1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 /// \brief Check whether the overloaded unary floating point function 108 /// corresponding to \a Ty is available. 109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 110 LibFunc DoubleFn, LibFunc FloatFn, 111 LibFunc LongDoubleFn) { 112 switch (Ty->getTypeID()) { 113 case Type::FloatTyID: 114 return TLI->has(FloatFn); 115 case Type::DoubleTyID: 116 return TLI->has(DoubleFn); 117 default: 118 return TLI->has(LongDoubleFn); 119 } 120 } 121 122 //===----------------------------------------------------------------------===// 123 // String and Memory Library Call Optimizations 124 //===----------------------------------------------------------------------===// 125 126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 127 // Extract some information from the instruction 128 Value *Dst = CI->getArgOperand(0); 129 Value *Src = CI->getArgOperand(1); 130 131 // See if we can get the length of the input string. 132 uint64_t Len = GetStringLength(Src); 133 if (Len == 0) 134 return nullptr; 135 --Len; // Unbias length. 136 137 // Handle the simple, do-nothing case: strcat(x, "") -> x 138 if (Len == 0) 139 return Dst; 140 141 return emitStrLenMemCpy(Src, Dst, Len, B); 142 } 143 144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 145 IRBuilder<> &B) { 146 // We need to find the end of the destination string. That's where the 147 // memory is to be moved to. We just generate a call to strlen. 148 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 149 if (!DstLen) 150 return nullptr; 151 152 // Now that we have the destination's length, we must index into the 153 // destination's pointer to get the actual memcpy destination (end of 154 // the string .. we're concatenating). 155 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 156 157 // We have enough information to now generate the memcpy call to do the 158 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 159 B.CreateMemCpy(CpyDst, Src, 160 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 161 1); 162 return Dst; 163 } 164 165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 166 // Extract some information from the instruction. 167 Value *Dst = CI->getArgOperand(0); 168 Value *Src = CI->getArgOperand(1); 169 uint64_t Len; 170 171 // We don't do anything if length is not constant. 172 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 173 Len = LengthArg->getZExtValue(); 174 else 175 return nullptr; 176 177 // See if we can get the length of the input string. 178 uint64_t SrcLen = GetStringLength(Src); 179 if (SrcLen == 0) 180 return nullptr; 181 --SrcLen; // Unbias length. 182 183 // Handle the simple, do-nothing cases: 184 // strncat(x, "", c) -> x 185 // strncat(x, c, 0) -> x 186 if (SrcLen == 0 || Len == 0) 187 return Dst; 188 189 // We don't optimize this case. 190 if (Len < SrcLen) 191 return nullptr; 192 193 // strncat(x, s, c) -> strcat(x, s) 194 // s is constant so the strcat can be optimized further. 195 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 196 } 197 198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 199 Function *Callee = CI->getCalledFunction(); 200 FunctionType *FT = Callee->getFunctionType(); 201 Value *SrcStr = CI->getArgOperand(0); 202 203 // If the second operand is non-constant, see if we can compute the length 204 // of the input string and turn this into memchr. 205 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 206 if (!CharC) { 207 uint64_t Len = GetStringLength(SrcStr); 208 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 209 return nullptr; 210 211 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 212 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 213 B, DL, TLI); 214 } 215 216 // Otherwise, the character is a constant, see if the first argument is 217 // a string literal. If so, we can constant fold. 218 StringRef Str; 219 if (!getConstantStringInfo(SrcStr, Str)) { 220 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 221 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 222 "strchr"); 223 return nullptr; 224 } 225 226 // Compute the offset, make sure to handle the case when we're searching for 227 // zero (a weird way to spell strlen). 228 size_t I = (0xFF & CharC->getSExtValue()) == 0 229 ? Str.size() 230 : Str.find(CharC->getSExtValue()); 231 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 232 return Constant::getNullValue(CI->getType()); 233 234 // strchr(s+n,c) -> gep(s+n+i,c) 235 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 236 } 237 238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 239 Value *SrcStr = CI->getArgOperand(0); 240 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 241 242 // Cannot fold anything if we're not looking for a constant. 243 if (!CharC) 244 return nullptr; 245 246 StringRef Str; 247 if (!getConstantStringInfo(SrcStr, Str)) { 248 // strrchr(s, 0) -> strchr(s, 0) 249 if (CharC->isZero()) 250 return emitStrChr(SrcStr, '\0', B, TLI); 251 return nullptr; 252 } 253 254 // Compute the offset. 255 size_t I = (0xFF & CharC->getSExtValue()) == 0 256 ? Str.size() 257 : Str.rfind(CharC->getSExtValue()); 258 if (I == StringRef::npos) // Didn't find the char. Return null. 259 return Constant::getNullValue(CI->getType()); 260 261 // strrchr(s+n,c) -> gep(s+n+i,c) 262 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 263 } 264 265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 266 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 267 if (Str1P == Str2P) // strcmp(x,x) -> 0 268 return ConstantInt::get(CI->getType(), 0); 269 270 StringRef Str1, Str2; 271 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 272 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 273 274 // strcmp(x, y) -> cnst (if both x and y are constant strings) 275 if (HasStr1 && HasStr2) 276 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 277 278 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 279 return B.CreateNeg( 280 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 281 282 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 283 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 284 285 // strcmp(P, "x") -> memcmp(P, "x", 2) 286 uint64_t Len1 = GetStringLength(Str1P); 287 uint64_t Len2 = GetStringLength(Str2P); 288 if (Len1 && Len2) { 289 return emitMemCmp(Str1P, Str2P, 290 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 291 std::min(Len1, Len2)), 292 B, DL, TLI); 293 } 294 295 return nullptr; 296 } 297 298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 299 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 300 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 301 return ConstantInt::get(CI->getType(), 0); 302 303 // Get the length argument if it is constant. 304 uint64_t Length; 305 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 306 Length = LengthArg->getZExtValue(); 307 else 308 return nullptr; 309 310 if (Length == 0) // strncmp(x,y,0) -> 0 311 return ConstantInt::get(CI->getType(), 0); 312 313 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 314 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 315 316 StringRef Str1, Str2; 317 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 318 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 319 320 // strncmp(x, y) -> cnst (if both x and y are constant strings) 321 if (HasStr1 && HasStr2) { 322 StringRef SubStr1 = Str1.substr(0, Length); 323 StringRef SubStr2 = Str2.substr(0, Length); 324 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 325 } 326 327 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 328 return B.CreateNeg( 329 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 330 331 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 332 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 333 334 return nullptr; 335 } 336 337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 339 if (Dst == Src) // strcpy(x,x) -> x 340 return Src; 341 342 // See if we can get the length of the input string. 343 uint64_t Len = GetStringLength(Src); 344 if (Len == 0) 345 return nullptr; 346 347 // We have enough information to now generate the memcpy call to do the 348 // copy for us. Make a memcpy to copy the nul byte with align = 1. 349 B.CreateMemCpy(Dst, Src, 350 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 351 return Dst; 352 } 353 354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 355 Function *Callee = CI->getCalledFunction(); 356 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 357 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 358 Value *StrLen = emitStrLen(Src, B, DL, TLI); 359 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 360 } 361 362 // See if we can get the length of the input string. 363 uint64_t Len = GetStringLength(Src); 364 if (Len == 0) 365 return nullptr; 366 367 Type *PT = Callee->getFunctionType()->getParamType(0); 368 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 369 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 370 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 371 372 // We have enough information to now generate the memcpy call to do the 373 // copy for us. Make a memcpy to copy the nul byte with align = 1. 374 B.CreateMemCpy(Dst, Src, LenV, 1); 375 return DstEnd; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 379 Function *Callee = CI->getCalledFunction(); 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 Value *LenOp = CI->getArgOperand(2); 383 384 // See if we can get the length of the input string. 385 uint64_t SrcLen = GetStringLength(Src); 386 if (SrcLen == 0) 387 return nullptr; 388 --SrcLen; 389 390 if (SrcLen == 0) { 391 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 392 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 393 return Dst; 394 } 395 396 uint64_t Len; 397 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 398 Len = LengthArg->getZExtValue(); 399 else 400 return nullptr; 401 402 if (Len == 0) 403 return Dst; // strncpy(x, y, 0) -> x 404 405 // Let strncpy handle the zero padding 406 if (Len > SrcLen + 1) 407 return nullptr; 408 409 Type *PT = Callee->getFunctionType()->getParamType(0); 410 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 411 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 412 413 return Dst; 414 } 415 416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 417 unsigned CharSize) { 418 Value *Src = CI->getArgOperand(0); 419 420 // Constant folding: strlen("xyz") -> 3 421 if (uint64_t Len = GetStringLength(Src, CharSize)) 422 return ConstantInt::get(CI->getType(), Len - 1); 423 424 // If s is a constant pointer pointing to a string literal, we can fold 425 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 426 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 427 // We only try to simplify strlen when the pointer s points to an array 428 // of i8. Otherwise, we would need to scale the offset x before doing the 429 // subtraction. This will make the optimization more complex, and it's not 430 // very useful because calling strlen for a pointer of other types is 431 // very uncommon. 