1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
108   if (Base < 2 || Base > 36)
109     // handle special zero base
110     if (Base != 0)
111       return nullptr;
112 
113   char *End;
114   std::string nptr = Str.str();
115   errno = 0;
116   long long int Result = strtoll(nptr.c_str(), &End, Base);
117   if (errno)
118     return nullptr;
119 
120   // if we assume all possible target locales are ASCII supersets,
121   // then if strtoll successfully parses a number on the host,
122   // it will also successfully parse the same way on the target
123   if (*End != '\0')
124     return nullptr;
125 
126   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
127     return nullptr;
128 
129   return ConstantInt::get(CI->getType(), Result);
130 }
131 
132 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
133                                 const TargetLibraryInfo *TLI) {
134   CallInst *FOpen = dyn_cast<CallInst>(File);
135   if (!FOpen)
136     return false;
137 
138   Function *InnerCallee = FOpen->getCalledFunction();
139   if (!InnerCallee)
140     return false;
141 
142   LibFunc Func;
143   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
144       Func != LibFunc_fopen)
145     return false;
146 
147   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
148   if (PointerMayBeCaptured(File, true, true))
149     return false;
150 
151   return true;
152 }
153 
154 static bool isOnlyUsedInComparisonWithZero(Value *V) {
155   for (User *U : V->users()) {
156     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
157       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
158         if (C->isNullValue())
159           continue;
160     // Unknown instruction.
161     return false;
162   }
163   return true;
164 }
165 
166 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
167                                  const DataLayout &DL) {
168   if (!isOnlyUsedInComparisonWithZero(CI))
169     return false;
170 
171   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
172     return false;
173 
174   return true;
175 }
176 
177 //===----------------------------------------------------------------------===//
178 // String and Memory Library Call Optimizations
179 //===----------------------------------------------------------------------===//
180 
181 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185 
186   // See if we can get the length of the input string.
187   uint64_t Len = GetStringLength(Src);
188   if (Len == 0)
189     return nullptr;
190   --Len; // Unbias length.
191 
192   // Handle the simple, do-nothing case: strcat(x, "") -> x
193   if (Len == 0)
194     return Dst;
195 
196   return emitStrLenMemCpy(Src, Dst, Len, B);
197 }
198 
199 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
200                                            IRBuilder<> &B) {
201   // We need to find the end of the destination string.  That's where the
202   // memory is to be moved to. We just generate a call to strlen.
203   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
204   if (!DstLen)
205     return nullptr;
206 
207   // Now that we have the destination's length, we must index into the
208   // destination's pointer to get the actual memcpy destination (end of
209   // the string .. we're concatenating).
210   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
211 
212   // We have enough information to now generate the memcpy call to do the
213   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
214   B.CreateMemCpy(CpyDst, 1, Src, 1,
215                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
216   return Dst;
217 }
218 
219 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
220   // Extract some information from the instruction.
221   Value *Dst = CI->getArgOperand(0);
222   Value *Src = CI->getArgOperand(1);
223   uint64_t Len;
224 
225   // We don't do anything if length is not constant.
226   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
227     Len = LengthArg->getZExtValue();
228   else
229     return nullptr;
230 
231   // See if we can get the length of the input string.
232   uint64_t SrcLen = GetStringLength(Src);
233   if (SrcLen == 0)
234     return nullptr;
235   --SrcLen; // Unbias length.
236 
237   // Handle the simple, do-nothing cases:
238   // strncat(x, "", c) -> x
239   // strncat(x,  c, 0) -> x
240   if (SrcLen == 0 || Len == 0)
241     return Dst;
242 
243   // We don't optimize this case.
244   if (Len < SrcLen)
245     return nullptr;
246 
247   // strncat(x, s, c) -> strcat(x, s)
248   // s is constant so the strcat can be optimized further.
249   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
250 }
251 
252 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
253   Function *Callee = CI->getCalledFunction();
254   FunctionType *FT = Callee->getFunctionType();
255   Value *SrcStr = CI->getArgOperand(0);
256 
257   // If the second operand is non-constant, see if we can compute the length
258   // of the input string and turn this into memchr.
259   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
260   if (!CharC) {
261     uint64_t Len = GetStringLength(SrcStr);
262     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
263       return nullptr;
264 
265     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
266                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
267                       B, DL, TLI);
268   }
269 
270   // Otherwise, the character is a constant, see if the first argument is
271   // a string literal.  If so, we can constant fold.
272   StringRef Str;
273   if (!getConstantStringInfo(SrcStr, Str)) {
274     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
275       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
276                          "strchr");
277     return nullptr;
278   }
279 
280   // Compute the offset, make sure to handle the case when we're searching for
281   // zero (a weird way to spell strlen).
282   size_t I = (0xFF & CharC->getSExtValue()) == 0
283                  ? Str.size()
284                  : Str.find(CharC->getSExtValue());
285   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
286     return Constant::getNullValue(CI->getType());
287 
288   // strchr(s+n,c)  -> gep(s+n+i,c)
289   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
290 }
291 
292 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
293   Value *SrcStr = CI->getArgOperand(0);
294   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
295 
296   // Cannot fold anything if we're not looking for a constant.
297   if (!CharC)
298     return nullptr;
299 
300   StringRef Str;
301   if (!getConstantStringInfo(SrcStr, Str)) {
302     // strrchr(s, 0) -> strchr(s, 0)
303     if (CharC->isZero())
304       return emitStrChr(SrcStr, '\0', B, TLI);
305     return nullptr;
306   }
307 
308   // Compute the offset.
309   size_t I = (0xFF & CharC->getSExtValue()) == 0
310                  ? Str.size()
311                  : Str.rfind(CharC->getSExtValue());
312   if (I == StringRef::npos) // Didn't find the char. Return null.
313     return Constant::getNullValue(CI->getType());
314 
315   // strrchr(s+n,c) -> gep(s+n+i,c)
316   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
317 }
318 
319 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
320   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
321   if (Str1P == Str2P) // strcmp(x,x)  -> 0
322     return ConstantInt::get(CI->getType(), 0);
323 
324   StringRef Str1, Str2;
325   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
326   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
327 
328   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
329   if (HasStr1 && HasStr2)
330     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
331 
332   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
333     return B.CreateNeg(
334         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
335 
336   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
337     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
338 
339   // strcmp(P, "x") -> memcmp(P, "x", 2)
340   uint64_t Len1 = GetStringLength(Str1P);
341   uint64_t Len2 = GetStringLength(Str2P);
342   if (Len1 && Len2) {
343     return emitMemCmp(Str1P, Str2P,
344                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
345                                        std::min(Len1, Len2)),
346                       B, DL, TLI);
347   }
348 
349   // strcmp to memcmp
350   if (!HasStr1 && HasStr2) {
351     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
352       return emitMemCmp(
353           Str1P, Str2P,
354           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
355           TLI);
356   } else if (HasStr1 && !HasStr2) {
357     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
358       return emitMemCmp(
359           Str1P, Str2P,
360           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
361           TLI);
362   }
363 
364   return nullptr;
365 }
366 
367 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
368   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
369   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
370     return ConstantInt::get(CI->getType(), 0);
371 
372   // Get the length argument if it is constant.
373   uint64_t Length;
374   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
375     Length = LengthArg->getZExtValue();
376   else
377     return nullptr;
378 
379   if (Length == 0) // strncmp(x,y,0)   -> 0
380     return ConstantInt::get(CI->getType(), 0);
381 
382   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
383     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
384 
385   StringRef Str1, Str2;
386   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
387   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
388 
389   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
390   if (HasStr1 && HasStr2) {
391     StringRef SubStr1 = Str1.substr(0, Length);
392     StringRef SubStr2 = Str2.substr(0, Length);
393     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
394   }
395 
396   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
397     return B.CreateNeg(
398         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
399 
400   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
401     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
402 
403   uint64_t Len1 = GetStringLength(Str1P);
404   uint64_t Len2 = GetStringLength(Str2P);
405 
406   // strncmp to memcmp
407   if (!HasStr1 && HasStr2) {
408     Len2 = std::min(Len2, Length);
409     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
410       return emitMemCmp(
411           Str1P, Str2P,
412           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
413           TLI);
414   } else if (HasStr1 && !HasStr2) {
415     Len1 = std::min(Len1, Length);
416     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
417       return emitMemCmp(
418           Str1P, Str2P,
419           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
420           TLI);
421   }
422 
423   return nullptr;
424 }
425 
426 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
427   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
428   if (Dst == Src) // strcpy(x,x)  -> x
429     return Src;
430 
431   // See if we can get the length of the input string.
432   uint64_t Len = GetStringLength(Src);
433   if (Len == 0)
434     return nullptr;
435 
436   // We have enough information to now generate the memcpy call to do the
437   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
438   B.CreateMemCpy(Dst, 1, Src, 1,
439                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
440   return Dst;
441 }
442 
443 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
444   Function *Callee = CI->getCalledFunction();
445   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
446   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
447     Value *StrLen = emitStrLen(Src, B, DL, TLI);
448     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
449   }
450 
451   // See if we can get the length of the input string.
