1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Transforms/Utils/BuildLibCalls.h"
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 static cl::opt<bool>
43     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
44                          cl::init(false),
45                          cl::desc("Enable unsafe double to float "
46                                   "shrinking for math lib calls"));
47 
48 
49 //===----------------------------------------------------------------------===//
50 // Helper Functions
51 //===----------------------------------------------------------------------===//
52 
53 static bool ignoreCallingConv(LibFunc Func) {
54   return Func == LibFunc_abs || Func == LibFunc_labs ||
55          Func == LibFunc_llabs || Func == LibFunc_strlen;
56 }
57 
58 static bool isCallingConvCCompatible(CallInst *CI) {
59   switch(CI->getCallingConv()) {
60   default:
61     return false;
62   case llvm::CallingConv::C:
63     return true;
64   case llvm::CallingConv::ARM_APCS:
65   case llvm::CallingConv::ARM_AAPCS:
66   case llvm::CallingConv::ARM_AAPCS_VFP: {
67 
68     // The iOS ABI diverges from the standard in some cases, so for now don't
69     // try to simplify those calls.
70     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
71       return false;
72 
73     auto *FuncTy = CI->getFunctionType();
74 
75     if (!FuncTy->getReturnType()->isPointerTy() &&
76         !FuncTy->getReturnType()->isIntegerTy() &&
77         !FuncTy->getReturnType()->isVoidTy())
78       return false;
79 
80     for (auto Param : FuncTy->params()) {
81       if (!Param->isPointerTy() && !Param->isIntegerTy())
82         return false;
83     }
84     return true;
85   }
86   }
87   return false;
88 }
89 
90 /// Return true if it is only used in equality comparisons with With.
91 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
92   for (User *U : V->users()) {
93     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
94       if (IC->isEquality() && IC->getOperand(1) == With)
95         continue;
96     // Unknown instruction.
97     return false;
98   }
99   return true;
100 }
101 
102 static bool callHasFloatingPointArgument(const CallInst *CI) {
103   return any_of(CI->operands(), [](const Use &OI) {
104     return OI->getType()->isFloatingPointTy();
105   });
106 }
107 
108 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
109   if (Base < 2 || Base > 36)
110     // handle special zero base
111     if (Base != 0)
112       return nullptr;
113 
114   char *End;
115   std::string nptr = Str.str();
116   errno = 0;
117   long long int Result = strtoll(nptr.c_str(), &End, Base);
118   if (errno)
119     return nullptr;
120 
121   // if we assume all possible target locales are ASCII supersets,
122   // then if strtoll successfully parses a number on the host,
123   // it will also successfully parse the same way on the target
124   if (*End != '\0')
125     return nullptr;
126 
127   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
128     return nullptr;
129 
130   return ConstantInt::get(CI->getType(), Result);
131 }
132 
133 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
134                                 const TargetLibraryInfo *TLI) {
135   CallInst *FOpen = dyn_cast<CallInst>(File);
136   if (!FOpen)
137     return false;
138 
139   Function *InnerCallee = FOpen->getCalledFunction();
140   if (!InnerCallee)
141     return false;
142 
143   LibFunc Func;
144   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
145       Func != LibFunc_fopen)
146     return false;
147 
148   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
149   if (PointerMayBeCaptured(File, true, true))
150     return false;
151 
152   return true;
153 }
154 
155 static bool isOnlyUsedInComparisonWithZero(Value *V) {
156   for (User *U : V->users()) {
157     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
158       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
159         if (C->isNullValue())
160           continue;
161     // Unknown instruction.
162     return false;
163   }
164   return true;
165 }
166 
167 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
168                                  const DataLayout &DL) {
169   if (!isOnlyUsedInComparisonWithZero(CI))
170     return false;
171 
172   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
173     return false;
174 
175   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
176     return false;
177 
178   return true;
179 }
180 
181 //===----------------------------------------------------------------------===//
182 // String and Memory Library Call Optimizations
183 //===----------------------------------------------------------------------===//
184 
185 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
186   // Extract some information from the instruction
187   Value *Dst = CI->getArgOperand(0);
188   Value *Src = CI->getArgOperand(1);
189 
190   // See if we can get the length of the input string.
191   uint64_t Len = GetStringLength(Src);
192   if (Len == 0)
193     return nullptr;
194   --Len; // Unbias length.
195 
196   // Handle the simple, do-nothing case: strcat(x, "") -> x
197   if (Len == 0)
198     return Dst;
199 
200   return emitStrLenMemCpy(Src, Dst, Len, B);
201 }
202 
203 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
204                                            IRBuilder<> &B) {
205   // We need to find the end of the destination string.  That's where the
206   // memory is to be moved to. We just generate a call to strlen.
207   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
208   if (!DstLen)
209     return nullptr;
210 
211   // Now that we have the destination's length, we must index into the
212   // destination's pointer to get the actual memcpy destination (end of
213   // the string .. we're concatenating).
214   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
215 
216   // We have enough information to now generate the memcpy call to do the
217   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
218   B.CreateMemCpy(CpyDst, 1, Src, 1,
219                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
220   return Dst;
221 }
222 
223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
224   // Extract some information from the instruction.
225   Value *Dst = CI->getArgOperand(0);
226   Value *Src = CI->getArgOperand(1);
227   uint64_t Len;
228 
229   // We don't do anything if length is not constant.
230   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
231     Len = LengthArg->getZExtValue();
232   else
233     return nullptr;
234 
235   // See if we can get the length of the input string.
236   uint64_t SrcLen = GetStringLength(Src);
237   if (SrcLen == 0)
238     return nullptr;
239   --SrcLen; // Unbias length.
240 
241   // Handle the simple, do-nothing cases:
242   // strncat(x, "", c) -> x
243   // strncat(x,  c, 0) -> x
244   if (SrcLen == 0 || Len == 0)
245     return Dst;
246 
247   // We don't optimize this case.
248   if (Len < SrcLen)
249     return nullptr;
250 
251   // strncat(x, s, c) -> strcat(x, s)
252   // s is constant so the strcat can be optimized further.
253   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
254 }
255 
256 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
257   Function *Callee = CI->getCalledFunction();
258   FunctionType *FT = Callee->getFunctionType();
259   Value *SrcStr = CI->getArgOperand(0);
260 
261   // If the second operand is non-constant, see if we can compute the length
262   // of the input string and turn this into memchr.
263   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
264   if (!CharC) {
265     uint64_t Len = GetStringLength(SrcStr);
266     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
267       return nullptr;
268 
269     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
270                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
271                       B, DL, TLI);
272   }
273 
274   // Otherwise, the character is a constant, see if the first argument is
275   // a string literal.  If so, we can constant fold.
276   StringRef Str;
277   if (!getConstantStringInfo(SrcStr, Str)) {
278     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
279       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
280                          "strchr");
281     return nullptr;
282   }
283 
284   // Compute the offset, make sure to handle the case when we're searching for
285   // zero (a weird way to spell strlen).
286   size_t I = (0xFF & CharC->getSExtValue()) == 0
287                  ? Str.size()
288                  : Str.find(CharC->getSExtValue());
289   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
290     return Constant::getNullValue(CI->getType());
291 
292   // strchr(s+n,c)  -> gep(s+n+i,c)
293   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
294 }
295 
296 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
297   Value *SrcStr = CI->getArgOperand(0);
298   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
299 
300   // Cannot fold anything if we're not looking for a constant.
301   if (!CharC)
302     return nullptr;
303 
304   StringRef Str;
305   if (!getConstantStringInfo(SrcStr, Str)) {
306     // strrchr(s, 0) -> strchr(s, 0)
307     if (CharC->isZero())
308       return emitStrChr(SrcStr, '\0', B, TLI);
309     return nullptr;
310   }
311 
312   // Compute the offset.
313   size_t I = (0xFF & CharC->getSExtValue()) == 0
314                  ? Str.size()
315                  : Str.rfind(CharC->getSExtValue());
316   if (I == StringRef::npos) // Didn't find the char. Return null.
317     return Constant::getNullValue(CI->getType());
318 
319   // strrchr(s+n,c) -> gep(s+n+i,c)
320   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
321 }
322 
323 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
324   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
325   if (Str1P == Str2P) // strcmp(x,x)  -> 0
326     return ConstantInt::get(CI->getType(), 0);
327 
328   StringRef Str1, Str2;
329   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
330   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
331 
332   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
333   if (HasStr1 && HasStr2)
334     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
335 
336   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
337     return B.CreateNeg(
338         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
339 
340   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
341     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
342 
343   // strcmp(P, "x") -> memcmp(P, "x", 2)
344   uint64_t Len1 = GetStringLength(Str1P);
345   uint64_t Len2 = GetStringLength(Str2P);
346   if (Len1 && Len2) {
347     return emitMemCmp(Str1P, Str2P,
348                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
349                                        std::min(Len1, Len2)),
350                       B, DL, TLI);
351   }
352 
353   // strcmp to memcmp
354   if (!HasStr1 && HasStr2) {
355     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
356       return emitMemCmp(
357           Str1P, Str2P,
358           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
359           TLI);
360   } else if (HasStr1 && !HasStr2) {
361     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
362       return emitMemCmp(
363           Str1P, Str2P,
364           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
365           TLI);
366   }
367 
368   return nullptr;
369 }
370 
371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
372   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
373   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
374     return ConstantInt::get(CI->getType(), 0);
375 
376   // Get the length argument if it is constant.
377   uint64_t Length;
378   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
379     Length = LengthArg->getZExtValue();
380   else
381     return nullptr;
382 
383   if (Length == 0) // strncmp(x,y,0)   -> 0
384     return ConstantInt::get(CI->getType(), 0);
385 
386   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
387     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
388 
389   StringRef Str1, Str2;
390   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
391   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
392 
393   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
394   if (HasStr1 && HasStr2) {
395     StringRef SubStr1 = Str1.substr(0, Length);
396     StringRef SubStr2 = Str2.substr(0, Length);
397     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
398   }
399 
400   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
401     return B.CreateNeg(
402         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
403 
404   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
405     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
406 
407   uint64_t Len1 = GetStringLength(Str1P);
408   uint64_t Len2 = GetStringLength(Str2P);
409 
410   // strncmp to memcmp
411   if (!HasStr1 && HasStr2) {
412     Len2 = std::min(Len2, Length);
413     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
414       return emitMemCmp(
415           Str1P, Str2P,
416           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
417           TLI);
418   } else if (HasStr1 && !HasStr2) {
419     Len1 = std::min(Len1, Length);
420     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
421       return emitMemCmp(
422           Str1P, Str2P,
423           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
424           TLI);
425   }
426 
427   return nullptr;
428 }
429 
430 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
431   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
432   if (Dst == Src) // strcpy(x,x)  -> x
433     return Src;
434 
435   // See if we can get the length of the input string.