432 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 433 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 434 return nullptr; 435 436 ConstantDataArraySlice Slice; 437 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 438 uint64_t NullTermIdx; 439 if (Slice.Array == nullptr) { 440 NullTermIdx = 0; 441 } else { 442 NullTermIdx = ~((uint64_t)0); 443 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 444 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 445 NullTermIdx = I; 446 break; 447 } 448 } 449 // If the string does not have '\0', leave it to strlen to compute 450 // its length. 451 if (NullTermIdx == ~((uint64_t)0)) 452 return nullptr; 453 } 454 455 Value *Offset = GEP->getOperand(2); 456 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 457 Known.Zero.flipAllBits(); 458 uint64_t ArrSize = 459 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 460 461 // KnownZero's bits are flipped, so zeros in KnownZero now represent 462 // bits known to be zeros in Offset, and ones in KnowZero represent 463 // bits unknown in Offset. Therefore, Offset is known to be in range 464 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 465 // unsigned-less-than NullTermIdx. 466 // 467 // If Offset is not provably in the range [0, NullTermIdx], we can still 468 // optimize if we can prove that the program has undefined behavior when 469 // Offset is outside that range. That is the case when GEP->getOperand(0) 470 // is a pointer to an object whose memory extent is NullTermIdx+1. 471 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 472 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 473 NullTermIdx == ArrSize - 1)) { 474 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 475 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 476 Offset); 477 } 478 } 479 480 return nullptr; 481 } 482 483 // strlen(x?"foo":"bars") --> x ? 3 : 4 484 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 485 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 486 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 487 if (LenTrue && LenFalse) { 488 ORE.emit([&]() { 489 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 490 << "folded strlen(select) to select of constants"; 491 }); 492 return B.CreateSelect(SI->getCondition(), 493 ConstantInt::get(CI->getType(), LenTrue - 1), 494 ConstantInt::get(CI->getType(), LenFalse - 1)); 495 } 496 } 497 498 // strlen(x) != 0 --> *x != 0 499 // strlen(x) == 0 --> *x == 0 500 if (isOnlyUsedInZeroEqualityComparison(CI)) 501 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 502 503 return nullptr; 504 } 505 506 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 507 return optimizeStringLength(CI, B, 8); 508 } 509 510 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 511 Module &M = *CI->getParent()->getParent()->getParent(); 512 unsigned WCharSize = TLI->getWCharSize(M) * 8; 513 // We cannot perform this optimization without wchar_size metadata. 514 if (WCharSize == 0) 515 return nullptr; 516 517 return optimizeStringLength(CI, B, WCharSize); 518 } 519 520 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 521 StringRef S1, S2; 522 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 523 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 524 525 // strpbrk(s, "") -> nullptr 526 // strpbrk("", s) -> nullptr 527 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 528 return Constant::getNullValue(CI->getType()); 529 530 // Constant folding. 531 if (HasS1 && HasS2) { 532 size_t I = S1.find_first_of(S2); 533 if (I == StringRef::npos) // No match. 534 return Constant::getNullValue(CI->getType()); 535 536 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 537 "strpbrk"); 538 } 539 540 // strpbrk(s, "a") -> strchr(s, 'a') 541 if (HasS2 && S2.size() == 1) 542 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 543 544 return nullptr; 545 } 546 547 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 548 Value *EndPtr = CI->getArgOperand(1); 549 if (isa<ConstantPointerNull>(EndPtr)) { 550 // With a null EndPtr, this function won't capture the main argument. 551 // It would be readonly too, except that it still may write to errno. 552 CI->addParamAttr(0, Attribute::NoCapture); 553 } 554 555 return nullptr; 556 } 557 558 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 559 StringRef S1, S2; 560 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 561 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 562 563 // strspn(s, "") -> 0 564 // strspn("", s) -> 0 565 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 566 return Constant::getNullValue(CI->getType()); 567 568 // Constant folding. 569 if (HasS1 && HasS2) { 570 size_t Pos = S1.find_first_not_of(S2); 571 if (Pos == StringRef::npos) 572 Pos = S1.size(); 573 return ConstantInt::get(CI->getType(), Pos); 574 } 575 576 return nullptr; 577 } 578 579 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 580 StringRef S1, S2; 581 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 582 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 583 584 // strcspn("", s) -> 0 585 if (HasS1 && S1.empty()) 586 return Constant::getNullValue(CI->getType()); 587 588 // Constant folding. 589 if (HasS1 && HasS2) { 590 size_t Pos = S1.find_first_of(S2); 591 if (Pos == StringRef::npos) 592 Pos = S1.size(); 593 return ConstantInt::get(CI->getType(), Pos); 594 } 595 596 // strcspn(s, "") -> strlen(s) 597 if (HasS2 && S2.empty()) 598 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 599 600 return nullptr; 601 } 602 603 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 604 // fold strstr(x, x) -> x. 605 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 606 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 607 608 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 609 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 610 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 611 if (!StrLen) 612 return nullptr; 613 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 614 StrLen, B, DL, TLI); 615 if (!StrNCmp) 616 return nullptr; 617 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 618 ICmpInst *Old = cast<ICmpInst>(*UI++); 619 Value *Cmp = 620 B.CreateICmp(Old->getPredicate(), StrNCmp, 621 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 622 replaceAllUsesWith(Old, Cmp); 623 } 624 return CI; 625 } 626 627 // See if either input string is a constant string. 628 StringRef SearchStr, ToFindStr; 629 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 630 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 631 632 // fold strstr(x, "") -> x. 633 if (HasStr2 && ToFindStr.empty()) 634 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 635 636 // If both strings are known, constant fold it. 637 if (HasStr1 && HasStr2) { 638 size_t Offset = SearchStr.find(ToFindStr); 639 640 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 641 return Constant::getNullValue(CI->getType()); 642 643 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 644 Value *Result = castToCStr(CI->getArgOperand(0), B); 645 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 646 return B.CreateBitCast(Result, CI->getType()); 647 } 648 649 // fold strstr(x, "y") -> strchr(x, 'y'). 650 if (HasStr2 && ToFindStr.size() == 1) { 651 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 652 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 653 } 654 return nullptr; 655 } 656 657 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 658 Value *SrcStr = CI->getArgOperand(0); 659 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 660 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 661 662 // memchr(x, y, 0) -> null 663 if (LenC && LenC->isZero()) 664 return Constant::getNullValue(CI->getType()); 665 666 // From now on we need at least constant length and string. 667 StringRef Str; 668 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 669 return nullptr; 670 671 // Truncate the string to LenC. If Str is smaller than LenC we will still only 672 // scan the string, as reading past the end of it is undefined and we can just 673 // return null if we don't find the char. 674 Str = Str.substr(0, LenC->getZExtValue()); 675 676 // If the char is variable but the input str and length are not we can turn 677 // this memchr call into a simple bit field test. Of course this only works 678 // when the return value is only checked against null. 679 // 680 // It would be really nice to reuse switch lowering here but we can't change 681 // the CFG at this point. 682 // 683 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 684 // after bounds check. 685 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 686 unsigned char Max = 687 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 688 reinterpret_cast<const unsigned char *>(Str.end())); 689 690 // Make sure the bit field we're about to create fits in a register on the 691 // target. 692 // FIXME: On a 64 bit architecture this prevents us from using the 693 // interesting range of alpha ascii chars. We could do better by emitting 694 // two bitfields or shifting the range by 64 if no lower chars are used. 695 if (!DL.fitsInLegalInteger(Max + 1)) 696 return nullptr; 697 698 // For the bit field use a power-of-2 type with at least 8 bits to avoid 699 // creating unnecessary illegal types. 700 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 701 702 // Now build the bit field. 703 APInt Bitfield(Width, 0); 704 for (char C : Str) 705 Bitfield.setBit((unsigned char)C); 706 Value *BitfieldC = B.getInt(Bitfield); 707 708 // First check that the bit field access is within bounds. 709 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 710 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 711 "memchr.bounds"); 712 713 // Create code that checks if the given bit is set in the field. 