869 } 870 871 // Don't generate unaligned loads. If either source is constant data, 872 // alignment doesn't matter for that source because there is no load. 873 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 874 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 875 if (!LHSV) { 876 Type *LHSPtrTy = 877 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 878 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 879 } 880 if (!RHSV) { 881 Type *RHSPtrTy = 882 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 883 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 884 } 885 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 886 } 887 } 888 889 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 890 // TODO: This is limited to i8 arrays. 891 StringRef LHSStr, RHSStr; 892 if (getConstantStringInfo(LHS, LHSStr) && 893 getConstantStringInfo(RHS, RHSStr)) { 894 // Make sure we're not reading out-of-bounds memory. 895 if (Len > LHSStr.size() || Len > RHSStr.size()) 896 return nullptr; 897 // Fold the memcmp and normalize the result. This way we get consistent 898 // results across multiple platforms. 899 uint64_t Ret = 0; 900 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 901 if (Cmp < 0) 902 Ret = -1; 903 else if (Cmp > 0) 904 Ret = 1; 905 return ConstantInt::get(CI->getType(), Ret); 906 } 907 908 return nullptr; 909 } 910 911 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 912 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 913 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 914 CI->getArgOperand(2)); 915 return CI->getArgOperand(0); 916 } 917 918 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 919 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 920 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 921 CI->getArgOperand(2)); 922 return CI->getArgOperand(0); 923 } 924 925 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 926 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 927 // This has to be a memset of zeros (bzero). 928 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 929 if (!FillValue || FillValue->getZExtValue() != 0) 930 return nullptr; 931 932 // TODO: We should handle the case where the malloc has more than one use. 933 // This is necessary to optimize common patterns such as when the result of 934 // the malloc is checked against null or when a memset intrinsic is used in 935 // place of a memset library call. 936 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 937 if (!Malloc || !Malloc->hasOneUse()) 938 return nullptr; 939 940 // Is the inner call really malloc()? 941 Function *InnerCallee = Malloc->getCalledFunction(); 942 if (!InnerCallee) 943 return nullptr; 944 945 LibFunc Func; 946 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 947 Func != LibFunc_malloc) 948 return nullptr; 949 950 // The memset must cover the same number of bytes that are malloc'd. 951 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 952 return nullptr; 953 954 // Replace the malloc with a calloc. We need the data layout to know what the 955 // actual size of a 'size_t' parameter is. 956 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 957 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 958 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 959 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 960 Malloc->getArgOperand(0), Malloc->getAttributes(), 961 B, *TLI); 962 if (!Calloc) 963 return nullptr; 964 965 Malloc->replaceAllUsesWith(Calloc); 966 eraseFromParent(Malloc); 967 968 return Calloc; 969 } 970 971 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 972 if (auto *Calloc = foldMallocMemset(CI, B)) 973 return Calloc; 974 975 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 976 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 977 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 978 return CI->getArgOperand(0); 979 } 980 981 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 982 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 983 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 984 985 return nullptr; 986 } 987 988 //===----------------------------------------------------------------------===// 989 // Math Library Optimizations 990 //===----------------------------------------------------------------------===// 991 992 // Replace a libcall \p CI with a call to intrinsic \p IID 993 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 994 // Propagate fast-math flags from the existing call to the new call. 995 IRBuilder<>::FastMathFlagGuard Guard(B); 996 B.setFastMathFlags(CI->getFastMathFlags()); 997 998 Module *M = CI->getModule(); 999 Value *V = CI->getArgOperand(0); 1000 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1001 CallInst *NewCall = B.CreateCall(F, V); 1002 NewCall->takeName(CI); 1003 return NewCall; 1004 } 1005 1006 /// Return a variant of Val with float type. 1007 /// Currently this works in two cases: If Val is an FPExtension of a float 1008 /// value to something bigger, simply return the operand. 1009 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1010 /// loss of precision do so. 1011 static Value *valueHasFloatPrecision(Value *Val) { 1012 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1013 Value *Op = Cast->getOperand(0); 1014 if (Op->getType()->isFloatTy()) 1015 return Op; 1016 } 1017 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1018 APFloat F = Const->getValueAPF(); 1019 bool losesInfo; 1020 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1021 &losesInfo); 1022 if (!losesInfo) 1023 return ConstantFP::get(Const->getContext(), F); 1024 } 1025 return nullptr; 1026 } 1027 1028 /// Shrink double -> float functions. 1029 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1030 bool isBinary, bool isPrecise = false) { 1031 if (!CI->getType()->isDoubleTy()) 1032 return nullptr; 1033 1034 // If not all the uses of the function are converted to float, then bail out. 1035 // This matters if the precision of the result is more important than the 1036 // precision of the arguments. 1037 if (isPrecise) 1038 for (User *U : CI->users()) { 1039 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1040 if (!Cast || !Cast->getType()->isFloatTy()) 1041 return nullptr; 1042 } 1043 1044 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1045 Value *V[2]; 1046 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1047 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1048 if (!V[0] || (isBinary && !V[1])) 1049 return nullptr; 1050 1051 // If call isn't an intrinsic, check that it isn't within a function with the 1052 // same name as the float version of this call, otherwise the result is an 1053 // infinite loop. For example, from MinGW-w64: 1054 // 1055 // float expf(float val) { return (float) exp((double) val); } 1056 Function *CalleeFn = CI->getCalledFunction(); 1057 StringRef CalleeNm = CalleeFn->getName(); 1058 AttributeList CalleeAt = CalleeFn->getAttributes(); 1059 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1060 const Function *Fn = CI->getFunction(); 1061 StringRef FnName = Fn->getName(); 1062 if (FnName.back() == 'f' && 1063 FnName.size() == (CalleeNm.size() + 1) && 1064 FnName.startswith(CalleeNm)) 1065 return nullptr; 1066 } 1067 1068 // Propagate the math semantics from the current function to the new function. 1069 IRBuilder<>::FastMathFlagGuard Guard(B); 1070 B.setFastMathFlags(CI->getFastMathFlags()); 1071 1072 // g((double) float) -> (double) gf(float) 1073 Value *R; 1074 if (CalleeFn->isIntrinsic()) { 1075 Module *M = CI->getModule(); 1076 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1077 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1078 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1079 } 1080 else 1081 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1082 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1083 1084 return B.CreateFPExt(R, B.getDoubleTy()); 1085 } 1086 1087 /// Shrink double -> float for unary functions. 1088 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1089 bool isPrecise = false) { 1090 return optimizeDoubleFP(CI, B, false, isPrecise); 1091 } 1092 1093 /// Shrink double -> float for binary functions. 1094 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1095 bool isPrecise = false) { 1096 return optimizeDoubleFP(CI, B, true, isPrecise); 1097 } 1098 1099 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1100 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1101 if (!CI->isFast()) 1102 return nullptr; 1103 1104 // Propagate fast-math flags from the existing call to new instructions. 