1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it is only used in equality comparisons with With. 92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality() && IC->getOperand(1) == With) 96 continue; 97 // Unknown instruction. 98 return false; 99 } 100 return true; 101 } 102 103 static bool callHasFloatingPointArgument(const CallInst *CI) { 104 return any_of(CI->operands(), [](const Use &OI) { 105 return OI->getType()->isFloatingPointTy(); 106 }); 107 } 108 109 static bool callHasFP128Argument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFP128Ty(); 112 }); 113 } 114 115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 116 if (Base < 2 || Base > 36) 117 // handle special zero base 118 if (Base != 0) 119 return nullptr; 120 121 char *End; 122 std::string nptr = Str.str(); 123 errno = 0; 124 long long int Result = strtoll(nptr.c_str(), &End, Base); 125 if (errno) 126 return nullptr; 127 128 // if we assume all possible target locales are ASCII supersets, 129 // then if strtoll successfully parses a number on the host, 130 // it will also successfully parse the same way on the target 131 if (*End != '\0') 132 return nullptr; 133 134 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 135 return nullptr; 136 137 return ConstantInt::get(CI->getType(), Result); 138 } 139 140 static bool isOnlyUsedInComparisonWithZero(Value *V) { 141 for (User *U : V->users()) { 142 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 143 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 144 if (C->isNullValue()) 145 continue; 146 // Unknown instruction. 147 return false; 148 } 149 return true; 150 } 151 152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 153 const DataLayout &DL) { 154 if (!isOnlyUsedInComparisonWithZero(CI)) 155 return false; 156 157 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 158 return false; 159 160 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 161 return false; 162 163 return true; 164 } 165 166 static void annotateDereferenceableBytes(CallInst *CI, 167 ArrayRef<unsigned> ArgNos, 168 uint64_t DereferenceableBytes) { 169 const Function *F = CI->getCaller(); 170 if (!F) 171 return; 172 for (unsigned ArgNo : ArgNos) { 173 uint64_t DerefBytes = DereferenceableBytes; 174 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 175 if (!llvm::NullPointerIsDefined(F, AS) || 176 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 177 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 178 ArgNo + AttributeList::FirstArgIndex), 179 DereferenceableBytes); 180 181 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 182 DerefBytes) { 183 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 184 if (!llvm::NullPointerIsDefined(F, AS) || 185 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 186 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 187 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 188 CI->getContext(), DerefBytes)); 189 } 190 } 191 } 192 193 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 194 ArrayRef<unsigned> ArgNos) { 195 Function *F = CI->getCaller(); 196 if (!F) 197 return; 198 199 for (unsigned ArgNo : ArgNos) { 200 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 201 CI->addParamAttr(ArgNo, Attribute::NoUndef); 202 203 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 204 continue; 205 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 206 if (llvm::NullPointerIsDefined(F, AS)) 207 continue; 208 209 CI->addParamAttr(ArgNo, Attribute::NonNull); 210 annotateDereferenceableBytes(CI, ArgNo, 1); 211 } 212 } 213 214 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 215 Value *Size, const DataLayout &DL) { 216 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 217 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 218 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 219 } else if (isKnownNonZero(Size, DL)) { 220 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 221 const APInt *X, *Y; 222 uint64_t DerefMin = 1; 223 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 224 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 225 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 226 } 227 } 228 } 229 230 //===----------------------------------------------------------------------===// 231 // String and Memory Library Call Optimizations 232 //===----------------------------------------------------------------------===// 233 234 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 235 // Extract some information from the instruction 236 Value *Dst = CI->getArgOperand(0); 237 Value *Src = CI->getArgOperand(1); 238 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 239 240 // See if we can get the length of the input string. 241 uint64_t Len = GetStringLength(Src); 242 if (Len) 243 annotateDereferenceableBytes(CI, 1, Len); 244 else 245 return nullptr; 246 --Len; // Unbias length. 247 248 // Handle the simple, do-nothing case: strcat(x, "") -> x 249 if (Len == 0) 250 return Dst; 251 252 return emitStrLenMemCpy(Src, Dst, Len, B); 253 } 254 255 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 256 IRBuilderBase &B) { 257 // We need to find the end of the destination string. That's where the 258 // memory is to be moved to. We just generate a call to strlen. 259 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 260 if (!DstLen) 261 return nullptr; 262 263 // Now that we have the destination's length, we must index into the 264 // destination's pointer to get the actual memcpy destination (end of 265 // the string .. we're concatenating). 266 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 267 268 // We have enough information to now generate the memcpy call to do the 269 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 270 B.CreateMemCpy( 271 CpyDst, Align(1), Src, Align(1), 272 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 273 return Dst; 274 } 275 276 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 277 // Extract some information from the instruction. 278 Value *Dst = CI->getArgOperand(0); 279 Value *Src = CI->getArgOperand(1); 280 Value *Size = CI->getArgOperand(2); 281 uint64_t Len; 282 annotateNonNullNoUndefBasedOnAccess(CI, 0); 283 if (isKnownNonZero(Size, DL)) 284 annotateNonNullNoUndefBasedOnAccess(CI, 1); 285 286 // We don't do anything if length is not constant. 287 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 288 if (LengthArg) { 289 Len = LengthArg->getZExtValue(); 290 // strncat(x, c, 0) -> x 291 if (!Len) 292 return Dst; 293 } else { 294 return nullptr; 295 } 296 297 // See if we can get the length of the input string. 298 uint64_t SrcLen = GetStringLength(Src); 299 if (SrcLen) { 300 annotateDereferenceableBytes(CI, 1, SrcLen); 301 --SrcLen; // Unbias length. 302 } else { 303 return nullptr; 304 } 305 306 // strncat(x, "", c) -> x 307 if (SrcLen == 0) 308 return Dst; 309 310 // We don't optimize this case. 311 if (Len < SrcLen) 312 return nullptr; 313 314 // strncat(x, s, c) -> strcat(x, s) 315 // s is constant so the strcat can be optimized further. 316 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 317 } 318 319 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 320 Function *Callee = CI->getCalledFunction(); 321 FunctionType *FT = Callee->getFunctionType(); 322 Value *SrcStr = CI->getArgOperand(0); 323 annotateNonNullNoUndefBasedOnAccess(CI, 0); 324 325 // If the second operand is non-constant, see if we can compute the length 326 // of the input string and turn this into memchr. 327 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 328 if (!CharC) { 329 uint64_t Len = GetStringLength(SrcStr); 330 if (Len) 331 annotateDereferenceableBytes(CI, 0, Len); 332 else 333 return nullptr; 334 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 335 return nullptr; 336 337 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 338 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 339 B, DL, TLI); 340 } 341 342 // Otherwise, the character is a constant, see if the first argument is 343 // a string literal. If so, we can constant fold. 344 StringRef Str; 345 if (!getConstantStringInfo(SrcStr, Str)) { 346 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 347 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 348 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 349 return nullptr; 350 } 351 352 // Compute the offset, make sure to handle the case when we're searching for 353 // zero (a weird way to spell strlen). 354 size_t I = (0xFF & CharC->getSExtValue()) == 0 355 ? Str.size() 356 : Str.find(CharC->getSExtValue()); 357 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 358 return Constant::getNullValue(CI->getType()); 359 360 // strchr(s+n,c) -> gep(s+n+i,c) 361 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 362 } 363 364 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 365 Value *SrcStr = CI->getArgOperand(0); 366 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 367 annotateNonNullNoUndefBasedOnAccess(CI, 0); 368 369 // Cannot fold anything if we're not looking for a constant. 370 if (!CharC) 371 return nullptr; 372 373 StringRef Str; 374 if (!getConstantStringInfo(SrcStr, Str)) { 375 // strrchr(s, 0) -> strchr(s, 0) 376 if (CharC->isZero()) 377 return emitStrChr(SrcStr, '\0', B, TLI); 378 return nullptr; 379 } 380 381 // Compute the offset. 382 size_t I = (0xFF & CharC->getSExtValue()) == 0 383 ? Str.size() 384 : Str.rfind(CharC->getSExtValue()); 385 if (I == StringRef::npos) // Didn't find the char. Return null. 386 return Constant::getNullValue(CI->getType()); 387 388 // strrchr(s+n,c) -> gep(s+n+i,c) 389 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 390 } 391 392 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 393 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 394 if (Str1P == Str2P) // strcmp(x,x) -> 0 395 return ConstantInt::get(CI->getType(), 0); 396 397 StringRef Str1, Str2; 398 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 399 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 400 401 // strcmp(x, y) -> cnst (if both x and y are constant strings) 402 if (HasStr1 && HasStr2) 403 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 404 405 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 406 return B.CreateNeg(B.CreateZExt( 407 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 408 409 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 410 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 411 CI->getType()); 412 413 // strcmp(P, "x") -> memcmp(P, "x", 2) 414 uint64_t Len1 = GetStringLength(Str1P); 415 if (Len1) 416 annotateDereferenceableBytes(CI, 0, Len1); 417 uint64_t Len2 = GetStringLength(Str2P); 418 if (Len2) 419 annotateDereferenceableBytes(CI, 1, Len2); 420 421 if (Len1 && Len2) { 422 return emitMemCmp(Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 424 std::min(Len1, Len2)), 425 B, DL, TLI); 426 } 427 428 // strcmp to memcmp 429 if (!HasStr1 && HasStr2) { 430 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 431 return emitMemCmp( 432 Str1P, Str2P, 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 434 TLI); 435 } else if (HasStr1 && !HasStr2) { 436 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 437 return emitMemCmp( 438 Str1P, Str2P, 439 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 440 TLI); 441 } 442 443 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 444 return nullptr; 445 } 446 447 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 448 Value *Str1P = CI->getArgOperand(0); 449 Value *Str2P = CI->getArgOperand(1); 450 Value *Size = CI->getArgOperand(2); 451 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 452 return ConstantInt::get(CI->getType(), 0); 453 454 if (isKnownNonZero(Size, DL)) 455 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 456 // Get the length argument if it is constant. 457 uint64_t Length; 458 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 459 Length = LengthArg->getZExtValue(); 460 else 461 return nullptr; 462 463 if (Length == 0) // strncmp(x,y,0) -> 0 464 return ConstantInt::get(CI->getType(), 0); 465 466 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 467 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 468 469 StringRef Str1, Str2; 470 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 471 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 472 473 // strncmp(x, y) -> cnst (if both x and y are constant strings) 474 if (HasStr1 && HasStr2) { 475 StringRef SubStr1 = Str1.substr(0, Length); 476 StringRef SubStr2 = Str2.substr(0, Length); 477 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 478 } 479 480 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 481 return B.CreateNeg(B.CreateZExt( 482 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 483 484 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 485 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 486 CI->getType()); 487 488 uint64_t Len1 = GetStringLength(Str1P); 489 if (Len1) 490 annotateDereferenceableBytes(CI, 0, Len1); 491 uint64_t Len2 = GetStringLength(Str2P); 492 if (Len2) 493 annotateDereferenceableBytes(CI, 1, Len2); 494 495 // strncmp to memcmp 496 if (!HasStr1 && HasStr2) { 497 Len2 = std::min(Len2, Length); 498 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 499 return emitMemCmp( 500 Str1P, Str2P, 501 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 502 TLI); 503 } else if (HasStr1 && !HasStr2) { 504 Len1 = std::min(Len1, Length); 505 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 506 return emitMemCmp( 507 Str1P, Str2P, 508 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 509 TLI); 510 } 511 512 return nullptr; 513 } 514 515 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 516 Value *Src = CI->getArgOperand(0); 517 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 518 uint64_t SrcLen = GetStringLength(Src); 519 if (SrcLen && Size) { 520 annotateDereferenceableBytes(CI, 0, SrcLen); 521 if (SrcLen <= Size->getZExtValue() + 1) 522 return emitStrDup(Src, B, TLI); 523 } 524 525 return nullptr; 526 } 527 528 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 529 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 530 if (Dst == Src) // strcpy(x,x) -> x 531 return Src; 532 533 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 534 // See if we can get the length of the input string. 535 uint64_t Len = GetStringLength(Src); 536 if (Len) 537 annotateDereferenceableBytes(CI, 1, Len); 538 else 539 return nullptr; 540 541 // We have enough information to now generate the memcpy call to do the 542 // copy for us. Make a memcpy to copy the nul byte with align = 1. 543 CallInst *NewCI = 544 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 545 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 546 NewCI->setAttributes(CI->getAttributes()); 547 NewCI->removeAttributes(AttributeList::ReturnIndex, 548 AttributeFuncs::typeIncompatible(NewCI->getType())); 549 return Dst; 550 } 551 552 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 553 Function *Callee = CI->getCalledFunction(); 554 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 555 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 556 Value *StrLen = emitStrLen(Src, B, DL, TLI); 557 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 558 } 559 560 // See if we can get the length of the input string. 