714 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 715 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 716 717 // Finally merge both checks and cast to pointer type. The inttoptr 718 // implicitly zexts the i1 to intptr type. 719 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 720 } 721 722 // Check if all arguments are constants. If so, we can constant fold. 723 if (!CharC) 724 return nullptr; 725 726 // Compute the offset. 727 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 728 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 729 return Constant::getNullValue(CI->getType()); 730 731 // memchr(s+n,c,l) -> gep(s+n+i,c) 732 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 733 } 734 735 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 736 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 737 738 if (LHS == RHS) // memcmp(s,s,x) -> 0 739 return Constant::getNullValue(CI->getType()); 740 741 // Make sure we have a constant length. 742 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 743 if (!LenC) 744 return nullptr; 745 746 uint64_t Len = LenC->getZExtValue(); 747 if (Len == 0) // memcmp(s1,s2,0) -> 0 748 return Constant::getNullValue(CI->getType()); 749 750 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 751 if (Len == 1) { 752 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 753 CI->getType(), "lhsv"); 754 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 755 CI->getType(), "rhsv"); 756 return B.CreateSub(LHSV, RHSV, "chardiff"); 757 } 758 759 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 760 // TODO: The case where both inputs are constants does not need to be limited 761 // to legal integers or equality comparison. See block below this. 762 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 763 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 764 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 765 766 // First, see if we can fold either argument to a constant. 767 Value *LHSV = nullptr; 768 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 769 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 770 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 771 } 772 Value *RHSV = nullptr; 773 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 774 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 775 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 776 } 777 778 // Don't generate unaligned loads. If either source is constant data, 779 // alignment doesn't matter for that source because there is no load. 780 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 781 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 782 if (!LHSV) { 783 Type *LHSPtrTy = 784 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 785 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 786 } 787 if (!RHSV) { 788 Type *RHSPtrTy = 789 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 790 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 791 } 792 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 793 } 794 } 795 796 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 797 // TODO: This is limited to i8 arrays. 798 StringRef LHSStr, RHSStr; 799 if (getConstantStringInfo(LHS, LHSStr) && 800 getConstantStringInfo(RHS, RHSStr)) { 801 // Make sure we're not reading out-of-bounds memory. 802 if (Len > LHSStr.size() || Len > RHSStr.size()) 803 return nullptr; 804 // Fold the memcmp and normalize the result. This way we get consistent 805 // results across multiple platforms. 806 uint64_t Ret = 0; 807 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 808 if (Cmp < 0) 809 Ret = -1; 810 else if (Cmp > 0) 811 Ret = 1; 812 return ConstantInt::get(CI->getType(), Ret); 813 } 814 815 return nullptr; 816 } 817 818 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 819 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 820 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 821 CI->getArgOperand(2), 1); 822 return CI->getArgOperand(0); 823 } 824 825 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 826 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 827 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 828 CI->getArgOperand(2), 1); 829 return CI->getArgOperand(0); 830 } 831 832 // TODO: Does this belong in BuildLibCalls or should all of those similar 833 // functions be moved here? 834 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 835 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 836 LibFunc Func; 837 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 838 return nullptr; 839 840 Module *M = B.GetInsertBlock()->getModule(); 841 const DataLayout &DL = M->getDataLayout(); 842 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 843 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 844 PtrType, PtrType); 845 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 846 847 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 848 CI->setCallingConv(F->getCallingConv()); 849 850 return CI; 851 } 852 853 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 854 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 855 const TargetLibraryInfo &TLI) { 856 // This has to be a memset of zeros (bzero). 857 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 858 if (!FillValue || FillValue->getZExtValue() != 0) 859 return nullptr; 860 861 // TODO: We should handle the case where the malloc has more than one use. 862 // This is necessary to optimize common patterns such as when the result of 863 // the malloc is checked against null or when a memset intrinsic is used in 864 // place of a memset library call. 865 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 866 if (!Malloc || !Malloc->hasOneUse()) 867 return nullptr; 868 869 // Is the inner call really malloc()? 870 Function *InnerCallee = Malloc->getCalledFunction(); 871 if (!InnerCallee) 872 return nullptr; 873 874 LibFunc Func; 875 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 876 Func != LibFunc_malloc) 877 return nullptr; 878 879 // The memset must cover the same number of bytes that are malloc'd. 880 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 881 return nullptr; 882 883 // Replace the malloc with a calloc. We need the data layout to know what the 884 // actual size of a 'size_t' parameter is. 885 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 886 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 887 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 888 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 889 Malloc->getArgOperand(0), Malloc->getAttributes(), 890 B, TLI); 891 if (!Calloc) 892 return nullptr; 893 894 Malloc->replaceAllUsesWith(Calloc); 895 Malloc->eraseFromParent(); 896 897 return Calloc; 898 } 899 900 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 901 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 902 return Calloc; 903 904 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 905 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 906 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 907 return CI->getArgOperand(0); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // Math Library Optimizations 912 //===----------------------------------------------------------------------===// 913 914 /// Return a variant of Val with float type. 915 /// Currently this works in two cases: If Val is an FPExtension of a float 916 /// value to something bigger, simply return the operand. 917 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 918 /// loss of precision do so. 919 static Value *valueHasFloatPrecision(Value *Val) { 920 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 921 Value *Op = Cast->getOperand(0); 922 if (Op->getType()->isFloatTy()) 923 return Op; 924 } 925 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 926 APFloat F = Const->getValueAPF(); 927 bool losesInfo; 928 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 929 &losesInfo); 930 if (!losesInfo) 931 return ConstantFP::get(Const->getContext(), F); 932 } 933 return nullptr; 934 } 935 936 /// Shrink double -> float for unary functions like 'floor'. 937 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 938 bool CheckRetType) { 939 Function *Callee = CI->getCalledFunction(); 940 // We know this libcall has a valid prototype, but we don't know which. 941 if (!CI->getType()->isDoubleTy()) 942 return nullptr; 943 944 if (CheckRetType) { 945 // Check if all the uses for function like 'sin' are converted to float. 946 for (User *U : CI->users()) { 947 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 948 if (!Cast || !Cast->getType()->isFloatTy()) 949 return nullptr; 950 } 951 } 952 953 // If this is something like 'floor((double)floatval)', convert to floorf. 954 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 955 if (V == nullptr) 956 return nullptr; 957 958 // If call isn't an intrinsic, check that it isn't within a function with the 959 // same name as the float version of this call. 960 // 961 // e.g. inline float expf(float val) { return (float) exp((double) val); } 962 // 963 // A similar such definition exists in the MinGW-w64 math.h header file which 964 // when compiled with -O2 -ffast-math causes the generation of infinite loops 965 // where expf is called. 966 if (!Callee->isIntrinsic()) { 967 const Function *F = CI->getFunction(); 968 StringRef FName = F->getName(); 969 StringRef CalleeName = Callee->getName(); 970 if ((FName.size() == (CalleeName.size() + 1)) && 971 (FName.back() == 'f') && 972 FName.startswith(CalleeName)) 973 return nullptr; 974 } 975 976 // Propagate fast-math flags from the existing call to the new call. 977 IRBuilder<>::FastMathFlagGuard Guard(B); 978 B.setFastMathFlags(CI->getFastMathFlags()); 979 980 // floor((double)floatval) -> (double)floorf(floatval) 981 if (Callee->isIntrinsic()) { 982 Module *M = CI->getModule(); 983 Intrinsic::ID IID = Callee->getIntrinsicID(); 984 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 985 V = B.CreateCall(F, V); 986 } else { 987 // The call is a library call rather than an intrinsic. 988 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 989 } 990 991 return B.CreateFPExt(V, B.getDoubleTy()); 992 } 993 994 // Replace a libcall \p CI with a call to intrinsic \p IID 995 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 996 // Propagate fast-math flags from the existing call to the new call. 997 IRBuilder<>::FastMathFlagGuard Guard(B); 998 B.setFastMathFlags(CI->getFastMathFlags()); 999 1000 Module *M = CI->getModule(); 1001 Value *V = CI->getArgOperand(0); 1002 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1003 CallInst *NewCall = B.CreateCall(F, V); 1004 NewCall->takeName(CI); 1005 return NewCall; 1006 } 1007 1008 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1009 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1010 Function *Callee = CI->getCalledFunction(); 1011 // We know this libcall has a valid prototype, but we don't know which. 