1105 IRBuilder<>::FastMathFlagGuard Guard(B); 1106 B.setFastMathFlags(CI->getFastMathFlags()); 1107 1108 Value *Real, *Imag; 1109 if (CI->getNumArgOperands() == 1) { 1110 Value *Op = CI->getArgOperand(0); 1111 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1112 Real = B.CreateExtractValue(Op, 0, "real"); 1113 Imag = B.CreateExtractValue(Op, 1, "imag"); 1114 } else { 1115 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1116 Real = CI->getArgOperand(0); 1117 Imag = CI->getArgOperand(1); 1118 } 1119 1120 Value *RealReal = B.CreateFMul(Real, Real); 1121 Value *ImagImag = B.CreateFMul(Imag, Imag); 1122 1123 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1124 CI->getType()); 1125 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1126 } 1127 1128 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1129 IRBuilder<> &B) { 1130 if (!isa<FPMathOperator>(Call)) 1131 return nullptr; 1132 1133 IRBuilder<>::FastMathFlagGuard Guard(B); 1134 B.setFastMathFlags(Call->getFastMathFlags()); 1135 1136 // TODO: Can this be shared to also handle LLVM intrinsics? 1137 Value *X; 1138 switch (Func) { 1139 case LibFunc_sin: 1140 case LibFunc_sinf: 1141 case LibFunc_sinl: 1142 case LibFunc_tan: 1143 case LibFunc_tanf: 1144 case LibFunc_tanl: 1145 // sin(-X) --> -sin(X) 1146 // tan(-X) --> -tan(X) 1147 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1148 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1149 break; 1150 case LibFunc_cos: 1151 case LibFunc_cosf: 1152 case LibFunc_cosl: 1153 // cos(-X) --> cos(X) 1154 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1155 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1156 break; 1157 default: 1158 break; 1159 } 1160 return nullptr; 1161 } 1162 1163 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1164 // Multiplications calculated using Addition Chains. 1165 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1166 1167 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1168 1169 if (InnerChain[Exp]) 1170 return InnerChain[Exp]; 1171 1172 static const unsigned AddChain[33][2] = { 1173 {0, 0}, // Unused. 1174 {0, 0}, // Unused (base case = pow1). 1175 {1, 1}, // Unused (pre-computed). 1176 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1177 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1178 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1179 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1180 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1181 }; 1182 1183 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1184 getPow(InnerChain, AddChain[Exp][1], B)); 1185 return InnerChain[Exp]; 1186 } 1187 1188 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1189 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1190 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1191 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1192 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1193 Module *Mod = Pow->getModule(); 1194 Type *Ty = Pow->getType(); 1195 bool Ignored; 1196 1197 // Evaluate special cases related to a nested function as the base. 1198 1199 // pow(exp(x), y) -> exp(x * y) 1200 // pow(exp2(x), y) -> exp2(x * y) 1201 // If exp{,2}() is used only once, it is better to fold two transcendental 1202 // math functions into one. If used again, exp{,2}() would still have to be 1203 // called with the original argument, then keep both original transcendental 1204 // functions. However, this transformation is only safe with fully relaxed 1205 // math semantics, since, besides rounding differences, it changes overflow 1206 // and underflow behavior quite dramatically. For example: 1207 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1208 // Whereas: 1209 // exp(1000 * 0.001) = exp(1) 1210 // TODO: Loosen the requirement for fully relaxed math semantics. 1211 // TODO: Handle exp10() when more targets have it available. 1212 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1213 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1214 LibFunc LibFn; 1215 1216 Function *CalleeFn = BaseFn->getCalledFunction(); 1217 if (CalleeFn && 1218 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1219 StringRef ExpName; 1220 Intrinsic::ID ID; 1221 Value *ExpFn; 1222 LibFunc LibFnFloat; 1223 LibFunc LibFnDouble; 1224 LibFunc LibFnLongDouble; 1225 1226 switch (LibFn) { 1227 default: 1228 return nullptr; 1229 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1230 ExpName = TLI->getName(LibFunc_exp); 1231 ID = Intrinsic::exp; 1232 LibFnFloat = LibFunc_expf; 1233 LibFnDouble = LibFunc_exp; 1234 LibFnLongDouble = LibFunc_expl; 1235 break; 1236 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1237 ExpName = TLI->getName(LibFunc_exp2); 1238 ID = Intrinsic::exp2; 1239 LibFnFloat = LibFunc_exp2f; 1240 LibFnDouble = LibFunc_exp2; 1241 LibFnLongDouble = LibFunc_exp2l; 1242 break; 1243 } 1244 1245 // Create new exp{,2}() with the product as its argument. 1246 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1247 ExpFn = BaseFn->doesNotAccessMemory() 1248 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1249 FMul, ExpName) 1250 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1251 LibFnLongDouble, B, 1252 BaseFn->getAttributes()); 1253 1254 // Since the new exp{,2}() is different from the original one, dead code 1255 // elimination cannot be trusted to remove it, since it may have side 1256 // effects (e.g., errno). When the only consumer for the original 1257 // exp{,2}() is pow(), then it has to be explicitly erased. 1258 BaseFn->replaceAllUsesWith(ExpFn); 1259 eraseFromParent(BaseFn); 1260 1261 return ExpFn; 1262 } 1263 } 1264 1265 // Evaluate special cases related to a constant base. 1266 1267 const APFloat *BaseF; 1268 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1269 return nullptr; 1270 1271 // pow(2.0 ** n, x) -> exp2(n * x) 1272 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1273 APFloat BaseR = APFloat(1.0); 1274 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1275 BaseR = BaseR / *BaseF; 1276 bool IsInteger = BaseF->isInteger(), 1277 IsReciprocal = BaseR.isInteger(); 1278 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1279 APSInt NI(64, false); 1280 if ((IsInteger || IsReciprocal) && 1281 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1282 NI > 1 && NI.isPowerOf2()) { 1283 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1284 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1285 if (Pow->doesNotAccessMemory()) 1286 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1287 FMul, "exp2"); 1288 else 1289 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1290 LibFunc_exp2l, B, Attrs); 1291 } 1292 } 1293 1294 // pow(10.0, x) -> exp10(x) 1295 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1296 if (match(Base, m_SpecificFP(10.0)) && 1297 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1298 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1299 LibFunc_exp10l, B, Attrs); 1300 1301 return nullptr; 1302 } 1303 1304 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1305 Module *M, IRBuilder<> &B, 1306 const TargetLibraryInfo *TLI) { 1307 // If errno is never set, then use the intrinsic for sqrt(). 1308 if (NoErrno) { 1309 Function *SqrtFn = 1310 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1311 return B.CreateCall(SqrtFn, V, "sqrt"); 1312 } 1313 1314 // Otherwise, use the libcall for sqrt(). 1315 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1316 LibFunc_sqrtl)) 1317 // TODO: We also should check that the target can in fact lower the sqrt() 1318 // libcall. We currently have no way to ask this question, so we ask if 1319 // the target has a sqrt() libcall, which is not exactly the same. 1320 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1321 LibFunc_sqrtl, B, Attrs); 1322 1323 return nullptr; 1324 } 1325 1326 /// Use square root in place of pow(x, +/-0.5). 1327 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1328 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1329 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1330 Module *Mod = Pow->getModule(); 1331 Type *Ty = Pow->getType(); 1332 1333 const APFloat *ExpoF; 1334 if (!match(Expo, m_APFloat(ExpoF)) || 1335 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1336 return nullptr; 1337 1338 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1339 if (!Sqrt) 1340 return nullptr; 1341 1342 // Handle signed zero base by expanding to fabs(sqrt(x)). 1343 if (!Pow->hasNoSignedZeros()) { 1344 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1345 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1346 } 1347 1348 // Handle non finite base by expanding to 1349 // (x == -infinity ? +infinity : sqrt(x)). 1350 if (!Pow->hasNoInfs()) { 1351 Value *PosInf = ConstantFP::getInfinity(Ty), 1352 *NegInf = ConstantFP::getInfinity(Ty, true); 1353 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1354 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1355 } 1356 1357 // If the exponent is negative, then get the reciprocal. 