436   uint64_t Len = GetStringLength(Src);
437   if (Len == 0)
438     return nullptr;
439 
440   // We have enough information to now generate the memcpy call to do the
441   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
442   B.CreateMemCpy(Dst, 1, Src, 1,
443                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
444   return Dst;
445 }
446 
447 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
448   Function *Callee = CI->getCalledFunction();
449   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
450   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
451     Value *StrLen = emitStrLen(Src, B, DL, TLI);
452     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
453   }
454 
455   // See if we can get the length of the input string.
456   uint64_t Len = GetStringLength(Src);
457   if (Len == 0)
458     return nullptr;
459 
460   Type *PT = Callee->getFunctionType()->getParamType(0);
461   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
462   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
463                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
464 
465   // We have enough information to now generate the memcpy call to do the
466   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
467   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
468   return DstEnd;
469 }
470 
471 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
472   Function *Callee = CI->getCalledFunction();
473   Value *Dst = CI->getArgOperand(0);
474   Value *Src = CI->getArgOperand(1);
475   Value *LenOp = CI->getArgOperand(2);
476 
477   // See if we can get the length of the input string.
478   uint64_t SrcLen = GetStringLength(Src);
479   if (SrcLen == 0)
480     return nullptr;
481   --SrcLen;
482 
483   if (SrcLen == 0) {
484     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
485     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
486     return Dst;
487   }
488 
489   uint64_t Len;
490   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
491     Len = LengthArg->getZExtValue();
492   else
493     return nullptr;
494 
495   if (Len == 0)
496     return Dst; // strncpy(x, y, 0) -> x
497 
498   // Let strncpy handle the zero padding
499   if (Len > SrcLen + 1)
500     return nullptr;
501 
502   Type *PT = Callee->getFunctionType()->getParamType(0);
503   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
504   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
505 
506   return Dst;
507 }
508 
509 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
510                                                unsigned CharSize) {
511   Value *Src = CI->getArgOperand(0);
512 
513   // Constant folding: strlen("xyz") -> 3
514   if (uint64_t Len = GetStringLength(Src, CharSize))
515     return ConstantInt::get(CI->getType(), Len - 1);
516 
517   // If s is a constant pointer pointing to a string literal, we can fold
518   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
519   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
520   // We only try to simplify strlen when the pointer s points to an array
521   // of i8. Otherwise, we would need to scale the offset x before doing the
522   // subtraction. This will make the optimization more complex, and it's not
523   // very useful because calling strlen for a pointer of other types is
524   // very uncommon.
525   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
526     if (!isGEPBasedOnPointerToString(GEP, CharSize))
527       return nullptr;
528 
529     ConstantDataArraySlice Slice;
530     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
531       uint64_t NullTermIdx;
532       if (Slice.Array == nullptr) {
533         NullTermIdx = 0;
534       } else {
535         NullTermIdx = ~((uint64_t)0);
536         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
537           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
538             NullTermIdx = I;
539             break;
540           }
541         }
542         // If the string does not have '\0', leave it to strlen to compute
543         // its length.
544         if (NullTermIdx == ~((uint64_t)0))
545           return nullptr;
546       }
547 
548       Value *Offset = GEP->getOperand(2);
549       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
550       Known.Zero.flipAllBits();
551       uint64_t ArrSize =
552              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
553 
554       // KnownZero's bits are flipped, so zeros in KnownZero now represent
555       // bits known to be zeros in Offset, and ones in KnowZero represent
556       // bits unknown in Offset. Therefore, Offset is known to be in range
557       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
558       // unsigned-less-than NullTermIdx.
559       //
560       // If Offset is not provably in the range [0, NullTermIdx], we can still
561       // optimize if we can prove that the program has undefined behavior when
562       // Offset is outside that range. That is the case when GEP->getOperand(0)
563       // is a pointer to an object whose memory extent is NullTermIdx+1.
564       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
565           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
566            NullTermIdx == ArrSize - 1)) {
567         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
568         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
569                            Offset);
570       }
571     }
572 
573     return nullptr;
574   }
575 
576   // strlen(x?"foo":"bars") --> x ? 3 : 4
577   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
578     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
579     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
580     if (LenTrue && LenFalse) {
581       ORE.emit([&]() {
582         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
583                << "folded strlen(select) to select of constants";
584       });
585       return B.CreateSelect(SI->getCondition(),
586                             ConstantInt::get(CI->getType(), LenTrue - 1),
587                             ConstantInt::get(CI->getType(), LenFalse - 1));
588     }
589   }
590 
591   // strlen(x) != 0 --> *x != 0
592   // strlen(x) == 0 --> *x == 0
593   if (isOnlyUsedInZeroEqualityComparison(CI))
594     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
595 
596   return nullptr;
597 }
598 
599 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
600   return optimizeStringLength(CI, B, 8);
601 }
602 
603 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
604   Module &M = *CI->getModule();
605   unsigned WCharSize = TLI->getWCharSize(M) * 8;
606   // We cannot perform this optimization without wchar_size metadata.
607   if (WCharSize == 0)
608     return nullptr;
609 
610   return optimizeStringLength(CI, B, WCharSize);
611 }
612 
613 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
614   StringRef S1, S2;
615   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
616   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
617 
618   // strpbrk(s, "") -> nullptr
619   // strpbrk("", s) -> nullptr
620   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
621     return Constant::getNullValue(CI->getType());
622 
623   // Constant folding.
624   if (HasS1 && HasS2) {
625     size_t I = S1.find_first_of(S2);
626     if (I == StringRef::npos) // No match.
627       return Constant::getNullValue(CI->getType());
628 
629     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
630                        "strpbrk");
631   }
632 
633   // strpbrk(s, "a") -> strchr(s, 'a')
634   if (HasS2 && S2.size() == 1)
635     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
636 
637   return nullptr;
638 }
639 
640 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
641   Value *EndPtr = CI->getArgOperand(1);
642   if (isa<ConstantPointerNull>(EndPtr)) {
643     // With a null EndPtr, this function won't capture the main argument.
644     // It would be readonly too, except that it still may write to errno.
645     CI->addParamAttr(0, Attribute::NoCapture);
646   }
647 
648   return nullptr;
649 }
650 
651 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
652   StringRef S1, S2;
653   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
654   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
655 
656   // strspn(s, "") -> 0
657   // strspn("", s) -> 0
658   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
659     return Constant::getNullValue(CI->getType());
660 
661   // Constant folding.
662   if (HasS1 && HasS2) {
663     size_t Pos = S1.find_first_not_of(S2);
664     if (Pos == StringRef::npos)
665       Pos = S1.size();
666     return ConstantInt::get(CI->getType(), Pos);
667   }
668 
669   return nullptr;
670 }
671 
672 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
673   StringRef S1, S2;
674   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
675   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
676 
677   // strcspn("", s) -> 0
678   if (HasS1 && S1.empty())
679     return Constant::getNullValue(CI->getType());
680 
681   // Constant folding.
682   if (HasS1 && HasS2) {
683     size_t Pos = S1.find_first_of(S2);
684     if (Pos == StringRef::npos)
685       Pos = S1.size();
686     return ConstantInt::get(CI->getType(), Pos);
687   }
688 
689   // strcspn(s, "") -> strlen(s)
690   if (HasS2 && S2.empty())
691     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
692 
693   return nullptr;
694 }
695 
696 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
697   // fold strstr(x, x) -> x.
698   if (CI->getArgOperand(0) == CI->getArgOperand(1))
699     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
700 
701   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
702   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
703     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
704     if (!StrLen)
705       return nullptr;
706     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
707                                  StrLen, B, DL, TLI);
708     if (!StrNCmp)
709       return nullptr;
710     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
711       ICmpInst *Old = cast<ICmpInst>(*UI++);
712       Value *Cmp =
713           B.CreateICmp(Old->getPredicate(), StrNCmp,
714                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
715       replaceAllUsesWith(Old, Cmp);
716     }
717     return CI;
718   }
719 
720   // See if either input string is a constant string.
721   StringRef SearchStr, ToFindStr;
722   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
723   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
724 
725   // fold strstr(x, "") -> x.
726   if (HasStr2 && ToFindStr.empty())
727     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
728 
729   // If both strings are known, constant fold it.
730   if (HasStr1 && HasStr2) {
731     size_t Offset = SearchStr.find(ToFindStr);
732 
733     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
734       return Constant::getNullValue(CI->getType());
735 
736     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
737     Value *Result = castToCStr(CI->getArgOperand(0), B);
738     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
739     return B.CreateBitCast(Result, CI->getType());
740   }
741 
742   // fold strstr(x, "y") -> strchr(x, 'y').
743   if (HasStr2 && ToFindStr.size() == 1) {
744     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
745     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
746   }
747   return nullptr;
748 }
749 
750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
751   Value *SrcStr = CI->getArgOperand(0);
752   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
753   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
754 
755   // memchr(x, y, 0) -> null
756   if (LenC && LenC->isZero())
757     return Constant::getNullValue(CI->getType());
758 
759   // From now on we need at least constant length and string.
760   StringRef Str;
761   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
762     return nullptr;
763 
764   // Truncate the string to LenC. If Str is smaller than LenC we will still only
765   // scan the string, as reading past the end of it is undefined and we can just
766   // return null if we don't find the char.
767   Str = Str.substr(0, LenC->getZExtValue());
768 
769   // If the char is variable but the input str and length are not we can turn
770   // this memchr call into a simple bit field test. Of course this only works
771   // when the return value is only checked against null.
772   //
773   // It would be really nice to reuse switch lowering here but we can't change
774   // the CFG at this point.
775   //
776   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
777   //   after bounds check.
778   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
779     unsigned char Max =
780         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
781                           reinterpret_cast<const unsigned char *>(Str.end()));
782 
783     // Make sure the bit field we're about to create fits in a register on the
784     // target.
785     // FIXME: On a 64 bit architecture this prevents us from using the
786     // interesting range of alpha ascii chars. We could do better by emitting
787     // two bitfields or shifting the range by 64 if no lower chars are used.
788     if (!DL.fitsInLegalInteger(Max + 1))
789       return nullptr;
790 
791     // For the bit field use a power-of-2 type with at least 8 bits to avoid
792     // creating unnecessary illegal types.
793     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
794 
795     // Now build the bit field.
796     APInt Bitfield(Width, 0);
797     for (char C : Str)
798       Bitfield.setBit((unsigned char)C);
799     Value *BitfieldC = B.getInt(Bitfield);
800 
801     // First check that the bit field access is within bounds.
802     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
803     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
804                                  "memchr.bounds");
805 
806     // Create code that checks if the given bit is set in the field.
807     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
808     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
809 
810     // Finally merge both checks and cast to pointer type. The inttoptr
811     // implicitly zexts the i1 to intptr type.
812     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
813   }
814 
815   // Check if all arguments are constants.  If so, we can constant fold.