1012 if (!CI->getType()->isDoubleTy()) 1013 return nullptr; 1014 1015 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1016 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1017 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1018 if (V1 == nullptr) 1019 return nullptr; 1020 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1021 if (V2 == nullptr) 1022 return nullptr; 1023 1024 // Propagate fast-math flags from the existing call to the new call. 1025 IRBuilder<>::FastMathFlagGuard Guard(B); 1026 B.setFastMathFlags(CI->getFastMathFlags()); 1027 1028 // fmin((double)floatval1, (double)floatval2) 1029 // -> (double)fminf(floatval1, floatval2) 1030 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1031 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1032 Callee->getAttributes()); 1033 return B.CreateFPExt(V, B.getDoubleTy()); 1034 } 1035 1036 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1037 Function *Callee = CI->getCalledFunction(); 1038 Value *Ret = nullptr; 1039 StringRef Name = Callee->getName(); 1040 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1041 Ret = optimizeUnaryDoubleFP(CI, B, true); 1042 1043 // cos(-x) -> cos(x) 1044 Value *Op1 = CI->getArgOperand(0); 1045 if (BinaryOperator::isFNeg(Op1)) { 1046 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1047 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1048 } 1049 return Ret; 1050 } 1051 1052 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1053 // Multiplications calculated using Addition Chains. 1054 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1055 1056 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1057 1058 if (InnerChain[Exp]) 1059 return InnerChain[Exp]; 1060 1061 static const unsigned AddChain[33][2] = { 1062 {0, 0}, // Unused. 1063 {0, 0}, // Unused (base case = pow1). 1064 {1, 1}, // Unused (pre-computed). 1065 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1066 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1067 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1068 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1069 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1070 }; 1071 1072 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1073 getPow(InnerChain, AddChain[Exp][1], B)); 1074 return InnerChain[Exp]; 1075 } 1076 1077 /// Use square root in place of pow(x, +/-0.5). 1078 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1079 // TODO: There is some subset of 'fast' under which these transforms should 1080 // be allowed. 1081 if (!Pow->isFast()) 1082 return nullptr; 1083 1084 const APFloat *Arg1C; 1085 if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C))) 1086 return nullptr; 1087 if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5)) 1088 return nullptr; 1089 1090 // Fast-math flags from the pow() are propagated to all replacement ops. 1091 IRBuilder<>::FastMathFlagGuard Guard(B); 1092 B.setFastMathFlags(Pow->getFastMathFlags()); 1093 Type *Ty = Pow->getType(); 1094 Value *Sqrt; 1095 if (Pow->hasFnAttr(Attribute::ReadNone)) { 1096 // We know that errno is never set, so replace with an intrinsic: 1097 // pow(x, 0.5) --> llvm.sqrt(x) 1098 // llvm.pow(x, 0.5) --> llvm.sqrt(x) 1099 auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty); 1100 Sqrt = B.CreateCall(F, Pow->getArgOperand(0)); 1101 } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, 1102 LibFunc_sqrtl)) { 1103 // Errno could be set, so we must use a sqrt libcall. 1104 // TODO: We also should check that the target can in fact lower the sqrt 1105 // libcall. We currently have no way to ask this question, so we ask 1106 // whether the target has a sqrt libcall which is not exactly the same. 1107 Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0), 1108 TLI->getName(LibFunc_sqrt), B, 1109 Pow->getCalledFunction()->getAttributes()); 1110 } else { 1111 // We can't replace with an intrinsic or a libcall. 1112 return nullptr; 1113 } 1114 1115 // If this is pow(x, -0.5), get the reciprocal. 1116 if (Arg1C->isExactlyValue(-0.5)) 1117 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt); 1118 1119 return Sqrt; 1120 } 1121 1122 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1123 Function *Callee = CI->getCalledFunction(); 1124 Value *Ret = nullptr; 1125 StringRef Name = Callee->getName(); 1126 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1127 Ret = optimizeUnaryDoubleFP(CI, B, true); 1128 1129 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1130 1131 // pow(1.0, x) -> 1.0 1132 if (match(Op1, m_SpecificFP(1.0))) 1133 return Op1; 1134 // pow(2.0, x) -> llvm.exp2(x) 1135 if (match(Op1, m_SpecificFP(2.0))) { 1136 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1137 CI->getType()); 1138 return B.CreateCall(Exp2, Op2, "exp2"); 1139 } 1140 1141 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1142 // be one. 1143 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1144 // pow(10.0, x) -> exp10(x) 1145 if (Op1C->isExactlyValue(10.0) && 1146 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1147 LibFunc_exp10l)) 1148 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1149 Callee->getAttributes()); 1150 } 1151 1152 // pow(exp(x), y) -> exp(x * y) 1153 // pow(exp2(x), y) -> exp2(x * y) 1154 // We enable these only with fast-math. Besides rounding differences, the 1155 // transformation changes overflow and underflow behavior quite dramatically. 1156 // Example: x = 1000, y = 0.001. 1157 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1158 auto *OpC = dyn_cast<CallInst>(Op1); 1159 if (OpC && OpC->isFast() && CI->isFast()) { 1160 LibFunc Func; 1161 Function *OpCCallee = OpC->getCalledFunction(); 1162 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1163 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1164 IRBuilder<>::FastMathFlagGuard Guard(B); 1165 B.setFastMathFlags(CI->getFastMathFlags()); 1166 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1167 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1168 OpCCallee->getAttributes()); 1169 } 1170 } 1171 1172 if (Value *Sqrt = replacePowWithSqrt(CI, B)) 1173 return Sqrt; 1174 1175 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1176 if (!Op2C) 1177 return Ret; 1178 1179 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1180 return ConstantFP::get(CI->getType(), 1.0); 1181 1182 // FIXME: Correct the transforms and pull this into replacePowWithSqrt(). 1183 if (Op2C->isExactlyValue(0.5) && 1184 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1185 LibFunc_sqrtl)) { 1186 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1187 // This is faster than calling pow, and still handles negative zero 1188 // and negative infinity correctly. 1189 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1190 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1191 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1192 1193 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1194 // intrinsic, to match errno semantics. 1195 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1196 1197 Module *M = Callee->getParent(); 1198 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1199 CI->getType()); 1200 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1201 1202 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1203 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1204 return Sel; 1205 } 1206 1207 // Propagate fast-math-flags from the call to any created instructions. 1208 IRBuilder<>::FastMathFlagGuard Guard(B); 1209 B.setFastMathFlags(CI->getFastMathFlags()); 1210 // pow(x, 1.0) --> x 1211 if (Op2C->isExactlyValue(1.0)) 1212 return Op1; 1213 // pow(x, 2.0) --> x * x 1214 if (Op2C->isExactlyValue(2.0)) 1215 return B.CreateFMul(Op1, Op1, "pow2"); 1216 // pow(x, -1.0) --> 1.0 / x 1217 if (Op2C->isExactlyValue(-1.0)) 1218 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1219 1220 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1221 if (CI->isFast()) { 1222 APFloat V = abs(Op2C->getValueAPF()); 1223 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1224 // This transformation applies to integer exponents only. 1225 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1226 !V.isInteger()) 1227 return nullptr; 1228 1229 // We will memoize intermediate products of the Addition Chain. 1230 Value *InnerChain[33] = {nullptr}; 1231 InnerChain[1] = Op1; 1232 InnerChain[2] = B.CreateFMul(Op1, Op1); 1233 1234 // We cannot readily convert a non-double type (like float) to a double. 1235 // So we first convert V to something which could be converted to double. 1236 bool Ignored; 1237 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1238 1239 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1240 // For negative exponents simply compute the reciprocal. 1241 if (Op2C->isNegative()) 1242 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1243 return FMul; 1244 } 1245 1246 return nullptr; 1247 } 1248 1249 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1250 Function *Callee = CI->getCalledFunction(); 1251 Value *Ret = nullptr; 1252 StringRef Name = Callee->getName(); 1253 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1254 Ret = optimizeUnaryDoubleFP(CI, B, true); 1255 1256 Value *Op = CI->getArgOperand(0); 1257 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1258 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1259 LibFunc LdExp = LibFunc_ldexpl; 1260 if (Op->getType()->isFloatTy()) 1261 LdExp = LibFunc_ldexpf; 1262 else if (Op->getType()->isDoubleTy()) 1263 LdExp = LibFunc_ldexp; 1264 1265 if (TLI->has(LdExp)) { 1266 Value *LdExpArg = nullptr; 1267 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1268 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1269 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1270 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1271 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1272 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1273 } 1274 1275 if (LdExpArg) { 1276 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1277 if (!Op->getType()->isFloatTy()) 1278 One = ConstantExpr::getFPExtend(One, Op->getType()); 1279 1280 Module *M = CI->getModule(); 1281 Value *NewCallee = 1282 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1283 Op->getType(), B.getInt32Ty()); 1284 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1285 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1286 CI->setCallingConv(F->getCallingConv()); 1287 1288 return CI; 1289 } 1290 } 1291 return Ret; 1292 } 1293 1294 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1295 Function *Callee = CI->getCalledFunction(); 1296 // If we can shrink the call to a float function rather than a double 1297 // function, do that first. 