1358 if (ExpoF->isNegative()) 1359 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1360 1361 return Sqrt; 1362 } 1363 1364 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1365 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1366 Function *Callee = Pow->getCalledFunction(); 1367 StringRef Name = Callee->getName(); 1368 Type *Ty = Pow->getType(); 1369 Value *Shrunk = nullptr; 1370 bool Ignored; 1371 1372 // Bail out if simplifying libcalls to pow() is disabled. 1373 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1374 return nullptr; 1375 1376 // Propagate the math semantics from the call to any created instructions. 1377 IRBuilder<>::FastMathFlagGuard Guard(B); 1378 B.setFastMathFlags(Pow->getFastMathFlags()); 1379 1380 // Shrink pow() to powf() if the arguments are single precision, 1381 // unless the result is expected to be double precision. 1382 if (UnsafeFPShrink && 1383 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1384 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1385 1386 // Evaluate special cases related to the base. 1387 1388 // pow(1.0, x) -> 1.0 1389 if (match(Base, m_FPOne())) 1390 return Base; 1391 1392 if (Value *Exp = replacePowWithExp(Pow, B)) 1393 return Exp; 1394 1395 // Evaluate special cases related to the exponent. 1396 1397 // pow(x, -1.0) -> 1.0 / x 1398 if (match(Expo, m_SpecificFP(-1.0))) 1399 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1400 1401 // pow(x, 0.0) -> 1.0 1402 if (match(Expo, m_SpecificFP(0.0))) 1403 return ConstantFP::get(Ty, 1.0); 1404 1405 // pow(x, 1.0) -> x 1406 if (match(Expo, m_FPOne())) 1407 return Base; 1408 1409 // pow(x, 2.0) -> x * x 1410 if (match(Expo, m_SpecificFP(2.0))) 1411 return B.CreateFMul(Base, Base, "square"); 1412 1413 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1414 return Sqrt; 1415 1416 // pow(x, n) -> x * x * x * ... 1417 const APFloat *ExpoF; 1418 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1419 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1420 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1421 // additional fmul. 1422 // TODO: This whole transformation should be backend specific (e.g. some 1423 // backends might prefer libcalls or the limit for the exponent might 1424 // be different) and it should also consider optimizing for size. 1425 APFloat LimF(ExpoF->getSemantics(), 33.0), 1426 ExpoA(abs(*ExpoF)); 1427 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1428 // This transformation applies to integer or integer+0.5 exponents only. 1429 // For integer+0.5, we create a sqrt(Base) call. 1430 Value *Sqrt = nullptr; 1431 if (!ExpoA.isInteger()) { 1432 APFloat Expo2 = ExpoA; 1433 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1434 // is no floating point exception and the result is an integer, then 1435 // ExpoA == integer + 0.5 1436 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1437 return nullptr; 1438 1439 if (!Expo2.isInteger()) 1440 return nullptr; 1441 1442 Sqrt = 1443 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1444 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1445 } 1446 1447 // We will memoize intermediate products of the Addition Chain. 1448 Value *InnerChain[33] = {nullptr}; 1449 InnerChain[1] = Base; 1450 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1451 1452 // We cannot readily convert a non-double type (like float) to a double. 1453 // So we first convert it to something which could be converted to double. 1454 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1455 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1456 1457 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1458 if (Sqrt) 1459 FMul = B.CreateFMul(FMul, Sqrt); 1460 1461 // If the exponent is negative, then get the reciprocal. 1462 if (ExpoF->isNegative()) 1463 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1464 1465 return FMul; 1466 } 1467 } 1468 1469 return Shrunk; 1470 } 1471 1472 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1473 Function *Callee = CI->getCalledFunction(); 1474 Value *Ret = nullptr; 1475 StringRef Name = Callee->getName(); 1476 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1477 Ret = optimizeUnaryDoubleFP(CI, B, true); 1478 1479 Value *Op = CI->getArgOperand(0); 1480 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1481 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1482 LibFunc LdExp = LibFunc_ldexpl; 1483 if (Op->getType()->isFloatTy()) 1484 LdExp = LibFunc_ldexpf; 1485 else if (Op->getType()->isDoubleTy()) 1486 LdExp = LibFunc_ldexp; 1487 1488 if (TLI->has(LdExp)) { 1489 Value *LdExpArg = nullptr; 1490 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1491 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1492 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1493 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1494 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1495 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1496 } 1497 1498 if (LdExpArg) { 1499 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1500 if (!Op->getType()->isFloatTy()) 1501 One = ConstantExpr::getFPExtend(One, Op->getType()); 1502 1503 Module *M = CI->getModule(); 1504 Value *NewCallee = 1505 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1506 Op->getType(), B.getInt32Ty()); 1507 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1508 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1509 CI->setCallingConv(F->getCallingConv()); 1510 1511 return CI; 1512 } 1513 } 1514 return Ret; 1515 } 1516 1517 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1518 Function *Callee = CI->getCalledFunction(); 1519 // If we can shrink the call to a float function rather than a double 1520 // function, do that first. 1521 StringRef Name = Callee->getName(); 1522 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1523 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1524 return Ret; 1525 1526 IRBuilder<>::FastMathFlagGuard Guard(B); 1527 FastMathFlags FMF; 1528 if (CI->isFast()) { 1529 // If the call is 'fast', then anything we create here will also be 'fast'. 1530 FMF.setFast(); 1531 } else { 1532 // At a minimum, no-nans-fp-math must be true. 1533 if (!CI->hasNoNaNs()) 1534 return nullptr; 1535 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1536 // "Ideally, fmax would be sensitive to the sign of zero, for example 1537 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1538 // might be impractical." 1539 FMF.setNoSignedZeros(); 1540 FMF.setNoNaNs(); 1541 } 1542 B.setFastMathFlags(FMF); 1543 1544 // We have a relaxed floating-point environment. We can ignore NaN-handling 1545 // and transform to a compare and select. We do not have to consider errno or 1546 // exceptions, because fmin/fmax do not have those. 1547 Value *Op0 = CI->getArgOperand(0); 1548 Value *Op1 = CI->getArgOperand(1); 1549 Value *Cmp = Callee->getName().startswith("fmin") ? 1550 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1551 return B.CreateSelect(Cmp, Op0, Op1); 1552 } 1553 1554 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1555 Function *Callee = CI->getCalledFunction(); 1556 Value *Ret = nullptr; 1557 StringRef Name = Callee->getName(); 1558 if (UnsafeFPShrink && hasFloatVersion(Name)) 1559 Ret = optimizeUnaryDoubleFP(CI, B, true); 1560 1561 if (!CI->isFast()) 1562 return Ret; 1563 Value *Op1 = CI->getArgOperand(0); 1564 auto *OpC = dyn_cast<CallInst>(Op1); 1565 1566 // The earlier call must also be 'fast' in order to do these transforms. 1567 if (!OpC || !OpC->isFast()) 1568 return Ret; 1569 1570 // log(pow(x,y)) -> y*log(x) 1571 // This is only applicable to log, log2, log10. 1572 if (Name != "log" && Name != "log2" && Name != "log10") 1573 return Ret; 1574 1575 IRBuilder<>::FastMathFlagGuard Guard(B); 1576 FastMathFlags FMF; 1577 FMF.setFast(); 1578 B.setFastMathFlags(FMF); 1579 1580 LibFunc Func; 1581 Function *F = OpC->getCalledFunction(); 1582 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1583 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1584 return B.CreateFMul(OpC->getArgOperand(1), 1585 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1586 Callee->getAttributes()), "mul"); 1587 1588 // log(exp2(y)) -> y*log(2) 1589 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1590 TLI->has(Func) && Func == LibFunc_exp2) 1591 return B.CreateFMul( 1592 OpC->getArgOperand(0), 1593 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1594 Callee->getName(), B, Callee->getAttributes()), 1595 "logmul"); 1596 return Ret; 1597 } 1598 1599 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1600 Function *Callee = CI->getCalledFunction(); 1601 Value *Ret = nullptr; 1602 // TODO: Once we have a way (other than checking for the existince of the 1603 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1604 // condition below. 