561 uint64_t Len = GetStringLength(Src); 562 if (Len) 563 annotateDereferenceableBytes(CI, 1, Len); 564 else 565 return nullptr; 566 567 Type *PT = Callee->getFunctionType()->getParamType(0); 568 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 569 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 570 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 571 572 // We have enough information to now generate the memcpy call to do the 573 // copy for us. Make a memcpy to copy the nul byte with align = 1. 574 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 575 NewCI->setAttributes(CI->getAttributes()); 576 NewCI->removeAttributes(AttributeList::ReturnIndex, 577 AttributeFuncs::typeIncompatible(NewCI->getType())); 578 return DstEnd; 579 } 580 581 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 582 Function *Callee = CI->getCalledFunction(); 583 Value *Dst = CI->getArgOperand(0); 584 Value *Src = CI->getArgOperand(1); 585 Value *Size = CI->getArgOperand(2); 586 annotateNonNullNoUndefBasedOnAccess(CI, 0); 587 if (isKnownNonZero(Size, DL)) 588 annotateNonNullNoUndefBasedOnAccess(CI, 1); 589 590 uint64_t Len; 591 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 592 Len = LengthArg->getZExtValue(); 593 else 594 return nullptr; 595 596 // strncpy(x, y, 0) -> x 597 if (Len == 0) 598 return Dst; 599 600 // See if we can get the length of the input string. 601 uint64_t SrcLen = GetStringLength(Src); 602 if (SrcLen) { 603 annotateDereferenceableBytes(CI, 1, SrcLen); 604 --SrcLen; // Unbias length. 605 } else { 606 return nullptr; 607 } 608 609 if (SrcLen == 0) { 610 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 611 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 612 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 613 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 614 CI->getContext(), 0, ArgAttrs)); 615 return Dst; 616 } 617 618 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 619 if (Len > SrcLen + 1) { 620 if (Len <= 128) { 621 StringRef Str; 622 if (!getConstantStringInfo(Src, Str)) 623 return nullptr; 624 std::string SrcStr = Str.str(); 625 SrcStr.resize(Len, '\0'); 626 Src = B.CreateGlobalString(SrcStr, "str"); 627 } else { 628 return nullptr; 629 } 630 } 631 632 Type *PT = Callee->getFunctionType()->getParamType(0); 633 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 634 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 635 ConstantInt::get(DL.getIntPtrType(PT), Len)); 636 NewCI->setAttributes(CI->getAttributes()); 637 NewCI->removeAttributes(AttributeList::ReturnIndex, 638 AttributeFuncs::typeIncompatible(NewCI->getType())); 639 return Dst; 640 } 641 642 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 643 unsigned CharSize) { 644 Value *Src = CI->getArgOperand(0); 645 646 // Constant folding: strlen("xyz") -> 3 647 if (uint64_t Len = GetStringLength(Src, CharSize)) 648 return ConstantInt::get(CI->getType(), Len - 1); 649 650 // If s is a constant pointer pointing to a string literal, we can fold 651 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 652 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 653 // We only try to simplify strlen when the pointer s points to an array 654 // of i8. Otherwise, we would need to scale the offset x before doing the 655 // subtraction. This will make the optimization more complex, and it's not 656 // very useful because calling strlen for a pointer of other types is 657 // very uncommon. 658 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 659 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 660 return nullptr; 661 662 ConstantDataArraySlice Slice; 663 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 664 uint64_t NullTermIdx; 665 if (Slice.Array == nullptr) { 666 NullTermIdx = 0; 667 } else { 668 NullTermIdx = ~((uint64_t)0); 669 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 670 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 671 NullTermIdx = I; 672 break; 673 } 674 } 675 // If the string does not have '\0', leave it to strlen to compute 676 // its length. 677 if (NullTermIdx == ~((uint64_t)0)) 678 return nullptr; 679 } 680 681 Value *Offset = GEP->getOperand(2); 682 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 683 Known.Zero.flipAllBits(); 684 uint64_t ArrSize = 685 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 686 687 // KnownZero's bits are flipped, so zeros in KnownZero now represent 688 // bits known to be zeros in Offset, and ones in KnowZero represent 689 // bits unknown in Offset. Therefore, Offset is known to be in range 690 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 691 // unsigned-less-than NullTermIdx. 692 // 693 // If Offset is not provably in the range [0, NullTermIdx], we can still 694 // optimize if we can prove that the program has undefined behavior when 695 // Offset is outside that range. That is the case when GEP->getOperand(0) 696 // is a pointer to an object whose memory extent is NullTermIdx+1. 697 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 698 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 699 NullTermIdx == ArrSize - 1)) { 700 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 701 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 702 Offset); 703 } 704 } 705 } 706 707 // strlen(x?"foo":"bars") --> x ? 3 : 4 708 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 709 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 710 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 711 if (LenTrue && LenFalse) { 712 ORE.emit([&]() { 713 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 714 << "folded strlen(select) to select of constants"; 715 }); 716 return B.CreateSelect(SI->getCondition(), 717 ConstantInt::get(CI->getType(), LenTrue - 1), 718 ConstantInt::get(CI->getType(), LenFalse - 1)); 719 } 720 } 721 722 // strlen(x) != 0 --> *x != 0 723 // strlen(x) == 0 --> *x == 0 724 if (isOnlyUsedInZeroEqualityComparison(CI)) 725 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 726 CI->getType()); 727 728 return nullptr; 729 } 730 731 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 732 if (Value *V = optimizeStringLength(CI, B, 8)) 733 return V; 734 annotateNonNullNoUndefBasedOnAccess(CI, 0); 735 return nullptr; 736 } 737 738 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 739 Module &M = *CI->getModule(); 740 unsigned WCharSize = TLI->getWCharSize(M) * 8; 741 // We cannot perform this optimization without wchar_size metadata. 742 if (WCharSize == 0) 743 return nullptr; 744 745 return optimizeStringLength(CI, B, WCharSize); 746 } 747 748 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 749 StringRef S1, S2; 750 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 751 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 752 753 // strpbrk(s, "") -> nullptr 754 // strpbrk("", s) -> nullptr 755 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 756 return Constant::getNullValue(CI->getType()); 757 758 // Constant folding. 759 if (HasS1 && HasS2) { 760 size_t I = S1.find_first_of(S2); 761 if (I == StringRef::npos) // No match. 762 return Constant::getNullValue(CI->getType()); 763 764 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 765 "strpbrk"); 766 } 767 768 // strpbrk(s, "a") -> strchr(s, 'a') 769 if (HasS2 && S2.size() == 1) 770 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 771 772 return nullptr; 773 } 774 775 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 776 Value *EndPtr = CI->getArgOperand(1); 777 if (isa<ConstantPointerNull>(EndPtr)) { 778 // With a null EndPtr, this function won't capture the main argument. 779 // It would be readonly too, except that it still may write to errno. 780 CI->addParamAttr(0, Attribute::NoCapture); 781 } 782 783 return nullptr; 784 } 785 786 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 787 StringRef S1, S2; 788 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 789 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 790 791 // strspn(s, "") -> 0 792 // strspn("", s) -> 0 793 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 794 return Constant::getNullValue(CI->getType()); 795 796 // Constant folding. 797 if (HasS1 && HasS2) { 798 size_t Pos = S1.find_first_not_of(S2); 799 if (Pos == StringRef::npos) 800 Pos = S1.size(); 801 return ConstantInt::get(CI->getType(), Pos); 802 } 803 804 return nullptr; 805 } 806 807 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 808 StringRef S1, S2; 809 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 810 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 811 812 // strcspn("", s) -> 0 813 if (HasS1 && S1.empty()) 814 return Constant::getNullValue(CI->getType()); 815 816 // Constant folding. 817 if (HasS1 && HasS2) { 818 size_t Pos = S1.find_first_of(S2); 819 if (Pos == StringRef::npos) 820 Pos = S1.size(); 821 return ConstantInt::get(CI->getType(), Pos); 822 } 823 824 // strcspn(s, "") -> strlen(s) 825 if (HasS2 && S2.empty()) 826 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 827 828 return nullptr; 829 } 830 831 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 832 // fold strstr(x, x) -> x. 833 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 834 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 835 836 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 837 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 838 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 839 if (!StrLen) 840 return nullptr; 841 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 842 StrLen, B, DL, TLI); 843 if (!StrNCmp) 844 return nullptr; 845 for (User *U : llvm::make_early_inc_range(CI->users())) { 846 ICmpInst *Old = cast<ICmpInst>(U); 847 Value *Cmp = 848 B.CreateICmp(Old->getPredicate(), StrNCmp, 849 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 850 replaceAllUsesWith(Old, Cmp); 851 } 852 return CI; 853 } 854 855 // See if either input string is a constant string. 856 StringRef SearchStr, ToFindStr; 857 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 858 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 859 860 // fold strstr(x, "") -> x. 861 if (HasStr2 && ToFindStr.empty()) 862 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 863 864 // If both strings are known, constant fold it. 865 if (HasStr1 && HasStr2) { 866 size_t Offset = SearchStr.find(ToFindStr); 867 868 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 869 return Constant::getNullValue(CI->getType()); 870 871 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 872 Value *Result = castToCStr(CI->getArgOperand(0), B); 873 Result = 874 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 875 return B.CreateBitCast(Result, CI->getType()); 876 } 877 878 // fold strstr(x, "y") -> strchr(x, 'y'). 879 if (HasStr2 && ToFindStr.size() == 1) { 880 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 881 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 882 } 883 884 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 885 return nullptr; 886 } 887 888 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 889 if (isKnownNonZero(CI->getOperand(2), DL)) 890 annotateNonNullNoUndefBasedOnAccess(CI, 0); 891 return nullptr; 892 } 893 894 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 895 Value *SrcStr = CI->getArgOperand(0); 896 Value *Size = CI->getArgOperand(2); 897 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 898 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 899 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 900 901 // memchr(x, y, 0) -> null 902 if (LenC) { 903 if (LenC->isZero()) 904 return Constant::getNullValue(CI->getType()); 905 } else { 906 // From now on we need at least constant length and string. 907 return nullptr; 908 } 909 910 StringRef Str; 911 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 912 return nullptr; 913 914 // Truncate the string to LenC. If Str is smaller than LenC we will still only 915 // scan the string, as reading past the end of it is undefined and we can just 916 // return null if we don't find the char. 917 Str = Str.substr(0, LenC->getZExtValue()); 918 919 // If the char is variable but the input str and length are not we can turn 920 // this memchr call into a simple bit field test. Of course this only works 921 // when the return value is only checked against null. 922 // 923 // It would be really nice to reuse switch lowering here but we can't change 924 // the CFG at this point. 925 // 926 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 927 // != 0 928 // after bounds check. 929 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 930 unsigned char Max = 931 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 932 reinterpret_cast<const unsigned char *>(Str.end())); 933 934 // Make sure the bit field we're about to create fits in a register on the 935 // target. 936 // FIXME: On a 64 bit architecture this prevents us from using the 937 // interesting range of alpha ascii chars. We could do better by emitting 938 // two bitfields or shifting the range by 64 if no lower chars are used. 939 if (!DL.fitsInLegalInteger(Max + 1)) 940 return nullptr; 941 942 // For the bit field use a power-of-2 type with at least 8 bits to avoid 943 // creating unnecessary illegal types. 944 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 945 946 // Now build the bit field. 947 APInt Bitfield(Width, 0); 948 for (char C : Str) 949 Bitfield.setBit((unsigned char)C); 950 Value *BitfieldC = B.getInt(Bitfield); 951 952 // Adjust width of "C" to the bitfield width, then mask off the high bits. 953 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 954 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 955 956 // First check that the bit field access is within bounds. 957 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 958 "memchr.bounds"); 959 960 // Create code that checks if the given bit is set in the field. 961 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 962 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 963 964 // Finally merge both checks and cast to pointer type. The inttoptr 965 // implicitly zexts the i1 to intptr type. 966 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 967 } 968 969 // Check if all arguments are constants. If so, we can constant fold. 970 if (!CharC) 971 return nullptr; 972 973 // Compute the offset. 