1298 StringRef Name = Callee->getName(); 1299 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1300 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1301 return Ret; 1302 1303 IRBuilder<>::FastMathFlagGuard Guard(B); 1304 FastMathFlags FMF; 1305 if (CI->isFast()) { 1306 // If the call is 'fast', then anything we create here will also be 'fast'. 1307 FMF.setFast(); 1308 } else { 1309 // At a minimum, no-nans-fp-math must be true. 1310 if (!CI->hasNoNaNs()) 1311 return nullptr; 1312 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1313 // "Ideally, fmax would be sensitive to the sign of zero, for example 1314 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1315 // might be impractical." 1316 FMF.setNoSignedZeros(); 1317 FMF.setNoNaNs(); 1318 } 1319 B.setFastMathFlags(FMF); 1320 1321 // We have a relaxed floating-point environment. We can ignore NaN-handling 1322 // and transform to a compare and select. We do not have to consider errno or 1323 // exceptions, because fmin/fmax do not have those. 1324 Value *Op0 = CI->getArgOperand(0); 1325 Value *Op1 = CI->getArgOperand(1); 1326 Value *Cmp = Callee->getName().startswith("fmin") ? 1327 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1328 return B.CreateSelect(Cmp, Op0, Op1); 1329 } 1330 1331 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1332 Function *Callee = CI->getCalledFunction(); 1333 Value *Ret = nullptr; 1334 StringRef Name = Callee->getName(); 1335 if (UnsafeFPShrink && hasFloatVersion(Name)) 1336 Ret = optimizeUnaryDoubleFP(CI, B, true); 1337 1338 if (!CI->isFast()) 1339 return Ret; 1340 Value *Op1 = CI->getArgOperand(0); 1341 auto *OpC = dyn_cast<CallInst>(Op1); 1342 1343 // The earlier call must also be 'fast' in order to do these transforms. 1344 if (!OpC || !OpC->isFast()) 1345 return Ret; 1346 1347 // log(pow(x,y)) -> y*log(x) 1348 // This is only applicable to log, log2, log10. 1349 if (Name != "log" && Name != "log2" && Name != "log10") 1350 return Ret; 1351 1352 IRBuilder<>::FastMathFlagGuard Guard(B); 1353 FastMathFlags FMF; 1354 FMF.setFast(); 1355 B.setFastMathFlags(FMF); 1356 1357 LibFunc Func; 1358 Function *F = OpC->getCalledFunction(); 1359 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1360 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1361 return B.CreateFMul(OpC->getArgOperand(1), 1362 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1363 Callee->getAttributes()), "mul"); 1364 1365 // log(exp2(y)) -> y*log(2) 1366 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1367 TLI->has(Func) && Func == LibFunc_exp2) 1368 return B.CreateFMul( 1369 OpC->getArgOperand(0), 1370 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1371 Callee->getName(), B, Callee->getAttributes()), 1372 "logmul"); 1373 return Ret; 1374 } 1375 1376 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1377 Function *Callee = CI->getCalledFunction(); 1378 Value *Ret = nullptr; 1379 // TODO: Once we have a way (other than checking for the existince of the 1380 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1381 // condition below. 1382 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1383 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1384 Ret = optimizeUnaryDoubleFP(CI, B, true); 1385 1386 if (!CI->isFast()) 1387 return Ret; 1388 1389 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1390 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1391 return Ret; 1392 1393 // We're looking for a repeated factor in a multiplication tree, 1394 // so we can do this fold: sqrt(x * x) -> fabs(x); 1395 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1396 Value *Op0 = I->getOperand(0); 1397 Value *Op1 = I->getOperand(1); 1398 Value *RepeatOp = nullptr; 1399 Value *OtherOp = nullptr; 1400 if (Op0 == Op1) { 1401 // Simple match: the operands of the multiply are identical. 1402 RepeatOp = Op0; 1403 } else { 1404 // Look for a more complicated pattern: one of the operands is itself 1405 // a multiply, so search for a common factor in that multiply. 1406 // Note: We don't bother looking any deeper than this first level or for 1407 // variations of this pattern because instcombine's visitFMUL and/or the 1408 // reassociation pass should give us this form. 1409 Value *OtherMul0, *OtherMul1; 1410 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1411 // Pattern: sqrt((x * y) * z) 1412 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1413 // Matched: sqrt((x * x) * z) 1414 RepeatOp = OtherMul0; 1415 OtherOp = Op1; 1416 } 1417 } 1418 } 1419 if (!RepeatOp) 1420 return Ret; 1421 1422 // Fast math flags for any created instructions should match the sqrt 1423 // and multiply. 1424 IRBuilder<>::FastMathFlagGuard Guard(B); 1425 B.setFastMathFlags(I->getFastMathFlags()); 1426 1427 // If we found a repeated factor, hoist it out of the square root and 1428 // replace it with the fabs of that factor. 1429 Module *M = Callee->getParent(); 1430 Type *ArgType = I->getType(); 1431 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1432 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1433 if (OtherOp) { 1434 // If we found a non-repeated factor, we still need to get its square 1435 // root. We then multiply that by the value that was simplified out 1436 // of the square root calculation. 1437 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1438 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1439 return B.CreateFMul(FabsCall, SqrtCall); 1440 } 1441 return FabsCall; 1442 } 1443 1444 // TODO: Generalize to handle any trig function and its inverse. 1445 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1446 Function *Callee = CI->getCalledFunction(); 1447 Value *Ret = nullptr; 1448 StringRef Name = Callee->getName(); 1449 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1450 Ret = optimizeUnaryDoubleFP(CI, B, true); 1451 1452 Value *Op1 = CI->getArgOperand(0); 1453 auto *OpC = dyn_cast<CallInst>(Op1); 1454 if (!OpC) 1455 return Ret; 1456 1457 // Both calls must be 'fast' in order to remove them. 1458 if (!CI->isFast() || !OpC->isFast()) 1459 return Ret; 1460 1461 // tan(atan(x)) -> x 1462 // tanf(atanf(x)) -> x 1463 // tanl(atanl(x)) -> x 1464 LibFunc Func; 1465 Function *F = OpC->getCalledFunction(); 1466 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1467 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1468 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1469 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1470 Ret = OpC->getArgOperand(0); 1471 return Ret; 1472 } 1473 1474 static bool isTrigLibCall(CallInst *CI) { 1475 // We can only hope to do anything useful if we can ignore things like errno 1476 // and floating-point exceptions. 1477 // We already checked the prototype. 1478 return CI->hasFnAttr(Attribute::NoUnwind) && 1479 CI->hasFnAttr(Attribute::ReadNone); 1480 } 1481 1482 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1483 bool UseFloat, Value *&Sin, Value *&Cos, 1484 Value *&SinCos) { 1485 Type *ArgTy = Arg->getType(); 1486 Type *ResTy; 1487 StringRef Name; 1488 1489 Triple T(OrigCallee->getParent()->getTargetTriple()); 1490 if (UseFloat) { 1491 Name = "__sincospif_stret"; 1492 1493 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1494 // x86_64 can't use {float, float} since that would be returned in both 1495 // xmm0 and xmm1, which isn't what a real struct would do. 1496 ResTy = T.getArch() == Triple::x86_64 1497 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1498 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1499 } else { 1500 Name = "__sincospi_stret"; 1501 ResTy = StructType::get(ArgTy, ArgTy); 1502 } 1503 1504 Module *M = OrigCallee->getParent(); 1505 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1506 ResTy, ArgTy); 1507 1508 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1509 // If the argument is an instruction, it must dominate all uses so put our 1510 // sincos call there. 1511 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1512 } else { 1513 // Otherwise (e.g. for a constant) the beginning of the function is as 1514 // good a place as any. 1515 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1516 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1517 } 1518 1519 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1520 1521 if (SinCos->getType()->isStructTy()) { 1522 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1523 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1524 } else { 1525 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1526 "sinpi"); 1527 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1528 "cospi"); 1529 } 1530 } 1531 1532 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1533 // Make sure the prototype is as expected, otherwise the rest of the 1534 // function is probably invalid and likely to abort. 1535 if (!isTrigLibCall(CI)) 1536 return nullptr; 1537 1538 Value *Arg = CI->getArgOperand(0); 1539 SmallVector<CallInst *, 1> SinCalls; 1540 SmallVector<CallInst *, 1> CosCalls; 1541 SmallVector<CallInst *, 1> SinCosCalls; 1542 1543 bool IsFloat = Arg->getType()->isFloatTy(); 1544 1545 // Look for all compatible sinpi, cospi and sincospi calls with the same 1546 // argument. If there are enough (in some sense) we can make the 1547 // substitution. 1548 Function *F = CI->getFunction(); 1549 for (User *U : Arg->users()) 1550 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1551 1552 // It's only worthwhile if both sinpi and cospi are actually used. 1553 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1554 return nullptr; 1555 1556 Value *Sin, *Cos, *SinCos; 1557 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1558 1559 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1560 Value *Res) { 1561 for (CallInst *C : Calls) 1562 replaceAllUsesWith(C, Res); 1563 }; 1564 1565 replaceTrigInsts(SinCalls, Sin); 1566 replaceTrigInsts(CosCalls, Cos); 1567 replaceTrigInsts(SinCosCalls, SinCos); 1568 1569 return nullptr; 1570 } 1571 1572 void LibCallSimplifier::classifyArgUse( 1573 Value *Val, Function *F, bool IsFloat, 1574 SmallVectorImpl<CallInst *> &SinCalls, 1575 SmallVectorImpl<CallInst *> &CosCalls, 1576 SmallVectorImpl<CallInst *> &SinCosCalls) { 1577 CallInst *CI = dyn_cast<CallInst>(Val); 1578 1579 if (!CI) 1580 return; 1581 1582 // Don't consider calls in other functions. 