816   if (!CharC)
817     return nullptr;
818 
819   // Compute the offset.
820   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
821   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
822     return Constant::getNullValue(CI->getType());
823 
824   // memchr(s+n,c,l) -> gep(s+n+i,c)
825   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
826 }
827 
828 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
829   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
830 
831   if (LHS == RHS) // memcmp(s,s,x) -> 0
832     return Constant::getNullValue(CI->getType());
833 
834   // Make sure we have a constant length.
835   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
836   if (!LenC)
837     return nullptr;
838 
839   uint64_t Len = LenC->getZExtValue();
840   if (Len == 0) // memcmp(s1,s2,0) -> 0
841     return Constant::getNullValue(CI->getType());
842 
843   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
844   if (Len == 1) {
845     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
846                                CI->getType(), "lhsv");
847     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
848                                CI->getType(), "rhsv");
849     return B.CreateSub(LHSV, RHSV, "chardiff");
850   }
851 
852   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
853   // TODO: The case where both inputs are constants does not need to be limited
854   // to legal integers or equality comparison. See block below this.
855   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
856     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
857     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
858 
859     // First, see if we can fold either argument to a constant.
860     Value *LHSV = nullptr;
861     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
862       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
863       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
864     }
865     Value *RHSV = nullptr;
866     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
867       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
868       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
869     }
870 
871     // Don't generate unaligned loads. If either source is constant data,
872     // alignment doesn't matter for that source because there is no load.
873     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
874         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
875       if (!LHSV) {
876         Type *LHSPtrTy =
877             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
878         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
879       }
880       if (!RHSV) {
881         Type *RHSPtrTy =
882             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
883         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
884       }
885       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
886     }
887   }
888 
889   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
890   // TODO: This is limited to i8 arrays.
891   StringRef LHSStr, RHSStr;
892   if (getConstantStringInfo(LHS, LHSStr) &&
893       getConstantStringInfo(RHS, RHSStr)) {
894     // Make sure we're not reading out-of-bounds memory.
895     if (Len > LHSStr.size() || Len > RHSStr.size())
896       return nullptr;
897     // Fold the memcmp and normalize the result.  This way we get consistent
898     // results across multiple platforms.
899     uint64_t Ret = 0;
900     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
901     if (Cmp < 0)
902       Ret = -1;
903     else if (Cmp > 0)
904       Ret = 1;
905     return ConstantInt::get(CI->getType(), Ret);
906   }
907 
908   return nullptr;
909 }
910 
911 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
912   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
913   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
914                  CI->getArgOperand(2));
915   return CI->getArgOperand(0);
916 }
917 
918 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
919   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
920   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
921                   CI->getArgOperand(2));
922   return CI->getArgOperand(0);
923 }
924 
925 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
926 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
927   // This has to be a memset of zeros (bzero).
928   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
929   if (!FillValue || FillValue->getZExtValue() != 0)
930     return nullptr;
931 
932   // TODO: We should handle the case where the malloc has more than one use.
933   // This is necessary to optimize common patterns such as when the result of
934   // the malloc is checked against null or when a memset intrinsic is used in
935   // place of a memset library call.
936   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
937   if (!Malloc || !Malloc->hasOneUse())
938     return nullptr;
939 
940   // Is the inner call really malloc()?
941   Function *InnerCallee = Malloc->getCalledFunction();
942   if (!InnerCallee)
943     return nullptr;
944 
945   LibFunc Func;
946   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
947       Func != LibFunc_malloc)
948     return nullptr;
949 
950   // The memset must cover the same number of bytes that are malloc'd.
951   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
952     return nullptr;
953 
954   // Replace the malloc with a calloc. We need the data layout to know what the
955   // actual size of a 'size_t' parameter is.
956   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
957   const DataLayout &DL = Malloc->getModule()->getDataLayout();
958   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
959   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
960                              Malloc->getArgOperand(0), Malloc->getAttributes(),
961                              B, *TLI);
962   if (!Calloc)
963     return nullptr;
964 
965   Malloc->replaceAllUsesWith(Calloc);
966   eraseFromParent(Malloc);
967 
968   return Calloc;
969 }
970 
971 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
972   if (auto *Calloc = foldMallocMemset(CI, B))
973     return Calloc;
974 
975   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
976   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
977   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
978   return CI->getArgOperand(0);
979 }
980 
981 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
982   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
983     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
984 
985   return nullptr;
986 }
987 
988 //===----------------------------------------------------------------------===//
989 // Math Library Optimizations
990 //===----------------------------------------------------------------------===//
991 
992 // Replace a libcall \p CI with a call to intrinsic \p IID
993 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
994   // Propagate fast-math flags from the existing call to the new call.
995   IRBuilder<>::FastMathFlagGuard Guard(B);
996   B.setFastMathFlags(CI->getFastMathFlags());
997 
998   Module *M = CI->getModule();
999   Value *V = CI->getArgOperand(0);
1000   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1001   CallInst *NewCall = B.CreateCall(F, V);
1002   NewCall->takeName(CI);
1003   return NewCall;
1004 }
1005 
1006 /// Return a variant of Val with float type.
1007 /// Currently this works in two cases: If Val is an FPExtension of a float
1008 /// value to something bigger, simply return the operand.
1009 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1010 /// loss of precision do so.
1011 static Value *valueHasFloatPrecision(Value *Val) {
1012   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1013     Value *Op = Cast->getOperand(0);
1014     if (Op->getType()->isFloatTy())
1015       return Op;
1016   }
1017   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1018     APFloat F = Const->getValueAPF();
1019     bool losesInfo;
1020     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1021                     &losesInfo);
1022     if (!losesInfo)
1023       return ConstantFP::get(Const->getContext(), F);
1024   }
1025   return nullptr;
1026 }
1027 
1028 /// Shrink double -> float functions.
1029 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1030                                bool isBinary, bool isPrecise = false) {
1031   if (!CI->getType()->isDoubleTy())
1032     return nullptr;
1033 
1034   // If not all the uses of the function are converted to float, then bail out.
1035   // This matters if the precision of the result is more important than the
1036   // precision of the arguments.
1037   if (isPrecise)
1038     for (User *U : CI->users()) {
1039       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1040       if (!Cast || !Cast->getType()->isFloatTy())
1041         return nullptr;
1042     }
1043 
1044   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1045   Value *V[2];
1046   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1047   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1048   if (!V[0] || (isBinary && !V[1]))
1049     return nullptr;
1050 
1051   // If call isn't an intrinsic, check that it isn't within a function with the
1052   // same name as the float version of this call, otherwise the result is an
1053   // infinite loop.  For example, from MinGW-w64:
1054   //
1055   // float expf(float val) { return (float) exp((double) val); }
1056   Function *CalleeFn = CI->getCalledFunction();
1057   StringRef CalleeNm = CalleeFn->getName();
1058   AttributeList CalleeAt = CalleeFn->getAttributes();
1059   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1060     const Function *Fn = CI->getFunction();
1061     StringRef FnName = Fn->getName();
1062     if (FnName.back() == 'f' &&
1063         FnName.size() == (CalleeNm.size() + 1) &&
1064         FnName.startswith(CalleeNm))
1065       return nullptr;
1066   }
1067 
1068   // Propagate the math semantics from the current function to the new function.
1069   IRBuilder<>::FastMathFlagGuard Guard(B);
1070   B.setFastMathFlags(CI->getFastMathFlags());
1071 
1072   // g((double) float) -> (double) gf(float)
1073   Value *R;
1074   if (CalleeFn->isIntrinsic()) {
1075     Module *M = CI->getModule();
1076     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1077     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1078     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1079   }
1080   else
1081     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1082                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1083 
1084   return B.CreateFPExt(R, B.getDoubleTy());
1085 }
1086 
1087 /// Shrink double -> float for unary functions.
1088 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1089                                     bool isPrecise = false) {
1090   return optimizeDoubleFP(CI, B, false, isPrecise);
1091 }
1092 
1093 /// Shrink double -> float for binary functions.
1094 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1095                                      bool isPrecise = false) {
1096   return optimizeDoubleFP(CI, B, true, isPrecise);
1097 }
1098 
1099 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1100 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1101   if (!CI->isFast())
1102     return nullptr;
1103 
1104   // Propagate fast-math flags from the existing call to new instructions.
1105   IRBuilder<>::FastMathFlagGuard Guard(B);
1106   B.setFastMathFlags(CI->getFastMathFlags());
1107 
1108   Value *Real, *Imag;
1109   if (CI->getNumArgOperands() == 1) {
1110     Value *Op = CI->getArgOperand(0);
1111     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1112     Real = B.CreateExtractValue(Op, 0, "real");
1113     Imag = B.CreateExtractValue(Op, 1, "imag");
1114   } else {
1115     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1116     Real = CI->getArgOperand(0);
1117     Imag = CI->getArgOperand(1);
1118   }
1119 
1120   Value *RealReal = B.CreateFMul(Real, Real);
1121   Value *ImagImag = B.CreateFMul(Imag, Imag);
1122 
1123   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1124                                               CI->getType());
1125   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1126 }
1127 
1128 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1129                                       IRBuilder<> &B) {
1130   if (!isa<FPMathOperator>(Call))
1131     return nullptr;
1132 
1133   IRBuilder<>::FastMathFlagGuard Guard(B);
1134   B.setFastMathFlags(Call->getFastMathFlags());
1135 
1136   // TODO: Can this be shared to also handle LLVM intrinsics?
1137   Value *X;
1138   switch (Func) {
1139   case LibFunc_sin:
1140   case LibFunc_sinf:
1141   case LibFunc_sinl:
1142   case LibFunc_tan:
1143   case LibFunc_tanf:
1144   case LibFunc_tanl:
1145     // sin(-X) --> -sin(X)
1146     // tan(-X) --> -tan(X)
1147     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1148       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1149     break;
1150   case LibFunc_cos:
1151   case LibFunc_cosf:
1152   case LibFunc_cosl:
1153     // cos(-X) --> cos(X)
1154     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1155       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1156     break;
1157   default:
1158     break;
1159   }
1160   return nullptr;
1161 }
1162 
1163 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1164   // Multiplications calculated using Addition Chains.
1165   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1166 
1167   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1168 
1169   if (InnerChain[Exp])
1170     return InnerChain[Exp];
1171 
1172   static const unsigned AddChain[33][2] = {
1173       {0, 0}, // Unused.
1174       {0, 0}, // Unused (base case = pow1).
1175       {1, 1}, // Unused (pre-computed).
1176       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1177       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1178       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1179       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1180       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1181   };
1182 
1183   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1184                                  getPow(InnerChain, AddChain[Exp][1], B));
1185   return InnerChain[Exp];
1186 }
1187 
1188 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1189 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
1190 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1191   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1192   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1193   Module *Mod = Pow->getModule();
1194   Type *Ty = Pow->getType();
1195   bool Ignored;
1196 
1197   // Evaluate special cases related to a nested function as the base.