452   uint64_t Len = GetStringLength(Src);
453   if (Len == 0)
454     return nullptr;
455 
456   Type *PT = Callee->getFunctionType()->getParamType(0);
457   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
458   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
459                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
460 
461   // We have enough information to now generate the memcpy call to do the
462   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
463   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
464   return DstEnd;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
468   Function *Callee = CI->getCalledFunction();
469   Value *Dst = CI->getArgOperand(0);
470   Value *Src = CI->getArgOperand(1);
471   Value *LenOp = CI->getArgOperand(2);
472 
473   // See if we can get the length of the input string.
474   uint64_t SrcLen = GetStringLength(Src);
475   if (SrcLen == 0)
476     return nullptr;
477   --SrcLen;
478 
479   if (SrcLen == 0) {
480     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
481     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
482     return Dst;
483   }
484 
485   uint64_t Len;
486   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
487     Len = LengthArg->getZExtValue();
488   else
489     return nullptr;
490 
491   if (Len == 0)
492     return Dst; // strncpy(x, y, 0) -> x
493 
494   // Let strncpy handle the zero padding
495   if (Len > SrcLen + 1)
496     return nullptr;
497 
498   Type *PT = Callee->getFunctionType()->getParamType(0);
499   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
500   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
501 
502   return Dst;
503 }
504 
505 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
506                                                unsigned CharSize) {
507   Value *Src = CI->getArgOperand(0);
508 
509   // Constant folding: strlen("xyz") -> 3
510   if (uint64_t Len = GetStringLength(Src, CharSize))
511     return ConstantInt::get(CI->getType(), Len - 1);
512 
513   // If s is a constant pointer pointing to a string literal, we can fold
514   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
515   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
516   // We only try to simplify strlen when the pointer s points to an array
517   // of i8. Otherwise, we would need to scale the offset x before doing the
518   // subtraction. This will make the optimization more complex, and it's not
519   // very useful because calling strlen for a pointer of other types is
520   // very uncommon.
521   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
522     if (!isGEPBasedOnPointerToString(GEP, CharSize))
523       return nullptr;
524 
525     ConstantDataArraySlice Slice;
526     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
527       uint64_t NullTermIdx;
528       if (Slice.Array == nullptr) {
529         NullTermIdx = 0;
530       } else {
531         NullTermIdx = ~((uint64_t)0);
532         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
533           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
534             NullTermIdx = I;
535             break;
536           }
537         }
538         // If the string does not have '\0', leave it to strlen to compute
539         // its length.
540         if (NullTermIdx == ~((uint64_t)0))
541           return nullptr;
542       }
543 
544       Value *Offset = GEP->getOperand(2);
545       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
546       Known.Zero.flipAllBits();
547       uint64_t ArrSize =
548              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
549 
550       // KnownZero's bits are flipped, so zeros in KnownZero now represent
551       // bits known to be zeros in Offset, and ones in KnowZero represent
552       // bits unknown in Offset. Therefore, Offset is known to be in range
553       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
554       // unsigned-less-than NullTermIdx.
555       //
556       // If Offset is not provably in the range [0, NullTermIdx], we can still
557       // optimize if we can prove that the program has undefined behavior when
558       // Offset is outside that range. That is the case when GEP->getOperand(0)
559       // is a pointer to an object whose memory extent is NullTermIdx+1.
560       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
561           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
562            NullTermIdx == ArrSize - 1)) {
563         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
564         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
565                            Offset);
566       }
567     }
568 
569     return nullptr;
570   }
571 
572   // strlen(x?"foo":"bars") --> x ? 3 : 4
573   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
574     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
575     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
576     if (LenTrue && LenFalse) {
577       ORE.emit([&]() {
578         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
579                << "folded strlen(select) to select of constants";
580       });
581       return B.CreateSelect(SI->getCondition(),
582                             ConstantInt::get(CI->getType(), LenTrue - 1),
583                             ConstantInt::get(CI->getType(), LenFalse - 1));
584     }
585   }
586 
587   // strlen(x) != 0 --> *x != 0
588   // strlen(x) == 0 --> *x == 0
589   if (isOnlyUsedInZeroEqualityComparison(CI))
590     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
591 
592   return nullptr;
593 }
594 
595 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
596   return optimizeStringLength(CI, B, 8);
597 }
598 
599 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
600   Module &M = *CI->getModule();
601   unsigned WCharSize = TLI->getWCharSize(M) * 8;
602   // We cannot perform this optimization without wchar_size metadata.
603   if (WCharSize == 0)
604     return nullptr;
605 
606   return optimizeStringLength(CI, B, WCharSize);
607 }
608 
609 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
610   StringRef S1, S2;
611   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
612   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
613 
614   // strpbrk(s, "") -> nullptr
615   // strpbrk("", s) -> nullptr
616   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
617     return Constant::getNullValue(CI->getType());
618 
619   // Constant folding.
620   if (HasS1 && HasS2) {
621     size_t I = S1.find_first_of(S2);
622     if (I == StringRef::npos) // No match.
623       return Constant::getNullValue(CI->getType());
624 
625     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
626                        "strpbrk");
627   }
628 
629   // strpbrk(s, "a") -> strchr(s, 'a')
630   if (HasS2 && S2.size() == 1)
631     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
632 
633   return nullptr;
634 }
635 
636 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
637   Value *EndPtr = CI->getArgOperand(1);
638   if (isa<ConstantPointerNull>(EndPtr)) {
639     // With a null EndPtr, this function won't capture the main argument.
640     // It would be readonly too, except that it still may write to errno.
641     CI->addParamAttr(0, Attribute::NoCapture);
642   }
643 
644   return nullptr;
645 }
646 
647 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
648   StringRef S1, S2;
649   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
650   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
651 
652   // strspn(s, "") -> 0
653   // strspn("", s) -> 0
654   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
655     return Constant::getNullValue(CI->getType());
656 
657   // Constant folding.
658   if (HasS1 && HasS2) {
659     size_t Pos = S1.find_first_not_of(S2);
660     if (Pos == StringRef::npos)
661       Pos = S1.size();
662     return ConstantInt::get(CI->getType(), Pos);
663   }
664 
665   return nullptr;
666 }
667 
668 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
669   StringRef S1, S2;
670   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
671   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
672 
673   // strcspn("", s) -> 0
674   if (HasS1 && S1.empty())
675     return Constant::getNullValue(CI->getType());
676 
677   // Constant folding.
678   if (HasS1 && HasS2) {
679     size_t Pos = S1.find_first_of(S2);
680     if (Pos == StringRef::npos)
681       Pos = S1.size();
682     return ConstantInt::get(CI->getType(), Pos);
683   }
684 
685   // strcspn(s, "") -> strlen(s)
686   if (HasS2 && S2.empty())
687     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
688 
689   return nullptr;
690 }
691 
692 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
693   // fold strstr(x, x) -> x.
694   if (CI->getArgOperand(0) == CI->getArgOperand(1))
695     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
696 
697   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
698   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
699     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
700     if (!StrLen)
701       return nullptr;
702     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
703                                  StrLen, B, DL, TLI);
704     if (!StrNCmp)
705       return nullptr;
706     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
707       ICmpInst *Old = cast<ICmpInst>(*UI++);
708       Value *Cmp =
709           B.CreateICmp(Old->getPredicate(), StrNCmp,
710                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
711       replaceAllUsesWith(Old, Cmp);
712     }
713     return CI;
714   }
715 
716   // See if either input string is a constant string.
717   StringRef SearchStr, ToFindStr;
718   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
719   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
720 
721   // fold strstr(x, "") -> x.
722   if (HasStr2 && ToFindStr.empty())
723     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
724 
725   // If both strings are known, constant fold it.
726   if (HasStr1 && HasStr2) {
727     size_t Offset = SearchStr.find(ToFindStr);
728 
729     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
730       return Constant::getNullValue(CI->getType());
731 
732     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
733     Value *Result = castToCStr(CI->getArgOperand(0), B);
734     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
735     return B.CreateBitCast(Result, CI->getType());
736   }
737 
738   // fold strstr(x, "y") -> strchr(x, 'y').
739   if (HasStr2 && ToFindStr.size() == 1) {
740     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
741     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
742   }
743   return nullptr;
744 }
745 
746 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
747   Value *SrcStr = CI->getArgOperand(0);
748   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
749   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
750 
751   // memchr(x, y, 0) -> null
752   if (LenC && LenC->isZero())
753     return Constant::getNullValue(CI->getType());
754 
755   // From now on we need at least constant length and string.