1583 if (CI->getFunction() != F) 1584 return; 1585 1586 Function *Callee = CI->getCalledFunction(); 1587 LibFunc Func; 1588 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1589 !isTrigLibCall(CI)) 1590 return; 1591 1592 if (IsFloat) { 1593 if (Func == LibFunc_sinpif) 1594 SinCalls.push_back(CI); 1595 else if (Func == LibFunc_cospif) 1596 CosCalls.push_back(CI); 1597 else if (Func == LibFunc_sincospif_stret) 1598 SinCosCalls.push_back(CI); 1599 } else { 1600 if (Func == LibFunc_sinpi) 1601 SinCalls.push_back(CI); 1602 else if (Func == LibFunc_cospi) 1603 CosCalls.push_back(CI); 1604 else if (Func == LibFunc_sincospi_stret) 1605 SinCosCalls.push_back(CI); 1606 } 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // Integer Library Call Optimizations 1611 //===----------------------------------------------------------------------===// 1612 1613 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1614 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1615 Value *Op = CI->getArgOperand(0); 1616 Type *ArgType = Op->getType(); 1617 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1618 Intrinsic::cttz, ArgType); 1619 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1620 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1621 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1622 1623 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1624 return B.CreateSelect(Cond, V, B.getInt32(0)); 1625 } 1626 1627 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1628 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1629 Value *Op = CI->getArgOperand(0); 1630 Type *ArgType = Op->getType(); 1631 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1632 Intrinsic::ctlz, ArgType); 1633 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1634 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1635 V); 1636 return B.CreateIntCast(V, CI->getType(), false); 1637 } 1638 1639 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1640 // abs(x) -> x >s -1 ? x : -x 1641 Value *Op = CI->getArgOperand(0); 1642 Value *Pos = 1643 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1644 Value *Neg = B.CreateNeg(Op, "neg"); 1645 return B.CreateSelect(Pos, Op, Neg); 1646 } 1647 1648 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1649 // isdigit(c) -> (c-'0') <u 10 1650 Value *Op = CI->getArgOperand(0); 1651 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1652 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1653 return B.CreateZExt(Op, CI->getType()); 1654 } 1655 1656 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1657 // isascii(c) -> c <u 128 1658 Value *Op = CI->getArgOperand(0); 1659 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1660 return B.CreateZExt(Op, CI->getType()); 1661 } 1662 1663 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1664 // toascii(c) -> c & 0x7f 1665 return B.CreateAnd(CI->getArgOperand(0), 1666 ConstantInt::get(CI->getType(), 0x7F)); 1667 } 1668 1669 //===----------------------------------------------------------------------===// 1670 // Formatting and IO Library Call Optimizations 1671 //===----------------------------------------------------------------------===// 1672 1673 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1674 1675 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1676 int StreamArg) { 1677 Function *Callee = CI->getCalledFunction(); 1678 // Error reporting calls should be cold, mark them as such. 1679 // This applies even to non-builtin calls: it is only a hint and applies to 1680 // functions that the frontend might not understand as builtins. 1681 1682 // This heuristic was suggested in: 1683 // Improving Static Branch Prediction in a Compiler 1684 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1685 // Proceedings of PACT'98, Oct. 1998, IEEE 1686 if (!CI->hasFnAttr(Attribute::Cold) && 1687 isReportingError(Callee, CI, StreamArg)) { 1688 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1689 } 1690 1691 return nullptr; 1692 } 1693 1694 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1695 if (!Callee || !Callee->isDeclaration()) 1696 return false; 1697 1698 if (StreamArg < 0) 1699 return true; 1700 1701 // These functions might be considered cold, but only if their stream 1702 // argument is stderr. 1703 1704 if (StreamArg >= (int)CI->getNumArgOperands()) 1705 return false; 1706 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1707 if (!LI) 1708 return false; 1709 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1710 if (!GV || !GV->isDeclaration()) 1711 return false; 1712 return GV->getName() == "stderr"; 1713 } 1714 1715 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1716 // Check for a fixed format string. 1717 StringRef FormatStr; 1718 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1719 return nullptr; 1720 1721 // Empty format string -> noop. 1722 if (FormatStr.empty()) // Tolerate printf's declared void. 1723 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1724 1725 // Do not do any of the following transformations if the printf return value 1726 // is used, in general the printf return value is not compatible with either 1727 // putchar() or puts(). 1728 if (!CI->use_empty()) 1729 return nullptr; 1730 1731 // printf("x") -> putchar('x'), even for "%" and "%%". 1732 if (FormatStr.size() == 1 || FormatStr == "%%") 1733 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1734 1735 // printf("%s", "a") --> putchar('a') 1736 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1737 StringRef ChrStr; 1738 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1739 return nullptr; 1740 if (ChrStr.size() != 1) 1741 return nullptr; 1742 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1743 } 1744 1745 // printf("foo\n") --> puts("foo") 1746 if (FormatStr[FormatStr.size() - 1] == '\n' && 1747 FormatStr.find('%') == StringRef::npos) { // No format characters. 1748 // Create a string literal with no \n on it. We expect the constant merge 1749 // pass to be run after this pass, to merge duplicate strings. 1750 FormatStr = FormatStr.drop_back(); 1751 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1752 return emitPutS(GV, B, TLI); 1753 } 1754 1755 // Optimize specific format strings. 1756 // printf("%c", chr) --> putchar(chr) 1757 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1758 CI->getArgOperand(1)->getType()->isIntegerTy()) 1759 return emitPutChar(CI->getArgOperand(1), B, TLI); 1760 1761 // printf("%s\n", str) --> puts(str) 1762 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1763 CI->getArgOperand(1)->getType()->isPointerTy()) 1764 return emitPutS(CI->getArgOperand(1), B, TLI); 1765 return nullptr; 1766 } 1767 1768 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1769 1770 Function *Callee = CI->getCalledFunction(); 1771 FunctionType *FT = Callee->getFunctionType(); 1772 if (Value *V = optimizePrintFString(CI, B)) { 1773 return V; 1774 } 1775 1776 // printf(format, ...) -> iprintf(format, ...) if no floating point 1777 // arguments. 1778 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1779 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1780 Constant *IPrintFFn = 1781 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1782 CallInst *New = cast<CallInst>(CI->clone()); 1783 New->setCalledFunction(IPrintFFn); 1784 B.Insert(New); 1785 return New; 1786 } 1787 return nullptr; 1788 } 1789 1790 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1791 // Check for a fixed format string. 1792 StringRef FormatStr; 1793 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1794 return nullptr; 1795 1796 // If we just have a format string (nothing else crazy) transform it. 1797 if (CI->getNumArgOperands() == 2) { 1798 // Make sure there's no % in the constant array. We could try to handle 1799 // %% -> % in the future if we cared. 1800 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1801 if (FormatStr[i] == '%') 1802 return nullptr; // we found a format specifier, bail out. 1803 1804 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1805 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1806 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1807 FormatStr.size() + 1), 1808 1); // Copy the null byte. 1809 return ConstantInt::get(CI->getType(), FormatStr.size()); 1810 } 1811 1812 // The remaining optimizations require the format string to be "%s" or "%c" 1813 // and have an extra operand. 1814 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1815 CI->getNumArgOperands() < 3) 1816 return nullptr; 1817 1818 // Decode the second character of the format string. 1819 if (FormatStr[1] == 'c') { 1820 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1821 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1822 return nullptr; 1823 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1824 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1825 B.CreateStore(V, Ptr); 1826 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1827 B.CreateStore(B.getInt8(0), Ptr); 1828 1829 return ConstantInt::get(CI->getType(), 1); 1830 } 1831 1832 if (FormatStr[1] == 's') { 1833 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1834 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1835 return nullptr; 1836 1837 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1838 if (!Len) 1839 return nullptr; 1840 Value *IncLen = 1841 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1842 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1843 1844 // The sprintf result is the unincremented number of bytes in the string. 1845 return B.CreateIntCast(Len, CI->getType(), false); 1846 } 1847 return nullptr; 1848 } 1849 1850 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1851 Function *Callee = CI->getCalledFunction(); 1852 FunctionType *FT = Callee->getFunctionType(); 1853 if (Value *V = optimizeSPrintFString(CI, B)) { 1854 return V; 1855 } 1856 1857 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1858 // point arguments. 1859 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1860 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1861 Constant *SIPrintFFn = 1862 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1863 CallInst *New = cast<CallInst>(CI->clone()); 1864 New->setCalledFunction(SIPrintFFn); 1865 B.Insert(New); 1866 return New; 1867 } 1868 return nullptr; 1869 } 1870 1871 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1872 optimizeErrorReporting(CI, B, 0); 1873 1874 // All the optimizations depend on the format string. 