1198 
1199   // pow(exp(x), y) -> exp(x * y)
1200   // pow(exp2(x), y) -> exp2(x * y)
1201   // If exp{,2}() is used only once, it is better to fold two transcendental
1202   // math functions into one.  If used again, exp{,2}() would still have to be
1203   // called with the original argument, then keep both original transcendental
1204   // functions.  However, this transformation is only safe with fully relaxed
1205   // math semantics, since, besides rounding differences, it changes overflow
1206   // and underflow behavior quite dramatically.  For example:
1207   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1208   // Whereas:
1209   //   exp(1000 * 0.001) = exp(1)
1210   // TODO: Loosen the requirement for fully relaxed math semantics.
1211   // TODO: Handle exp10() when more targets have it available.
1212   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1213   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1214     LibFunc LibFn;
1215 
1216     Function *CalleeFn = BaseFn->getCalledFunction();
1217     if (CalleeFn &&
1218         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1219       StringRef ExpName;
1220       Intrinsic::ID ID;
1221       Value *ExpFn;
1222       LibFunc LibFnFloat;
1223       LibFunc LibFnDouble;
1224       LibFunc LibFnLongDouble;
1225 
1226       switch (LibFn) {
1227       default:
1228         return nullptr;
1229       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1230         ExpName = TLI->getName(LibFunc_exp);
1231         ID = Intrinsic::exp;
1232         LibFnFloat = LibFunc_expf;
1233         LibFnDouble = LibFunc_exp;
1234         LibFnLongDouble = LibFunc_expl;
1235         break;
1236       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1237         ExpName = TLI->getName(LibFunc_exp2);
1238         ID = Intrinsic::exp2;
1239         LibFnFloat = LibFunc_exp2f;
1240         LibFnDouble = LibFunc_exp2;
1241         LibFnLongDouble = LibFunc_exp2l;
1242         break;
1243       }
1244 
1245       // Create new exp{,2}() with the product as its argument.
1246       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1247       ExpFn = BaseFn->doesNotAccessMemory()
1248               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1249                              FMul, ExpName)
1250               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1251                                      LibFnLongDouble, B,
1252                                      BaseFn->getAttributes());
1253 
1254       // Since the new exp{,2}() is different from the original one, dead code
1255       // elimination cannot be trusted to remove it, since it may have side
1256       // effects (e.g., errno).  When the only consumer for the original
1257       // exp{,2}() is pow(), then it has to be explicitly erased.
1258       BaseFn->replaceAllUsesWith(ExpFn);
1259       eraseFromParent(BaseFn);
1260 
1261       return ExpFn;
1262     }
1263   }
1264 
1265   // Evaluate special cases related to a constant base.
1266 
1267   const APFloat *BaseF;
1268   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1269     return nullptr;
1270 
1271   // pow(2.0 ** n, x) -> exp2(n * x)
1272   if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1273     APFloat BaseR = APFloat(1.0);
1274     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1275     BaseR = BaseR / *BaseF;
1276     bool IsInteger    = BaseF->isInteger(),
1277          IsReciprocal = BaseR.isInteger();
1278     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1279     APSInt NI(64, false);
1280     if ((IsInteger || IsReciprocal) &&
1281         !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
1282         NI > 1 && NI.isPowerOf2()) {
1283       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1284       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1285       if (Pow->doesNotAccessMemory())
1286         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1287                             FMul, "exp2");
1288       else
1289         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1290                                     LibFunc_exp2l, B, Attrs);
1291     }
1292   }
1293 
1294   // pow(10.0, x) -> exp10(x)
1295   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1296   if (match(Base, m_SpecificFP(10.0)) &&
1297       hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1298     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1299                                 LibFunc_exp10l, B, Attrs);
1300 
1301   return nullptr;
1302 }
1303 
1304 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1305                           Module *M, IRBuilder<> &B,
1306                           const TargetLibraryInfo *TLI) {
1307   // If errno is never set, then use the intrinsic for sqrt().
1308   if (NoErrno) {
1309     Function *SqrtFn =
1310         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1311     return B.CreateCall(SqrtFn, V, "sqrt");
1312   }
1313 
1314   // Otherwise, use the libcall for sqrt().
1315   if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1316                       LibFunc_sqrtl))
1317     // TODO: We also should check that the target can in fact lower the sqrt()
1318     // libcall. We currently have no way to ask this question, so we ask if
1319     // the target has a sqrt() libcall, which is not exactly the same.
1320     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1321                                 LibFunc_sqrtl, B, Attrs);
1322 
1323   return nullptr;
1324 }
1325 
1326 /// Use square root in place of pow(x, +/-0.5).
1327 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1328   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1329   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1330   Module *Mod = Pow->getModule();
1331   Type *Ty = Pow->getType();
1332 
1333   const APFloat *ExpoF;
1334   if (!match(Expo, m_APFloat(ExpoF)) ||
1335       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1336     return nullptr;
1337 
1338   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1339   if (!Sqrt)
1340     return nullptr;
1341 
1342   // Handle signed zero base by expanding to fabs(sqrt(x)).
1343   if (!Pow->hasNoSignedZeros()) {
1344     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1345     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1346   }
1347 
1348   // Handle non finite base by expanding to
1349   // (x == -infinity ? +infinity : sqrt(x)).
1350   if (!Pow->hasNoInfs()) {
1351     Value *PosInf = ConstantFP::getInfinity(Ty),
1352           *NegInf = ConstantFP::getInfinity(Ty, true);
1353     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1354     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1355   }
1356 
1357   // If the exponent is negative, then get the reciprocal.
1358   if (ExpoF->isNegative())
1359     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1360 
1361   return Sqrt;
1362 }
1363 
1364 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1365   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1366   Function *Callee = Pow->getCalledFunction();
1367   StringRef Name = Callee->getName();
1368   Type *Ty = Pow->getType();
1369   Value *Shrunk = nullptr;
1370   bool Ignored;
1371 
1372   // Bail out if simplifying libcalls to pow() is disabled.
1373   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1374     return nullptr;
1375 
1376   // Propagate the math semantics from the call to any created instructions.
1377   IRBuilder<>::FastMathFlagGuard Guard(B);
1378   B.setFastMathFlags(Pow->getFastMathFlags());
1379 
1380   // Shrink pow() to powf() if the arguments are single precision,
1381   // unless the result is expected to be double precision.
1382   if (UnsafeFPShrink &&
1383       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1384     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1385 
1386   // Evaluate special cases related to the base.
1387 
1388   // pow(1.0, x) -> 1.0
1389   if (match(Base, m_FPOne()))
1390     return Base;
1391 
1392   if (Value *Exp = replacePowWithExp(Pow, B))
1393     return Exp;
1394 
1395   // Evaluate special cases related to the exponent.
1396 
1397   // pow(x, -1.0) -> 1.0 / x
1398   if (match(Expo, m_SpecificFP(-1.0)))
1399     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1400 
1401   // pow(x, 0.0) -> 1.0
1402   if (match(Expo, m_SpecificFP(0.0)))
1403       return ConstantFP::get(Ty, 1.0);
1404 
1405   // pow(x, 1.0) -> x
1406   if (match(Expo, m_FPOne()))
1407     return Base;
1408 
1409   // pow(x, 2.0) -> x * x
1410   if (match(Expo, m_SpecificFP(2.0)))
1411     return B.CreateFMul(Base, Base, "square");
1412 
1413   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1414     return Sqrt;
1415 
1416   // pow(x, n) -> x * x * x * ...
1417   const APFloat *ExpoF;
1418   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1419     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1420     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1421     // additional fmul.
1422     // TODO: This whole transformation should be backend specific (e.g. some
1423     //       backends might prefer libcalls or the limit for the exponent might
1424     //       be different) and it should also consider optimizing for size.
1425     APFloat LimF(ExpoF->getSemantics(), 33.0),
1426             ExpoA(abs(*ExpoF));
1427     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1428       // This transformation applies to integer or integer+0.5 exponents only.
1429       // For integer+0.5, we create a sqrt(Base) call.
1430       Value *Sqrt = nullptr;
1431       if (!ExpoA.isInteger()) {
1432         APFloat Expo2 = ExpoA;
1433         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1434         // is no floating point exception and the result is an integer, then
1435         // ExpoA == integer + 0.5
1436         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1437           return nullptr;
1438 
1439         if (!Expo2.isInteger())
1440           return nullptr;
1441 
1442         Sqrt =
1443             getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1444                         Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI);
1445       }
1446 
1447       // We will memoize intermediate products of the Addition Chain.
1448       Value *InnerChain[33] = {nullptr};
1449       InnerChain[1] = Base;
1450       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1451 
1452       // We cannot readily convert a non-double type (like float) to a double.
1453       // So we first convert it to something which could be converted to double.
1454       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1455       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1456 
1457       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1458       if (Sqrt)
1459         FMul = B.CreateFMul(FMul, Sqrt);
1460 
1461       // If the exponent is negative, then get the reciprocal.
1462       if (ExpoF->isNegative())
1463         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1464 
1465       return FMul;
1466     }
1467   }
1468 
1469   return Shrunk;
1470 }
1471 
1472 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1473   Function *Callee = CI->getCalledFunction();
1474   Value *Ret = nullptr;
1475   StringRef Name = Callee->getName();
1476   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1477     Ret = optimizeUnaryDoubleFP(CI, B, true);
1478 
1479   Value *Op = CI->getArgOperand(0);
1480   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1481   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1482   LibFunc LdExp = LibFunc_ldexpl;
1483   if (Op->getType()->isFloatTy())
1484     LdExp = LibFunc_ldexpf;
1485   else if (Op->getType()->isDoubleTy())
1486     LdExp = LibFunc_ldexp;
1487 
1488   if (TLI->has(LdExp)) {
1489     Value *LdExpArg = nullptr;
1490     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1491       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1492         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1493     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1494       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1495         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1496     }
1497 
1498     if (LdExpArg) {
1499       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1500       if (!Op->getType()->isFloatTy())
1501         One = ConstantExpr::getFPExtend(One, Op->getType());
1502 
1503       Module *M = CI->getModule();
1504       Value *NewCallee =
1505           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1506                                  Op->getType(), B.getInt32Ty());
1507       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1508       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1509         CI->setCallingConv(F->getCallingConv());
1510 
1511       return CI;
1512     }
1513   }
1514   return Ret;
1515 }
1516 
1517 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1518   Function *Callee = CI->getCalledFunction();
1519   // If we can shrink the call to a float function rather than a double
1520   // function, do that first.
1521   StringRef Name = Callee->getName();
1522   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1523     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1524       return Ret;
1525 
1526   IRBuilder<>::FastMathFlagGuard Guard(B);
1527   FastMathFlags FMF;
1528   if (CI->isFast()) {
1529     // If the call is 'fast', then anything we create here will also be 'fast'.