756   StringRef Str;
757   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
758     return nullptr;
759 
760   // Truncate the string to LenC. If Str is smaller than LenC we will still only
761   // scan the string, as reading past the end of it is undefined and we can just
762   // return null if we don't find the char.
763   Str = Str.substr(0, LenC->getZExtValue());
764 
765   // If the char is variable but the input str and length are not we can turn
766   // this memchr call into a simple bit field test. Of course this only works
767   // when the return value is only checked against null.
768   //
769   // It would be really nice to reuse switch lowering here but we can't change
770   // the CFG at this point.
771   //
772   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
773   //   after bounds check.
774   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
775     unsigned char Max =
776         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
777                           reinterpret_cast<const unsigned char *>(Str.end()));
778 
779     // Make sure the bit field we're about to create fits in a register on the
780     // target.
781     // FIXME: On a 64 bit architecture this prevents us from using the
782     // interesting range of alpha ascii chars. We could do better by emitting
783     // two bitfields or shifting the range by 64 if no lower chars are used.
784     if (!DL.fitsInLegalInteger(Max + 1))
785       return nullptr;
786 
787     // For the bit field use a power-of-2 type with at least 8 bits to avoid
788     // creating unnecessary illegal types.
789     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
790 
791     // Now build the bit field.
792     APInt Bitfield(Width, 0);
793     for (char C : Str)
794       Bitfield.setBit((unsigned char)C);
795     Value *BitfieldC = B.getInt(Bitfield);
796 
797     // First check that the bit field access is within bounds.
798     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
799     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
800                                  "memchr.bounds");
801 
802     // Create code that checks if the given bit is set in the field.
803     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
804     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
805 
806     // Finally merge both checks and cast to pointer type. The inttoptr
807     // implicitly zexts the i1 to intptr type.
808     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
809   }
810 
811   // Check if all arguments are constants.  If so, we can constant fold.
812   if (!CharC)
813     return nullptr;
814 
815   // Compute the offset.
816   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
817   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
818     return Constant::getNullValue(CI->getType());
819 
820   // memchr(s+n,c,l) -> gep(s+n+i,c)
821   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
822 }
823 
824 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
825   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
826 
827   if (LHS == RHS) // memcmp(s,s,x) -> 0
828     return Constant::getNullValue(CI->getType());
829 
830   // Make sure we have a constant length.
831   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
832   if (!LenC)
833     return nullptr;
834 
835   uint64_t Len = LenC->getZExtValue();
836   if (Len == 0) // memcmp(s1,s2,0) -> 0
837     return Constant::getNullValue(CI->getType());
838 
839   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
840   if (Len == 1) {
841     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
842                                CI->getType(), "lhsv");
843     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
844                                CI->getType(), "rhsv");
845     return B.CreateSub(LHSV, RHSV, "chardiff");
846   }
847 
848   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
849   // TODO: The case where both inputs are constants does not need to be limited
850   // to legal integers or equality comparison. See block below this.
851   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
852     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
853     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
854 
855     // First, see if we can fold either argument to a constant.
856     Value *LHSV = nullptr;
857     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
858       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
859       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
860     }
861     Value *RHSV = nullptr;
862     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
863       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
864       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
865     }
866 
867     // Don't generate unaligned loads. If either source is constant data,
868     // alignment doesn't matter for that source because there is no load.
869     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
870         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
871       if (!LHSV) {
872         Type *LHSPtrTy =
873             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
874         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
875       }
876       if (!RHSV) {
877         Type *RHSPtrTy =
878             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
879         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
880       }
881       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
882     }
883   }
884 
885   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
886   // TODO: This is limited to i8 arrays.
887   StringRef LHSStr, RHSStr;
888   if (getConstantStringInfo(LHS, LHSStr) &&
889       getConstantStringInfo(RHS, RHSStr)) {
890     // Make sure we're not reading out-of-bounds memory.
891     if (Len > LHSStr.size() || Len > RHSStr.size())
892       return nullptr;
893     // Fold the memcmp and normalize the result.  This way we get consistent
894     // results across multiple platforms.
895     uint64_t Ret = 0;
896     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
897     if (Cmp < 0)
898       Ret = -1;
899     else if (Cmp > 0)
900       Ret = 1;
901     return ConstantInt::get(CI->getType(), Ret);
902   }
903 
904   return nullptr;
905 }
906 
907 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
908   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
909   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
910                  CI->getArgOperand(2));
911   return CI->getArgOperand(0);
912 }
913 
914 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
915   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
916   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
917                   CI->getArgOperand(2));
918   return CI->getArgOperand(0);
919 }
920 
921 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
922 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
923                                const TargetLibraryInfo &TLI) {
924   // This has to be a memset of zeros (bzero).
925   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
926   if (!FillValue || FillValue->getZExtValue() != 0)
927     return nullptr;
928 
929   // TODO: We should handle the case where the malloc has more than one use.
930   // This is necessary to optimize common patterns such as when the result of
931   // the malloc is checked against null or when a memset intrinsic is used in
932   // place of a memset library call.
933   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
934   if (!Malloc || !Malloc->hasOneUse())
935     return nullptr;
936 
937   // Is the inner call really malloc()?
938   Function *InnerCallee = Malloc->getCalledFunction();
939   if (!InnerCallee)
940     return nullptr;
941 
942   LibFunc Func;
943   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
944       Func != LibFunc_malloc)
945     return nullptr;
946 
947   // The memset must cover the same number of bytes that are malloc'd.
948   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
949     return nullptr;
950 
951   // Replace the malloc with a calloc. We need the data layout to know what the
952   // actual size of a 'size_t' parameter is.
953   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
954   const DataLayout &DL = Malloc->getModule()->getDataLayout();
955   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
956   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
957                              Malloc->getArgOperand(0), Malloc->getAttributes(),
958                              B, TLI);
959   if (!Calloc)
960     return nullptr;
961 
962   Malloc->replaceAllUsesWith(Calloc);
963   Malloc->eraseFromParent();
964 
965   return Calloc;
966 }
967 
968 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
969   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
970     return Calloc;
971 
972   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
973   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
974   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
975   return CI->getArgOperand(0);
976 }
977 
978 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
979   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
980     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
981 
982   return nullptr;
983 }
984 
985 //===----------------------------------------------------------------------===//
986 // Math Library Optimizations
987 //===----------------------------------------------------------------------===//
988 
989 // Replace a libcall \p CI with a call to intrinsic \p IID
990 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
991   // Propagate fast-math flags from the existing call to the new call.
992   IRBuilder<>::FastMathFlagGuard Guard(B);
993   B.setFastMathFlags(CI->getFastMathFlags());
994 
995   Module *M = CI->getModule();
996   Value *V = CI->getArgOperand(0);
997   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
998   CallInst *NewCall = B.CreateCall(F, V);
999   NewCall->takeName(CI);
1000   return NewCall;
1001 }
1002 
1003 /// Return a variant of Val with float type.
1004 /// Currently this works in two cases: If Val is an FPExtension of a float
1005 /// value to something bigger, simply return the operand.
1006 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1007 /// loss of precision do so.
1008 static Value *valueHasFloatPrecision(Value *Val) {
1009   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1010     Value *Op = Cast->getOperand(0);
1011     if (Op->getType()->isFloatTy())
1012       return Op;
1013   }
1014   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1015     APFloat F = Const->getValueAPF();
1016     bool losesInfo;
1017     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1018                     &losesInfo);
1019     if (!losesInfo)
1020       return ConstantFP::get(Const->getContext(), F);
1021   }
1022   return nullptr;
1023 }
1024 
1025 /// Shrink double -> float functions.
1026 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1027                                bool isBinary, bool isPrecise = false) {
1028   if (!CI->getType()->isDoubleTy())
1029     return nullptr;
1030 
1031   // If not all the uses of the function are converted to float, then bail out.
1032   // This matters if the precision of the result is more important than the
1033   // precision of the arguments.
1034   if (isPrecise)
1035     for (User *U : CI->users()) {
1036       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1037       if (!Cast || !Cast->getType()->isFloatTy())
1038         return nullptr;
1039     }
1040 
1041   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1042   Value *V[2];
1043   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1044   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1045   if (!V[0] || (isBinary && !V[1]))
1046     return nullptr;
1047 
1048   // If call isn't an intrinsic, check that it isn't within a function with the
1049   // same name as the float version of this call, otherwise the result is an
1050   // infinite loop.  For example, from MinGW-w64:
1051   //
1052   // float expf(float val) { return (float) exp((double) val); }
1053   Function *CalleeFn = CI->getCalledFunction();
1054   StringRef CalleeNm = CalleeFn->getName();
1055   AttributeList CalleeAt = CalleeFn->getAttributes();
1056   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1057     const Function *Fn = CI->getFunction();
1058     StringRef FnName = Fn->getName();
1059     if (FnName.back() == 'f' &&
1060         FnName.size() == (CalleeNm.size() + 1) &&
1061         FnName.startswith(CalleeNm))
1062       return nullptr;
1063   }
1064 
1065   // Propagate the math semantics from the current function to the new function.