974 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 975 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 976 return Constant::getNullValue(CI->getType()); 977 978 // memchr(s+n,c,l) -> gep(s+n+i,c) 979 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 980 } 981 982 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 983 uint64_t Len, IRBuilderBase &B, 984 const DataLayout &DL) { 985 if (Len == 0) // memcmp(s1,s2,0) -> 0 986 return Constant::getNullValue(CI->getType()); 987 988 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 989 if (Len == 1) { 990 Value *LHSV = 991 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 992 CI->getType(), "lhsv"); 993 Value *RHSV = 994 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 995 CI->getType(), "rhsv"); 996 return B.CreateSub(LHSV, RHSV, "chardiff"); 997 } 998 999 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1000 // TODO: The case where both inputs are constants does not need to be limited 1001 // to legal integers or equality comparison. See block below this. 1002 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1003 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1004 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1005 1006 // First, see if we can fold either argument to a constant. 1007 Value *LHSV = nullptr; 1008 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1009 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1010 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1011 } 1012 Value *RHSV = nullptr; 1013 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1014 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1015 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1016 } 1017 1018 // Don't generate unaligned loads. If either source is constant data, 1019 // alignment doesn't matter for that source because there is no load. 1020 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1021 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1022 if (!LHSV) { 1023 Type *LHSPtrTy = 1024 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1025 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1026 } 1027 if (!RHSV) { 1028 Type *RHSPtrTy = 1029 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1030 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1031 } 1032 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1033 } 1034 } 1035 1036 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1037 // TODO: This is limited to i8 arrays. 1038 StringRef LHSStr, RHSStr; 1039 if (getConstantStringInfo(LHS, LHSStr) && 1040 getConstantStringInfo(RHS, RHSStr)) { 1041 // Make sure we're not reading out-of-bounds memory. 1042 if (Len > LHSStr.size() || Len > RHSStr.size()) 1043 return nullptr; 1044 // Fold the memcmp and normalize the result. This way we get consistent 1045 // results across multiple platforms. 1046 uint64_t Ret = 0; 1047 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1048 if (Cmp < 0) 1049 Ret = -1; 1050 else if (Cmp > 0) 1051 Ret = 1; 1052 return ConstantInt::get(CI->getType(), Ret); 1053 } 1054 1055 return nullptr; 1056 } 1057 1058 // Most simplifications for memcmp also apply to bcmp. 1059 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1060 IRBuilderBase &B) { 1061 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1062 Value *Size = CI->getArgOperand(2); 1063 1064 if (LHS == RHS) // memcmp(s,s,x) -> 0 1065 return Constant::getNullValue(CI->getType()); 1066 1067 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1068 // Handle constant lengths. 1069 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1070 if (!LenC) 1071 return nullptr; 1072 1073 // memcmp(d,s,0) -> 0 1074 if (LenC->getZExtValue() == 0) 1075 return Constant::getNullValue(CI->getType()); 1076 1077 if (Value *Res = 1078 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1079 return Res; 1080 return nullptr; 1081 } 1082 1083 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1084 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1085 return V; 1086 1087 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1088 // bcmp can be more efficient than memcmp because it only has to know that 1089 // there is a difference, not how different one is to the other. 1090 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1091 Value *LHS = CI->getArgOperand(0); 1092 Value *RHS = CI->getArgOperand(1); 1093 Value *Size = CI->getArgOperand(2); 1094 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1095 } 1096 1097 return nullptr; 1098 } 1099 1100 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1101 return optimizeMemCmpBCmpCommon(CI, B); 1102 } 1103 1104 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1105 Value *Size = CI->getArgOperand(2); 1106 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1107 if (isa<IntrinsicInst>(CI)) 1108 return nullptr; 1109 1110 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1111 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1112 CI->getArgOperand(1), Align(1), Size); 1113 NewCI->setAttributes(CI->getAttributes()); 1114 NewCI->removeAttributes(AttributeList::ReturnIndex, 1115 AttributeFuncs::typeIncompatible(NewCI->getType())); 1116 return CI->getArgOperand(0); 1117 } 1118 1119 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1120 Value *Dst = CI->getArgOperand(0); 1121 Value *Src = CI->getArgOperand(1); 1122 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1123 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1124 StringRef SrcStr; 1125 if (CI->use_empty() && Dst == Src) 1126 return Dst; 1127 // memccpy(d, s, c, 0) -> nullptr 1128 if (N) { 1129 if (N->isNullValue()) 1130 return Constant::getNullValue(CI->getType()); 1131 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1132 /*TrimAtNul=*/false) || 1133 !StopChar) 1134 return nullptr; 1135 } else { 1136 return nullptr; 1137 } 1138 1139 // Wrap arg 'c' of type int to char 1140 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1141 if (Pos == StringRef::npos) { 1142 if (N->getZExtValue() <= SrcStr.size()) { 1143 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1144 return Constant::getNullValue(CI->getType()); 1145 } 1146 return nullptr; 1147 } 1148 1149 Value *NewN = 1150 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1151 // memccpy -> llvm.memcpy 1152 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1153 return Pos + 1 <= N->getZExtValue() 1154 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1155 : Constant::getNullValue(CI->getType()); 1156 } 1157 1158 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1159 Value *Dst = CI->getArgOperand(0); 1160 Value *N = CI->getArgOperand(2); 1161 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1162 CallInst *NewCI = 1163 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1164 // Propagate attributes, but memcpy has no return value, so make sure that 1165 // any return attributes are compliant. 1166 // TODO: Attach return value attributes to the 1st operand to preserve them? 1167 NewCI->setAttributes(CI->getAttributes()); 1168 NewCI->removeAttributes(AttributeList::ReturnIndex, 1169 AttributeFuncs::typeIncompatible(NewCI->getType())); 1170 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1171 } 1172 1173 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1174 Value *Size = CI->getArgOperand(2); 1175 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1176 if (isa<IntrinsicInst>(CI)) 1177 return nullptr; 1178 1179 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1180 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1181 CI->getArgOperand(1), Align(1), Size); 1182 NewCI->setAttributes(CI->getAttributes()); 1183 NewCI->removeAttributes(AttributeList::ReturnIndex, 1184 AttributeFuncs::typeIncompatible(NewCI->getType())); 1185 return CI->getArgOperand(0); 1186 } 1187 1188 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1189 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1190 // This has to be a memset of zeros (bzero). 1191 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1192 if (!FillValue || FillValue->getZExtValue() != 0) 1193 return nullptr; 1194 1195 // TODO: We should handle the case where the malloc has more than one use. 1196 // This is necessary to optimize common patterns such as when the result of 1197 // the malloc is checked against null or when a memset intrinsic is used in 1198 // place of a memset library call. 1199 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1200 if (!Malloc || !Malloc->hasOneUse()) 1201 return nullptr; 1202 1203 // Is the inner call really malloc()? 1204 Function *InnerCallee = Malloc->getCalledFunction(); 1205 if (!InnerCallee) 1206 return nullptr; 1207 1208 LibFunc Func; 1209 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1210 Func != LibFunc_malloc) 1211 return nullptr; 1212 1213 // The memset must cover the same number of bytes that are malloc'd. 1214 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1215 return nullptr; 1216 1217 // Replace the malloc with a calloc. We need the data layout to know what the 1218 // actual size of a 'size_t' parameter is. 1219 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1220 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1221 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1222 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1223 Malloc->getArgOperand(0), 1224 Malloc->getAttributes(), B, *TLI)) { 1225 substituteInParent(Malloc, Calloc); 1226 return Calloc; 1227 } 1228 1229 return nullptr; 1230 } 1231 1232 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1233 Value *Size = CI->getArgOperand(2); 1234 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1235 if (isa<IntrinsicInst>(CI)) 1236 return nullptr; 1237 1238 if (auto *Calloc = foldMallocMemset(CI, B)) 1239 return Calloc; 1240 1241 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1242 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1243 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1244 NewCI->setAttributes(CI->getAttributes()); 1245 NewCI->removeAttributes(AttributeList::ReturnIndex, 1246 AttributeFuncs::typeIncompatible(NewCI->getType())); 1247 return CI->getArgOperand(0); 1248 } 1249 1250 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1251 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1252 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1253 1254 return nullptr; 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // Math Library Optimizations 1259 //===----------------------------------------------------------------------===// 1260 1261 // Replace a libcall \p CI with a call to intrinsic \p IID 1262 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1263 Intrinsic::ID IID) { 1264 // Propagate fast-math flags from the existing call to the new call. 1265 IRBuilderBase::FastMathFlagGuard Guard(B); 1266 B.setFastMathFlags(CI->getFastMathFlags()); 1267 1268 Module *M = CI->getModule(); 1269 Value *V = CI->getArgOperand(0); 1270 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1271 CallInst *NewCall = B.CreateCall(F, V); 1272 NewCall->takeName(CI); 1273 return NewCall; 1274 } 1275 1276 /// Return a variant of Val with float type. 1277 /// Currently this works in two cases: If Val is an FPExtension of a float 1278 /// value to something bigger, simply return the operand. 1279 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1280 /// loss of precision do so. 1281 static Value *valueHasFloatPrecision(Value *Val) { 1282 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1283 Value *Op = Cast->getOperand(0); 1284 if (Op->getType()->isFloatTy()) 1285 return Op; 1286 } 1287 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1288 APFloat F = Const->getValueAPF(); 1289 bool losesInfo; 1290 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1291 &losesInfo); 1292 if (!losesInfo) 1293 return ConstantFP::get(Const->getContext(), F); 1294 } 1295 return nullptr; 1296 } 1297 1298 /// Shrink double -> float functions. 1299 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1300 bool isBinary, bool isPrecise = false) { 1301 Function *CalleeFn = CI->getCalledFunction(); 1302 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1303 return nullptr; 1304 1305 // If not all the uses of the function are converted to float, then bail out. 1306 // This matters if the precision of the result is more important than the 1307 // precision of the arguments. 1308 if (isPrecise) 1309 for (User *U : CI->users()) { 1310 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1311 if (!Cast || !Cast->getType()->isFloatTy()) 1312 return nullptr; 1313 } 1314 1315 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1316 Value *V[2]; 1317 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1318 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1319 if (!V[0] || (isBinary && !V[1])) 1320 return nullptr; 1321 1322 // If call isn't an intrinsic, check that it isn't within a function with the 1323 // same name as the float version of this call, otherwise the result is an 1324 // infinite loop. For example, from MinGW-w64: 1325 // 1326 // float expf(float val) { return (float) exp((double) val); } 1327 StringRef CalleeName = CalleeFn->getName(); 1328 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1329 if (!IsIntrinsic) { 1330 StringRef CallerName = CI->getFunction()->getName(); 1331 if (!CallerName.empty() && CallerName.back() == 'f' && 1332 CallerName.size() == (CalleeName.size() + 1) && 1333 CallerName.startswith(CalleeName)) 1334 return nullptr; 1335 } 1336 1337 // Propagate the math semantics from the current function to the new function. 1338 IRBuilderBase::FastMathFlagGuard Guard(B); 1339 B.setFastMathFlags(CI->getFastMathFlags()); 1340 1341 // g((double) float) -> (double) gf(float) 1342 Value *R; 1343 if (IsIntrinsic) { 1344 Module *M = CI->getModule(); 1345 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1346 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1347 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1348 } else { 1349 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1350 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1351 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1352 } 1353 return B.CreateFPExt(R, B.getDoubleTy()); 1354 } 1355 1356 /// Shrink double -> float for unary functions. 1357 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1358 bool isPrecise = false) { 1359 return optimizeDoubleFP(CI, B, false, isPrecise); 1360 } 1361 1362 /// Shrink double -> float for binary functions. 1363 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1364 bool isPrecise = false) { 1365 return optimizeDoubleFP(CI, B, true, isPrecise); 1366 } 1367 1368 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1369 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1370 if (!CI->isFast()) 1371 return nullptr; 1372 1373 // Propagate fast-math flags from the existing call to new instructions. 1374 IRBuilderBase::FastMathFlagGuard Guard(B); 1375 B.setFastMathFlags(CI->getFastMathFlags()); 1376 1377 Value *Real, *Imag; 1378 if (CI->getNumArgOperands() == 1) { 1379 Value *Op = CI->getArgOperand(0); 1380 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1381 Real = B.CreateExtractValue(Op, 0, "real"); 1382 Imag = B.CreateExtractValue(Op, 1, "imag"); 1383 } else { 1384 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1385 Real = CI->getArgOperand(0); 1386 Imag = CI->getArgOperand(1); 1387 } 1388 1389 Value *RealReal = B.CreateFMul(Real, Real); 1390 Value *ImagImag = B.CreateFMul(Imag, Imag); 1391 1392 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1393 CI->getType()); 1394 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1395 } 1396 1397 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1398 IRBuilderBase &B) { 1399 if (!isa<FPMathOperator>(Call)) 1400 return nullptr; 1401 1402 IRBuilderBase::FastMathFlagGuard Guard(B); 1403 B.setFastMathFlags(Call->getFastMathFlags()); 1404 1405 // TODO: Can this be shared to also handle LLVM intrinsics? 