1530     FMF.setFast();
1531   } else {
1532     // At a minimum, no-nans-fp-math must be true.
1533     if (!CI->hasNoNaNs())
1534       return nullptr;
1535     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1536     // "Ideally, fmax would be sensitive to the sign of zero, for example
1537     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1538     // might be impractical."
1539     FMF.setNoSignedZeros();
1540     FMF.setNoNaNs();
1541   }
1542   B.setFastMathFlags(FMF);
1543 
1544   // We have a relaxed floating-point environment. We can ignore NaN-handling
1545   // and transform to a compare and select. We do not have to consider errno or
1546   // exceptions, because fmin/fmax do not have those.
1547   Value *Op0 = CI->getArgOperand(0);
1548   Value *Op1 = CI->getArgOperand(1);
1549   Value *Cmp = Callee->getName().startswith("fmin") ?
1550     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1551   return B.CreateSelect(Cmp, Op0, Op1);
1552 }
1553 
1554 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1555   Function *Callee = CI->getCalledFunction();
1556   Value *Ret = nullptr;
1557   StringRef Name = Callee->getName();
1558   if (UnsafeFPShrink && hasFloatVersion(Name))
1559     Ret = optimizeUnaryDoubleFP(CI, B, true);
1560 
1561   if (!CI->isFast())
1562     return Ret;
1563   Value *Op1 = CI->getArgOperand(0);
1564   auto *OpC = dyn_cast<CallInst>(Op1);
1565 
1566   // The earlier call must also be 'fast' in order to do these transforms.
1567   if (!OpC || !OpC->isFast())
1568     return Ret;
1569 
1570   // log(pow(x,y)) -> y*log(x)
1571   // This is only applicable to log, log2, log10.
1572   if (Name != "log" && Name != "log2" && Name != "log10")
1573     return Ret;
1574 
1575   IRBuilder<>::FastMathFlagGuard Guard(B);
1576   FastMathFlags FMF;
1577   FMF.setFast();
1578   B.setFastMathFlags(FMF);
1579 
1580   LibFunc Func;
1581   Function *F = OpC->getCalledFunction();
1582   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1583       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1584     return B.CreateFMul(OpC->getArgOperand(1),
1585       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1586                            Callee->getAttributes()), "mul");
1587 
1588   // log(exp2(y)) -> y*log(2)
1589   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1590       TLI->has(Func) && Func == LibFunc_exp2)
1591     return B.CreateFMul(
1592         OpC->getArgOperand(0),
1593         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1594                              Callee->getName(), B, Callee->getAttributes()),
1595         "logmul");
1596   return Ret;
1597 }
1598 
1599 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1600   Function *Callee = CI->getCalledFunction();
1601   Value *Ret = nullptr;
1602   // TODO: Once we have a way (other than checking for the existince of the
1603   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1604   // condition below.
1605   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1606                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1607     Ret = optimizeUnaryDoubleFP(CI, B, true);
1608 
1609   if (!CI->isFast())
1610     return Ret;
1611 
1612   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1613   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1614     return Ret;
1615 
1616   // We're looking for a repeated factor in a multiplication tree,
1617   // so we can do this fold: sqrt(x * x) -> fabs(x);
1618   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1619   Value *Op0 = I->getOperand(0);
1620   Value *Op1 = I->getOperand(1);
1621   Value *RepeatOp = nullptr;
1622   Value *OtherOp = nullptr;
1623   if (Op0 == Op1) {
1624     // Simple match: the operands of the multiply are identical.
1625     RepeatOp = Op0;
1626   } else {
1627     // Look for a more complicated pattern: one of the operands is itself
1628     // a multiply, so search for a common factor in that multiply.
1629     // Note: We don't bother looking any deeper than this first level or for
1630     // variations of this pattern because instcombine's visitFMUL and/or the
1631     // reassociation pass should give us this form.
1632     Value *OtherMul0, *OtherMul1;
1633     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1634       // Pattern: sqrt((x * y) * z)
1635       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1636         // Matched: sqrt((x * x) * z)
1637         RepeatOp = OtherMul0;
1638         OtherOp = Op1;
1639       }
1640     }
1641   }
1642   if (!RepeatOp)
1643     return Ret;
1644 
1645   // Fast math flags for any created instructions should match the sqrt
1646   // and multiply.
1647   IRBuilder<>::FastMathFlagGuard Guard(B);
1648   B.setFastMathFlags(I->getFastMathFlags());
1649 
1650   // If we found a repeated factor, hoist it out of the square root and
1651   // replace it with the fabs of that factor.
1652   Module *M = Callee->getParent();
1653   Type *ArgType = I->getType();
1654   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1655   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1656   if (OtherOp) {
1657     // If we found a non-repeated factor, we still need to get its square
1658     // root. We then multiply that by the value that was simplified out
1659     // of the square root calculation.
1660     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1661     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1662     return B.CreateFMul(FabsCall, SqrtCall);
1663   }
1664   return FabsCall;
1665 }
1666 
1667 // TODO: Generalize to handle any trig function and its inverse.
1668 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1669   Function *Callee = CI->getCalledFunction();
1670   Value *Ret = nullptr;
1671   StringRef Name = Callee->getName();
1672   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1673     Ret = optimizeUnaryDoubleFP(CI, B, true);
1674 
1675   Value *Op1 = CI->getArgOperand(0);
1676   auto *OpC = dyn_cast<CallInst>(Op1);
1677   if (!OpC)
1678     return Ret;
1679 
1680   // Both calls must be 'fast' in order to remove them.
1681   if (!CI->isFast() || !OpC->isFast())
1682     return Ret;
1683 
1684   // tan(atan(x)) -> x
1685   // tanf(atanf(x)) -> x
1686   // tanl(atanl(x)) -> x
1687   LibFunc Func;
1688   Function *F = OpC->getCalledFunction();
1689   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1690       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1691        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1692        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1693     Ret = OpC->getArgOperand(0);
1694   return Ret;
1695 }
1696 
1697 static bool isTrigLibCall(CallInst *CI) {
1698   // We can only hope to do anything useful if we can ignore things like errno
1699   // and floating-point exceptions.
1700   // We already checked the prototype.
1701   return CI->hasFnAttr(Attribute::NoUnwind) &&
1702          CI->hasFnAttr(Attribute::ReadNone);
1703 }
1704 
1705 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1706                              bool UseFloat, Value *&Sin, Value *&Cos,
1707                              Value *&SinCos) {
1708   Type *ArgTy = Arg->getType();
1709   Type *ResTy;
1710   StringRef Name;
1711 
1712   Triple T(OrigCallee->getParent()->getTargetTriple());
1713   if (UseFloat) {
1714     Name = "__sincospif_stret";
1715 
1716     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1717     // x86_64 can't use {float, float} since that would be returned in both
1718     // xmm0 and xmm1, which isn't what a real struct would do.
1719     ResTy = T.getArch() == Triple::x86_64
1720                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1721                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1722   } else {
1723     Name = "__sincospi_stret";
1724     ResTy = StructType::get(ArgTy, ArgTy);
1725   }
1726 
1727   Module *M = OrigCallee->getParent();
1728   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1729                                          ResTy, ArgTy);
1730 
1731   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1732     // If the argument is an instruction, it must dominate all uses so put our
1733     // sincos call there.
1734     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1735   } else {
1736     // Otherwise (e.g. for a constant) the beginning of the function is as
1737     // good a place as any.
1738     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1739     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1740   }
1741 
1742   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1743 
1744   if (SinCos->getType()->isStructTy()) {
1745     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1746     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1747   } else {
1748     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1749                                  "sinpi");
1750     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1751                                  "cospi");
1752   }
1753 }
1754 
1755 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1756   // Make sure the prototype is as expected, otherwise the rest of the
1757   // function is probably invalid and likely to abort.
1758   if (!isTrigLibCall(CI))
1759     return nullptr;
1760 
1761   Value *Arg = CI->getArgOperand(0);
1762   SmallVector<CallInst *, 1> SinCalls;
1763   SmallVector<CallInst *, 1> CosCalls;
1764   SmallVector<CallInst *, 1> SinCosCalls;
1765 
1766   bool IsFloat = Arg->getType()->isFloatTy();
1767 
1768   // Look for all compatible sinpi, cospi and sincospi calls with the same
1769   // argument. If there are enough (in some sense) we can make the
1770   // substitution.
1771   Function *F = CI->getFunction();
1772   for (User *U : Arg->users())
1773     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1774 
1775   // It's only worthwhile if both sinpi and cospi are actually used.
1776   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1777     return nullptr;
1778 
1779   Value *Sin, *Cos, *SinCos;
1780   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1781 
1782   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1783                                  Value *Res) {
1784     for (CallInst *C : Calls)
1785       replaceAllUsesWith(C, Res);
1786   };
1787 
1788   replaceTrigInsts(SinCalls, Sin);
1789   replaceTrigInsts(CosCalls, Cos);
1790   replaceTrigInsts(SinCosCalls, SinCos);
1791 
1792   return nullptr;
1793 }
1794 
1795 void LibCallSimplifier::classifyArgUse(
1796     Value *Val, Function *F, bool IsFloat,
1797     SmallVectorImpl<CallInst *> &SinCalls,
1798     SmallVectorImpl<CallInst *> &CosCalls,
1799     SmallVectorImpl<CallInst *> &SinCosCalls) {
1800   CallInst *CI = dyn_cast<CallInst>(Val);
1801 
1802   if (!CI)
1803     return;
1804 
1805   // Don't consider calls in other functions.
1806   if (CI->getFunction() != F)
1807     return;
1808 
1809   Function *Callee = CI->getCalledFunction();
1810   LibFunc Func;
1811   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1812       !isTrigLibCall(CI))
1813     return;
1814 
1815   if (IsFloat) {
1816     if (Func == LibFunc_sinpif)
1817       SinCalls.push_back(CI);
1818     else if (Func == LibFunc_cospif)
1819       CosCalls.push_back(CI);
1820     else if (Func == LibFunc_sincospif_stret)
1821       SinCosCalls.push_back(CI);
1822   } else {
1823     if (Func == LibFunc_sinpi)
1824       SinCalls.push_back(CI);
1825     else if (Func == LibFunc_cospi)
1826       CosCalls.push_back(CI);
1827     else if (Func == LibFunc_sincospi_stret)
1828       SinCosCalls.push_back(CI);
1829   }
1830 }
1831 
1832 //===----------------------------------------------------------------------===//
1833 // Integer Library Call Optimizations
1834 //===----------------------------------------------------------------------===//
1835 
1836 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1837   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1838   Value *Op = CI->getArgOperand(0);
1839   Type *ArgType = Op->getType();
1840   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1841                                        Intrinsic::cttz, ArgType);
1842   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1843   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1844   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1845 
1846   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1847   return B.CreateSelect(Cond, V, B.getInt32(0));
1848 }
1849 
1850 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1851   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1852   Value *Op = CI->getArgOperand(0);
1853   Type *ArgType = Op->getType();
1854   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1855                                        Intrinsic::ctlz, ArgType);
1856   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1857   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1858                   V);
1859   return B.CreateIntCast(V, CI->getType(), false);
1860 }
1861 
1862 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1863   // abs(x) -> x <s 0 ? -x : x
1864   // The negation has 'nsw' because abs of INT_MIN is undefined.