1066   IRBuilder<>::FastMathFlagGuard Guard(B);
1067   B.setFastMathFlags(CI->getFastMathFlags());
1068 
1069   // g((double) float) -> (double) gf(float)
1070   Value *R;
1071   if (CalleeFn->isIntrinsic()) {
1072     Module *M = CI->getModule();
1073     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1074     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1075     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1076   }
1077   else
1078     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1079                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1080 
1081   return B.CreateFPExt(R, B.getDoubleTy());
1082 }
1083 
1084 /// Shrink double -> float for unary functions.
1085 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1086                                     bool isPrecise = false) {
1087   return optimizeDoubleFP(CI, B, false, isPrecise);
1088 }
1089 
1090 /// Shrink double -> float for binary functions.
1091 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1092                                      bool isPrecise = false) {
1093   return optimizeDoubleFP(CI, B, true, isPrecise);
1094 }
1095 
1096 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1097 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1098   if (!CI->isFast())
1099     return nullptr;
1100 
1101   // Propagate fast-math flags from the existing call to new instructions.
1102   IRBuilder<>::FastMathFlagGuard Guard(B);
1103   B.setFastMathFlags(CI->getFastMathFlags());
1104 
1105   Value *Real, *Imag;
1106   if (CI->getNumArgOperands() == 1) {
1107     Value *Op = CI->getArgOperand(0);
1108     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1109     Real = B.CreateExtractValue(Op, 0, "real");
1110     Imag = B.CreateExtractValue(Op, 1, "imag");
1111   } else {
1112     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1113     Real = CI->getArgOperand(0);
1114     Imag = CI->getArgOperand(1);
1115   }
1116 
1117   Value *RealReal = B.CreateFMul(Real, Real);
1118   Value *ImagImag = B.CreateFMul(Imag, Imag);
1119 
1120   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1121                                               CI->getType());
1122   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1123 }
1124 
1125 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1126                                       IRBuilder<> &B) {
1127   if (!isa<FPMathOperator>(Call))
1128     return nullptr;
1129 
1130   IRBuilder<>::FastMathFlagGuard Guard(B);
1131   B.setFastMathFlags(Call->getFastMathFlags());
1132 
1133   // TODO: Can this be shared to also handle LLVM intrinsics?
1134   Value *X;
1135   switch (Func) {
1136   case LibFunc_sin:
1137   case LibFunc_sinf:
1138   case LibFunc_sinl:
1139   case LibFunc_tan:
1140   case LibFunc_tanf:
1141   case LibFunc_tanl:
1142     // sin(-X) --> -sin(X)
1143     // tan(-X) --> -tan(X)
1144     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1145       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1146     break;
1147   case LibFunc_cos:
1148   case LibFunc_cosf:
1149   case LibFunc_cosl:
1150     // cos(-X) --> cos(X)
1151     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1152       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1153     break;
1154   default:
1155     break;
1156   }
1157   return nullptr;
1158 }
1159 
1160 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1161   // Multiplications calculated using Addition Chains.
1162   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1163 
1164   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1165 
1166   if (InnerChain[Exp])
1167     return InnerChain[Exp];
1168 
1169   static const unsigned AddChain[33][2] = {
1170       {0, 0}, // Unused.
1171       {0, 0}, // Unused (base case = pow1).
1172       {1, 1}, // Unused (pre-computed).
1173       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1174       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1175       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1176       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1177       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1178   };
1179 
1180   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1181                                  getPow(InnerChain, AddChain[Exp][1], B));
1182   return InnerChain[Exp];
1183 }
1184 
1185 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1186 /// exp2(x) for pow(2.0, x); exp10(x) for pow(10.0, x).
1187 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1188   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1189   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1190   Module *Mod = Pow->getModule();
1191   Type *Ty = Pow->getType();
1192 
1193   // Evaluate special cases related to a nested function as the base.
1194 
1195   // pow(exp(x), y) -> exp(x * y)
1196   // pow(exp2(x), y) -> exp2(x * y)
1197   // Only with fully relaxed math semantics, since, besides rounding
1198   // differences, the transformation changes overflow and underflow behavior
1199   // quite dramatically.
1200   // For example:
1201   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1202   // Whereas:
1203   //   exp(1000 * 0.001) = exp(1)
1204   // TODO: Loosen the requirement for fully relaxed math semantics.
1205   // TODO: Handle exp10() when more targets have it available.
1206   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1207   if (BaseFn && BaseFn->isFast() && Pow->isFast()) {
1208     LibFunc LibFn;
1209     Function *CalleeFn = BaseFn->getCalledFunction();
1210     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1211         (LibFn == LibFunc_exp || LibFn == LibFunc_exp2) && TLI->has(LibFn)) {
1212       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1213       return emitUnaryFloatFnCall(FMul, CalleeFn->getName(), B, Attrs);
1214     }
1215   }
1216 
1217   // Evaluate special cases related to a constant base.
1218 
1219   // pow(2.0, x) -> exp2(x)
1220   if (match(Base, m_SpecificFP(2.0))) {
1221     Value *Exp2 = Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty);
1222     return B.CreateCall(Exp2, Expo, "exp2");
1223   }
1224 
1225   // pow(10.0, x) -> exp10(x)
1226   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1227   if (match(Base, m_SpecificFP(10.0)) &&
1228       hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1229     return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs);
1230 
1231   return nullptr;
1232 }
1233 
1234 /// Use square root in place of pow(x, +/-0.5).
1235 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1236   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1237   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1238   Module *Mod = Pow->getModule();
1239   Type *Ty = Pow->getType();
1240 
1241   const APFloat *ExpoF;
1242   if (!match(Expo, m_APFloat(ExpoF)) ||
1243       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1244     return nullptr;
1245 
1246   // If errno is never set, then use the intrinsic for sqrt().
1247   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1248     Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(),
1249                                                  Intrinsic::sqrt, Ty);
1250     Sqrt = B.CreateCall(SqrtFn, Base, "sqrt");
1251   }
1252   // Otherwise, use the libcall for sqrt().
1253   else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1254     // TODO: We also should check that the target can in fact lower the sqrt()
1255     // libcall. We currently have no way to ask this question, so we ask if
1256     // the target has a sqrt() libcall, which is not exactly the same.
1257     Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B, Attrs);
1258   else
1259     return nullptr;
1260 
1261   // Handle signed zero base by expanding to fabs(sqrt(x)).
1262   if (!Pow->hasNoSignedZeros()) {
1263     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1264     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1265   }
1266 
1267   // Handle non finite base by expanding to
1268   // (x == -infinity ? +infinity : sqrt(x)).
1269   if (!Pow->hasNoInfs()) {
1270     Value *PosInf = ConstantFP::getInfinity(Ty),
1271           *NegInf = ConstantFP::getInfinity(Ty, true);
1272     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1273     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1274   }
1275 
1276   // If the exponent is negative, then get the reciprocal.
1277   if (ExpoF->isNegative())
1278     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1279 
1280   return Sqrt;
1281 }
1282 
1283 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1284   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1285   Function *Callee = Pow->getCalledFunction();
1286   StringRef Name = Callee->getName();
1287   Type *Ty = Pow->getType();
1288   Value *Shrunk = nullptr;
1289   bool Ignored;
1290 
1291   // Bail out if simplifying libcalls to pow() is disabled.
1292   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1293     return nullptr;
1294 
1295   // Propagate the math semantics from the call to any created instructions.
1296   IRBuilder<>::FastMathFlagGuard Guard(B);
1297   B.setFastMathFlags(Pow->getFastMathFlags());
1298 
1299   // Shrink pow() to powf() if the arguments are single precision,
1300   // unless the result is expected to be double precision.
1301   if (UnsafeFPShrink &&
1302       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1303     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1304 
1305   // Evaluate special cases related to the base.
1306 
1307   // pow(1.0, x) -> 1.0
1308   if (match(Base, m_FPOne()))
1309     return Base;
1310 
1311   if (Value *Exp = replacePowWithExp(Pow, B))
1312     return Exp;
1313 
1314   // Evaluate special cases related to the exponent.
1315 
1316   // pow(x, -1.0) -> 1.0 / x
1317   if (match(Expo, m_SpecificFP(-1.0)))
1318     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1319 
1320   // pow(x, 0.0) -> 1.0
1321   if (match(Expo, m_SpecificFP(0.0)))
1322       return ConstantFP::get(Ty, 1.0);
1323 
1324   // pow(x, 1.0) -> x
1325   if (match(Expo, m_FPOne()))
1326     return Base;
1327 
1328   // pow(x, 2.0) -> x * x
1329   if (match(Expo, m_SpecificFP(2.0)))
1330     return B.CreateFMul(Base, Base, "square");
1331 
1332   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1333     return Sqrt;
1334 
1335   // pow(x, n) -> x * x * x * ...