1406 Value *X; 1407 switch (Func) { 1408 case LibFunc_sin: 1409 case LibFunc_sinf: 1410 case LibFunc_sinl: 1411 case LibFunc_tan: 1412 case LibFunc_tanf: 1413 case LibFunc_tanl: 1414 // sin(-X) --> -sin(X) 1415 // tan(-X) --> -tan(X) 1416 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1417 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1418 break; 1419 case LibFunc_cos: 1420 case LibFunc_cosf: 1421 case LibFunc_cosl: 1422 // cos(-X) --> cos(X) 1423 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1424 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1425 break; 1426 default: 1427 break; 1428 } 1429 return nullptr; 1430 } 1431 1432 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1433 // Multiplications calculated using Addition Chains. 1434 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1435 1436 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1437 1438 if (InnerChain[Exp]) 1439 return InnerChain[Exp]; 1440 1441 static const unsigned AddChain[33][2] = { 1442 {0, 0}, // Unused. 1443 {0, 0}, // Unused (base case = pow1). 1444 {1, 1}, // Unused (pre-computed). 1445 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1446 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1447 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1448 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1449 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1450 }; 1451 1452 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1453 getPow(InnerChain, AddChain[Exp][1], B)); 1454 return InnerChain[Exp]; 1455 } 1456 1457 // Return a properly extended 32-bit integer if the operation is an itofp. 1458 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1459 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1460 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1461 // Make sure that the exponent fits inside an int32_t, 1462 // thus avoiding any range issues that FP has not. 1463 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1464 if (BitWidth < 32 || 1465 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1466 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1467 : B.CreateZExt(Op, B.getInt32Ty()); 1468 } 1469 1470 return nullptr; 1471 } 1472 1473 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1474 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1475 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1476 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1477 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1478 AttributeList Attrs; // Attributes are only meaningful on the original call 1479 Module *Mod = Pow->getModule(); 1480 Type *Ty = Pow->getType(); 1481 bool Ignored; 1482 1483 // Evaluate special cases related to a nested function as the base. 1484 1485 // pow(exp(x), y) -> exp(x * y) 1486 // pow(exp2(x), y) -> exp2(x * y) 1487 // If exp{,2}() is used only once, it is better to fold two transcendental 1488 // math functions into one. If used again, exp{,2}() would still have to be 1489 // called with the original argument, then keep both original transcendental 1490 // functions. However, this transformation is only safe with fully relaxed 1491 // math semantics, since, besides rounding differences, it changes overflow 1492 // and underflow behavior quite dramatically. For example: 1493 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1494 // Whereas: 1495 // exp(1000 * 0.001) = exp(1) 1496 // TODO: Loosen the requirement for fully relaxed math semantics. 1497 // TODO: Handle exp10() when more targets have it available. 1498 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1499 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1500 LibFunc LibFn; 1501 1502 Function *CalleeFn = BaseFn->getCalledFunction(); 1503 if (CalleeFn && 1504 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1505 StringRef ExpName; 1506 Intrinsic::ID ID; 1507 Value *ExpFn; 1508 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1509 1510 switch (LibFn) { 1511 default: 1512 return nullptr; 1513 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1514 ExpName = TLI->getName(LibFunc_exp); 1515 ID = Intrinsic::exp; 1516 LibFnFloat = LibFunc_expf; 1517 LibFnDouble = LibFunc_exp; 1518 LibFnLongDouble = LibFunc_expl; 1519 break; 1520 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1521 ExpName = TLI->getName(LibFunc_exp2); 1522 ID = Intrinsic::exp2; 1523 LibFnFloat = LibFunc_exp2f; 1524 LibFnDouble = LibFunc_exp2; 1525 LibFnLongDouble = LibFunc_exp2l; 1526 break; 1527 } 1528 1529 // Create new exp{,2}() with the product as its argument. 1530 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1531 ExpFn = BaseFn->doesNotAccessMemory() 1532 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1533 FMul, ExpName) 1534 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1535 LibFnLongDouble, B, 1536 BaseFn->getAttributes()); 1537 1538 // Since the new exp{,2}() is different from the original one, dead code 1539 // elimination cannot be trusted to remove it, since it may have side 1540 // effects (e.g., errno). When the only consumer for the original 1541 // exp{,2}() is pow(), then it has to be explicitly erased. 1542 substituteInParent(BaseFn, ExpFn); 1543 return ExpFn; 1544 } 1545 } 1546 1547 // Evaluate special cases related to a constant base. 1548 1549 const APFloat *BaseF; 1550 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1551 return nullptr; 1552 1553 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1554 if (match(Base, m_SpecificFP(2.0)) && 1555 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1556 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1557 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1558 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1559 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1560 B, Attrs); 1561 } 1562 1563 // pow(2.0 ** n, x) -> exp2(n * x) 1564 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1565 APFloat BaseR = APFloat(1.0); 1566 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1567 BaseR = BaseR / *BaseF; 1568 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1569 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1570 APSInt NI(64, false); 1571 if ((IsInteger || IsReciprocal) && 1572 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1573 APFloat::opOK && 1574 NI > 1 && NI.isPowerOf2()) { 1575 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1576 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1577 if (Pow->doesNotAccessMemory()) 1578 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1579 FMul, "exp2"); 1580 else 1581 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1582 LibFunc_exp2l, B, Attrs); 1583 } 1584 } 1585 1586 // pow(10.0, x) -> exp10(x) 1587 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1588 if (match(Base, m_SpecificFP(10.0)) && 1589 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1590 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1591 LibFunc_exp10l, B, Attrs); 1592 1593 // pow(x, y) -> exp2(log2(x) * y) 1594 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1595 !BaseF->isNegative()) { 1596 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1597 // Luckily optimizePow has already handled the x == 1 case. 1598 assert(!match(Base, m_FPOne()) && 1599 "pow(1.0, y) should have been simplified earlier!"); 1600 1601 Value *Log = nullptr; 1602 if (Ty->isFloatTy()) 1603 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1604 else if (Ty->isDoubleTy()) 1605 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1606 1607 if (Log) { 1608 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1609 if (Pow->doesNotAccessMemory()) 1610 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1611 FMul, "exp2"); 1612 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1613 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1614 LibFunc_exp2l, B, Attrs); 1615 } 1616 } 1617 1618 return nullptr; 1619 } 1620 1621 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1622 Module *M, IRBuilderBase &B, 1623 const TargetLibraryInfo *TLI) { 1624 // If errno is never set, then use the intrinsic for sqrt(). 1625 if (NoErrno) { 1626 Function *SqrtFn = 1627 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1628 return B.CreateCall(SqrtFn, V, "sqrt"); 1629 } 1630 1631 // Otherwise, use the libcall for sqrt(). 1632 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1633 // TODO: We also should check that the target can in fact lower the sqrt() 1634 // libcall. We currently have no way to ask this question, so we ask if 1635 // the target has a sqrt() libcall, which is not exactly the same. 1636 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1637 LibFunc_sqrtl, B, Attrs); 1638 1639 return nullptr; 1640 } 1641 1642 /// Use square root in place of pow(x, +/-0.5). 1643 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1644 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1645 AttributeList Attrs; // Attributes are only meaningful on the original call 1646 Module *Mod = Pow->getModule(); 1647 Type *Ty = Pow->getType(); 1648 1649 const APFloat *ExpoF; 1650 if (!match(Expo, m_APFloat(ExpoF)) || 1651 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1652 return nullptr; 1653 1654 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1655 // so that requires fast-math-flags (afn or reassoc). 1656 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1657 return nullptr; 1658 1659 // If we have a pow() library call (accesses memory) and we can't guarantee 1660 // that the base is not an infinity, give up: 1661 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1662 // errno), but sqrt(-Inf) is required by various standards to set errno. 1663 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1664 !isKnownNeverInfinity(Base, TLI)) 1665 return nullptr; 1666 1667 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1668 if (!Sqrt) 1669 return nullptr; 1670 1671 // Handle signed zero base by expanding to fabs(sqrt(x)). 1672 if (!Pow->hasNoSignedZeros()) { 1673 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1674 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1675 } 1676 1677 // Handle non finite base by expanding to 1678 // (x == -infinity ? +infinity : sqrt(x)). 1679 if (!Pow->hasNoInfs()) { 1680 Value *PosInf = ConstantFP::getInfinity(Ty), 1681 *NegInf = ConstantFP::getInfinity(Ty, true); 1682 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1683 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1684 } 1685 1686 // If the exponent is negative, then get the reciprocal. 1687 if (ExpoF->isNegative()) 1688 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1689 1690 return Sqrt; 1691 } 1692 1693 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1694 IRBuilderBase &B) { 1695 Value *Args[] = {Base, Expo}; 1696 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1697 return B.CreateCall(F, Args); 1698 } 1699 1700 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1701 Value *Base = Pow->getArgOperand(0); 1702 Value *Expo = Pow->getArgOperand(1); 1703 Function *Callee = Pow->getCalledFunction(); 1704 StringRef Name = Callee->getName(); 1705 Type *Ty = Pow->getType(); 1706 Module *M = Pow->getModule(); 1707 bool AllowApprox = Pow->hasApproxFunc(); 1708 bool Ignored; 1709 1710 // Propagate the math semantics from the call to any created instructions. 1711 IRBuilderBase::FastMathFlagGuard Guard(B); 1712 B.setFastMathFlags(Pow->getFastMathFlags()); 1713 // Evaluate special cases related to the base. 1714 1715 // pow(1.0, x) -> 1.0 1716 if (match(Base, m_FPOne())) 1717 return Base; 1718 1719 if (Value *Exp = replacePowWithExp(Pow, B)) 1720 return Exp; 1721 1722 // Evaluate special cases related to the exponent. 1723 1724 // pow(x, -1.0) -> 1.0 / x 1725 if (match(Expo, m_SpecificFP(-1.0))) 1726 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1727 1728 // pow(x, +/-0.0) -> 1.0 1729 if (match(Expo, m_AnyZeroFP())) 1730 return ConstantFP::get(Ty, 1.0); 1731 1732 // pow(x, 1.0) -> x 1733 if (match(Expo, m_FPOne())) 1734 return Base; 1735 1736 // pow(x, 2.0) -> x * x 1737 if (match(Expo, m_SpecificFP(2.0))) 1738 return B.CreateFMul(Base, Base, "square"); 1739 1740 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1741 return Sqrt; 1742 1743 // pow(x, n) -> x * x * x * ... 1744 const APFloat *ExpoF; 1745 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1746 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1747 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1748 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1749 // additional fmul. 1750 // TODO: This whole transformation should be backend specific (e.g. some 1751 // backends might prefer libcalls or the limit for the exponent might 1752 // be different) and it should also consider optimizing for size. 1753 APFloat LimF(ExpoF->getSemantics(), 33), 1754 ExpoA(abs(*ExpoF)); 1755 if (ExpoA < LimF) { 1756 // This transformation applies to integer or integer+0.5 exponents only. 1757 // For integer+0.5, we create a sqrt(Base) call. 1758 Value *Sqrt = nullptr; 1759 if (!ExpoA.isInteger()) { 1760 APFloat Expo2 = ExpoA; 1761 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1762 // is no floating point exception and the result is an integer, then 1763 // ExpoA == integer + 0.5 1764 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1765 return nullptr; 1766 1767 if (!Expo2.isInteger()) 1768 return nullptr; 1769 1770 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1771 Pow->doesNotAccessMemory(), M, B, TLI); 1772 if (!Sqrt) 1773 return nullptr; 1774 } 1775 1776 // We will memoize intermediate products of the Addition Chain. 1777 Value *InnerChain[33] = {nullptr}; 1778 InnerChain[1] = Base; 1779 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1780 1781 // We cannot readily convert a non-double type (like float) to a double. 1782 // So we first convert it to something which could be converted to double. 1783 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1784 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1785 1786 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1787 if (Sqrt) 1788 FMul = B.CreateFMul(FMul, Sqrt); 1789 1790 // If the exponent is negative, then get the reciprocal. 