1605 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1606 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1607 Ret = optimizeUnaryDoubleFP(CI, B, true); 1608 1609 if (!CI->isFast()) 1610 return Ret; 1611 1612 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1613 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1614 return Ret; 1615 1616 // We're looking for a repeated factor in a multiplication tree, 1617 // so we can do this fold: sqrt(x * x) -> fabs(x); 1618 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1619 Value *Op0 = I->getOperand(0); 1620 Value *Op1 = I->getOperand(1); 1621 Value *RepeatOp = nullptr; 1622 Value *OtherOp = nullptr; 1623 if (Op0 == Op1) { 1624 // Simple match: the operands of the multiply are identical. 1625 RepeatOp = Op0; 1626 } else { 1627 // Look for a more complicated pattern: one of the operands is itself 1628 // a multiply, so search for a common factor in that multiply. 1629 // Note: We don't bother looking any deeper than this first level or for 1630 // variations of this pattern because instcombine's visitFMUL and/or the 1631 // reassociation pass should give us this form. 1632 Value *OtherMul0, *OtherMul1; 1633 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1634 // Pattern: sqrt((x * y) * z) 1635 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1636 // Matched: sqrt((x * x) * z) 1637 RepeatOp = OtherMul0; 1638 OtherOp = Op1; 1639 } 1640 } 1641 } 1642 if (!RepeatOp) 1643 return Ret; 1644 1645 // Fast math flags for any created instructions should match the sqrt 1646 // and multiply. 1647 IRBuilder<>::FastMathFlagGuard Guard(B); 1648 B.setFastMathFlags(I->getFastMathFlags()); 1649 1650 // If we found a repeated factor, hoist it out of the square root and 1651 // replace it with the fabs of that factor. 1652 Module *M = Callee->getParent(); 1653 Type *ArgType = I->getType(); 1654 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1655 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1656 if (OtherOp) { 1657 // If we found a non-repeated factor, we still need to get its square 1658 // root. We then multiply that by the value that was simplified out 1659 // of the square root calculation. 1660 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1661 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1662 return B.CreateFMul(FabsCall, SqrtCall); 1663 } 1664 return FabsCall; 1665 } 1666 1667 // TODO: Generalize to handle any trig function and its inverse. 1668 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1669 Function *Callee = CI->getCalledFunction(); 1670 Value *Ret = nullptr; 1671 StringRef Name = Callee->getName(); 1672 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1673 Ret = optimizeUnaryDoubleFP(CI, B, true); 1674 1675 Value *Op1 = CI->getArgOperand(0); 1676 auto *OpC = dyn_cast<CallInst>(Op1); 1677 if (!OpC) 1678 return Ret; 1679 1680 // Both calls must be 'fast' in order to remove them. 1681 if (!CI->isFast() || !OpC->isFast()) 1682 return Ret; 1683 1684 // tan(atan(x)) -> x 1685 // tanf(atanf(x)) -> x 1686 // tanl(atanl(x)) -> x 1687 LibFunc Func; 1688 Function *F = OpC->getCalledFunction(); 1689 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1690 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1691 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1692 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1693 Ret = OpC->getArgOperand(0); 1694 return Ret; 1695 } 1696 1697 static bool isTrigLibCall(CallInst *CI) { 1698 // We can only hope to do anything useful if we can ignore things like errno 1699 // and floating-point exceptions. 1700 // We already checked the prototype. 1701 return CI->hasFnAttr(Attribute::NoUnwind) && 1702 CI->hasFnAttr(Attribute::ReadNone); 1703 } 1704 1705 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1706 bool UseFloat, Value *&Sin, Value *&Cos, 1707 Value *&SinCos) { 1708 Type *ArgTy = Arg->getType(); 1709 Type *ResTy; 1710 StringRef Name; 1711 1712 Triple T(OrigCallee->getParent()->getTargetTriple()); 1713 if (UseFloat) { 1714 Name = "__sincospif_stret"; 1715 1716 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1717 // x86_64 can't use {float, float} since that would be returned in both 1718 // xmm0 and xmm1, which isn't what a real struct would do. 1719 ResTy = T.getArch() == Triple::x86_64 1720 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1721 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1722 } else { 1723 Name = "__sincospi_stret"; 1724 ResTy = StructType::get(ArgTy, ArgTy); 1725 } 1726 1727 Module *M = OrigCallee->getParent(); 1728 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1729 ResTy, ArgTy); 1730 1731 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1732 // If the argument is an instruction, it must dominate all uses so put our 1733 // sincos call there. 1734 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1735 } else { 1736 // Otherwise (e.g. for a constant) the beginning of the function is as 1737 // good a place as any. 1738 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1739 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1740 } 1741 1742 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1743 1744 if (SinCos->getType()->isStructTy()) { 1745 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1746 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1747 } else { 1748 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1749 "sinpi"); 1750 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1751 "cospi"); 1752 } 1753 } 1754 1755 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1756 // Make sure the prototype is as expected, otherwise the rest of the 1757 // function is probably invalid and likely to abort. 1758 if (!isTrigLibCall(CI)) 1759 return nullptr; 1760 1761 Value *Arg = CI->getArgOperand(0); 1762 SmallVector<CallInst *, 1> SinCalls; 1763 SmallVector<CallInst *, 1> CosCalls; 1764 SmallVector<CallInst *, 1> SinCosCalls; 1765 1766 bool IsFloat = Arg->getType()->isFloatTy(); 1767 1768 // Look for all compatible sinpi, cospi and sincospi calls with the same 1769 // argument. If there are enough (in some sense) we can make the 1770 // substitution. 1771 Function *F = CI->getFunction(); 1772 for (User *U : Arg->users()) 1773 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1774 1775 // It's only worthwhile if both sinpi and cospi are actually used. 1776 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1777 return nullptr; 1778 1779 Value *Sin, *Cos, *SinCos; 1780 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1781 1782 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1783 Value *Res) { 1784 for (CallInst *C : Calls) 1785 replaceAllUsesWith(C, Res); 1786 }; 1787 1788 replaceTrigInsts(SinCalls, Sin); 1789 replaceTrigInsts(CosCalls, Cos); 1790 replaceTrigInsts(SinCosCalls, SinCos); 1791 1792 return nullptr; 1793 } 1794 1795 void LibCallSimplifier::classifyArgUse( 1796 Value *Val, Function *F, bool IsFloat, 1797 SmallVectorImpl<CallInst *> &SinCalls, 1798 SmallVectorImpl<CallInst *> &CosCalls, 1799 SmallVectorImpl<CallInst *> &SinCosCalls) { 1800 CallInst *CI = dyn_cast<CallInst>(Val); 1801 1802 if (!CI) 1803 return; 1804 1805 // Don't consider calls in other functions. 1806 if (CI->getFunction() != F) 1807 return; 1808 1809 Function *Callee = CI->getCalledFunction(); 1810 LibFunc Func; 1811 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1812 !isTrigLibCall(CI)) 1813 return; 1814 1815 if (IsFloat) { 1816 if (Func == LibFunc_sinpif) 1817 SinCalls.push_back(CI); 1818 else if (Func == LibFunc_cospif) 1819 CosCalls.push_back(CI); 1820 else if (Func == LibFunc_sincospif_stret) 1821 SinCosCalls.push_back(CI); 1822 } else { 1823 if (Func == LibFunc_sinpi) 1824 SinCalls.push_back(CI); 1825 else if (Func == LibFunc_cospi) 1826 CosCalls.push_back(CI); 1827 else if (Func == LibFunc_sincospi_stret) 1828 SinCosCalls.push_back(CI); 1829 } 1830 } 1831 1832 //===----------------------------------------------------------------------===// 1833 // Integer Library Call Optimizations 1834 //===----------------------------------------------------------------------===// 1835 1836 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1837 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1838 Value *Op = CI->getArgOperand(0); 1839 Type *ArgType = Op->getType(); 1840 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1841 Intrinsic::cttz, ArgType); 1842 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1843 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1844 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1845 1846 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1847 return B.CreateSelect(Cond, V, B.getInt32(0)); 1848 } 1849 1850 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1851 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1852 Value *Op = CI->getArgOperand(0); 1853 Type *ArgType = Op->getType(); 1854 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1855 Intrinsic::ctlz, ArgType); 1856 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1857 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1858 V); 1859 return B.CreateIntCast(V, CI->getType(), false); 1860 } 1861 1862 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1863 // abs(x) -> x <s 0 ? -x : x 1864 // The negation has 'nsw' because abs of INT_MIN is undefined. 