1336   const APFloat *ExpoF;
1337   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1338     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1339     APFloat LimF(ExpoF->getSemantics(), 33.0),
1340             ExpoA(abs(*ExpoF));
1341     if (ExpoA.isInteger() && ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1342       // We will memoize intermediate products of the Addition Chain.
1343       Value *InnerChain[33] = {nullptr};
1344       InnerChain[1] = Base;
1345       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1346 
1347       // We cannot readily convert a non-double type (like float) to a double.
1348       // So we first convert it to something which could be converted to double.
1349       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1350       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1351 
1352       // If the exponent is negative, then get the reciprocal.
1353       if (ExpoF->isNegative())
1354         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1355 
1356       return FMul;
1357     }
1358   }
1359 
1360   return Shrunk;
1361 }
1362 
1363 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1364   Function *Callee = CI->getCalledFunction();
1365   Value *Ret = nullptr;
1366   StringRef Name = Callee->getName();
1367   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1368     Ret = optimizeUnaryDoubleFP(CI, B, true);
1369 
1370   Value *Op = CI->getArgOperand(0);
1371   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1372   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1373   LibFunc LdExp = LibFunc_ldexpl;
1374   if (Op->getType()->isFloatTy())
1375     LdExp = LibFunc_ldexpf;
1376   else if (Op->getType()->isDoubleTy())
1377     LdExp = LibFunc_ldexp;
1378 
1379   if (TLI->has(LdExp)) {
1380     Value *LdExpArg = nullptr;
1381     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1382       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1383         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1384     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1385       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1386         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1387     }
1388 
1389     if (LdExpArg) {
1390       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1391       if (!Op->getType()->isFloatTy())
1392         One = ConstantExpr::getFPExtend(One, Op->getType());
1393 
1394       Module *M = CI->getModule();
1395       Value *NewCallee =
1396           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1397                                  Op->getType(), B.getInt32Ty());
1398       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1399       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1400         CI->setCallingConv(F->getCallingConv());
1401 
1402       return CI;
1403     }
1404   }
1405   return Ret;
1406 }
1407 
1408 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1409   Function *Callee = CI->getCalledFunction();
1410   // If we can shrink the call to a float function rather than a double
1411   // function, do that first.
1412   StringRef Name = Callee->getName();
1413   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1414     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1415       return Ret;
1416 
1417   IRBuilder<>::FastMathFlagGuard Guard(B);
1418   FastMathFlags FMF;
1419   if (CI->isFast()) {
1420     // If the call is 'fast', then anything we create here will also be 'fast'.
1421     FMF.setFast();
1422   } else {
1423     // At a minimum, no-nans-fp-math must be true.
1424     if (!CI->hasNoNaNs())
1425       return nullptr;
1426     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1427     // "Ideally, fmax would be sensitive to the sign of zero, for example
1428     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1429     // might be impractical."
1430     FMF.setNoSignedZeros();
1431     FMF.setNoNaNs();
1432   }
1433   B.setFastMathFlags(FMF);
1434 
1435   // We have a relaxed floating-point environment. We can ignore NaN-handling
1436   // and transform to a compare and select. We do not have to consider errno or
1437   // exceptions, because fmin/fmax do not have those.
1438   Value *Op0 = CI->getArgOperand(0);
1439   Value *Op1 = CI->getArgOperand(1);
1440   Value *Cmp = Callee->getName().startswith("fmin") ?
1441     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1442   return B.CreateSelect(Cmp, Op0, Op1);
1443 }
1444 
1445 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1446   Function *Callee = CI->getCalledFunction();
1447   Value *Ret = nullptr;
1448   StringRef Name = Callee->getName();
1449   if (UnsafeFPShrink && hasFloatVersion(Name))
1450     Ret = optimizeUnaryDoubleFP(CI, B, true);
1451 
1452   if (!CI->isFast())
1453     return Ret;
1454   Value *Op1 = CI->getArgOperand(0);
1455   auto *OpC = dyn_cast<CallInst>(Op1);
1456 
1457   // The earlier call must also be 'fast' in order to do these transforms.
1458   if (!OpC || !OpC->isFast())
1459     return Ret;
1460 
1461   // log(pow(x,y)) -> y*log(x)
1462   // This is only applicable to log, log2, log10.
1463   if (Name != "log" && Name != "log2" && Name != "log10")
1464     return Ret;
1465 
1466   IRBuilder<>::FastMathFlagGuard Guard(B);
1467   FastMathFlags FMF;
1468   FMF.setFast();
1469   B.setFastMathFlags(FMF);
1470 
1471   LibFunc Func;
1472   Function *F = OpC->getCalledFunction();
1473   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1474       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1475     return B.CreateFMul(OpC->getArgOperand(1),
1476       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1477                            Callee->getAttributes()), "mul");
1478 
1479   // log(exp2(y)) -> y*log(2)
1480   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1481       TLI->has(Func) && Func == LibFunc_exp2)
1482     return B.CreateFMul(
1483         OpC->getArgOperand(0),
1484         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1485                              Callee->getName(), B, Callee->getAttributes()),
1486         "logmul");
1487   return Ret;
1488 }
1489 
1490 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1491   Function *Callee = CI->getCalledFunction();
1492   Value *Ret = nullptr;
1493   // TODO: Once we have a way (other than checking for the existince of the
1494   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1495   // condition below.
1496   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1497                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1498     Ret = optimizeUnaryDoubleFP(CI, B, true);
1499 
1500   if (!CI->isFast())
1501     return Ret;
1502 
1503   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1504   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1505     return Ret;
1506 
1507   // We're looking for a repeated factor in a multiplication tree,
1508   // so we can do this fold: sqrt(x * x) -> fabs(x);
1509   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1510   Value *Op0 = I->getOperand(0);
1511   Value *Op1 = I->getOperand(1);
1512   Value *RepeatOp = nullptr;
1513   Value *OtherOp = nullptr;
1514   if (Op0 == Op1) {
1515     // Simple match: the operands of the multiply are identical.
1516     RepeatOp = Op0;
1517   } else {
1518     // Look for a more complicated pattern: one of the operands is itself
1519     // a multiply, so search for a common factor in that multiply.
1520     // Note: We don't bother looking any deeper than this first level or for
1521     // variations of this pattern because instcombine's visitFMUL and/or the
1522     // reassociation pass should give us this form.
1523     Value *OtherMul0, *OtherMul1;
1524     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1525       // Pattern: sqrt((x * y) * z)
1526       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1527         // Matched: sqrt((x * x) * z)
1528         RepeatOp = OtherMul0;
1529         OtherOp = Op1;
1530       }
1531     }
1532   }
1533   if (!RepeatOp)
1534     return Ret;
1535 
1536   // Fast math flags for any created instructions should match the sqrt
1537   // and multiply.
1538   IRBuilder<>::FastMathFlagGuard Guard(B);
1539   B.setFastMathFlags(I->getFastMathFlags());
1540 
1541   // If we found a repeated factor, hoist it out of the square root and
1542   // replace it with the fabs of that factor.
1543   Module *M = Callee->getParent();
1544   Type *ArgType = I->getType();
1545   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1546   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1547   if (OtherOp) {
1548     // If we found a non-repeated factor, we still need to get its square
1549     // root. We then multiply that by the value that was simplified out
1550     // of the square root calculation.
1551     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1552     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1553     return B.CreateFMul(FabsCall, SqrtCall);
1554   }
1555   return FabsCall;
1556 }
1557 
1558 // TODO: Generalize to handle any trig function and its inverse.
1559 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1560   Function *Callee = CI->getCalledFunction();
1561   Value *Ret = nullptr;
1562   StringRef Name = Callee->getName();
1563   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1564     Ret = optimizeUnaryDoubleFP(CI, B, true);
1565 
1566   Value *Op1 = CI->getArgOperand(0);
1567   auto *OpC = dyn_cast<CallInst>(Op1);
1568   if (!OpC)
1569     return Ret;
1570 
1571   // Both calls must be 'fast' in order to remove them.
1572   if (!CI->isFast() || !OpC->isFast())
1573     return Ret;
1574 
1575   // tan(atan(x)) -> x
1576   // tanf(atanf(x)) -> x
1577   // tanl(atanl(x)) -> x
1578   LibFunc Func;
1579   Function *F = OpC->getCalledFunction();
1580   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1581       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1582        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1583        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1584     Ret = OpC->getArgOperand(0);
1585   return Ret;
1586 }
1587 
1588 static bool isTrigLibCall(CallInst *CI) {
1589   // We can only hope to do anything useful if we can ignore things like errno
1590   // and floating-point exceptions.
1591   // We already checked the prototype.