1875 StringRef FormatStr; 1876 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1877 return nullptr; 1878 1879 // Do not do any of the following transformations if the fprintf return 1880 // value is used, in general the fprintf return value is not compatible 1881 // with fwrite(), fputc() or fputs(). 1882 if (!CI->use_empty()) 1883 return nullptr; 1884 1885 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1886 if (CI->getNumArgOperands() == 2) { 1887 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1888 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1889 return nullptr; // We found a format specifier. 1890 1891 return emitFWrite( 1892 CI->getArgOperand(1), 1893 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1894 CI->getArgOperand(0), B, DL, TLI); 1895 } 1896 1897 // The remaining optimizations require the format string to be "%s" or "%c" 1898 // and have an extra operand. 1899 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1900 CI->getNumArgOperands() < 3) 1901 return nullptr; 1902 1903 // Decode the second character of the format string. 1904 if (FormatStr[1] == 'c') { 1905 // fprintf(F, "%c", chr) --> fputc(chr, F) 1906 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1907 return nullptr; 1908 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1909 } 1910 1911 if (FormatStr[1] == 's') { 1912 // fprintf(F, "%s", str) --> fputs(str, F) 1913 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1914 return nullptr; 1915 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1916 } 1917 return nullptr; 1918 } 1919 1920 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1921 Function *Callee = CI->getCalledFunction(); 1922 FunctionType *FT = Callee->getFunctionType(); 1923 if (Value *V = optimizeFPrintFString(CI, B)) { 1924 return V; 1925 } 1926 1927 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1928 // floating point arguments. 1929 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1930 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1931 Constant *FIPrintFFn = 1932 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1933 CallInst *New = cast<CallInst>(CI->clone()); 1934 New->setCalledFunction(FIPrintFFn); 1935 B.Insert(New); 1936 return New; 1937 } 1938 return nullptr; 1939 } 1940 1941 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1942 optimizeErrorReporting(CI, B, 3); 1943 1944 // Get the element size and count. 1945 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1946 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1947 if (!SizeC || !CountC) 1948 return nullptr; 1949 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1950 1951 // If this is writing zero records, remove the call (it's a noop). 1952 if (Bytes == 0) 1953 return ConstantInt::get(CI->getType(), 0); 1954 1955 // If this is writing one byte, turn it into fputc. 1956 // This optimisation is only valid, if the return value is unused. 1957 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1958 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1959 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1960 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1961 } 1962 1963 return nullptr; 1964 } 1965 1966 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1967 optimizeErrorReporting(CI, B, 1); 1968 1969 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1970 // requires more arguments and thus extra MOVs are required. 1971 if (CI->getParent()->getParent()->optForSize()) 1972 return nullptr; 1973 1974 // We can't optimize if return value is used. 1975 if (!CI->use_empty()) 1976 return nullptr; 1977 1978 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1979 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1980 if (!Len) 1981 return nullptr; 1982 1983 // Known to have no uses (see above). 1984 return emitFWrite( 1985 CI->getArgOperand(0), 1986 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1987 CI->getArgOperand(1), B, DL, TLI); 1988 } 1989 1990 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1991 // Check for a constant string. 1992 StringRef Str; 1993 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1994 return nullptr; 1995 1996 if (Str.empty() && CI->use_empty()) { 1997 // puts("") -> putchar('\n') 1998 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1999 if (CI->use_empty() || !Res) 2000 return Res; 2001 return B.CreateIntCast(Res, CI->getType(), true); 2002 } 2003 2004 return nullptr; 2005 } 2006 2007 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2008 LibFunc Func; 2009 SmallString<20> FloatFuncName = FuncName; 2010 FloatFuncName += 'f'; 2011 if (TLI->getLibFunc(FloatFuncName, Func)) 2012 return TLI->has(Func); 2013 return false; 2014 } 2015 2016 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2017 IRBuilder<> &Builder) { 2018 LibFunc Func; 2019 Function *Callee = CI->getCalledFunction(); 2020 // Check for string/memory library functions. 2021 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2022 // Make sure we never change the calling convention. 2023 assert((ignoreCallingConv(Func) || 2024 isCallingConvCCompatible(CI)) && 2025 "Optimizing string/memory libcall would change the calling convention"); 2026 switch (Func) { 2027 case LibFunc_strcat: 2028 return optimizeStrCat(CI, Builder); 2029 case LibFunc_strncat: 2030 return optimizeStrNCat(CI, Builder); 2031 case LibFunc_strchr: 2032 return optimizeStrChr(CI, Builder); 2033 case LibFunc_strrchr: 2034 return optimizeStrRChr(CI, Builder); 2035 case LibFunc_strcmp: 2036 return optimizeStrCmp(CI, Builder); 2037 case LibFunc_strncmp: 2038 return optimizeStrNCmp(CI, Builder); 2039 case LibFunc_strcpy: 2040 return optimizeStrCpy(CI, Builder); 2041 case LibFunc_stpcpy: 2042 return optimizeStpCpy(CI, Builder); 2043 case LibFunc_strncpy: 2044 return optimizeStrNCpy(CI, Builder); 2045 case LibFunc_strlen: 2046 return optimizeStrLen(CI, Builder); 2047 case LibFunc_strpbrk: 2048 return optimizeStrPBrk(CI, Builder); 2049 case LibFunc_strtol: 2050 case LibFunc_strtod: 2051 case LibFunc_strtof: 2052 case LibFunc_strtoul: 2053 case LibFunc_strtoll: 2054 case LibFunc_strtold: 2055 case LibFunc_strtoull: 2056 return optimizeStrTo(CI, Builder); 2057 case LibFunc_strspn: 2058 return optimizeStrSpn(CI, Builder); 2059 case LibFunc_strcspn: 2060 return optimizeStrCSpn(CI, Builder); 2061 case LibFunc_strstr: 2062 return optimizeStrStr(CI, Builder); 2063 case LibFunc_memchr: 2064 return optimizeMemChr(CI, Builder); 2065 case LibFunc_memcmp: 2066 return optimizeMemCmp(CI, Builder); 2067 case LibFunc_memcpy: 2068 return optimizeMemCpy(CI, Builder); 2069 case LibFunc_memmove: 2070 return optimizeMemMove(CI, Builder); 2071 case LibFunc_memset: 2072 return optimizeMemSet(CI, Builder); 2073 case LibFunc_wcslen: 2074 return optimizeWcslen(CI, Builder); 2075 default: 2076 break; 2077 } 2078 } 2079 return nullptr; 2080 } 2081 2082 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2083 LibFunc Func, 2084 IRBuilder<> &Builder) { 2085 // Don't optimize calls that require strict floating point semantics. 2086 if (CI->isStrictFP()) 2087 return nullptr; 2088 2089 switch (Func) { 2090 case LibFunc_cosf: 2091 case LibFunc_cos: 2092 case LibFunc_cosl: 2093 return optimizeCos(CI, Builder); 2094 case LibFunc_sinpif: 2095 case LibFunc_sinpi: 2096 case LibFunc_cospif: 2097 case LibFunc_cospi: 2098 return optimizeSinCosPi(CI, Builder); 2099 case LibFunc_powf: 2100 case LibFunc_pow: 2101 case LibFunc_powl: 2102 return optimizePow(CI, Builder); 2103 case LibFunc_exp2l: 2104 case LibFunc_exp2: 2105 case LibFunc_exp2f: 2106 return optimizeExp2(CI, Builder); 2107 case LibFunc_fabsf: 2108 case LibFunc_fabs: 2109 case LibFunc_fabsl: 2110 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2111 case LibFunc_sqrtf: 2112 case LibFunc_sqrt: 2113 case LibFunc_sqrtl: 2114 return optimizeSqrt(CI, Builder); 2115 case LibFunc_log: 2116 case LibFunc_log10: 2117 case LibFunc_log1p: 2118 case LibFunc_log2: 2119 case LibFunc_logb: 2120 return optimizeLog(CI, Builder); 2121 case LibFunc_tan: 2122 case LibFunc_tanf: 2123 case LibFunc_tanl: 2124 return optimizeTan(CI, Builder); 2125 case LibFunc_ceil: 2126 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2127 case LibFunc_floor: 2128 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2129 case LibFunc_round: 2130 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2131 case LibFunc_nearbyint: 2132 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2133 case LibFunc_rint: 2134 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2135 case LibFunc_trunc: 2136 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2137 case LibFunc_acos: 2138 case LibFunc_acosh: 2139 case LibFunc_asin: 2140 case LibFunc_asinh: 2141 case LibFunc_atan: 2142 case LibFunc_atanh: 2143 case LibFunc_cbrt: 2144 case LibFunc_cosh: 2145 case LibFunc_exp: 2146 case LibFunc_exp10: 2147 case LibFunc_expm1: 2148 case LibFunc_sin: 2149 case LibFunc_sinh: 2150 case LibFunc_tanh: 2151 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2152 return optimizeUnaryDoubleFP(CI, Builder, true); 2153 return nullptr; 2154 case LibFunc_copysign: 2155 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2156 return optimizeBinaryDoubleFP(CI, Builder); 2157 return nullptr; 2158 case LibFunc_fminf: 2159 case LibFunc_fmin: 2160 case LibFunc_fminl: 2161 case LibFunc_fmaxf: 2162 case LibFunc_fmax: 2163 case LibFunc_fmaxl: 2164 return optimizeFMinFMax(CI, Builder); 2165 default: 2166 return nullptr; 2167 } 2168 } 2169 2170 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2171 // TODO: Split out the code below that operates on FP calls so that 2172 // we can all non-FP calls with the StrictFP attribute to be 2173 // optimized. 2174 if (CI->isNoBuiltin()) 2175 return nullptr; 2176 2177 LibFunc Func; 2178 Function *Callee = CI->getCalledFunction(); 2179 2180 SmallVector<OperandBundleDef, 2> OpBundles; 2181 CI->getOperandBundlesAsDefs(OpBundles); 2182 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2183 bool isCallingConvC = isCallingConvCCompatible(CI); 2184 2185 // Command-line parameter overrides instruction attribute. 2186 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2187 // used by the intrinsic optimizations. 2188 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2189 UnsafeFPShrink = EnableUnsafeFPShrink; 2190 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2191 UnsafeFPShrink = true; 2192 2193 // First, check for intrinsics. 