1865 Value *X = CI->getArgOperand(0); 1866 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1867 Value *NegX = B.CreateNSWNeg(X, "neg"); 1868 return B.CreateSelect(IsNeg, NegX, X); 1869 } 1870 1871 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1872 // isdigit(c) -> (c-'0') <u 10 1873 Value *Op = CI->getArgOperand(0); 1874 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1875 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1876 return B.CreateZExt(Op, CI->getType()); 1877 } 1878 1879 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1880 // isascii(c) -> c <u 128 1881 Value *Op = CI->getArgOperand(0); 1882 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1883 return B.CreateZExt(Op, CI->getType()); 1884 } 1885 1886 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1887 // toascii(c) -> c & 0x7f 1888 return B.CreateAnd(CI->getArgOperand(0), 1889 ConstantInt::get(CI->getType(), 0x7F)); 1890 } 1891 1892 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1893 StringRef Str; 1894 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1895 return nullptr; 1896 1897 return convertStrToNumber(CI, Str, 10); 1898 } 1899 1900 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1901 StringRef Str; 1902 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1903 return nullptr; 1904 1905 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1906 return nullptr; 1907 1908 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1909 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1910 } 1911 1912 return nullptr; 1913 } 1914 1915 //===----------------------------------------------------------------------===// 1916 // Formatting and IO Library Call Optimizations 1917 //===----------------------------------------------------------------------===// 1918 1919 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1920 1921 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1922 int StreamArg) { 1923 Function *Callee = CI->getCalledFunction(); 1924 // Error reporting calls should be cold, mark them as such. 1925 // This applies even to non-builtin calls: it is only a hint and applies to 1926 // functions that the frontend might not understand as builtins. 1927 1928 // This heuristic was suggested in: 1929 // Improving Static Branch Prediction in a Compiler 1930 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1931 // Proceedings of PACT'98, Oct. 1998, IEEE 1932 if (!CI->hasFnAttr(Attribute::Cold) && 1933 isReportingError(Callee, CI, StreamArg)) { 1934 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1935 } 1936 1937 return nullptr; 1938 } 1939 1940 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1941 if (!Callee || !Callee->isDeclaration()) 1942 return false; 1943 1944 if (StreamArg < 0) 1945 return true; 1946 1947 // These functions might be considered cold, but only if their stream 1948 // argument is stderr. 1949 1950 if (StreamArg >= (int)CI->getNumArgOperands()) 1951 return false; 1952 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1953 if (!LI) 1954 return false; 1955 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1956 if (!GV || !GV->isDeclaration()) 1957 return false; 1958 return GV->getName() == "stderr"; 1959 } 1960 1961 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1962 // Check for a fixed format string. 1963 StringRef FormatStr; 1964 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1965 return nullptr; 1966 1967 // Empty format string -> noop. 1968 if (FormatStr.empty()) // Tolerate printf's declared void. 1969 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1970 1971 // Do not do any of the following transformations if the printf return value 1972 // is used, in general the printf return value is not compatible with either 1973 // putchar() or puts(). 1974 if (!CI->use_empty()) 1975 return nullptr; 1976 1977 // printf("x") -> putchar('x'), even for "%" and "%%". 1978 if (FormatStr.size() == 1 || FormatStr == "%%") 1979 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1980 1981 // printf("%s", "a") --> putchar('a') 1982 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1983 StringRef ChrStr; 1984 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1985 return nullptr; 1986 if (ChrStr.size() != 1) 1987 return nullptr; 1988 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1989 } 1990 1991 // printf("foo\n") --> puts("foo") 1992 if (FormatStr[FormatStr.size() - 1] == '\n' && 1993 FormatStr.find('%') == StringRef::npos) { // No format characters. 1994 // Create a string literal with no \n on it. We expect the constant merge 1995 // pass to be run after this pass, to merge duplicate strings. 1996 FormatStr = FormatStr.drop_back(); 1997 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1998 return emitPutS(GV, B, TLI); 1999 } 2000 2001 // Optimize specific format strings. 2002 // printf("%c", chr) --> putchar(chr) 2003 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2004 CI->getArgOperand(1)->getType()->isIntegerTy()) 2005 return emitPutChar(CI->getArgOperand(1), B, TLI); 2006 2007 // printf("%s\n", str) --> puts(str) 2008 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2009 CI->getArgOperand(1)->getType()->isPointerTy()) 2010 return emitPutS(CI->getArgOperand(1), B, TLI); 2011 return nullptr; 2012 } 2013 2014 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2015 2016 Function *Callee = CI->getCalledFunction(); 2017 FunctionType *FT = Callee->getFunctionType(); 2018 if (Value *V = optimizePrintFString(CI, B)) { 2019 return V; 2020 } 2021 2022 // printf(format, ...) -> iprintf(format, ...) if no floating point 2023 // arguments. 2024 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2025 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2026 Constant *IPrintFFn = 2027 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2028 CallInst *New = cast<CallInst>(CI->clone()); 2029 New->setCalledFunction(IPrintFFn); 2030 B.Insert(New); 2031 return New; 2032 } 2033 return nullptr; 2034 } 2035 2036 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2037 // Check for a fixed format string. 2038 StringRef FormatStr; 2039 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2040 return nullptr; 2041 2042 // If we just have a format string (nothing else crazy) transform it. 2043 if (CI->getNumArgOperands() == 2) { 2044 // Make sure there's no % in the constant array. We could try to handle 2045 // %% -> % in the future if we cared. 2046 if (FormatStr.find('%') != StringRef::npos) 2047 return nullptr; // we found a format specifier, bail out. 2048 2049 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2050 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2051 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2052 FormatStr.size() + 1)); // Copy the null byte. 2053 return ConstantInt::get(CI->getType(), FormatStr.size()); 2054 } 2055 2056 // The remaining optimizations require the format string to be "%s" or "%c" 2057 // and have an extra operand. 2058 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2059 CI->getNumArgOperands() < 3) 2060 return nullptr; 2061 2062 // Decode the second character of the format string. 2063 if (FormatStr[1] == 'c') { 2064 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2065 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2066 return nullptr; 2067 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2068 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2069 B.CreateStore(V, Ptr); 2070 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2071 B.CreateStore(B.getInt8(0), Ptr); 2072 2073 return ConstantInt::get(CI->getType(), 1); 2074 } 2075 2076 if (FormatStr[1] == 's') { 2077 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 2078 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2079 return nullptr; 2080 2081 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2082 if (!Len) 2083 return nullptr; 2084 Value *IncLen = 2085 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2086 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2087 2088 // The sprintf result is the unincremented number of bytes in the string. 2089 return B.CreateIntCast(Len, CI->getType(), false); 2090 } 2091 return nullptr; 2092 } 2093 2094 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2095 Function *Callee = CI->getCalledFunction(); 2096 FunctionType *FT = Callee->getFunctionType(); 2097 if (Value *V = optimizeSPrintFString(CI, B)) { 2098 return V; 2099 } 2100 2101 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2102 // point arguments. 