1592   return CI->hasFnAttr(Attribute::NoUnwind) &&
1593          CI->hasFnAttr(Attribute::ReadNone);
1594 }
1595 
1596 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1597                              bool UseFloat, Value *&Sin, Value *&Cos,
1598                              Value *&SinCos) {
1599   Type *ArgTy = Arg->getType();
1600   Type *ResTy;
1601   StringRef Name;
1602 
1603   Triple T(OrigCallee->getParent()->getTargetTriple());
1604   if (UseFloat) {
1605     Name = "__sincospif_stret";
1606 
1607     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1608     // x86_64 can't use {float, float} since that would be returned in both
1609     // xmm0 and xmm1, which isn't what a real struct would do.
1610     ResTy = T.getArch() == Triple::x86_64
1611                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1612                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1613   } else {
1614     Name = "__sincospi_stret";
1615     ResTy = StructType::get(ArgTy, ArgTy);
1616   }
1617 
1618   Module *M = OrigCallee->getParent();
1619   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1620                                          ResTy, ArgTy);
1621 
1622   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1623     // If the argument is an instruction, it must dominate all uses so put our
1624     // sincos call there.
1625     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1626   } else {
1627     // Otherwise (e.g. for a constant) the beginning of the function is as
1628     // good a place as any.
1629     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1630     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1631   }
1632 
1633   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1634 
1635   if (SinCos->getType()->isStructTy()) {
1636     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1637     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1638   } else {
1639     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1640                                  "sinpi");
1641     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1642                                  "cospi");
1643   }
1644 }
1645 
1646 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1647   // Make sure the prototype is as expected, otherwise the rest of the
1648   // function is probably invalid and likely to abort.
1649   if (!isTrigLibCall(CI))
1650     return nullptr;
1651 
1652   Value *Arg = CI->getArgOperand(0);
1653   SmallVector<CallInst *, 1> SinCalls;
1654   SmallVector<CallInst *, 1> CosCalls;
1655   SmallVector<CallInst *, 1> SinCosCalls;
1656 
1657   bool IsFloat = Arg->getType()->isFloatTy();
1658 
1659   // Look for all compatible sinpi, cospi and sincospi calls with the same
1660   // argument. If there are enough (in some sense) we can make the
1661   // substitution.
1662   Function *F = CI->getFunction();
1663   for (User *U : Arg->users())
1664     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1665 
1666   // It's only worthwhile if both sinpi and cospi are actually used.
1667   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1668     return nullptr;
1669 
1670   Value *Sin, *Cos, *SinCos;
1671   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1672 
1673   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1674                                  Value *Res) {
1675     for (CallInst *C : Calls)
1676       replaceAllUsesWith(C, Res);
1677   };
1678 
1679   replaceTrigInsts(SinCalls, Sin);
1680   replaceTrigInsts(CosCalls, Cos);
1681   replaceTrigInsts(SinCosCalls, SinCos);
1682 
1683   return nullptr;
1684 }
1685 
1686 void LibCallSimplifier::classifyArgUse(
1687     Value *Val, Function *F, bool IsFloat,
1688     SmallVectorImpl<CallInst *> &SinCalls,
1689     SmallVectorImpl<CallInst *> &CosCalls,
1690     SmallVectorImpl<CallInst *> &SinCosCalls) {
1691   CallInst *CI = dyn_cast<CallInst>(Val);
1692 
1693   if (!CI)
1694     return;
1695 
1696   // Don't consider calls in other functions.
1697   if (CI->getFunction() != F)
1698     return;
1699 
1700   Function *Callee = CI->getCalledFunction();
1701   LibFunc Func;
1702   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1703       !isTrigLibCall(CI))
1704     return;
1705 
1706   if (IsFloat) {
1707     if (Func == LibFunc_sinpif)
1708       SinCalls.push_back(CI);
1709     else if (Func == LibFunc_cospif)
1710       CosCalls.push_back(CI);
1711     else if (Func == LibFunc_sincospif_stret)
1712       SinCosCalls.push_back(CI);
1713   } else {
1714     if (Func == LibFunc_sinpi)
1715       SinCalls.push_back(CI);
1716     else if (Func == LibFunc_cospi)
1717       CosCalls.push_back(CI);
1718     else if (Func == LibFunc_sincospi_stret)
1719       SinCosCalls.push_back(CI);
1720   }
1721 }
1722 
1723 //===----------------------------------------------------------------------===//
1724 // Integer Library Call Optimizations
1725 //===----------------------------------------------------------------------===//
1726 
1727 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1728   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1729   Value *Op = CI->getArgOperand(0);
1730   Type *ArgType = Op->getType();
1731   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1732                                        Intrinsic::cttz, ArgType);
1733   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1734   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1735   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1736 
1737   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1738   return B.CreateSelect(Cond, V, B.getInt32(0));
1739 }
1740 
1741 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1742   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1743   Value *Op = CI->getArgOperand(0);
1744   Type *ArgType = Op->getType();
1745   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1746                                        Intrinsic::ctlz, ArgType);
1747   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1748   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1749                   V);
1750   return B.CreateIntCast(V, CI->getType(), false);
1751 }
1752 
1753 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1754   // abs(x) -> x <s 0 ? -x : x
1755   // The negation has 'nsw' because abs of INT_MIN is undefined.
1756   Value *X = CI->getArgOperand(0);
1757   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1758   Value *NegX = B.CreateNSWNeg(X, "neg");
1759   return B.CreateSelect(IsNeg, NegX, X);
1760 }
1761 
1762 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1763   // isdigit(c) -> (c-'0') <u 10
1764   Value *Op = CI->getArgOperand(0);
1765   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1766   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1767   return B.CreateZExt(Op, CI->getType());
1768 }
1769 
1770 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1771   // isascii(c) -> c <u 128
1772   Value *Op = CI->getArgOperand(0);
1773   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1774   return B.CreateZExt(Op, CI->getType());
1775 }
1776 
1777 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1778   // toascii(c) -> c & 0x7f
1779   return B.CreateAnd(CI->getArgOperand(0),
1780                      ConstantInt::get(CI->getType(), 0x7F));
1781 }
1782 
1783 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1784   StringRef Str;
1785   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1786     return nullptr;
1787 
1788   return convertStrToNumber(CI, Str, 10);
1789 }
1790 
1791 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1792   StringRef Str;
1793   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1794     return nullptr;
1795 
1796   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1797     return nullptr;
1798 
1799   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1800     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1801   }
1802 
1803   return nullptr;
1804 }
1805 
1806 //===----------------------------------------------------------------------===//
1807 // Formatting and IO Library Call Optimizations
1808 //===----------------------------------------------------------------------===//
1809 
1810 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1811 
1812 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1813                                                  int StreamArg) {
1814   Function *Callee = CI->getCalledFunction();
1815   // Error reporting calls should be cold, mark them as such.
1816   // This applies even to non-builtin calls: it is only a hint and applies to
1817   // functions that the frontend might not understand as builtins.
1818 
1819   // This heuristic was suggested in:
1820   // Improving Static Branch Prediction in a Compiler
1821   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1822   // Proceedings of PACT'98, Oct. 1998, IEEE
1823   if (!CI->hasFnAttr(Attribute::Cold) &&
1824       isReportingError(Callee, CI, StreamArg)) {
1825     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1832   if (!Callee || !Callee->isDeclaration())
1833     return false;
1834 
1835   if (StreamArg < 0)
1836     return true;
1837 
1838   // These functions might be considered cold, but only if their stream
1839   // argument is stderr.
1840 
1841   if (StreamArg >= (int)CI->getNumArgOperands())
1842     return false;
1843   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1844   if (!LI)
1845     return false;
1846   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1847   if (!GV || !GV->isDeclaration())
1848     return false;
1849   return GV->getName() == "stderr";
1850 }
1851 
1852 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1853   // Check for a fixed format string.
1854   StringRef FormatStr;
1855   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1856     return nullptr;
1857 
1858   // Empty format string -> noop.
1859   if (FormatStr.empty()) // Tolerate printf's declared void.
1860     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1861 
1862   // Do not do any of the following transformations if the printf return value
1863   // is used, in general the printf return value is not compatible with either
1864   // putchar() or puts().
1865   if (!CI->use_empty())
1866     return nullptr;
1867 
1868   // printf("x") -> putchar('x'), even for "%" and "%%".
1869   if (FormatStr.size() == 1 || FormatStr == "%%")
1870     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1871 
1872   // printf("%s", "a") --> putchar('a')
1873   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1874     StringRef ChrStr;
1875     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1876       return nullptr;
1877     if (ChrStr.size() != 1)
1878       return nullptr;
1879     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1880   }
1881 
1882   // printf("foo\n") --> puts("foo")
1883   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1884       FormatStr.find('%') == StringRef::npos) { // No format characters.
1885     // Create a string literal with no \n on it.  We expect the constant merge
1886     // pass to be run after this pass, to merge duplicate strings.