1791 if (ExpoF->isNegative()) 1792 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1793 1794 return FMul; 1795 } 1796 1797 APSInt IntExpo(32, /*isUnsigned=*/false); 1798 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1799 if (ExpoF->isInteger() && 1800 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1801 APFloat::opOK) { 1802 return createPowWithIntegerExponent( 1803 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1804 } 1805 } 1806 1807 // powf(x, itofp(y)) -> powi(x, y) 1808 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1809 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1810 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1811 } 1812 1813 // Shrink pow() to powf() if the arguments are single precision, 1814 // unless the result is expected to be double precision. 1815 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1816 hasFloatVersion(Name)) { 1817 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1818 return Shrunk; 1819 } 1820 1821 return nullptr; 1822 } 1823 1824 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1825 Function *Callee = CI->getCalledFunction(); 1826 AttributeList Attrs; // Attributes are only meaningful on the original call 1827 StringRef Name = Callee->getName(); 1828 Value *Ret = nullptr; 1829 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1830 hasFloatVersion(Name)) 1831 Ret = optimizeUnaryDoubleFP(CI, B, true); 1832 1833 Type *Ty = CI->getType(); 1834 Value *Op = CI->getArgOperand(0); 1835 1836 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1837 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1838 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1839 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1840 if (Value *Exp = getIntToFPVal(Op, B)) 1841 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1842 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1843 B, Attrs); 1844 } 1845 1846 return Ret; 1847 } 1848 1849 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1850 // If we can shrink the call to a float function rather than a double 1851 // function, do that first. 1852 Function *Callee = CI->getCalledFunction(); 1853 StringRef Name = Callee->getName(); 1854 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1855 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1856 return Ret; 1857 1858 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1859 // the intrinsics for improved optimization (for example, vectorization). 1860 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1861 // From the C standard draft WG14/N1256: 1862 // "Ideally, fmax would be sensitive to the sign of zero, for example 1863 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1864 // might be impractical." 1865 IRBuilderBase::FastMathFlagGuard Guard(B); 1866 FastMathFlags FMF = CI->getFastMathFlags(); 1867 FMF.setNoSignedZeros(); 1868 B.setFastMathFlags(FMF); 1869 1870 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1871 : Intrinsic::maxnum; 1872 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1873 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1874 } 1875 1876 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1877 Function *LogFn = Log->getCalledFunction(); 1878 AttributeList Attrs; // Attributes are only meaningful on the original call 1879 StringRef LogNm = LogFn->getName(); 1880 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1881 Module *Mod = Log->getModule(); 1882 Type *Ty = Log->getType(); 1883 Value *Ret = nullptr; 1884 1885 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1886 Ret = optimizeUnaryDoubleFP(Log, B, true); 1887 1888 // The earlier call must also be 'fast' in order to do these transforms. 1889 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1890 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1891 return Ret; 1892 1893 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1894 1895 // This is only applicable to log(), log2(), log10(). 1896 if (TLI->getLibFunc(LogNm, LogLb)) 1897 switch (LogLb) { 1898 case LibFunc_logf: 1899 LogID = Intrinsic::log; 1900 ExpLb = LibFunc_expf; 1901 Exp2Lb = LibFunc_exp2f; 1902 Exp10Lb = LibFunc_exp10f; 1903 PowLb = LibFunc_powf; 1904 break; 1905 case LibFunc_log: 1906 LogID = Intrinsic::log; 1907 ExpLb = LibFunc_exp; 1908 Exp2Lb = LibFunc_exp2; 1909 Exp10Lb = LibFunc_exp10; 1910 PowLb = LibFunc_pow; 1911 break; 1912 case LibFunc_logl: 1913 LogID = Intrinsic::log; 1914 ExpLb = LibFunc_expl; 1915 Exp2Lb = LibFunc_exp2l; 1916 Exp10Lb = LibFunc_exp10l; 1917 PowLb = LibFunc_powl; 1918 break; 1919 case LibFunc_log2f: 1920 LogID = Intrinsic::log2; 1921 ExpLb = LibFunc_expf; 1922 Exp2Lb = LibFunc_exp2f; 1923 Exp10Lb = LibFunc_exp10f; 1924 PowLb = LibFunc_powf; 1925 break; 1926 case LibFunc_log2: 1927 LogID = Intrinsic::log2; 1928 ExpLb = LibFunc_exp; 1929 Exp2Lb = LibFunc_exp2; 1930 Exp10Lb = LibFunc_exp10; 1931 PowLb = LibFunc_pow; 1932 break; 1933 case LibFunc_log2l: 1934 LogID = Intrinsic::log2; 1935 ExpLb = LibFunc_expl; 1936 Exp2Lb = LibFunc_exp2l; 1937 Exp10Lb = LibFunc_exp10l; 1938 PowLb = LibFunc_powl; 1939 break; 1940 case LibFunc_log10f: 1941 LogID = Intrinsic::log10; 1942 ExpLb = LibFunc_expf; 1943 Exp2Lb = LibFunc_exp2f; 1944 Exp10Lb = LibFunc_exp10f; 1945 PowLb = LibFunc_powf; 1946 break; 1947 case LibFunc_log10: 1948 LogID = Intrinsic::log10; 1949 ExpLb = LibFunc_exp; 1950 Exp2Lb = LibFunc_exp2; 1951 Exp10Lb = LibFunc_exp10; 1952 PowLb = LibFunc_pow; 1953 break; 1954 case LibFunc_log10l: 1955 LogID = Intrinsic::log10; 1956 ExpLb = LibFunc_expl; 1957 Exp2Lb = LibFunc_exp2l; 1958 Exp10Lb = LibFunc_exp10l; 1959 PowLb = LibFunc_powl; 1960 break; 1961 default: 1962 return Ret; 1963 } 1964 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1965 LogID == Intrinsic::log10) { 1966 if (Ty->getScalarType()->isFloatTy()) { 1967 ExpLb = LibFunc_expf; 1968 Exp2Lb = LibFunc_exp2f; 1969 Exp10Lb = LibFunc_exp10f; 1970 PowLb = LibFunc_powf; 1971 } else if (Ty->getScalarType()->isDoubleTy()) { 1972 ExpLb = LibFunc_exp; 1973 Exp2Lb = LibFunc_exp2; 1974 Exp10Lb = LibFunc_exp10; 1975 PowLb = LibFunc_pow; 1976 } else 1977 return Ret; 1978 } else 1979 return Ret; 1980 1981 IRBuilderBase::FastMathFlagGuard Guard(B); 1982 B.setFastMathFlags(FastMathFlags::getFast()); 1983 1984 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1985 LibFunc ArgLb = NotLibFunc; 1986 TLI->getLibFunc(*Arg, ArgLb); 1987 1988 // log(pow(x,y)) -> y*log(x) 1989 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1990 Value *LogX = 1991 Log->doesNotAccessMemory() 1992 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1993 Arg->getOperand(0), "log") 1994 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1995 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1996 // Since pow() may have side effects, e.g. errno, 1997 // dead code elimination may not be trusted to remove it. 1998 substituteInParent(Arg, MulY); 1999 return MulY; 2000 } 2001 2002 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2003 // TODO: There is no exp10() intrinsic yet. 2004 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2005 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2006 Constant *Eul; 2007 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2008 // FIXME: Add more precise value of e for long double. 2009 Eul = ConstantFP::get(Log->getType(), numbers::e); 2010 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2011 Eul = ConstantFP::get(Log->getType(), 2.0); 2012 else 2013 Eul = ConstantFP::get(Log->getType(), 10.0); 2014 Value *LogE = Log->doesNotAccessMemory() 2015 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2016 Eul, "log") 2017 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2018 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2019 // Since exp() may have side effects, e.g. errno, 2020 // dead code elimination may not be trusted to remove it. 2021 substituteInParent(Arg, MulY); 2022 return MulY; 2023 } 2024 2025 return Ret; 2026 } 2027 2028 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2029 Function *Callee = CI->getCalledFunction(); 2030 Value *Ret = nullptr; 2031 // TODO: Once we have a way (other than checking for the existince of the 2032 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2033 // condition below. 2034 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2035 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2036 Ret = optimizeUnaryDoubleFP(CI, B, true); 2037 2038 if (!CI->isFast()) 2039 return Ret; 2040 2041 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2042 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2043 return Ret; 2044 2045 // We're looking for a repeated factor in a multiplication tree, 2046 // so we can do this fold: sqrt(x * x) -> fabs(x); 2047 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2048 Value *Op0 = I->getOperand(0); 2049 Value *Op1 = I->getOperand(1); 2050 Value *RepeatOp = nullptr; 2051 Value *OtherOp = nullptr; 2052 if (Op0 == Op1) { 2053 // Simple match: the operands of the multiply are identical. 2054 RepeatOp = Op0; 2055 } else { 2056 // Look for a more complicated pattern: one of the operands is itself 2057 // a multiply, so search for a common factor in that multiply. 2058 // Note: We don't bother looking any deeper than this first level or for 2059 // variations of this pattern because instcombine's visitFMUL and/or the 2060 // reassociation pass should give us this form. 2061 Value *OtherMul0, *OtherMul1; 2062 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2063 // Pattern: sqrt((x * y) * z) 2064 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2065 // Matched: sqrt((x * x) * z) 2066 RepeatOp = OtherMul0; 2067 OtherOp = Op1; 2068 } 2069 } 2070 } 2071 if (!RepeatOp) 2072 return Ret; 2073 2074 // Fast math flags for any created instructions should match the sqrt 2075 // and multiply. 2076 IRBuilderBase::FastMathFlagGuard Guard(B); 2077 B.setFastMathFlags(I->getFastMathFlags()); 2078 2079 // If we found a repeated factor, hoist it out of the square root and 2080 // replace it with the fabs of that factor. 2081 Module *M = Callee->getParent(); 2082 Type *ArgType = I->getType(); 2083 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2084 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2085 if (OtherOp) { 2086 // If we found a non-repeated factor, we still need to get its square 2087 // root. We then multiply that by the value that was simplified out 2088 // of the square root calculation. 2089 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2090 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2091 return B.CreateFMul(FabsCall, SqrtCall); 2092 } 2093 return FabsCall; 2094 } 2095 2096 // TODO: Generalize to handle any trig function and its inverse. 2097 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2098 Function *Callee = CI->getCalledFunction(); 2099 Value *Ret = nullptr; 2100 StringRef Name = Callee->getName(); 2101 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2102 Ret = optimizeUnaryDoubleFP(CI, B, true); 2103 2104 Value *Op1 = CI->getArgOperand(0); 2105 auto *OpC = dyn_cast<CallInst>(Op1); 2106 if (!OpC) 2107 return Ret; 2108 2109 // Both calls must be 'fast' in order to remove them. 2110 if (!CI->isFast() || !OpC->isFast()) 2111 return Ret; 2112 2113 // tan(atan(x)) -> x 2114 // tanf(atanf(x)) -> x 2115 // tanl(atanl(x)) -> x 2116 LibFunc Func; 2117 Function *F = OpC->getCalledFunction(); 2118 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2119 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2120 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2121 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2122 Ret = OpC->getArgOperand(0); 2123 return Ret; 2124 } 2125 2126 static bool isTrigLibCall(CallInst *CI) { 2127 // We can only hope to do anything useful if we can ignore things like errno 2128 // and floating-point exceptions. 2129 // We already checked the prototype. 2130 return CI->hasFnAttr(Attribute::NoUnwind) && 2131 CI->hasFnAttr(Attribute::ReadNone); 2132 } 2133 2134 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2135 bool UseFloat, Value *&Sin, Value *&Cos, 2136 Value *&SinCos) { 2137 Type *ArgTy = Arg->getType(); 2138 Type *ResTy; 2139 StringRef Name; 2140 2141 Triple T(OrigCallee->getParent()->getTargetTriple()); 2142 if (UseFloat) { 2143 Name = "__sincospif_stret"; 2144 2145 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2146 // x86_64 can't use {float, float} since that would be returned in both 2147 // xmm0 and xmm1, which isn't what a real struct would do. 2148 ResTy = T.getArch() == Triple::x86_64 2149 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2150 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2151 } else { 2152 Name = "__sincospi_stret"; 2153 ResTy = StructType::get(ArgTy, ArgTy); 2154 } 2155 2156 Module *M = OrigCallee->getParent(); 2157 FunctionCallee Callee = 2158 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2159 2160 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2161 // If the argument is an instruction, it must dominate all uses so put our 2162 // sincos call there. 2163 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2164 } else { 2165 // Otherwise (e.g. for a constant) the beginning of the function is as 2166 // good a place as any. 2167 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2168 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2169 } 2170 2171 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2172 2173 if (SinCos->getType()->isStructTy()) { 2174 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2175 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2176 } else { 2177 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2178 "sinpi"); 2179 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2180 "cospi"); 2181 } 2182 } 2183 2184 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2185 // Make sure the prototype is as expected, otherwise the rest of the 2186 // function is probably invalid and likely to abort. 2187 if (!isTrigLibCall(CI)) 2188 return nullptr; 2189 2190 Value *Arg = CI->getArgOperand(0); 2191 SmallVector<CallInst *, 1> SinCalls; 2192 SmallVector<CallInst *, 1> CosCalls; 2193 SmallVector<CallInst *, 1> SinCosCalls; 2194 2195 bool IsFloat = Arg->getType()->isFloatTy(); 2196 2197 // Look for all compatible sinpi, cospi and sincospi calls with the same 2198 // argument. If there are enough (in some sense) we can make the 2199 // substitution. 2200 Function *F = CI->getFunction(); 2201 for (User *U : Arg->users()) 2202 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2203 2204 // It's only worthwhile if both sinpi and cospi are actually used. 2205 if (SinCalls.empty() || CosCalls.empty()) 2206 return nullptr; 2207 2208 Value *Sin, *Cos, *SinCos; 2209 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2210 2211 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2212 Value *Res) { 2213 for (CallInst *C : Calls) 2214 replaceAllUsesWith(C, Res); 2215 }; 2216 2217 replaceTrigInsts(SinCalls, Sin); 2218 replaceTrigInsts(CosCalls, Cos); 2219 replaceTrigInsts(SinCosCalls, SinCos); 2220 2221 return nullptr; 2222 } 2223 2224 void LibCallSimplifier::classifyArgUse( 2225 Value *Val, Function *F, bool IsFloat, 2226 SmallVectorImpl<CallInst *> &SinCalls, 2227 SmallVectorImpl<CallInst *> &CosCalls, 2228 SmallVectorImpl<CallInst *> &SinCosCalls) { 2229 CallInst *CI = dyn_cast<CallInst>(Val); 2230 2231 if (!CI || CI->use_empty()) 2232 return; 2233 2234 // Don't consider calls in other functions. 