2194 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2195 if (!isCallingConvC) 2196 return nullptr; 2197 // The FP intrinsics have corresponding constrained versions so we don't 2198 // need to check for the StrictFP attribute here. 2199 switch (II->getIntrinsicID()) { 2200 case Intrinsic::pow: 2201 return optimizePow(CI, Builder); 2202 case Intrinsic::exp2: 2203 return optimizeExp2(CI, Builder); 2204 case Intrinsic::log: 2205 return optimizeLog(CI, Builder); 2206 case Intrinsic::sqrt: 2207 return optimizeSqrt(CI, Builder); 2208 // TODO: Use foldMallocMemset() with memset intrinsic. 2209 default: 2210 return nullptr; 2211 } 2212 } 2213 2214 // Also try to simplify calls to fortified library functions. 2215 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2216 // Try to further simplify the result. 2217 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2218 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2219 // Use an IR Builder from SimplifiedCI if available instead of CI 2220 // to guarantee we reach all uses we might replace later on. 2221 IRBuilder<> TmpBuilder(SimplifiedCI); 2222 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2223 // If we were able to further simplify, remove the now redundant call. 2224 SimplifiedCI->replaceAllUsesWith(V); 2225 SimplifiedCI->eraseFromParent(); 2226 return V; 2227 } 2228 } 2229 return SimplifiedFortifiedCI; 2230 } 2231 2232 // Then check for known library functions. 2233 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2234 // We never change the calling convention. 2235 if (!ignoreCallingConv(Func) && !isCallingConvC) 2236 return nullptr; 2237 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2238 return V; 2239 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2240 return V; 2241 switch (Func) { 2242 case LibFunc_ffs: 2243 case LibFunc_ffsl: 2244 case LibFunc_ffsll: 2245 return optimizeFFS(CI, Builder); 2246 case LibFunc_fls: 2247 case LibFunc_flsl: 2248 case LibFunc_flsll: 2249 return optimizeFls(CI, Builder); 2250 case LibFunc_abs: 2251 case LibFunc_labs: 2252 case LibFunc_llabs: 2253 return optimizeAbs(CI, Builder); 2254 case LibFunc_isdigit: 2255 return optimizeIsDigit(CI, Builder); 2256 case LibFunc_isascii: 2257 return optimizeIsAscii(CI, Builder); 2258 case LibFunc_toascii: 2259 return optimizeToAscii(CI, Builder); 2260 case LibFunc_printf: 2261 return optimizePrintF(CI, Builder); 2262 case LibFunc_sprintf: 2263 return optimizeSPrintF(CI, Builder); 2264 case LibFunc_fprintf: 2265 return optimizeFPrintF(CI, Builder); 2266 case LibFunc_fwrite: 2267 return optimizeFWrite(CI, Builder); 2268 case LibFunc_fputs: 2269 return optimizeFPuts(CI, Builder); 2270 case LibFunc_puts: 2271 return optimizePuts(CI, Builder); 2272 case LibFunc_perror: 2273 return optimizeErrorReporting(CI, Builder); 2274 case LibFunc_vfprintf: 2275 case LibFunc_fiprintf: 2276 return optimizeErrorReporting(CI, Builder, 0); 2277 case LibFunc_fputc: 2278 return optimizeErrorReporting(CI, Builder, 1); 2279 default: 2280 return nullptr; 2281 } 2282 } 2283 return nullptr; 2284 } 2285 2286 LibCallSimplifier::LibCallSimplifier( 2287 const DataLayout &DL, const TargetLibraryInfo *TLI, 2288 OptimizationRemarkEmitter &ORE, 2289 function_ref<void(Instruction *, Value *)> Replacer) 2290 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2291 UnsafeFPShrink(false), Replacer(Replacer) {} 2292 2293 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2294 // Indirect through the replacer used in this instance. 2295 Replacer(I, With); 2296 } 2297 2298 // TODO: 2299 // Additional cases that we need to add to this file: 2300 // 2301 // cbrt: 2302 // * cbrt(expN(X)) -> expN(x/3) 2303 // * cbrt(sqrt(x)) -> pow(x,1/6) 2304 // * cbrt(cbrt(x)) -> pow(x,1/9) 2305 // 2306 // exp, expf, expl: 2307 // * exp(log(x)) -> x 2308 // 2309 // log, logf, logl: 2310 // * log(exp(x)) -> x 2311 // * log(exp(y)) -> y*log(e) 2312 // * log(exp10(y)) -> y*log(10) 2313 // * log(sqrt(x)) -> 0.5*log(x) 2314 // 2315 // pow, powf, powl: 2316 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2317 // * pow(pow(x,y),z)-> pow(x,y*z) 2318 // 2319 // signbit: 2320 // * signbit(cnst) -> cnst' 2321 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2322 // 2323 // sqrt, sqrtf, sqrtl: 2324 // * sqrt(expN(x)) -> expN(x*0.5) 2325 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2326 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2327 // 2328 2329 //===----------------------------------------------------------------------===// 2330 // Fortified Library Call Optimizations 2331 //===----------------------------------------------------------------------===// 2332 2333 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2334 unsigned ObjSizeOp, 2335 unsigned SizeOp, 2336 bool isString) { 2337 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2338 return true; 2339 if (ConstantInt *ObjSizeCI = 2340 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2341 if (ObjSizeCI->isMinusOne()) 2342 return true; 2343 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2344 if (OnlyLowerUnknownSize) 2345 return false; 2346 if (isString) { 2347 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2348 // If the length is 0 we don't know how long it is and so we can't 2349 // remove the check. 2350 if (Len == 0) 2351 return false; 2352 return ObjSizeCI->getZExtValue() >= Len; 2353 } 2354 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2355 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2356 } 2357 return false; 2358 } 2359 2360 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2361 IRBuilder<> &B) { 2362 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2363 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2364 CI->getArgOperand(2), 1); 2365 return CI->getArgOperand(0); 2366 } 2367 return nullptr; 2368 } 2369 2370 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2371 IRBuilder<> &B) { 2372 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2373 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2374 CI->getArgOperand(2), 1); 2375 return CI->getArgOperand(0); 2376 } 2377 return nullptr; 2378 } 2379 2380 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2381 IRBuilder<> &B) { 2382 // TODO: Try foldMallocMemset() here. 2383 2384 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2385 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2386 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2387 return CI->getArgOperand(0); 2388 } 2389 return nullptr; 2390 } 2391 2392 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2393 IRBuilder<> &B, 2394 LibFunc Func) { 2395 Function *Callee = CI->getCalledFunction(); 2396 StringRef Name = Callee->getName(); 2397 const DataLayout &DL = CI->getModule()->getDataLayout(); 2398 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2399 *ObjSize = CI->getArgOperand(2); 2400 2401 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2402 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2403 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2404 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2405 } 2406 2407 // If a) we don't have any length information, or b) we know this will 2408 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2409 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2410 // TODO: It might be nice to get a maximum length out of the possible 2411 // string lengths for varying. 2412 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2413 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2414 2415 if (OnlyLowerUnknownSize) 2416 return nullptr; 2417 2418 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2419 uint64_t Len = GetStringLength(Src); 2420 if (Len == 0) 2421 return nullptr; 2422 2423 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2424 Value *LenV = ConstantInt::get(SizeTTy, Len); 2425 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2426 // If the function was an __stpcpy_chk, and we were able to fold it into 2427 // a __memcpy_chk, we still need to return the correct end pointer. 2428 if (Ret && Func == LibFunc_stpcpy_chk) 2429 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2430 return Ret; 2431 } 2432 2433 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2434 IRBuilder<> &B, 2435 LibFunc Func) { 2436 Function *Callee = CI->getCalledFunction(); 2437 StringRef Name = Callee->getName(); 2438 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2439 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2440 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2441 return Ret; 2442 } 2443 return nullptr; 2444 } 2445 2446 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2447 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2448 // Some clang users checked for _chk libcall availability using: 2449 // __has_builtin(__builtin___memcpy_chk) 2450 // When compiling with -fno-builtin, this is always true. 2451 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2452 // end up with fortified libcalls, which isn't acceptable in a freestanding 2453 // environment which only provides their non-fortified counterparts. 2454 // 2455 // Until we change clang and/or teach external users to check for availability 2456 // differently, disregard the "nobuiltin" attribute and TLI::has. 2457 // 2458 // PR23093. 2459 2460 LibFunc Func; 2461 Function *Callee = CI->getCalledFunction(); 2462 2463 SmallVector<OperandBundleDef, 2> OpBundles; 2464 CI->getOperandBundlesAsDefs(OpBundles); 2465 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2466 bool isCallingConvC = isCallingConvCCompatible(CI); 2467 2468 // First, check that this is a known library functions and that the prototype 2469 // is correct. 2470 if (!TLI->getLibFunc(*Callee, Func)) 2471 return nullptr; 2472 2473 // We never change the calling convention. 2474 if (!ignoreCallingConv(Func) && !isCallingConvC) 2475 return nullptr; 2476 2477 switch (Func) { 2478 case LibFunc_memcpy_chk: 2479 return optimizeMemCpyChk(CI, Builder); 2480 case LibFunc_memmove_chk: 2481 return optimizeMemMoveChk(CI, Builder); 2482 case LibFunc_memset_chk: 2483 return optimizeMemSetChk(CI, Builder); 2484 case LibFunc_stpcpy_chk: 2485 case LibFunc_strcpy_chk: 2486 return optimizeStrpCpyChk(CI, Builder, Func); 2487 case LibFunc_stpncpy_chk: 2488 case LibFunc_strncpy_chk: 2489 return optimizeStrpNCpyChk(CI, Builder, Func); 2490 default: 2491 break; 2492 } 2493 return nullptr; 2494 } 2495 2496 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2497 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2498 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2499