1865   Value *X = CI->getArgOperand(0);
1866   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1867   Value *NegX = B.CreateNSWNeg(X, "neg");
1868   return B.CreateSelect(IsNeg, NegX, X);
1869 }
1870 
1871 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1872   // isdigit(c) -> (c-'0') <u 10
1873   Value *Op = CI->getArgOperand(0);
1874   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1875   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1876   return B.CreateZExt(Op, CI->getType());
1877 }
1878 
1879 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1880   // isascii(c) -> c <u 128
1881   Value *Op = CI->getArgOperand(0);
1882   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1883   return B.CreateZExt(Op, CI->getType());
1884 }
1885 
1886 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1887   // toascii(c) -> c & 0x7f
1888   return B.CreateAnd(CI->getArgOperand(0),
1889                      ConstantInt::get(CI->getType(), 0x7F));
1890 }
1891 
1892 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1893   StringRef Str;
1894   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1895     return nullptr;
1896 
1897   return convertStrToNumber(CI, Str, 10);
1898 }
1899 
1900 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1901   StringRef Str;
1902   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1903     return nullptr;
1904 
1905   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1906     return nullptr;
1907 
1908   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1909     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1910   }
1911 
1912   return nullptr;
1913 }
1914 
1915 //===----------------------------------------------------------------------===//
1916 // Formatting and IO Library Call Optimizations
1917 //===----------------------------------------------------------------------===//
1918 
1919 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1920 
1921 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1922                                                  int StreamArg) {
1923   Function *Callee = CI->getCalledFunction();
1924   // Error reporting calls should be cold, mark them as such.
1925   // This applies even to non-builtin calls: it is only a hint and applies to
1926   // functions that the frontend might not understand as builtins.
1927 
1928   // This heuristic was suggested in:
1929   // Improving Static Branch Prediction in a Compiler
1930   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1931   // Proceedings of PACT'98, Oct. 1998, IEEE
1932   if (!CI->hasFnAttr(Attribute::Cold) &&
1933       isReportingError(Callee, CI, StreamArg)) {
1934     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1935   }
1936 
1937   return nullptr;
1938 }
1939 
1940 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1941   if (!Callee || !Callee->isDeclaration())
1942     return false;
1943 
1944   if (StreamArg < 0)
1945     return true;
1946 
1947   // These functions might be considered cold, but only if their stream
1948   // argument is stderr.
1949 
1950   if (StreamArg >= (int)CI->getNumArgOperands())
1951     return false;
1952   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1953   if (!LI)
1954     return false;
1955   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1956   if (!GV || !GV->isDeclaration())
1957     return false;
1958   return GV->getName() == "stderr";
1959 }
1960 
1961 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1962   // Check for a fixed format string.
1963   StringRef FormatStr;
1964   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1965     return nullptr;
1966 
1967   // Empty format string -> noop.
1968   if (FormatStr.empty()) // Tolerate printf's declared void.
1969     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1970 
1971   // Do not do any of the following transformations if the printf return value
1972   // is used, in general the printf return value is not compatible with either
1973   // putchar() or puts().
1974   if (!CI->use_empty())
1975     return nullptr;
1976 
1977   // printf("x") -> putchar('x'), even for "%" and "%%".
1978   if (FormatStr.size() == 1 || FormatStr == "%%")
1979     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1980 
1981   // printf("%s", "a") --> putchar('a')
1982   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1983     StringRef ChrStr;
1984     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1985       return nullptr;
1986     if (ChrStr.size() != 1)
1987       return nullptr;
1988     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1989   }
1990 
1991   // printf("foo\n") --> puts("foo")
1992   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1993       FormatStr.find('%') == StringRef::npos) { // No format characters.
1994     // Create a string literal with no \n on it.  We expect the constant merge
1995     // pass to be run after this pass, to merge duplicate strings.
1996     FormatStr = FormatStr.drop_back();
1997     Value *GV = B.CreateGlobalString(FormatStr, "str");
1998     return emitPutS(GV, B, TLI);
1999   }
2000 
2001   // Optimize specific format strings.
2002   // printf("%c", chr) --> putchar(chr)
2003   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2004       CI->getArgOperand(1)->getType()->isIntegerTy())
2005     return emitPutChar(CI->getArgOperand(1), B, TLI);
2006 
2007   // printf("%s\n", str) --> puts(str)
2008   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2009       CI->getArgOperand(1)->getType()->isPointerTy())
2010     return emitPutS(CI->getArgOperand(1), B, TLI);
2011   return nullptr;
2012 }
2013 
2014 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2015 
2016   Function *Callee = CI->getCalledFunction();
2017   FunctionType *FT = Callee->getFunctionType();
2018   if (Value *V = optimizePrintFString(CI, B)) {
2019     return V;
2020   }
2021 
2022   // printf(format, ...) -> iprintf(format, ...) if no floating point
2023   // arguments.
2024   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2025     Module *M = B.GetInsertBlock()->getParent()->getParent();
2026     Constant *IPrintFFn =
2027         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2028     CallInst *New = cast<CallInst>(CI->clone());
2029     New->setCalledFunction(IPrintFFn);
2030     B.Insert(New);
2031     return New;
2032   }
2033   return nullptr;
2034 }
2035 
2036 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2037   // Check for a fixed format string.
2038   StringRef FormatStr;
2039   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2040     return nullptr;
2041 
2042   // If we just have a format string (nothing else crazy) transform it.
2043   if (CI->getNumArgOperands() == 2) {
2044     // Make sure there's no % in the constant array.  We could try to handle
2045     // %% -> % in the future if we cared.
2046     if (FormatStr.find('%') != StringRef::npos)
2047       return nullptr; // we found a format specifier, bail out.
2048 
2049     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2050     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2051                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2052                                     FormatStr.size() + 1)); // Copy the null byte.
2053     return ConstantInt::get(CI->getType(), FormatStr.size());
2054   }
2055 
2056   // The remaining optimizations require the format string to be "%s" or "%c"
2057   // and have an extra operand.
2058   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2059       CI->getNumArgOperands() < 3)
2060     return nullptr;
2061 
2062   // Decode the second character of the format string.
2063   if (FormatStr[1] == 'c') {
2064     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2065     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2066       return nullptr;
2067     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2068     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2069     B.CreateStore(V, Ptr);
2070     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2071     B.CreateStore(B.getInt8(0), Ptr);
2072 
2073     return ConstantInt::get(CI->getType(), 1);
2074   }
2075 
2076   if (FormatStr[1] == 's') {
2077     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
2078     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2079       return nullptr;
2080 
2081     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2082     if (!Len)
2083       return nullptr;
2084     Value *IncLen =
2085         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2086     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2087 
2088     // The sprintf result is the unincremented number of bytes in the string.
2089     return B.CreateIntCast(Len, CI->getType(), false);
2090   }
2091   return nullptr;
2092 }
2093 
2094 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2095   Function *Callee = CI->getCalledFunction();
2096   FunctionType *FT = Callee->getFunctionType();
2097   if (Value *V = optimizeSPrintFString(CI, B)) {
2098     return V;
2099   }
2100 
2101   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2102   // point arguments.
2103   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2104     Module *M = B.GetInsertBlock()->getParent()->getParent();
2105     Constant *SIPrintFFn =
2106         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2107     CallInst *New = cast<CallInst>(CI->clone());
2108     New->setCalledFunction(SIPrintFFn);
2109     B.Insert(New);
2110     return New;
2111   }
2112   return nullptr;
2113 }
2114 
2115 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2116   // Check for a fixed format string.
2117   StringRef FormatStr;
2118   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2119     return nullptr;
2120 
2121   // Check for size
2122   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2123   if (!Size)
2124     return nullptr;
2125 
2126   uint64_t N = Size->getZExtValue();
2127 
2128   // If we just have a format string (nothing else crazy) transform it.
2129   if (CI->getNumArgOperands() == 3) {
2130     // Make sure there's no % in the constant array.  We could try to handle
2131     // %% -> % in the future if we cared.
2132     if (FormatStr.find('%') != StringRef::npos)
2133       return nullptr; // we found a format specifier, bail out.
2134 
2135     if (N == 0)
2136       return ConstantInt::get(CI->getType(), FormatStr.size());
2137     else if (N < FormatStr.size() + 1)
2138       return nullptr;
2139 
2140     // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
2141     // strlen(fmt)+1)
2142     B.CreateMemCpy(
2143         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2144         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2145                          FormatStr.size() + 1)); // Copy the null byte.
2146     return ConstantInt::get(CI->getType(), FormatStr.size());
2147   }
2148 
2149   // The remaining optimizations require the format string to be "%s" or "%c"
2150   // and have an extra operand.
2151   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2152       CI->getNumArgOperands() == 4) {
2153 
2154     // Decode the second character of the format string.
2155     if (FormatStr[1] == 'c') {
2156       if (N == 0)
2157         return ConstantInt::get(CI->getType(), 1);
2158       else if (N == 1)
2159         return nullptr;
2160 
2161       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2162       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2163         return nullptr;
2164       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2165       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2166       B.CreateStore(V, Ptr);
2167       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2168       B.CreateStore(B.getInt8(0), Ptr);
2169 
2170       return ConstantInt::get(CI->getType(), 1);
2171     }
2172 
2173     if (FormatStr[1] == 's') {
2174       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2175       StringRef Str;
2176       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2177         return nullptr;
2178 
2179       if (N == 0)
2180         return ConstantInt::get(CI->getType(), Str.size());
2181       else if (N < Str.size() + 1)
2182         return nullptr;
2183 
2184       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2185                      ConstantInt::get(CI->getType(), Str.size() + 1));
2186 
2187       // The snprintf result is the unincremented number of bytes in the string.
2188       return ConstantInt::get(CI->getType(), Str.size());
2189     }
2190   }
2191   return nullptr;
2192 }
2193 
2194 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2195   if (Value *V = optimizeSnPrintFString(CI, B)) {
2196     return V;
2197   }
2198 
2199   return nullptr;
2200 }
2201 
2202 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2203   optimizeErrorReporting(CI, B, 0);
2204 
2205   // All the optimizations depend on the format string.
2206   StringRef FormatStr;
2207   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2208     return nullptr;
2209 
2210   // Do not do any of the following transformations if the fprintf return
2211   // value is used, in general the fprintf return value is not compatible
2212   // with fwrite(), fputc() or fputs().