2103 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2104 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2105 Constant *SIPrintFFn = 2106 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2107 CallInst *New = cast<CallInst>(CI->clone()); 2108 New->setCalledFunction(SIPrintFFn); 2109 B.Insert(New); 2110 return New; 2111 } 2112 return nullptr; 2113 } 2114 2115 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2116 // Check for a fixed format string. 2117 StringRef FormatStr; 2118 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2119 return nullptr; 2120 2121 // Check for size 2122 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2123 if (!Size) 2124 return nullptr; 2125 2126 uint64_t N = Size->getZExtValue(); 2127 2128 // If we just have a format string (nothing else crazy) transform it. 2129 if (CI->getNumArgOperands() == 3) { 2130 // Make sure there's no % in the constant array. We could try to handle 2131 // %% -> % in the future if we cared. 2132 if (FormatStr.find('%') != StringRef::npos) 2133 return nullptr; // we found a format specifier, bail out. 2134 2135 if (N == 0) 2136 return ConstantInt::get(CI->getType(), FormatStr.size()); 2137 else if (N < FormatStr.size() + 1) 2138 return nullptr; 2139 2140 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 2141 // strlen(fmt)+1) 2142 B.CreateMemCpy( 2143 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2144 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2145 FormatStr.size() + 1)); // Copy the null byte. 2146 return ConstantInt::get(CI->getType(), FormatStr.size()); 2147 } 2148 2149 // The remaining optimizations require the format string to be "%s" or "%c" 2150 // and have an extra operand. 2151 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2152 CI->getNumArgOperands() == 4) { 2153 2154 // Decode the second character of the format string. 2155 if (FormatStr[1] == 'c') { 2156 if (N == 0) 2157 return ConstantInt::get(CI->getType(), 1); 2158 else if (N == 1) 2159 return nullptr; 2160 2161 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2162 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2163 return nullptr; 2164 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2165 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2166 B.CreateStore(V, Ptr); 2167 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2168 B.CreateStore(B.getInt8(0), Ptr); 2169 2170 return ConstantInt::get(CI->getType(), 1); 2171 } 2172 2173 if (FormatStr[1] == 's') { 2174 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2175 StringRef Str; 2176 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2177 return nullptr; 2178 2179 if (N == 0) 2180 return ConstantInt::get(CI->getType(), Str.size()); 2181 else if (N < Str.size() + 1) 2182 return nullptr; 2183 2184 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2185 ConstantInt::get(CI->getType(), Str.size() + 1)); 2186 2187 // The snprintf result is the unincremented number of bytes in the string. 2188 return ConstantInt::get(CI->getType(), Str.size()); 2189 } 2190 } 2191 return nullptr; 2192 } 2193 2194 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2195 if (Value *V = optimizeSnPrintFString(CI, B)) { 2196 return V; 2197 } 2198 2199 return nullptr; 2200 } 2201 2202 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2203 optimizeErrorReporting(CI, B, 0); 2204 2205 // All the optimizations depend on the format string. 2206 StringRef FormatStr; 2207 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2208 return nullptr; 2209 2210 // Do not do any of the following transformations if the fprintf return 2211 // value is used, in general the fprintf return value is not compatible 2212 // with fwrite(), fputc() or fputs(). 2213 if (!CI->use_empty()) 2214 return nullptr; 2215 2216 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2217 if (CI->getNumArgOperands() == 2) { 2218 // Could handle %% -> % if we cared. 2219 if (FormatStr.find('%') != StringRef::npos) 2220 return nullptr; // We found a format specifier. 2221 2222 return emitFWrite( 2223 CI->getArgOperand(1), 2224 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2225 CI->getArgOperand(0), B, DL, TLI); 2226 } 2227 2228 // The remaining optimizations require the format string to be "%s" or "%c" 2229 // and have an extra operand. 2230 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2231 CI->getNumArgOperands() < 3) 2232 return nullptr; 2233 2234 // Decode the second character of the format string. 2235 if (FormatStr[1] == 'c') { 2236 // fprintf(F, "%c", chr) --> fputc(chr, F) 2237 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2238 return nullptr; 2239 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2240 } 2241 2242 if (FormatStr[1] == 's') { 2243 // fprintf(F, "%s", str) --> fputs(str, F) 2244 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2245 return nullptr; 2246 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2247 } 2248 return nullptr; 2249 } 2250 2251 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2252 Function *Callee = CI->getCalledFunction(); 2253 FunctionType *FT = Callee->getFunctionType(); 2254 if (Value *V = optimizeFPrintFString(CI, B)) { 2255 return V; 2256 } 2257 2258 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2259 // floating point arguments. 2260 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2261 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2262 Constant *FIPrintFFn = 2263 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2264 CallInst *New = cast<CallInst>(CI->clone()); 2265 New->setCalledFunction(FIPrintFFn); 2266 B.Insert(New); 2267 return New; 2268 } 2269 return nullptr; 2270 } 2271 2272 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2273 optimizeErrorReporting(CI, B, 3); 2274 2275 // Get the element size and count. 2276 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2277 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2278 if (SizeC && CountC) { 2279 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2280 2281 // If this is writing zero records, remove the call (it's a noop). 2282 if (Bytes == 0) 2283 return ConstantInt::get(CI->getType(), 0); 2284 2285 // If this is writing one byte, turn it into fputc. 2286 // This optimisation is only valid, if the return value is unused. 2287 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2288 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2289 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2290 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2291 } 2292 } 2293 2294 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2295 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2296 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2297 TLI); 2298 2299 return nullptr; 2300 } 2301 2302 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2303 optimizeErrorReporting(CI, B, 1); 2304 2305 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2306 // requires more arguments and thus extra MOVs are required. 2307 if (CI->getFunction()->optForSize()) 2308 return nullptr; 2309 2310 // Check if has any use 2311 if (!CI->use_empty()) { 2312 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2313 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2314 TLI); 2315 else 2316 // We can't optimize if return value is used. 2317 return nullptr; 2318 } 2319 2320 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2321 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2322 if (!Len) 2323 return nullptr; 2324 2325 // Known to have no uses (see above). 2326 return emitFWrite( 2327 CI->getArgOperand(0), 2328 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2329 CI->getArgOperand(1), B, DL, TLI); 2330 } 2331 2332 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2333 optimizeErrorReporting(CI, B, 1); 2334 2335 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2336 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2337 TLI); 2338 2339 return nullptr; 2340 } 2341 2342 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2343 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2344 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2345 2346 return nullptr; 2347 } 2348 2349 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2350 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2351 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2352 CI->getArgOperand(2), B, TLI); 2353 2354 return nullptr; 2355 } 2356 2357 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2358 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2359 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2360 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2361 TLI); 2362 2363 return nullptr; 2364 } 2365 2366 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2367 // Check for a constant string. 