2235 if (CI->getFunction() != F) 2236 return; 2237 2238 Function *Callee = CI->getCalledFunction(); 2239 LibFunc Func; 2240 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2241 !isTrigLibCall(CI)) 2242 return; 2243 2244 if (IsFloat) { 2245 if (Func == LibFunc_sinpif) 2246 SinCalls.push_back(CI); 2247 else if (Func == LibFunc_cospif) 2248 CosCalls.push_back(CI); 2249 else if (Func == LibFunc_sincospif_stret) 2250 SinCosCalls.push_back(CI); 2251 } else { 2252 if (Func == LibFunc_sinpi) 2253 SinCalls.push_back(CI); 2254 else if (Func == LibFunc_cospi) 2255 CosCalls.push_back(CI); 2256 else if (Func == LibFunc_sincospi_stret) 2257 SinCosCalls.push_back(CI); 2258 } 2259 } 2260 2261 //===----------------------------------------------------------------------===// 2262 // Integer Library Call Optimizations 2263 //===----------------------------------------------------------------------===// 2264 2265 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2266 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2267 Value *Op = CI->getArgOperand(0); 2268 Type *ArgType = Op->getType(); 2269 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2270 Intrinsic::cttz, ArgType); 2271 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2272 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2273 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2274 2275 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2276 return B.CreateSelect(Cond, V, B.getInt32(0)); 2277 } 2278 2279 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2280 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2281 Value *Op = CI->getArgOperand(0); 2282 Type *ArgType = Op->getType(); 2283 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2284 Intrinsic::ctlz, ArgType); 2285 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2286 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2287 V); 2288 return B.CreateIntCast(V, CI->getType(), false); 2289 } 2290 2291 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2292 // abs(x) -> x <s 0 ? -x : x 2293 // The negation has 'nsw' because abs of INT_MIN is undefined. 2294 Value *X = CI->getArgOperand(0); 2295 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2296 Value *NegX = B.CreateNSWNeg(X, "neg"); 2297 return B.CreateSelect(IsNeg, NegX, X); 2298 } 2299 2300 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2301 // isdigit(c) -> (c-'0') <u 10 2302 Value *Op = CI->getArgOperand(0); 2303 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2304 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2305 return B.CreateZExt(Op, CI->getType()); 2306 } 2307 2308 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2309 // isascii(c) -> c <u 128 2310 Value *Op = CI->getArgOperand(0); 2311 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2312 return B.CreateZExt(Op, CI->getType()); 2313 } 2314 2315 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2316 // toascii(c) -> c & 0x7f 2317 return B.CreateAnd(CI->getArgOperand(0), 2318 ConstantInt::get(CI->getType(), 0x7F)); 2319 } 2320 2321 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2322 StringRef Str; 2323 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2324 return nullptr; 2325 2326 return convertStrToNumber(CI, Str, 10); 2327 } 2328 2329 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2330 StringRef Str; 2331 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2332 return nullptr; 2333 2334 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2335 return nullptr; 2336 2337 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2338 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2339 } 2340 2341 return nullptr; 2342 } 2343 2344 //===----------------------------------------------------------------------===// 2345 // Formatting and IO Library Call Optimizations 2346 //===----------------------------------------------------------------------===// 2347 2348 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2349 2350 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2351 int StreamArg) { 2352 Function *Callee = CI->getCalledFunction(); 2353 // Error reporting calls should be cold, mark them as such. 2354 // This applies even to non-builtin calls: it is only a hint and applies to 2355 // functions that the frontend might not understand as builtins. 2356 2357 // This heuristic was suggested in: 2358 // Improving Static Branch Prediction in a Compiler 2359 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2360 // Proceedings of PACT'98, Oct. 1998, IEEE 2361 if (!CI->hasFnAttr(Attribute::Cold) && 2362 isReportingError(Callee, CI, StreamArg)) { 2363 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2364 } 2365 2366 return nullptr; 2367 } 2368 2369 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2370 if (!Callee || !Callee->isDeclaration()) 2371 return false; 2372 2373 if (StreamArg < 0) 2374 return true; 2375 2376 // These functions might be considered cold, but only if their stream 2377 // argument is stderr. 2378 2379 if (StreamArg >= (int)CI->getNumArgOperands()) 2380 return false; 2381 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2382 if (!LI) 2383 return false; 2384 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2385 if (!GV || !GV->isDeclaration()) 2386 return false; 2387 return GV->getName() == "stderr"; 2388 } 2389 2390 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2391 // Check for a fixed format string. 2392 StringRef FormatStr; 2393 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2394 return nullptr; 2395 2396 // Empty format string -> noop. 2397 if (FormatStr.empty()) // Tolerate printf's declared void. 2398 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2399 2400 // Do not do any of the following transformations if the printf return value 2401 // is used, in general the printf return value is not compatible with either 2402 // putchar() or puts(). 2403 if (!CI->use_empty()) 2404 return nullptr; 2405 2406 // printf("x") -> putchar('x'), even for "%" and "%%". 2407 if (FormatStr.size() == 1 || FormatStr == "%%") 2408 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2409 2410 // printf("%s", "a") --> putchar('a') 2411 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2412 StringRef ChrStr; 2413 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2414 return nullptr; 2415 if (ChrStr.size() != 1) 2416 return nullptr; 2417 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2418 } 2419 2420 // printf("foo\n") --> puts("foo") 2421 if (FormatStr[FormatStr.size() - 1] == '\n' && 2422 FormatStr.find('%') == StringRef::npos) { // No format characters. 2423 // Create a string literal with no \n on it. We expect the constant merge 2424 // pass to be run after this pass, to merge duplicate strings. 2425 FormatStr = FormatStr.drop_back(); 2426 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2427 return emitPutS(GV, B, TLI); 2428 } 2429 2430 // Optimize specific format strings. 2431 // printf("%c", chr) --> putchar(chr) 2432 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2433 CI->getArgOperand(1)->getType()->isIntegerTy()) 2434 return emitPutChar(CI->getArgOperand(1), B, TLI); 2435 2436 // printf("%s\n", str) --> puts(str) 2437 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2438 CI->getArgOperand(1)->getType()->isPointerTy()) 2439 return emitPutS(CI->getArgOperand(1), B, TLI); 2440 return nullptr; 2441 } 2442 2443 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2444 2445 Function *Callee = CI->getCalledFunction(); 2446 FunctionType *FT = Callee->getFunctionType(); 2447 if (Value *V = optimizePrintFString(CI, B)) { 2448 return V; 2449 } 2450 2451 // printf(format, ...) -> iprintf(format, ...) if no floating point 2452 // arguments. 2453 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2454 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2455 FunctionCallee IPrintFFn = 2456 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2457 CallInst *New = cast<CallInst>(CI->clone()); 2458 New->setCalledFunction(IPrintFFn); 2459 B.Insert(New); 2460 return New; 2461 } 2462 2463 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2464 // arguments. 2465 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2466 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2467 auto SmallPrintFFn = 2468 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2469 FT, Callee->getAttributes()); 2470 CallInst *New = cast<CallInst>(CI->clone()); 2471 New->setCalledFunction(SmallPrintFFn); 2472 B.Insert(New); 2473 return New; 2474 } 2475 2476 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2477 return nullptr; 2478 } 2479 2480 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2481 IRBuilderBase &B) { 2482 // Check for a fixed format string. 2483 StringRef FormatStr; 2484 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2485 return nullptr; 2486 2487 // If we just have a format string (nothing else crazy) transform it. 2488 if (CI->getNumArgOperands() == 2) { 2489 // Make sure there's no % in the constant array. We could try to handle 2490 // %% -> % in the future if we cared. 2491 if (FormatStr.find('%') != StringRef::npos) 2492 return nullptr; // we found a format specifier, bail out. 2493 2494 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2495 B.CreateMemCpy( 2496 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2497 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2498 FormatStr.size() + 1)); // Copy the null byte. 2499 return ConstantInt::get(CI->getType(), FormatStr.size()); 2500 } 2501 2502 // The remaining optimizations require the format string to be "%s" or "%c" 2503 // and have an extra operand. 2504 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2505 CI->getNumArgOperands() < 3) 2506 return nullptr; 2507 2508 // Decode the second character of the format string. 2509 if (FormatStr[1] == 'c') { 2510 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2511 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2512 return nullptr; 2513 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2514 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2515 B.CreateStore(V, Ptr); 2516 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2517 B.CreateStore(B.getInt8(0), Ptr); 2518 2519 return ConstantInt::get(CI->getType(), 1); 2520 } 2521 2522 if (FormatStr[1] == 's') { 2523 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2524 // strlen(str)+1) 2525 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2526 return nullptr; 2527 2528 if (CI->use_empty()) 2529 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2530 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2531 2532 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2533 if (SrcLen) { 2534 B.CreateMemCpy( 2535 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2536 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2537 // Returns total number of characters written without null-character. 2538 return ConstantInt::get(CI->getType(), SrcLen - 1); 2539 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2540 B, TLI)) { 2541 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2542 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2543 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2544 } 2545 2546 bool OptForSize = CI->getFunction()->hasOptSize() || 2547 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2548 PGSOQueryType::IRPass); 2549 if (OptForSize) 2550 return nullptr; 2551 2552 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2553 if (!Len) 2554 return nullptr; 2555 Value *IncLen = 2556 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2557 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2558 Align(1), IncLen); 2559 2560 // The sprintf result is the unincremented number of bytes in the string. 2561 return B.CreateIntCast(Len, CI->getType(), false); 2562 } 2563 return nullptr; 2564 } 2565 2566 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2567 Function *Callee = CI->getCalledFunction(); 2568 FunctionType *FT = Callee->getFunctionType(); 2569 if (Value *V = optimizeSPrintFString(CI, B)) { 2570 return V; 2571 } 2572 2573 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2574 // point arguments. 2575 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2576 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2577 FunctionCallee SIPrintFFn = 2578 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2579 CallInst *New = cast<CallInst>(CI->clone()); 2580 New->setCalledFunction(SIPrintFFn); 2581 B.Insert(New); 2582 return New; 2583 } 2584 2585 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2586 // floating point arguments. 2587 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2588 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2589 auto SmallSPrintFFn = 2590 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2591 FT, Callee->getAttributes()); 2592 CallInst *New = cast<CallInst>(CI->clone()); 2593 New->setCalledFunction(SmallSPrintFFn); 2594 B.Insert(New); 2595 return New; 2596 } 2597 2598 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2599 return nullptr; 2600 } 2601 2602 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2603 IRBuilderBase &B) { 2604 // Check for size 2605 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2606 if (!Size) 2607 return nullptr; 2608 2609 uint64_t N = Size->getZExtValue(); 2610 // Check for a fixed format string. 2611 StringRef FormatStr; 2612 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2613 return nullptr; 2614 2615 // If we just have a format string (nothing else crazy) transform it. 2616 if (CI->getNumArgOperands() == 3) { 2617 // Make sure there's no % in the constant array. We could try to handle 2618 // %% -> % in the future if we cared. 2619 if (FormatStr.find('%') != StringRef::npos) 2620 return nullptr; // we found a format specifier, bail out. 2621 2622 if (N == 0) 2623 return ConstantInt::get(CI->getType(), FormatStr.size()); 2624 else if (N < FormatStr.size() + 1) 2625 return nullptr; 2626 2627 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2628 // strlen(fmt)+1) 2629 B.CreateMemCpy( 2630 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2631 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2632 FormatStr.size() + 1)); // Copy the null byte. 2633 return ConstantInt::get(CI->getType(), FormatStr.size()); 2634 } 2635 2636 // The remaining optimizations require the format string to be "%s" or "%c" 2637 // and have an extra operand. 2638 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2639 CI->getNumArgOperands() == 4) { 2640 2641 // Decode the second character of the format string. 