2213   if (!CI->use_empty())
2214     return nullptr;
2215 
2216   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2217   if (CI->getNumArgOperands() == 2) {
2218     // Could handle %% -> % if we cared.
2219     if (FormatStr.find('%') != StringRef::npos)
2220       return nullptr; // We found a format specifier.
2221 
2222     return emitFWrite(
2223         CI->getArgOperand(1),
2224         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2225         CI->getArgOperand(0), B, DL, TLI);
2226   }
2227 
2228   // The remaining optimizations require the format string to be "%s" or "%c"
2229   // and have an extra operand.
2230   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2231       CI->getNumArgOperands() < 3)
2232     return nullptr;
2233 
2234   // Decode the second character of the format string.
2235   if (FormatStr[1] == 'c') {
2236     // fprintf(F, "%c", chr) --> fputc(chr, F)
2237     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2238       return nullptr;
2239     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2240   }
2241 
2242   if (FormatStr[1] == 's') {
2243     // fprintf(F, "%s", str) --> fputs(str, F)
2244     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2245       return nullptr;
2246     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2247   }
2248   return nullptr;
2249 }
2250 
2251 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2252   Function *Callee = CI->getCalledFunction();
2253   FunctionType *FT = Callee->getFunctionType();
2254   if (Value *V = optimizeFPrintFString(CI, B)) {
2255     return V;
2256   }
2257 
2258   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2259   // floating point arguments.
2260   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2261     Module *M = B.GetInsertBlock()->getParent()->getParent();
2262     Constant *FIPrintFFn =
2263         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2264     CallInst *New = cast<CallInst>(CI->clone());
2265     New->setCalledFunction(FIPrintFFn);
2266     B.Insert(New);
2267     return New;
2268   }
2269   return nullptr;
2270 }
2271 
2272 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2273   optimizeErrorReporting(CI, B, 3);
2274 
2275   // Get the element size and count.
2276   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2277   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2278   if (SizeC && CountC) {
2279     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2280 
2281     // If this is writing zero records, remove the call (it's a noop).
2282     if (Bytes == 0)
2283       return ConstantInt::get(CI->getType(), 0);
2284 
2285     // If this is writing one byte, turn it into fputc.
2286     // This optimisation is only valid, if the return value is unused.
2287     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2288       Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2289       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2290       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2291     }
2292   }
2293 
2294   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2295     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2296                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2297                               TLI);
2298 
2299   return nullptr;
2300 }
2301 
2302 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2303   optimizeErrorReporting(CI, B, 1);
2304 
2305   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2306   // requires more arguments and thus extra MOVs are required.
2307   if (CI->getFunction()->optForSize())
2308     return nullptr;
2309 
2310   // Check if has any use
2311   if (!CI->use_empty()) {
2312     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2313       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2314                                TLI);
2315     else
2316       // We can't optimize if return value is used.
2317       return nullptr;
2318   }
2319 
2320   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2321   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2322   if (!Len)
2323     return nullptr;
2324 
2325   // Known to have no uses (see above).
2326   return emitFWrite(
2327       CI->getArgOperand(0),
2328       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2329       CI->getArgOperand(1), B, DL, TLI);
2330 }
2331 
2332 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2333   optimizeErrorReporting(CI, B, 1);
2334 
2335   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2336     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2337                              TLI);
2338 
2339   return nullptr;
2340 }
2341 
2342 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2343   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2344     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2345 
2346   return nullptr;
2347 }
2348 
2349 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2350   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2351     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2352                              CI->getArgOperand(2), B, TLI);
2353 
2354   return nullptr;
2355 }
2356 
2357 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2358   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2359     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2360                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2361                              TLI);
2362 
2363   return nullptr;
2364 }
2365 
2366 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2367   // Check for a constant string.
2368   StringRef Str;
2369   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2370     return nullptr;
2371 
2372   if (Str.empty() && CI->use_empty()) {
2373     // puts("") -> putchar('\n')
2374     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2375     if (CI->use_empty() || !Res)
2376       return Res;
2377     return B.CreateIntCast(Res, CI->getType(), true);
2378   }
2379 
2380   return nullptr;
2381 }
2382 
2383 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2384   LibFunc Func;
2385   SmallString<20> FloatFuncName = FuncName;
2386   FloatFuncName += 'f';
2387   if (TLI->getLibFunc(FloatFuncName, Func))
2388     return TLI->has(Func);
2389   return false;
2390 }
2391 
2392 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2393                                                       IRBuilder<> &Builder) {
2394   LibFunc Func;
2395   Function *Callee = CI->getCalledFunction();
2396   // Check for string/memory library functions.
2397   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2398     // Make sure we never change the calling convention.
2399     assert((ignoreCallingConv(Func) ||
2400             isCallingConvCCompatible(CI)) &&
2401       "Optimizing string/memory libcall would change the calling convention");
2402     switch (Func) {
2403     case LibFunc_strcat:
2404       return optimizeStrCat(CI, Builder);
2405     case LibFunc_strncat:
2406       return optimizeStrNCat(CI, Builder);
2407     case LibFunc_strchr:
2408       return optimizeStrChr(CI, Builder);
2409     case LibFunc_strrchr:
2410       return optimizeStrRChr(CI, Builder);
2411     case LibFunc_strcmp:
2412       return optimizeStrCmp(CI, Builder);
2413     case LibFunc_strncmp:
2414       return optimizeStrNCmp(CI, Builder);
2415     case LibFunc_strcpy:
2416       return optimizeStrCpy(CI, Builder);
2417     case LibFunc_stpcpy:
2418       return optimizeStpCpy(CI, Builder);
2419     case LibFunc_strncpy:
2420       return optimizeStrNCpy(CI, Builder);
2421     case LibFunc_strlen:
2422       return optimizeStrLen(CI, Builder);
2423     case LibFunc_strpbrk:
2424       return optimizeStrPBrk(CI, Builder);
2425     case LibFunc_strtol:
2426     case LibFunc_strtod:
2427     case LibFunc_strtof:
2428     case LibFunc_strtoul:
2429     case LibFunc_strtoll:
2430     case LibFunc_strtold:
2431     case LibFunc_strtoull:
2432       return optimizeStrTo(CI, Builder);
2433     case LibFunc_strspn:
2434       return optimizeStrSpn(CI, Builder);
2435     case LibFunc_strcspn:
2436       return optimizeStrCSpn(CI, Builder);
2437     case LibFunc_strstr:
2438       return optimizeStrStr(CI, Builder);
2439     case LibFunc_memchr:
2440       return optimizeMemChr(CI, Builder);
2441     case LibFunc_memcmp:
2442       return optimizeMemCmp(CI, Builder);
2443     case LibFunc_memcpy:
2444       return optimizeMemCpy(CI, Builder);
2445     case LibFunc_memmove:
2446       return optimizeMemMove(CI, Builder);
2447     case LibFunc_memset:
2448       return optimizeMemSet(CI, Builder);
2449     case LibFunc_realloc:
2450       return optimizeRealloc(CI, Builder);
2451     case LibFunc_wcslen:
2452       return optimizeWcslen(CI, Builder);
2453     default:
2454       break;
2455     }
2456   }
2457   return nullptr;
2458 }
2459 
2460 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2461                                                        LibFunc Func,
2462                                                        IRBuilder<> &Builder) {
2463   // Don't optimize calls that require strict floating point semantics.
2464   if (CI->isStrictFP())
2465     return nullptr;
2466 
2467   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2468     return V;
2469 
2470   switch (Func) {
2471   case LibFunc_sinpif:
2472   case LibFunc_sinpi:
2473   case LibFunc_cospif:
2474   case LibFunc_cospi:
2475     return optimizeSinCosPi(CI, Builder);
2476   case LibFunc_powf:
2477   case LibFunc_pow:
2478   case LibFunc_powl:
2479     return optimizePow(CI, Builder);
2480   case LibFunc_exp2l:
2481   case LibFunc_exp2:
2482   case LibFunc_exp2f:
2483     return optimizeExp2(CI, Builder);
2484   case LibFunc_fabsf:
2485   case LibFunc_fabs:
2486   case LibFunc_fabsl:
2487     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2488   case LibFunc_sqrtf:
2489   case LibFunc_sqrt:
2490   case LibFunc_sqrtl:
2491     return optimizeSqrt(CI, Builder);
2492   case LibFunc_log:
2493   case LibFunc_log10:
2494   case LibFunc_log1p:
2495   case LibFunc_log2:
2496   case LibFunc_logb:
2497     return optimizeLog(CI, Builder);
2498   case LibFunc_tan:
2499   case LibFunc_tanf:
2500   case LibFunc_tanl:
2501     return optimizeTan(CI, Builder);
2502   case LibFunc_ceil:
2503     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2504   case LibFunc_floor:
2505     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2506   case LibFunc_round:
2507     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2508   case LibFunc_nearbyint:
2509     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2510   case LibFunc_rint:
2511     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2512   case LibFunc_trunc:
2513     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2514   case LibFunc_acos:
2515   case LibFunc_acosh:
2516   case LibFunc_asin:
2517   case LibFunc_asinh:
2518   case LibFunc_atan:
2519   case LibFunc_atanh:
2520   case LibFunc_cbrt:
2521   case LibFunc_cosh:
2522   case LibFunc_exp:
2523   case LibFunc_exp10:
2524   case LibFunc_expm1:
2525   case LibFunc_cos:
2526   case LibFunc_sin:
2527   case LibFunc_sinh:
2528   case LibFunc_tanh:
2529     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2530       return optimizeUnaryDoubleFP(CI, Builder, true);
2531     return nullptr;
2532   case LibFunc_copysign:
2533     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2534       return optimizeBinaryDoubleFP(CI, Builder);
2535     return nullptr;
2536   case LibFunc_fminf:
2537   case LibFunc_fmin:
2538   case LibFunc_fminl:
2539   case LibFunc_fmaxf:
2540   case LibFunc_fmax:
2541   case LibFunc_fmaxl:
2542     return optimizeFMinFMax(CI, Builder);
2543   case LibFunc_cabs:
2544   case LibFunc_cabsf:
2545   case LibFunc_cabsl:
2546     return optimizeCAbs(CI, Builder);
2547   default:
2548     return nullptr;
2549   }
2550 }
2551 
2552 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2553   // TODO: Split out the code below that operates on FP calls so that
2554   //       we can all non-FP calls with the StrictFP attribute to be
2555   //       optimized.
2556   if (CI->isNoBuiltin())
2557     return nullptr;
2558 
2559   LibFunc Func;
2560   Function *Callee = CI->getCalledFunction();
2561 
2562   SmallVector<OperandBundleDef, 2> OpBundles;
2563   CI->getOperandBundlesAsDefs(OpBundles);
2564   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2565   bool isCallingConvC = isCallingConvCCompatible(CI);
2566 
2567   // Command-line parameter overrides instruction attribute.