2368 StringRef Str; 2369 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2370 return nullptr; 2371 2372 if (Str.empty() && CI->use_empty()) { 2373 // puts("") -> putchar('\n') 2374 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2375 if (CI->use_empty() || !Res) 2376 return Res; 2377 return B.CreateIntCast(Res, CI->getType(), true); 2378 } 2379 2380 return nullptr; 2381 } 2382 2383 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2384 LibFunc Func; 2385 SmallString<20> FloatFuncName = FuncName; 2386 FloatFuncName += 'f'; 2387 if (TLI->getLibFunc(FloatFuncName, Func)) 2388 return TLI->has(Func); 2389 return false; 2390 } 2391 2392 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2393 IRBuilder<> &Builder) { 2394 LibFunc Func; 2395 Function *Callee = CI->getCalledFunction(); 2396 // Check for string/memory library functions. 2397 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2398 // Make sure we never change the calling convention. 2399 assert((ignoreCallingConv(Func) || 2400 isCallingConvCCompatible(CI)) && 2401 "Optimizing string/memory libcall would change the calling convention"); 2402 switch (Func) { 2403 case LibFunc_strcat: 2404 return optimizeStrCat(CI, Builder); 2405 case LibFunc_strncat: 2406 return optimizeStrNCat(CI, Builder); 2407 case LibFunc_strchr: 2408 return optimizeStrChr(CI, Builder); 2409 case LibFunc_strrchr: 2410 return optimizeStrRChr(CI, Builder); 2411 case LibFunc_strcmp: 2412 return optimizeStrCmp(CI, Builder); 2413 case LibFunc_strncmp: 2414 return optimizeStrNCmp(CI, Builder); 2415 case LibFunc_strcpy: 2416 return optimizeStrCpy(CI, Builder); 2417 case LibFunc_stpcpy: 2418 return optimizeStpCpy(CI, Builder); 2419 case LibFunc_strncpy: 2420 return optimizeStrNCpy(CI, Builder); 2421 case LibFunc_strlen: 2422 return optimizeStrLen(CI, Builder); 2423 case LibFunc_strpbrk: 2424 return optimizeStrPBrk(CI, Builder); 2425 case LibFunc_strtol: 2426 case LibFunc_strtod: 2427 case LibFunc_strtof: 2428 case LibFunc_strtoul: 2429 case LibFunc_strtoll: 2430 case LibFunc_strtold: 2431 case LibFunc_strtoull: 2432 return optimizeStrTo(CI, Builder); 2433 case LibFunc_strspn: 2434 return optimizeStrSpn(CI, Builder); 2435 case LibFunc_strcspn: 2436 return optimizeStrCSpn(CI, Builder); 2437 case LibFunc_strstr: 2438 return optimizeStrStr(CI, Builder); 2439 case LibFunc_memchr: 2440 return optimizeMemChr(CI, Builder); 2441 case LibFunc_memcmp: 2442 return optimizeMemCmp(CI, Builder); 2443 case LibFunc_memcpy: 2444 return optimizeMemCpy(CI, Builder); 2445 case LibFunc_memmove: 2446 return optimizeMemMove(CI, Builder); 2447 case LibFunc_memset: 2448 return optimizeMemSet(CI, Builder); 2449 case LibFunc_realloc: 2450 return optimizeRealloc(CI, Builder); 2451 case LibFunc_wcslen: 2452 return optimizeWcslen(CI, Builder); 2453 default: 2454 break; 2455 } 2456 } 2457 return nullptr; 2458 } 2459 2460 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2461 LibFunc Func, 2462 IRBuilder<> &Builder) { 2463 // Don't optimize calls that require strict floating point semantics. 2464 if (CI->isStrictFP()) 2465 return nullptr; 2466 2467 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2468 return V; 2469 2470 switch (Func) { 2471 case LibFunc_sinpif: 2472 case LibFunc_sinpi: 2473 case LibFunc_cospif: 2474 case LibFunc_cospi: 2475 return optimizeSinCosPi(CI, Builder); 2476 case LibFunc_powf: 2477 case LibFunc_pow: 2478 case LibFunc_powl: 2479 return optimizePow(CI, Builder); 2480 case LibFunc_exp2l: 2481 case LibFunc_exp2: 2482 case LibFunc_exp2f: 2483 return optimizeExp2(CI, Builder); 2484 case LibFunc_fabsf: 2485 case LibFunc_fabs: 2486 case LibFunc_fabsl: 2487 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2488 case LibFunc_sqrtf: 2489 case LibFunc_sqrt: 2490 case LibFunc_sqrtl: 2491 return optimizeSqrt(CI, Builder); 2492 case LibFunc_log: 2493 case LibFunc_log10: 2494 case LibFunc_log1p: 2495 case LibFunc_log2: 2496 case LibFunc_logb: 2497 return optimizeLog(CI, Builder); 2498 case LibFunc_tan: 2499 case LibFunc_tanf: 2500 case LibFunc_tanl: 2501 return optimizeTan(CI, Builder); 2502 case LibFunc_ceil: 2503 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2504 case LibFunc_floor: 2505 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2506 case LibFunc_round: 2507 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2508 case LibFunc_nearbyint: 2509 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2510 case LibFunc_rint: 2511 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2512 case LibFunc_trunc: 2513 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2514 case LibFunc_acos: 2515 case LibFunc_acosh: 2516 case LibFunc_asin: 2517 case LibFunc_asinh: 2518 case LibFunc_atan: 2519 case LibFunc_atanh: 2520 case LibFunc_cbrt: 2521 case LibFunc_cosh: 2522 case LibFunc_exp: 2523 case LibFunc_exp10: 2524 case LibFunc_expm1: 2525 case LibFunc_cos: 2526 case LibFunc_sin: 2527 case LibFunc_sinh: 2528 case LibFunc_tanh: 2529 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2530 return optimizeUnaryDoubleFP(CI, Builder, true); 2531 return nullptr; 2532 case LibFunc_copysign: 2533 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2534 return optimizeBinaryDoubleFP(CI, Builder); 2535 return nullptr; 2536 case LibFunc_fminf: 2537 case LibFunc_fmin: 2538 case LibFunc_fminl: 2539 case LibFunc_fmaxf: 2540 case LibFunc_fmax: 2541 case LibFunc_fmaxl: 2542 return optimizeFMinFMax(CI, Builder); 2543 case LibFunc_cabs: 2544 case LibFunc_cabsf: 2545 case LibFunc_cabsl: 2546 return optimizeCAbs(CI, Builder); 2547 default: 2548 return nullptr; 2549 } 2550 } 2551 2552 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2553 // TODO: Split out the code below that operates on FP calls so that 2554 // we can all non-FP calls with the StrictFP attribute to be 2555 // optimized. 2556 if (CI->isNoBuiltin()) 2557 return nullptr; 2558 2559 LibFunc Func; 2560 Function *Callee = CI->getCalledFunction(); 2561 2562 SmallVector<OperandBundleDef, 2> OpBundles; 2563 CI->getOperandBundlesAsDefs(OpBundles); 2564 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2565 bool isCallingConvC = isCallingConvCCompatible(CI); 2566 2567 // Command-line parameter overrides instruction attribute. 2568 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2569 // used by the intrinsic optimizations. 2570 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2571 UnsafeFPShrink = EnableUnsafeFPShrink; 2572 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2573 UnsafeFPShrink = true; 2574 2575 // First, check for intrinsics. 2576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2577 if (!isCallingConvC) 2578 return nullptr; 2579 // The FP intrinsics have corresponding constrained versions so we don't 2580 // need to check for the StrictFP attribute here. 2581 switch (II->getIntrinsicID()) { 2582 case Intrinsic::pow: 2583 return optimizePow(CI, Builder); 2584 case Intrinsic::exp2: 2585 return optimizeExp2(CI, Builder); 2586 case Intrinsic::log: 2587 return optimizeLog(CI, Builder); 2588 case Intrinsic::sqrt: 2589 return optimizeSqrt(CI, Builder); 2590 // TODO: Use foldMallocMemset() with memset intrinsic. 2591 default: 2592 return nullptr; 2593 } 2594 } 2595 2596 // Also try to simplify calls to fortified library functions. 2597 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2598 // Try to further simplify the result. 2599 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2600 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2601 // Use an IR Builder from SimplifiedCI if available instead of CI 2602 // to guarantee we reach all uses we might replace later on. 2603 IRBuilder<> TmpBuilder(SimplifiedCI); 2604 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2605 // If we were able to further simplify, remove the now redundant call. 2606 SimplifiedCI->replaceAllUsesWith(V); 2607 eraseFromParent(SimplifiedCI); 2608 return V; 2609 } 2610 } 2611 return SimplifiedFortifiedCI; 2612 } 2613 2614 // Then check for known library functions. 2615 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2616 // We never change the calling convention. 