1887     FormatStr = FormatStr.drop_back();
1888     Value *GV = B.CreateGlobalString(FormatStr, "str");
1889     return emitPutS(GV, B, TLI);
1890   }
1891 
1892   // Optimize specific format strings.
1893   // printf("%c", chr) --> putchar(chr)
1894   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1895       CI->getArgOperand(1)->getType()->isIntegerTy())
1896     return emitPutChar(CI->getArgOperand(1), B, TLI);
1897 
1898   // printf("%s\n", str) --> puts(str)
1899   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1900       CI->getArgOperand(1)->getType()->isPointerTy())
1901     return emitPutS(CI->getArgOperand(1), B, TLI);
1902   return nullptr;
1903 }
1904 
1905 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1906 
1907   Function *Callee = CI->getCalledFunction();
1908   FunctionType *FT = Callee->getFunctionType();
1909   if (Value *V = optimizePrintFString(CI, B)) {
1910     return V;
1911   }
1912 
1913   // printf(format, ...) -> iprintf(format, ...) if no floating point
1914   // arguments.
1915   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1916     Module *M = B.GetInsertBlock()->getParent()->getParent();
1917     Constant *IPrintFFn =
1918         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1919     CallInst *New = cast<CallInst>(CI->clone());
1920     New->setCalledFunction(IPrintFFn);
1921     B.Insert(New);
1922     return New;
1923   }
1924   return nullptr;
1925 }
1926 
1927 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1928   // Check for a fixed format string.
1929   StringRef FormatStr;
1930   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1931     return nullptr;
1932 
1933   // If we just have a format string (nothing else crazy) transform it.
1934   if (CI->getNumArgOperands() == 2) {
1935     // Make sure there's no % in the constant array.  We could try to handle
1936     // %% -> % in the future if we cared.
1937     if (FormatStr.find('%') != StringRef::npos)
1938       return nullptr; // we found a format specifier, bail out.
1939 
1940     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1941     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1942                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1943                                     FormatStr.size() + 1)); // Copy the null byte.
1944     return ConstantInt::get(CI->getType(), FormatStr.size());
1945   }
1946 
1947   // The remaining optimizations require the format string to be "%s" or "%c"
1948   // and have an extra operand.
1949   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1950       CI->getNumArgOperands() < 3)
1951     return nullptr;
1952 
1953   // Decode the second character of the format string.
1954   if (FormatStr[1] == 'c') {
1955     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1956     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1957       return nullptr;
1958     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1959     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1960     B.CreateStore(V, Ptr);
1961     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1962     B.CreateStore(B.getInt8(0), Ptr);
1963 
1964     return ConstantInt::get(CI->getType(), 1);
1965   }
1966 
1967   if (FormatStr[1] == 's') {
1968     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1969     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1970       return nullptr;
1971 
1972     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1973     if (!Len)
1974       return nullptr;
1975     Value *IncLen =
1976         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1977     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
1978 
1979     // The sprintf result is the unincremented number of bytes in the string.
1980     return B.CreateIntCast(Len, CI->getType(), false);
1981   }
1982   return nullptr;
1983 }
1984 
1985 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1986   Function *Callee = CI->getCalledFunction();
1987   FunctionType *FT = Callee->getFunctionType();
1988   if (Value *V = optimizeSPrintFString(CI, B)) {
1989     return V;
1990   }
1991 
1992   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1993   // point arguments.
1994   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1995     Module *M = B.GetInsertBlock()->getParent()->getParent();
1996     Constant *SIPrintFFn =
1997         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1998     CallInst *New = cast<CallInst>(CI->clone());
1999     New->setCalledFunction(SIPrintFFn);
2000     B.Insert(New);
2001     return New;
2002   }
2003   return nullptr;
2004 }
2005 
2006 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2007   // Check for a fixed format string.
2008   StringRef FormatStr;
2009   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2010     return nullptr;
2011 
2012   // Check for size
2013   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2014   if (!Size)
2015     return nullptr;
2016 
2017   uint64_t N = Size->getZExtValue();
2018 
2019   // If we just have a format string (nothing else crazy) transform it.
2020   if (CI->getNumArgOperands() == 3) {
2021     // Make sure there's no % in the constant array.  We could try to handle
2022     // %% -> % in the future if we cared.
2023     if (FormatStr.find('%') != StringRef::npos)
2024       return nullptr; // we found a format specifier, bail out.
2025 
2026     if (N == 0)
2027       return ConstantInt::get(CI->getType(), FormatStr.size());
2028     else if (N < FormatStr.size() + 1)
2029       return nullptr;
2030 
2031     // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
2032     // strlen(fmt)+1)
2033     B.CreateMemCpy(
2034         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2035         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2036                          FormatStr.size() + 1)); // Copy the null byte.
2037     return ConstantInt::get(CI->getType(), FormatStr.size());
2038   }
2039 
2040   // The remaining optimizations require the format string to be "%s" or "%c"
2041   // and have an extra operand.
2042   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2043       CI->getNumArgOperands() == 4) {
2044 
2045     // Decode the second character of the format string.
2046     if (FormatStr[1] == 'c') {
2047       if (N == 0)
2048         return ConstantInt::get(CI->getType(), 1);
2049       else if (N == 1)
2050         return nullptr;
2051 
2052       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2053       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2054         return nullptr;
2055       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2056       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2057       B.CreateStore(V, Ptr);
2058       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2059       B.CreateStore(B.getInt8(0), Ptr);
2060 
2061       return ConstantInt::get(CI->getType(), 1);
2062     }
2063 
2064     if (FormatStr[1] == 's') {
2065       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2066       StringRef Str;
2067       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2068         return nullptr;
2069 
2070       if (N == 0)
2071         return ConstantInt::get(CI->getType(), Str.size());
2072       else if (N < Str.size() + 1)
2073         return nullptr;
2074 
2075       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2076                      ConstantInt::get(CI->getType(), Str.size() + 1));
2077 
2078       // The snprintf result is the unincremented number of bytes in the string.
2079       return ConstantInt::get(CI->getType(), Str.size());
2080     }
2081   }
2082   return nullptr;
2083 }
2084 
2085 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2086   if (Value *V = optimizeSnPrintFString(CI, B)) {
2087     return V;
2088   }
2089 
2090   return nullptr;
2091 }
2092 
2093 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2094   optimizeErrorReporting(CI, B, 0);
2095 
2096   // All the optimizations depend on the format string.
2097   StringRef FormatStr;
2098   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2099     return nullptr;
2100 
2101   // Do not do any of the following transformations if the fprintf return
2102   // value is used, in general the fprintf return value is not compatible
2103   // with fwrite(), fputc() or fputs().
2104   if (!CI->use_empty())
2105     return nullptr;
2106 
2107   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2108   if (CI->getNumArgOperands() == 2) {
2109     // Could handle %% -> % if we cared.
2110     if (FormatStr.find('%') != StringRef::npos)
2111       return nullptr; // We found a format specifier.
2112 
2113     return emitFWrite(
2114         CI->getArgOperand(1),
2115         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2116         CI->getArgOperand(0), B, DL, TLI);
2117   }
2118 
2119   // The remaining optimizations require the format string to be "%s" or "%c"
2120   // and have an extra operand.
2121   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2122       CI->getNumArgOperands() < 3)
2123     return nullptr;
2124 
2125   // Decode the second character of the format string.
2126   if (FormatStr[1] == 'c') {
2127     // fprintf(F, "%c", chr) --> fputc(chr, F)
2128     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2129       return nullptr;
2130     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2131   }
2132 
2133   if (FormatStr[1] == 's') {
2134     // fprintf(F, "%s", str) --> fputs(str, F)
2135     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2136       return nullptr;
2137     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2138   }
2139   return nullptr;
2140 }
2141 
2142 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2143   Function *Callee = CI->getCalledFunction();
2144   FunctionType *FT = Callee->getFunctionType();
2145   if (Value *V = optimizeFPrintFString(CI, B)) {
2146     return V;
2147   }
2148 
2149   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2150   // floating point arguments.
2151   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2152     Module *M = B.GetInsertBlock()->getParent()->getParent();
2153     Constant *FIPrintFFn =
2154         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2155     CallInst *New = cast<CallInst>(CI->clone());
2156     New->setCalledFunction(FIPrintFFn);
2157     B.Insert(New);
2158     return New;
2159   }
2160   return nullptr;
2161 }
2162 
2163 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2164   optimizeErrorReporting(CI, B, 3);
2165 
2166   // Get the element size and count.
2167   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2168   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2169   if (SizeC && CountC) {
2170     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2171 
2172     // If this is writing zero records, remove the call (it's a noop).
2173     if (Bytes == 0)
2174       return ConstantInt::get(CI->getType(), 0);
2175 
2176     // If this is writing one byte, turn it into fputc.
2177     // This optimisation is only valid, if the return value is unused.