2568   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2569   // used by the intrinsic optimizations.
2570   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2571     UnsafeFPShrink = EnableUnsafeFPShrink;
2572   else if (isa<FPMathOperator>(CI) && CI->isFast())
2573     UnsafeFPShrink = true;
2574 
2575   // First, check for intrinsics.
2576   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2577     if (!isCallingConvC)
2578       return nullptr;
2579     // The FP intrinsics have corresponding constrained versions so we don't
2580     // need to check for the StrictFP attribute here.
2581     switch (II->getIntrinsicID()) {
2582     case Intrinsic::pow:
2583       return optimizePow(CI, Builder);
2584     case Intrinsic::exp2:
2585       return optimizeExp2(CI, Builder);
2586     case Intrinsic::log:
2587       return optimizeLog(CI, Builder);
2588     case Intrinsic::sqrt:
2589       return optimizeSqrt(CI, Builder);
2590     // TODO: Use foldMallocMemset() with memset intrinsic.
2591     default:
2592       return nullptr;
2593     }
2594   }
2595 
2596   // Also try to simplify calls to fortified library functions.
2597   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2598     // Try to further simplify the result.
2599     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2600     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2601       // Use an IR Builder from SimplifiedCI if available instead of CI
2602       // to guarantee we reach all uses we might replace later on.
2603       IRBuilder<> TmpBuilder(SimplifiedCI);
2604       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2605         // If we were able to further simplify, remove the now redundant call.
2606         SimplifiedCI->replaceAllUsesWith(V);
2607         eraseFromParent(SimplifiedCI);
2608         return V;
2609       }
2610     }
2611     return SimplifiedFortifiedCI;
2612   }
2613 
2614   // Then check for known library functions.
2615   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2616     // We never change the calling convention.
2617     if (!ignoreCallingConv(Func) && !isCallingConvC)
2618       return nullptr;
2619     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2620       return V;
2621     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2622       return V;
2623     switch (Func) {
2624     case LibFunc_ffs:
2625     case LibFunc_ffsl:
2626     case LibFunc_ffsll:
2627       return optimizeFFS(CI, Builder);
2628     case LibFunc_fls:
2629     case LibFunc_flsl:
2630     case LibFunc_flsll:
2631       return optimizeFls(CI, Builder);
2632     case LibFunc_abs:
2633     case LibFunc_labs:
2634     case LibFunc_llabs:
2635       return optimizeAbs(CI, Builder);
2636     case LibFunc_isdigit:
2637       return optimizeIsDigit(CI, Builder);
2638     case LibFunc_isascii:
2639       return optimizeIsAscii(CI, Builder);
2640     case LibFunc_toascii:
2641       return optimizeToAscii(CI, Builder);
2642     case LibFunc_atoi:
2643     case LibFunc_atol:
2644     case LibFunc_atoll:
2645       return optimizeAtoi(CI, Builder);
2646     case LibFunc_strtol:
2647     case LibFunc_strtoll:
2648       return optimizeStrtol(CI, Builder);
2649     case LibFunc_printf:
2650       return optimizePrintF(CI, Builder);
2651     case LibFunc_sprintf:
2652       return optimizeSPrintF(CI, Builder);
2653     case LibFunc_snprintf:
2654       return optimizeSnPrintF(CI, Builder);
2655     case LibFunc_fprintf:
2656       return optimizeFPrintF(CI, Builder);
2657     case LibFunc_fwrite:
2658       return optimizeFWrite(CI, Builder);
2659     case LibFunc_fread:
2660       return optimizeFRead(CI, Builder);
2661     case LibFunc_fputs:
2662       return optimizeFPuts(CI, Builder);
2663     case LibFunc_fgets:
2664       return optimizeFGets(CI, Builder);
2665     case LibFunc_fputc:
2666       return optimizeFPutc(CI, Builder);
2667     case LibFunc_fgetc:
2668       return optimizeFGetc(CI, Builder);
2669     case LibFunc_puts:
2670       return optimizePuts(CI, Builder);
2671     case LibFunc_perror:
2672       return optimizeErrorReporting(CI, Builder);
2673     case LibFunc_vfprintf:
2674     case LibFunc_fiprintf:
2675       return optimizeErrorReporting(CI, Builder, 0);
2676     default:
2677       return nullptr;
2678     }
2679   }
2680   return nullptr;
2681 }
2682 
2683 LibCallSimplifier::LibCallSimplifier(
2684     const DataLayout &DL, const TargetLibraryInfo *TLI,
2685     OptimizationRemarkEmitter &ORE,
2686     function_ref<void(Instruction *, Value *)> Replacer,
2687     function_ref<void(Instruction *)> Eraser)
2688     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2689       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
2690 
2691 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2692   // Indirect through the replacer used in this instance.
2693   Replacer(I, With);
2694 }
2695 
2696 void LibCallSimplifier::eraseFromParent(Instruction *I) {
2697   Eraser(I);
2698 }
2699 
2700 // TODO:
2701 //   Additional cases that we need to add to this file:
2702 //
2703 // cbrt:
2704 //   * cbrt(expN(X))  -> expN(x/3)
2705 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2706 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2707 //
2708 // exp, expf, expl:
2709 //   * exp(log(x))  -> x
2710 //
2711 // log, logf, logl:
2712 //   * log(exp(x))   -> x
2713 //   * log(exp(y))   -> y*log(e)
2714 //   * log(exp10(y)) -> y*log(10)
2715 //   * log(sqrt(x))  -> 0.5*log(x)
2716 //
2717 // pow, powf, powl:
2718 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2719 //   * pow(pow(x,y),z)-> pow(x,y*z)
2720 //
2721 // signbit:
2722 //   * signbit(cnst) -> cnst'
2723 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2724 //
2725 // sqrt, sqrtf, sqrtl:
2726 //   * sqrt(expN(x))  -> expN(x*0.5)
2727 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2728 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2729 //
2730 
2731 //===----------------------------------------------------------------------===//
2732 // Fortified Library Call Optimizations
2733 //===----------------------------------------------------------------------===//
2734 
2735 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2736                                                          unsigned ObjSizeOp,
2737                                                          unsigned SizeOp,
2738                                                          bool isString) {
2739   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2740     return true;
2741   if (ConstantInt *ObjSizeCI =
2742           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2743     if (ObjSizeCI->isMinusOne())
2744       return true;
2745     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2746     if (OnlyLowerUnknownSize)
2747       return false;
2748     if (isString) {
2749       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2750       // If the length is 0 we don't know how long it is and so we can't
2751       // remove the check.
2752       if (Len == 0)
2753         return false;
2754       return ObjSizeCI->getZExtValue() >= Len;
2755     }
2756     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2757       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2758   }
2759   return false;
2760 }
2761 
2762 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2763                                                      IRBuilder<> &B) {
2764   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2765     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2766                    CI->getArgOperand(2));
2767     return CI->getArgOperand(0);
2768   }
2769   return nullptr;
2770 }
2771 
2772 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2773                                                       IRBuilder<> &B) {
2774   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2775     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2776                     CI->getArgOperand(2));
2777     return CI->getArgOperand(0);
2778   }
2779   return nullptr;
2780 }
2781 
2782 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2783                                                      IRBuilder<> &B) {
2784   // TODO: Try foldMallocMemset() here.
2785 
2786   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2787     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2788     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2789     return CI->getArgOperand(0);
2790   }
2791   return nullptr;
2792 }
2793 
2794 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2795                                                       IRBuilder<> &B,
2796                                                       LibFunc Func) {
2797   Function *Callee = CI->getCalledFunction();
2798   StringRef Name = Callee->getName();
2799   const DataLayout &DL = CI->getModule()->getDataLayout();
2800   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2801         *ObjSize = CI->getArgOperand(2);
2802 
2803   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2804   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2805     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2806     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2807   }
2808 
2809   // If a) we don't have any length information, or b) we know this will
2810   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2811   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2812   // TODO: It might be nice to get a maximum length out of the possible
2813   // string lengths for varying.
2814   if (isFortifiedCallFoldable(CI, 2, 1, true))
2815     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2816 
2817   if (OnlyLowerUnknownSize)
2818     return nullptr;
2819 
2820   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2821   uint64_t Len = GetStringLength(Src);
2822   if (Len == 0)
2823     return nullptr;
2824 
2825   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2826   Value *LenV = ConstantInt::get(SizeTTy, Len);
2827   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2828   // If the function was an __stpcpy_chk, and we were able to fold it into
2829   // a __memcpy_chk, we still need to return the correct end pointer.
2830   if (Ret && Func == LibFunc_stpcpy_chk)
2831     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2832   return Ret;
2833 }
2834 
2835 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2836                                                        IRBuilder<> &B,
2837                                                        LibFunc Func) {
2838   Function *Callee = CI->getCalledFunction();
2839   StringRef Name = Callee->getName();
2840   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2841     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2842                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2843     return Ret;
2844   }
2845   return nullptr;
2846 }
2847 
2848 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2849   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2850   // Some clang users checked for _chk libcall availability using:
2851   //   __has_builtin(__builtin___memcpy_chk)
2852   // When compiling with -fno-builtin, this is always true.
2853   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2854   // end up with fortified libcalls, which isn't acceptable in a freestanding
2855   // environment which only provides their non-fortified counterparts.
2856   //
2857   // Until we change clang and/or teach external users to check for availability
2858   // differently, disregard the "nobuiltin" attribute and TLI::has.
2859   //
2860   // PR23093.
2861 
2862   LibFunc Func;
2863   Function *Callee = CI->getCalledFunction();
2864 
2865   SmallVector<OperandBundleDef, 2> OpBundles;
2866   CI->getOperandBundlesAsDefs(OpBundles);
2867   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2868   bool isCallingConvC = isCallingConvCCompatible(CI);
2869 
2870   // First, check that this is a known library functions and that the prototype
2871   // is correct.
2872   if (!TLI->getLibFunc(*Callee, Func))
2873     return nullptr;
2874 
2875   // We never change the calling convention.
2876   if (!ignoreCallingConv(Func) && !isCallingConvC)
2877     return nullptr;
2878 
2879   switch (Func) {
2880   case LibFunc_memcpy_chk:
2881     return optimizeMemCpyChk(CI, Builder);
2882   case LibFunc_memmove_chk:
2883     return optimizeMemMoveChk(CI, Builder);
2884   case LibFunc_memset_chk:
2885     return optimizeMemSetChk(CI, Builder);
2886   case LibFunc_stpcpy_chk:
2887   case LibFunc_strcpy_chk:
2888     return optimizeStrpCpyChk(CI, Builder, Func);
2889   case LibFunc_stpncpy_chk:
2890   case LibFunc_strncpy_chk:
2891     return optimizeStrpNCpyChk(CI, Builder, Func);
2892   default:
2893     break;
2894   }
2895   return nullptr;
2896 }
2897 
2898 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2899     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2900     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2901