2642 if (FormatStr[1] == 'c') { 2643 if (N == 0) 2644 return ConstantInt::get(CI->getType(), 1); 2645 else if (N == 1) 2646 return nullptr; 2647 2648 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2649 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2650 return nullptr; 2651 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2652 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2653 B.CreateStore(V, Ptr); 2654 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2655 B.CreateStore(B.getInt8(0), Ptr); 2656 2657 return ConstantInt::get(CI->getType(), 1); 2658 } 2659 2660 if (FormatStr[1] == 's') { 2661 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2662 StringRef Str; 2663 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2664 return nullptr; 2665 2666 if (N == 0) 2667 return ConstantInt::get(CI->getType(), Str.size()); 2668 else if (N < Str.size() + 1) 2669 return nullptr; 2670 2671 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2672 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2673 2674 // The snprintf result is the unincremented number of bytes in the string. 2675 return ConstantInt::get(CI->getType(), Str.size()); 2676 } 2677 } 2678 return nullptr; 2679 } 2680 2681 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2682 if (Value *V = optimizeSnPrintFString(CI, B)) { 2683 return V; 2684 } 2685 2686 if (isKnownNonZero(CI->getOperand(1), DL)) 2687 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2688 return nullptr; 2689 } 2690 2691 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2692 IRBuilderBase &B) { 2693 optimizeErrorReporting(CI, B, 0); 2694 2695 // All the optimizations depend on the format string. 2696 StringRef FormatStr; 2697 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2698 return nullptr; 2699 2700 // Do not do any of the following transformations if the fprintf return 2701 // value is used, in general the fprintf return value is not compatible 2702 // with fwrite(), fputc() or fputs(). 2703 if (!CI->use_empty()) 2704 return nullptr; 2705 2706 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2707 if (CI->getNumArgOperands() == 2) { 2708 // Could handle %% -> % if we cared. 2709 if (FormatStr.find('%') != StringRef::npos) 2710 return nullptr; // We found a format specifier. 2711 2712 return emitFWrite( 2713 CI->getArgOperand(1), 2714 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2715 CI->getArgOperand(0), B, DL, TLI); 2716 } 2717 2718 // The remaining optimizations require the format string to be "%s" or "%c" 2719 // and have an extra operand. 2720 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2721 CI->getNumArgOperands() < 3) 2722 return nullptr; 2723 2724 // Decode the second character of the format string. 2725 if (FormatStr[1] == 'c') { 2726 // fprintf(F, "%c", chr) --> fputc(chr, F) 2727 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2728 return nullptr; 2729 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2730 } 2731 2732 if (FormatStr[1] == 's') { 2733 // fprintf(F, "%s", str) --> fputs(str, F) 2734 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2735 return nullptr; 2736 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2737 } 2738 return nullptr; 2739 } 2740 2741 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2742 Function *Callee = CI->getCalledFunction(); 2743 FunctionType *FT = Callee->getFunctionType(); 2744 if (Value *V = optimizeFPrintFString(CI, B)) { 2745 return V; 2746 } 2747 2748 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2749 // floating point arguments. 2750 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2751 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2752 FunctionCallee FIPrintFFn = 2753 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2754 CallInst *New = cast<CallInst>(CI->clone()); 2755 New->setCalledFunction(FIPrintFFn); 2756 B.Insert(New); 2757 return New; 2758 } 2759 2760 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2761 // 128-bit floating point arguments. 2762 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2763 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2764 auto SmallFPrintFFn = 2765 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2766 FT, Callee->getAttributes()); 2767 CallInst *New = cast<CallInst>(CI->clone()); 2768 New->setCalledFunction(SmallFPrintFFn); 2769 B.Insert(New); 2770 return New; 2771 } 2772 2773 return nullptr; 2774 } 2775 2776 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2777 optimizeErrorReporting(CI, B, 3); 2778 2779 // Get the element size and count. 2780 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2781 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2782 if (SizeC && CountC) { 2783 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2784 2785 // If this is writing zero records, remove the call (it's a noop). 2786 if (Bytes == 0) 2787 return ConstantInt::get(CI->getType(), 0); 2788 2789 // If this is writing one byte, turn it into fputc. 2790 // This optimisation is only valid, if the return value is unused. 2791 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2792 Value *Char = B.CreateLoad(B.getInt8Ty(), 2793 castToCStr(CI->getArgOperand(0), B), "char"); 2794 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2795 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2796 } 2797 } 2798 2799 return nullptr; 2800 } 2801 2802 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2803 optimizeErrorReporting(CI, B, 1); 2804 2805 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2806 // requires more arguments and thus extra MOVs are required. 2807 bool OptForSize = CI->getFunction()->hasOptSize() || 2808 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2809 PGSOQueryType::IRPass); 2810 if (OptForSize) 2811 return nullptr; 2812 2813 // We can't optimize if return value is used. 2814 if (!CI->use_empty()) 2815 return nullptr; 2816 2817 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2818 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2819 if (!Len) 2820 return nullptr; 2821 2822 // Known to have no uses (see above). 2823 return emitFWrite( 2824 CI->getArgOperand(0), 2825 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2826 CI->getArgOperand(1), B, DL, TLI); 2827 } 2828 2829 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2830 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2831 if (!CI->use_empty()) 2832 return nullptr; 2833 2834 // Check for a constant string. 2835 // puts("") -> putchar('\n') 2836 StringRef Str; 2837 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2838 return emitPutChar(B.getInt32('\n'), B, TLI); 2839 2840 return nullptr; 2841 } 2842 2843 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2844 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2845 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2846 Align(1), CI->getArgOperand(2)); 2847 } 2848 2849 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2850 LibFunc Func; 2851 SmallString<20> FloatFuncName = FuncName; 2852 FloatFuncName += 'f'; 2853 if (TLI->getLibFunc(FloatFuncName, Func)) 2854 return TLI->has(Func); 2855 return false; 2856 } 2857 2858 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2859 IRBuilderBase &Builder) { 2860 LibFunc Func; 2861 Function *Callee = CI->getCalledFunction(); 2862 // Check for string/memory library functions. 2863 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2864 // Make sure we never change the calling convention. 2865 assert((ignoreCallingConv(Func) || 2866 isCallingConvCCompatible(CI)) && 2867 "Optimizing string/memory libcall would change the calling convention"); 2868 switch (Func) { 2869 case LibFunc_strcat: 2870 return optimizeStrCat(CI, Builder); 2871 case LibFunc_strncat: 2872 return optimizeStrNCat(CI, Builder); 2873 case LibFunc_strchr: 2874 return optimizeStrChr(CI, Builder); 2875 case LibFunc_strrchr: 2876 return optimizeStrRChr(CI, Builder); 2877 case LibFunc_strcmp: 2878 return optimizeStrCmp(CI, Builder); 2879 case LibFunc_strncmp: 2880 return optimizeStrNCmp(CI, Builder); 2881 case LibFunc_strcpy: 2882 return optimizeStrCpy(CI, Builder); 2883 case LibFunc_stpcpy: 2884 return optimizeStpCpy(CI, Builder); 2885 case LibFunc_strncpy: 2886 return optimizeStrNCpy(CI, Builder); 2887 case LibFunc_strlen: 2888 return optimizeStrLen(CI, Builder); 2889 case LibFunc_strpbrk: 2890 return optimizeStrPBrk(CI, Builder); 2891 case LibFunc_strndup: 2892 return optimizeStrNDup(CI, Builder); 2893 case LibFunc_strtol: 2894 case LibFunc_strtod: 2895 case LibFunc_strtof: 2896 case LibFunc_strtoul: 2897 case LibFunc_strtoll: 2898 case LibFunc_strtold: 2899 case LibFunc_strtoull: 2900 return optimizeStrTo(CI, Builder); 2901 case LibFunc_strspn: 2902 return optimizeStrSpn(CI, Builder); 2903 case LibFunc_strcspn: 2904 return optimizeStrCSpn(CI, Builder); 2905 case LibFunc_strstr: 2906 return optimizeStrStr(CI, Builder); 2907 case LibFunc_memchr: 2908 return optimizeMemChr(CI, Builder); 2909 case LibFunc_memrchr: 2910 return optimizeMemRChr(CI, Builder); 2911 case LibFunc_bcmp: 2912 return optimizeBCmp(CI, Builder); 2913 case LibFunc_memcmp: 2914 return optimizeMemCmp(CI, Builder); 2915 case LibFunc_memcpy: 2916 return optimizeMemCpy(CI, Builder); 2917 case LibFunc_memccpy: 2918 return optimizeMemCCpy(CI, Builder); 2919 case LibFunc_mempcpy: 2920 return optimizeMemPCpy(CI, Builder); 2921 case LibFunc_memmove: 2922 return optimizeMemMove(CI, Builder); 2923 case LibFunc_memset: 2924 return optimizeMemSet(CI, Builder); 2925 case LibFunc_realloc: 2926 return optimizeRealloc(CI, Builder); 2927 case LibFunc_wcslen: 2928 return optimizeWcslen(CI, Builder); 2929 case LibFunc_bcopy: 2930 return optimizeBCopy(CI, Builder); 2931 default: 2932 break; 2933 } 2934 } 2935 return nullptr; 2936 } 2937 2938 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2939 LibFunc Func, 2940 IRBuilderBase &Builder) { 2941 // Don't optimize calls that require strict floating point semantics. 2942 if (CI->isStrictFP()) 2943 return nullptr; 2944 2945 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2946 return V; 2947 2948 switch (Func) { 2949 case LibFunc_sinpif: 2950 case LibFunc_sinpi: 2951 case LibFunc_cospif: 2952 case LibFunc_cospi: 2953 return optimizeSinCosPi(CI, Builder); 2954 case LibFunc_powf: 2955 case LibFunc_pow: 2956 case LibFunc_powl: 2957 return optimizePow(CI, Builder); 2958 case LibFunc_exp2l: 2959 case LibFunc_exp2: 2960 case LibFunc_exp2f: 2961 return optimizeExp2(CI, Builder); 2962 case LibFunc_fabsf: 2963 case LibFunc_fabs: 2964 case LibFunc_fabsl: 2965 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2966 case LibFunc_sqrtf: 2967 case LibFunc_sqrt: 2968 case LibFunc_sqrtl: 2969 return optimizeSqrt(CI, Builder); 2970 case LibFunc_logf: 2971 case LibFunc_log: 2972 case LibFunc_logl: 2973 case LibFunc_log10f: 2974 case LibFunc_log10: 2975 case LibFunc_log10l: 2976 case LibFunc_log1pf: 2977 case LibFunc_log1p: 2978 case LibFunc_log1pl: 2979 case LibFunc_log2f: 2980 case LibFunc_log2: 2981 case LibFunc_log2l: 2982 case LibFunc_logbf: 2983 case LibFunc_logb: 2984 case LibFunc_logbl: 2985 return optimizeLog(CI, Builder); 2986 case LibFunc_tan: 2987 case LibFunc_tanf: 2988 case LibFunc_tanl: 2989 return optimizeTan(CI, Builder); 2990 case LibFunc_ceil: 2991 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2992 case LibFunc_floor: 2993 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2994 case LibFunc_round: 2995 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2996 case LibFunc_roundeven: 2997 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2998 case LibFunc_nearbyint: 2999 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3000 case LibFunc_rint: 3001 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3002 case LibFunc_trunc: 3003 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3004 case LibFunc_acos: 3005 case LibFunc_acosh: 3006 case LibFunc_asin: 3007 case LibFunc_asinh: 3008 case LibFunc_atan: 3009 case LibFunc_atanh: 3010 case LibFunc_cbrt: 3011 case LibFunc_cosh: 3012 case LibFunc_exp: 3013 case LibFunc_exp10: 3014 case LibFunc_expm1: 3015 case LibFunc_cos: 3016 case LibFunc_sin: 3017 case LibFunc_sinh: 3018 case LibFunc_tanh: 3019 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3020 return optimizeUnaryDoubleFP(CI, Builder, true); 3021 return nullptr; 3022 case LibFunc_copysign: 3023 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3024 return optimizeBinaryDoubleFP(CI, Builder); 3025 return nullptr; 3026 case LibFunc_fminf: 3027 case LibFunc_fmin: 3028 case LibFunc_fminl: 3029 case LibFunc_fmaxf: 3030 case LibFunc_fmax: 3031 case LibFunc_fmaxl: 3032 return optimizeFMinFMax(CI, Builder); 3033 case LibFunc_cabs: 3034 case LibFunc_cabsf: 3035 case LibFunc_cabsl: 3036 return optimizeCAbs(CI, Builder); 3037 default: 3038 return nullptr; 3039 } 3040 } 3041 3042 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3043 // TODO: Split out the code below that operates on FP calls so that 3044 // we can all non-FP calls with the StrictFP attribute to be 3045 // optimized. 3046 if (CI->isNoBuiltin()) 3047 return nullptr; 3048 3049 LibFunc Func; 3050 Function *Callee = CI->getCalledFunction(); 3051 bool isCallingConvC = isCallingConvCCompatible(CI); 3052 3053 SmallVector<OperandBundleDef, 2> OpBundles; 3054 CI->getOperandBundlesAsDefs(OpBundles); 3055 3056 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3057 Builder.setDefaultOperandBundles(OpBundles); 3058 3059 // Command-line parameter overrides instruction attribute. 3060 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3061 // used by the intrinsic optimizations. 3062 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3063 UnsafeFPShrink = EnableUnsafeFPShrink; 3064 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3065 UnsafeFPShrink = true; 3066 3067 // First, check for intrinsics. 3068 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3069 if (!isCallingConvC) 3070 return nullptr; 3071 // The FP intrinsics have corresponding constrained versions so we don't 3072 // need to check for the StrictFP attribute here. 3073 switch (II->getIntrinsicID()) { 3074 case Intrinsic::pow: 3075 return optimizePow(CI, Builder); 3076 case Intrinsic::exp2: 3077 return optimizeExp2(CI, Builder); 3078 case Intrinsic::log: 3079 case Intrinsic::log2: 3080 case Intrinsic::log10: 3081 return optimizeLog(CI, Builder); 3082 case Intrinsic::sqrt: 3083 return optimizeSqrt(CI, Builder); 3084 // TODO: Use foldMallocMemset() with memset intrinsic. 3085 case Intrinsic::memset: 3086 return optimizeMemSet(CI, Builder); 3087 case Intrinsic::memcpy: 3088 return optimizeMemCpy(CI, Builder); 3089 case Intrinsic::memmove: 3090 return optimizeMemMove(CI, Builder); 3091 default: 3092 return nullptr; 3093 } 3094 } 3095 3096 // Also try to simplify calls to fortified library functions. 3097 if (Value *SimplifiedFortifiedCI = 3098 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3099 // Try to further simplify the result. 3100 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3101 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3102 // Ensure that SimplifiedCI's uses are complete, since some calls have 3103 // their uses analyzed. 3104 replaceAllUsesWith(CI, SimplifiedCI); 3105 3106 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3107 // we might replace later on. 3108 IRBuilderBase::InsertPointGuard Guard(Builder); 3109 Builder.SetInsertPoint(SimplifiedCI); 3110 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3111 // If we were able to further simplify, remove the now redundant call. 3112 substituteInParent(SimplifiedCI, V); 3113 return V; 3114 } 3115 } 3116 return SimplifiedFortifiedCI; 3117 } 3118 3119 // Then check for known library functions. 