2617 if (!ignoreCallingConv(Func) && !isCallingConvC) 2618 return nullptr; 2619 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2620 return V; 2621 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2622 return V; 2623 switch (Func) { 2624 case LibFunc_ffs: 2625 case LibFunc_ffsl: 2626 case LibFunc_ffsll: 2627 return optimizeFFS(CI, Builder); 2628 case LibFunc_fls: 2629 case LibFunc_flsl: 2630 case LibFunc_flsll: 2631 return optimizeFls(CI, Builder); 2632 case LibFunc_abs: 2633 case LibFunc_labs: 2634 case LibFunc_llabs: 2635 return optimizeAbs(CI, Builder); 2636 case LibFunc_isdigit: 2637 return optimizeIsDigit(CI, Builder); 2638 case LibFunc_isascii: 2639 return optimizeIsAscii(CI, Builder); 2640 case LibFunc_toascii: 2641 return optimizeToAscii(CI, Builder); 2642 case LibFunc_atoi: 2643 case LibFunc_atol: 2644 case LibFunc_atoll: 2645 return optimizeAtoi(CI, Builder); 2646 case LibFunc_strtol: 2647 case LibFunc_strtoll: 2648 return optimizeStrtol(CI, Builder); 2649 case LibFunc_printf: 2650 return optimizePrintF(CI, Builder); 2651 case LibFunc_sprintf: 2652 return optimizeSPrintF(CI, Builder); 2653 case LibFunc_snprintf: 2654 return optimizeSnPrintF(CI, Builder); 2655 case LibFunc_fprintf: 2656 return optimizeFPrintF(CI, Builder); 2657 case LibFunc_fwrite: 2658 return optimizeFWrite(CI, Builder); 2659 case LibFunc_fread: 2660 return optimizeFRead(CI, Builder); 2661 case LibFunc_fputs: 2662 return optimizeFPuts(CI, Builder); 2663 case LibFunc_fgets: 2664 return optimizeFGets(CI, Builder); 2665 case LibFunc_fputc: 2666 return optimizeFPutc(CI, Builder); 2667 case LibFunc_fgetc: 2668 return optimizeFGetc(CI, Builder); 2669 case LibFunc_puts: 2670 return optimizePuts(CI, Builder); 2671 case LibFunc_perror: 2672 return optimizeErrorReporting(CI, Builder); 2673 case LibFunc_vfprintf: 2674 case LibFunc_fiprintf: 2675 return optimizeErrorReporting(CI, Builder, 0); 2676 default: 2677 return nullptr; 2678 } 2679 } 2680 return nullptr; 2681 } 2682 2683 LibCallSimplifier::LibCallSimplifier( 2684 const DataLayout &DL, const TargetLibraryInfo *TLI, 2685 OptimizationRemarkEmitter &ORE, 2686 function_ref<void(Instruction *, Value *)> Replacer, 2687 function_ref<void(Instruction *)> Eraser) 2688 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2689 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2690 2691 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2692 // Indirect through the replacer used in this instance. 2693 Replacer(I, With); 2694 } 2695 2696 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2697 Eraser(I); 2698 } 2699 2700 // TODO: 2701 // Additional cases that we need to add to this file: 2702 // 2703 // cbrt: 2704 // * cbrt(expN(X)) -> expN(x/3) 2705 // * cbrt(sqrt(x)) -> pow(x,1/6) 2706 // * cbrt(cbrt(x)) -> pow(x,1/9) 2707 // 2708 // exp, expf, expl: 2709 // * exp(log(x)) -> x 2710 // 2711 // log, logf, logl: 2712 // * log(exp(x)) -> x 2713 // * log(exp(y)) -> y*log(e) 2714 // * log(exp10(y)) -> y*log(10) 2715 // * log(sqrt(x)) -> 0.5*log(x) 2716 // 2717 // pow, powf, powl: 2718 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2719 // * pow(pow(x,y),z)-> pow(x,y*z) 2720 // 2721 // signbit: 2722 // * signbit(cnst) -> cnst' 2723 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2724 // 2725 // sqrt, sqrtf, sqrtl: 2726 // * sqrt(expN(x)) -> expN(x*0.5) 2727 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2728 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2729 // 2730 2731 //===----------------------------------------------------------------------===// 2732 // Fortified Library Call Optimizations 2733 //===----------------------------------------------------------------------===// 2734 2735 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2736 unsigned ObjSizeOp, 2737 unsigned SizeOp, 2738 bool isString) { 2739 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2740 return true; 2741 if (ConstantInt *ObjSizeCI = 2742 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2743 if (ObjSizeCI->isMinusOne()) 2744 return true; 2745 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2746 if (OnlyLowerUnknownSize) 2747 return false; 2748 if (isString) { 2749 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2750 // If the length is 0 we don't know how long it is and so we can't 2751 // remove the check. 2752 if (Len == 0) 2753 return false; 2754 return ObjSizeCI->getZExtValue() >= Len; 2755 } 2756 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2757 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2758 } 2759 return false; 2760 } 2761 2762 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2763 IRBuilder<> &B) { 2764 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2765 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2766 CI->getArgOperand(2)); 2767 return CI->getArgOperand(0); 2768 } 2769 return nullptr; 2770 } 2771 2772 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2773 IRBuilder<> &B) { 2774 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2775 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2776 CI->getArgOperand(2)); 2777 return CI->getArgOperand(0); 2778 } 2779 return nullptr; 2780 } 2781 2782 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2783 IRBuilder<> &B) { 2784 // TODO: Try foldMallocMemset() here. 2785 2786 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2787 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2788 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2789 return CI->getArgOperand(0); 2790 } 2791 return nullptr; 2792 } 2793 2794 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2795 IRBuilder<> &B, 2796 LibFunc Func) { 2797 Function *Callee = CI->getCalledFunction(); 2798 StringRef Name = Callee->getName(); 2799 const DataLayout &DL = CI->getModule()->getDataLayout(); 2800 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2801 *ObjSize = CI->getArgOperand(2); 2802 2803 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2804 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2805 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2806 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2807 } 2808 2809 // If a) we don't have any length information, or b) we know this will 2810 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2811 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2812 // TODO: It might be nice to get a maximum length out of the possible 2813 // string lengths for varying. 2814 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2815 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2816 2817 if (OnlyLowerUnknownSize) 2818 return nullptr; 2819 2820 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2821 uint64_t Len = GetStringLength(Src); 2822 if (Len == 0) 2823 return nullptr; 2824 2825 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2826 Value *LenV = ConstantInt::get(SizeTTy, Len); 2827 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2828 // If the function was an __stpcpy_chk, and we were able to fold it into 2829 // a __memcpy_chk, we still need to return the correct end pointer. 2830 if (Ret && Func == LibFunc_stpcpy_chk) 2831 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2832 return Ret; 2833 } 2834 2835 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2836 IRBuilder<> &B, 2837 LibFunc Func) { 2838 Function *Callee = CI->getCalledFunction(); 2839 StringRef Name = Callee->getName(); 2840 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2841 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2842 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2843 return Ret; 2844 } 2845 return nullptr; 2846 } 2847 2848 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2849 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2850 // Some clang users checked for _chk libcall availability using: 2851 // __has_builtin(__builtin___memcpy_chk) 2852 // When compiling with -fno-builtin, this is always true. 2853 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2854 // end up with fortified libcalls, which isn't acceptable in a freestanding 2855 // environment which only provides their non-fortified counterparts. 2856 // 2857 // Until we change clang and/or teach external users to check for availability 2858 // differently, disregard the "nobuiltin" attribute and TLI::has. 2859 // 2860 // PR23093. 2861 2862 LibFunc Func; 2863 Function *Callee = CI->getCalledFunction(); 2864 2865 SmallVector<OperandBundleDef, 2> OpBundles; 2866 CI->getOperandBundlesAsDefs(OpBundles); 2867 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2868 bool isCallingConvC = isCallingConvCCompatible(CI); 2869 2870 // First, check that this is a known library functions and that the prototype 2871 // is correct. 2872 if (!TLI->getLibFunc(*Callee, Func)) 2873 return nullptr; 2874 2875 // We never change the calling convention. 2876 if (!ignoreCallingConv(Func) && !isCallingConvC) 2877 return nullptr; 2878 2879 switch (Func) { 2880 case LibFunc_memcpy_chk: 2881 return optimizeMemCpyChk(CI, Builder); 2882 case LibFunc_memmove_chk: 2883 return optimizeMemMoveChk(CI, Builder); 2884 case LibFunc_memset_chk: 2885 return optimizeMemSetChk(CI, Builder); 2886 case LibFunc_stpcpy_chk: 2887 case LibFunc_strcpy_chk: 2888 return optimizeStrpCpyChk(CI, Builder, Func); 2889 case LibFunc_stpncpy_chk: 2890 case LibFunc_strncpy_chk: 2891 return optimizeStrpNCpyChk(CI, Builder, Func); 2892 default: 2893 break; 2894 } 2895 return nullptr; 2896 } 2897 2898 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2899 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2900 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2901