3120 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3121 // We never change the calling convention. 3122 if (!ignoreCallingConv(Func) && !isCallingConvC) 3123 return nullptr; 3124 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3125 return V; 3126 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3127 return V; 3128 switch (Func) { 3129 case LibFunc_ffs: 3130 case LibFunc_ffsl: 3131 case LibFunc_ffsll: 3132 return optimizeFFS(CI, Builder); 3133 case LibFunc_fls: 3134 case LibFunc_flsl: 3135 case LibFunc_flsll: 3136 return optimizeFls(CI, Builder); 3137 case LibFunc_abs: 3138 case LibFunc_labs: 3139 case LibFunc_llabs: 3140 return optimizeAbs(CI, Builder); 3141 case LibFunc_isdigit: 3142 return optimizeIsDigit(CI, Builder); 3143 case LibFunc_isascii: 3144 return optimizeIsAscii(CI, Builder); 3145 case LibFunc_toascii: 3146 return optimizeToAscii(CI, Builder); 3147 case LibFunc_atoi: 3148 case LibFunc_atol: 3149 case LibFunc_atoll: 3150 return optimizeAtoi(CI, Builder); 3151 case LibFunc_strtol: 3152 case LibFunc_strtoll: 3153 return optimizeStrtol(CI, Builder); 3154 case LibFunc_printf: 3155 return optimizePrintF(CI, Builder); 3156 case LibFunc_sprintf: 3157 return optimizeSPrintF(CI, Builder); 3158 case LibFunc_snprintf: 3159 return optimizeSnPrintF(CI, Builder); 3160 case LibFunc_fprintf: 3161 return optimizeFPrintF(CI, Builder); 3162 case LibFunc_fwrite: 3163 return optimizeFWrite(CI, Builder); 3164 case LibFunc_fputs: 3165 return optimizeFPuts(CI, Builder); 3166 case LibFunc_puts: 3167 return optimizePuts(CI, Builder); 3168 case LibFunc_perror: 3169 return optimizeErrorReporting(CI, Builder); 3170 case LibFunc_vfprintf: 3171 case LibFunc_fiprintf: 3172 return optimizeErrorReporting(CI, Builder, 0); 3173 default: 3174 return nullptr; 3175 } 3176 } 3177 return nullptr; 3178 } 3179 3180 LibCallSimplifier::LibCallSimplifier( 3181 const DataLayout &DL, const TargetLibraryInfo *TLI, 3182 OptimizationRemarkEmitter &ORE, 3183 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3184 function_ref<void(Instruction *, Value *)> Replacer, 3185 function_ref<void(Instruction *)> Eraser) 3186 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3187 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3188 3189 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3190 // Indirect through the replacer used in this instance. 3191 Replacer(I, With); 3192 } 3193 3194 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3195 Eraser(I); 3196 } 3197 3198 // TODO: 3199 // Additional cases that we need to add to this file: 3200 // 3201 // cbrt: 3202 // * cbrt(expN(X)) -> expN(x/3) 3203 // * cbrt(sqrt(x)) -> pow(x,1/6) 3204 // * cbrt(cbrt(x)) -> pow(x,1/9) 3205 // 3206 // exp, expf, expl: 3207 // * exp(log(x)) -> x 3208 // 3209 // log, logf, logl: 3210 // * log(exp(x)) -> x 3211 // * log(exp(y)) -> y*log(e) 3212 // * log(exp10(y)) -> y*log(10) 3213 // * log(sqrt(x)) -> 0.5*log(x) 3214 // 3215 // pow, powf, powl: 3216 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3217 // * pow(pow(x,y),z)-> pow(x,y*z) 3218 // 3219 // signbit: 3220 // * signbit(cnst) -> cnst' 3221 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3222 // 3223 // sqrt, sqrtf, sqrtl: 3224 // * sqrt(expN(x)) -> expN(x*0.5) 3225 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3226 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3227 // 3228 3229 //===----------------------------------------------------------------------===// 3230 // Fortified Library Call Optimizations 3231 //===----------------------------------------------------------------------===// 3232 3233 bool 3234 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3235 unsigned ObjSizeOp, 3236 Optional<unsigned> SizeOp, 3237 Optional<unsigned> StrOp, 3238 Optional<unsigned> FlagOp) { 3239 // If this function takes a flag argument, the implementation may use it to 3240 // perform extra checks. Don't fold into the non-checking variant. 3241 if (FlagOp) { 3242 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3243 if (!Flag || !Flag->isZero()) 3244 return false; 3245 } 3246 3247 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3248 return true; 3249 3250 if (ConstantInt *ObjSizeCI = 3251 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3252 if (ObjSizeCI->isMinusOne()) 3253 return true; 3254 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3255 if (OnlyLowerUnknownSize) 3256 return false; 3257 if (StrOp) { 3258 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3259 // If the length is 0 we don't know how long it is and so we can't 3260 // remove the check. 3261 if (Len) 3262 annotateDereferenceableBytes(CI, *StrOp, Len); 3263 else 3264 return false; 3265 return ObjSizeCI->getZExtValue() >= Len; 3266 } 3267 3268 if (SizeOp) { 3269 if (ConstantInt *SizeCI = 3270 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3271 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3272 } 3273 } 3274 return false; 3275 } 3276 3277 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3278 IRBuilderBase &B) { 3279 if (isFortifiedCallFoldable(CI, 3, 2)) { 3280 CallInst *NewCI = 3281 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3282 Align(1), CI->getArgOperand(2)); 3283 NewCI->setAttributes(CI->getAttributes()); 3284 NewCI->removeAttributes(AttributeList::ReturnIndex, 3285 AttributeFuncs::typeIncompatible(NewCI->getType())); 3286 return CI->getArgOperand(0); 3287 } 3288 return nullptr; 3289 } 3290 3291 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3292 IRBuilderBase &B) { 3293 if (isFortifiedCallFoldable(CI, 3, 2)) { 3294 CallInst *NewCI = 3295 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3296 Align(1), CI->getArgOperand(2)); 3297 NewCI->setAttributes(CI->getAttributes()); 3298 NewCI->removeAttributes(AttributeList::ReturnIndex, 3299 AttributeFuncs::typeIncompatible(NewCI->getType())); 3300 return CI->getArgOperand(0); 3301 } 3302 return nullptr; 3303 } 3304 3305 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3306 IRBuilderBase &B) { 3307 // TODO: Try foldMallocMemset() here. 3308 3309 if (isFortifiedCallFoldable(CI, 3, 2)) { 3310 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3311 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3312 CI->getArgOperand(2), Align(1)); 3313 NewCI->setAttributes(CI->getAttributes()); 3314 NewCI->removeAttributes(AttributeList::ReturnIndex, 3315 AttributeFuncs::typeIncompatible(NewCI->getType())); 3316 return CI->getArgOperand(0); 3317 } 3318 return nullptr; 3319 } 3320 3321 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3322 IRBuilderBase &B) { 3323 const DataLayout &DL = CI->getModule()->getDataLayout(); 3324 if (isFortifiedCallFoldable(CI, 3, 2)) 3325 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3326 CI->getArgOperand(2), B, DL, TLI)) { 3327 CallInst *NewCI = cast<CallInst>(Call); 3328 NewCI->setAttributes(CI->getAttributes()); 3329 NewCI->removeAttributes( 3330 AttributeList::ReturnIndex, 3331 AttributeFuncs::typeIncompatible(NewCI->getType())); 3332 return NewCI; 3333 } 3334 return nullptr; 3335 } 3336 3337 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3338 IRBuilderBase &B, 3339 LibFunc Func) { 3340 const DataLayout &DL = CI->getModule()->getDataLayout(); 3341 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3342 *ObjSize = CI->getArgOperand(2); 3343 3344 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3345 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3346 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3347 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3348 } 3349 3350 // If a) we don't have any length information, or b) we know this will 3351 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3352 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3353 // TODO: It might be nice to get a maximum length out of the possible 3354 // string lengths for varying. 3355 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3356 if (Func == LibFunc_strcpy_chk) 3357 return emitStrCpy(Dst, Src, B, TLI); 3358 else 3359 return emitStpCpy(Dst, Src, B, TLI); 3360 } 3361 3362 if (OnlyLowerUnknownSize) 3363 return nullptr; 3364 3365 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3366 uint64_t Len = GetStringLength(Src); 3367 if (Len) 3368 annotateDereferenceableBytes(CI, 1, Len); 3369 else 3370 return nullptr; 3371 3372 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3373 Value *LenV = ConstantInt::get(SizeTTy, Len); 3374 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3375 // If the function was an __stpcpy_chk, and we were able to fold it into 3376 // a __memcpy_chk, we still need to return the correct end pointer. 3377 if (Ret && Func == LibFunc_stpcpy_chk) 3378 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3379 return Ret; 3380 } 3381 3382 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3383 IRBuilderBase &B) { 3384 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3385 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3386 TLI); 3387 return nullptr; 3388 } 3389 3390 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3391 IRBuilderBase &B, 3392 LibFunc Func) { 3393 if (isFortifiedCallFoldable(CI, 3, 2)) { 3394 if (Func == LibFunc_strncpy_chk) 3395 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3396 CI->getArgOperand(2), B, TLI); 3397 else 3398 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3399 CI->getArgOperand(2), B, TLI); 3400 } 3401 3402 return nullptr; 3403 } 3404 3405 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3406 IRBuilderBase &B) { 3407 if (isFortifiedCallFoldable(CI, 4, 3)) 3408 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3409 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3410 3411 return nullptr; 3412 } 3413 3414 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3415 IRBuilderBase &B) { 3416 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3417 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3418 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3419 CI->getArgOperand(4), VariadicArgs, B, TLI); 3420 } 3421 3422 return nullptr; 3423 } 3424 3425 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3426 IRBuilderBase &B) { 3427 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3428 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3429 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3430 B, TLI); 3431 } 3432 3433 return nullptr; 3434 } 3435 3436 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3437 IRBuilderBase &B) { 3438 if (isFortifiedCallFoldable(CI, 2)) 3439 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3440 3441 return nullptr; 3442 } 3443 3444 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3445 IRBuilderBase &B) { 3446 if (isFortifiedCallFoldable(CI, 3)) 3447 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3448 CI->getArgOperand(2), B, TLI); 3449 3450 return nullptr; 3451 } 3452 3453 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3454 IRBuilderBase &B) { 3455 if (isFortifiedCallFoldable(CI, 3)) 3456 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3457 CI->getArgOperand(2), B, TLI); 3458 3459 return nullptr; 3460 } 3461 3462 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3463 IRBuilderBase &B) { 3464 if (isFortifiedCallFoldable(CI, 3)) 3465 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3466 CI->getArgOperand(2), B, TLI); 3467 3468 return nullptr; 3469 } 3470 3471 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3472 IRBuilderBase &B) { 3473 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3474 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3475 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3476 3477 return nullptr; 3478 } 3479 3480 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3481 IRBuilderBase &B) { 3482 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3483 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3484 CI->getArgOperand(4), B, TLI); 3485 3486 return nullptr; 3487 } 3488 3489 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3490 IRBuilderBase &Builder) { 3491 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3492 // Some clang users checked for _chk libcall availability using: 3493 // __has_builtin(__builtin___memcpy_chk) 3494 // When compiling with -fno-builtin, this is always true. 3495 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3496 // end up with fortified libcalls, which isn't acceptable in a freestanding 3497 // environment which only provides their non-fortified counterparts. 3498 // 3499 // Until we change clang and/or teach external users to check for availability 3500 // differently, disregard the "nobuiltin" attribute and TLI::has. 3501 // 3502 // PR23093. 3503 3504 LibFunc Func; 3505 Function *Callee = CI->getCalledFunction(); 3506 bool isCallingConvC = isCallingConvCCompatible(CI); 3507 3508 SmallVector<OperandBundleDef, 2> OpBundles; 3509 CI->getOperandBundlesAsDefs(OpBundles); 3510 3511 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3512 Builder.setDefaultOperandBundles(OpBundles); 3513 3514 // First, check that this is a known library functions and that the prototype 3515 // is correct. 3516 if (!TLI->getLibFunc(*Callee, Func)) 3517 return nullptr; 3518 3519 // We never change the calling convention. 3520 if (!ignoreCallingConv(Func) && !isCallingConvC) 3521 return nullptr; 3522 3523 switch (Func) { 3524 case LibFunc_memcpy_chk: 3525 return optimizeMemCpyChk(CI, Builder); 3526 case LibFunc_mempcpy_chk: 3527 return optimizeMemPCpyChk(CI, Builder); 3528 case LibFunc_memmove_chk: 3529 return optimizeMemMoveChk(CI, Builder); 3530 case LibFunc_memset_chk: 3531 return optimizeMemSetChk(CI, Builder); 3532 case LibFunc_stpcpy_chk: 3533 case LibFunc_strcpy_chk: 3534 return optimizeStrpCpyChk(CI, Builder, Func); 3535 case LibFunc_strlen_chk: 3536 return optimizeStrLenChk(CI, Builder); 3537 case LibFunc_stpncpy_chk: 3538 case LibFunc_strncpy_chk: 3539 return optimizeStrpNCpyChk(CI, Builder, Func); 3540 case LibFunc_memccpy_chk: 3541 return optimizeMemCCpyChk(CI, Builder); 3542 case LibFunc_snprintf_chk: 3543 return optimizeSNPrintfChk(CI, Builder); 3544 case LibFunc_sprintf_chk: 3545 return optimizeSPrintfChk(CI, Builder); 3546 case LibFunc_strcat_chk: 3547 return optimizeStrCatChk(CI, Builder); 3548 case LibFunc_strlcat_chk: 3549 return optimizeStrLCat(CI, Builder); 3550 case LibFunc_strncat_chk: 3551 return optimizeStrNCatChk(CI, Builder); 3552 case LibFunc_strlcpy_chk: 3553 return optimizeStrLCpyChk(CI, Builder); 3554 case LibFunc_vsnprintf_chk: 3555 return optimizeVSNPrintfChk(CI, Builder); 3556 case LibFunc_vsprintf_chk: 3557 return optimizeVSPrintfChk(CI, Builder); 3558 default: 3559 break; 3560 } 3561 return nullptr; 3562 } 3563 3564 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3565 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3566 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3567