2178     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2179       Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2180       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2181       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2182     }
2183   }
2184 
2185   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2186     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2187                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2188                               TLI);
2189 
2190   return nullptr;
2191 }
2192 
2193 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2194   optimizeErrorReporting(CI, B, 1);
2195 
2196   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2197   // requires more arguments and thus extra MOVs are required.
2198   if (CI->getFunction()->optForSize())
2199     return nullptr;
2200 
2201   // Check if has any use
2202   if (!CI->use_empty()) {
2203     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2204       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2205                                TLI);
2206     else
2207       // We can't optimize if return value is used.
2208       return nullptr;
2209   }
2210 
2211   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2212   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2213   if (!Len)
2214     return nullptr;
2215 
2216   // Known to have no uses (see above).
2217   return emitFWrite(
2218       CI->getArgOperand(0),
2219       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2220       CI->getArgOperand(1), B, DL, TLI);
2221 }
2222 
2223 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2224   optimizeErrorReporting(CI, B, 1);
2225 
2226   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2227     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2228                              TLI);
2229 
2230   return nullptr;
2231 }
2232 
2233 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2234   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2235     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2236 
2237   return nullptr;
2238 }
2239 
2240 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2241   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2242     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2243                              CI->getArgOperand(2), B, TLI);
2244 
2245   return nullptr;
2246 }
2247 
2248 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2249   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2250     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2251                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2252                              TLI);
2253 
2254   return nullptr;
2255 }
2256 
2257 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2258   // Check for a constant string.
2259   StringRef Str;
2260   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2261     return nullptr;
2262 
2263   if (Str.empty() && CI->use_empty()) {
2264     // puts("") -> putchar('\n')
2265     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2266     if (CI->use_empty() || !Res)
2267       return Res;
2268     return B.CreateIntCast(Res, CI->getType(), true);
2269   }
2270 
2271   return nullptr;
2272 }
2273 
2274 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2275   LibFunc Func;
2276   SmallString<20> FloatFuncName = FuncName;
2277   FloatFuncName += 'f';
2278   if (TLI->getLibFunc(FloatFuncName, Func))
2279     return TLI->has(Func);
2280   return false;
2281 }
2282 
2283 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2284                                                       IRBuilder<> &Builder) {
2285   LibFunc Func;
2286   Function *Callee = CI->getCalledFunction();
2287   // Check for string/memory library functions.
2288   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2289     // Make sure we never change the calling convention.
2290     assert((ignoreCallingConv(Func) ||
2291             isCallingConvCCompatible(CI)) &&
2292       "Optimizing string/memory libcall would change the calling convention");
2293     switch (Func) {
2294     case LibFunc_strcat:
2295       return optimizeStrCat(CI, Builder);
2296     case LibFunc_strncat:
2297       return optimizeStrNCat(CI, Builder);
2298     case LibFunc_strchr:
2299       return optimizeStrChr(CI, Builder);
2300     case LibFunc_strrchr:
2301       return optimizeStrRChr(CI, Builder);
2302     case LibFunc_strcmp:
2303       return optimizeStrCmp(CI, Builder);
2304     case LibFunc_strncmp:
2305       return optimizeStrNCmp(CI, Builder);
2306     case LibFunc_strcpy:
2307       return optimizeStrCpy(CI, Builder);
2308     case LibFunc_stpcpy:
2309       return optimizeStpCpy(CI, Builder);
2310     case LibFunc_strncpy:
2311       return optimizeStrNCpy(CI, Builder);
2312     case LibFunc_strlen:
2313       return optimizeStrLen(CI, Builder);
2314     case LibFunc_strpbrk:
2315       return optimizeStrPBrk(CI, Builder);
2316     case LibFunc_strtol:
2317     case LibFunc_strtod:
2318     case LibFunc_strtof:
2319     case LibFunc_strtoul:
2320     case LibFunc_strtoll:
2321     case LibFunc_strtold:
2322     case LibFunc_strtoull:
2323       return optimizeStrTo(CI, Builder);
2324     case LibFunc_strspn:
2325       return optimizeStrSpn(CI, Builder);
2326     case LibFunc_strcspn:
2327       return optimizeStrCSpn(CI, Builder);
2328     case LibFunc_strstr:
2329       return optimizeStrStr(CI, Builder);
2330     case LibFunc_memchr:
2331       return optimizeMemChr(CI, Builder);
2332     case LibFunc_memcmp:
2333       return optimizeMemCmp(CI, Builder);
2334     case LibFunc_memcpy:
2335       return optimizeMemCpy(CI, Builder);
2336     case LibFunc_memmove:
2337       return optimizeMemMove(CI, Builder);
2338     case LibFunc_memset:
2339       return optimizeMemSet(CI, Builder);
2340     case LibFunc_realloc:
2341       return optimizeRealloc(CI, Builder);
2342     case LibFunc_wcslen:
2343       return optimizeWcslen(CI, Builder);
2344     default:
2345       break;
2346     }
2347   }
2348   return nullptr;
2349 }
2350 
2351 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2352                                                        LibFunc Func,
2353                                                        IRBuilder<> &Builder) {
2354   // Don't optimize calls that require strict floating point semantics.
2355   if (CI->isStrictFP())
2356     return nullptr;
2357 
2358   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2359     return V;
2360 
2361   switch (Func) {
2362   case LibFunc_sinpif:
2363   case LibFunc_sinpi:
2364   case LibFunc_cospif:
2365   case LibFunc_cospi:
2366     return optimizeSinCosPi(CI, Builder);
2367   case LibFunc_powf:
2368   case LibFunc_pow:
2369   case LibFunc_powl:
2370     return optimizePow(CI, Builder);
2371   case LibFunc_exp2l:
2372   case LibFunc_exp2:
2373   case LibFunc_exp2f:
2374     return optimizeExp2(CI, Builder);
2375   case LibFunc_fabsf:
2376   case LibFunc_fabs:
2377   case LibFunc_fabsl:
2378     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2379   case LibFunc_sqrtf:
2380   case LibFunc_sqrt:
2381   case LibFunc_sqrtl:
2382     return optimizeSqrt(CI, Builder);
2383   case LibFunc_log:
2384   case LibFunc_log10:
2385   case LibFunc_log1p:
2386   case LibFunc_log2:
2387   case LibFunc_logb:
2388     return optimizeLog(CI, Builder);
2389   case LibFunc_tan:
2390   case LibFunc_tanf:
2391   case LibFunc_tanl:
2392     return optimizeTan(CI, Builder);
2393   case LibFunc_ceil:
2394     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2395   case LibFunc_floor:
2396     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2397   case LibFunc_round:
2398     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2399   case LibFunc_nearbyint:
2400     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2401   case LibFunc_rint:
2402     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2403   case LibFunc_trunc:
2404     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2405   case LibFunc_acos:
2406   case LibFunc_acosh:
2407   case LibFunc_asin:
2408   case LibFunc_asinh:
2409   case LibFunc_atan:
2410   case LibFunc_atanh:
2411   case LibFunc_cbrt:
2412   case LibFunc_cosh:
2413   case LibFunc_exp:
2414   case LibFunc_exp10:
2415   case LibFunc_expm1:
2416   case LibFunc_cos:
2417   case LibFunc_sin:
2418   case LibFunc_sinh:
2419   case LibFunc_tanh:
2420     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2421       return optimizeUnaryDoubleFP(CI, Builder, true);
2422     return nullptr;
2423   case LibFunc_copysign:
2424     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2425       return optimizeBinaryDoubleFP(CI, Builder);
2426     return nullptr;
2427   case LibFunc_fminf:
2428   case LibFunc_fmin:
2429   case LibFunc_fminl:
2430   case LibFunc_fmaxf:
2431   case LibFunc_fmax:
2432   case LibFunc_fmaxl:
2433     return optimizeFMinFMax(CI, Builder);
2434   case LibFunc_cabs:
2435   case LibFunc_cabsf:
2436   case LibFunc_cabsl:
2437     return optimizeCAbs(CI, Builder);
2438   default:
2439     return nullptr;
2440   }
2441 }
2442 
2443 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2444   // TODO: Split out the code below that operates on FP calls so that
2445   //       we can all non-FP calls with the StrictFP attribute to be
2446   //       optimized.
2447   if (CI->isNoBuiltin())
2448     return nullptr;
2449 
2450   LibFunc Func;
2451   Function *Callee = CI->getCalledFunction();
2452 
2453   SmallVector<OperandBundleDef, 2> OpBundles;
2454   CI->getOperandBundlesAsDefs(OpBundles);
2455   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2456   bool isCallingConvC = isCallingConvCCompatible(CI);
2457 
2458   // Command-line parameter overrides instruction attribute.
2459   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2460   // used by the intrinsic optimizations.
2461   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2462     UnsafeFPShrink = EnableUnsafeFPShrink;
2463   else if (isa<FPMathOperator>(CI) && CI->isFast())
2464     UnsafeFPShrink = true;
2465 
2466   // First, check for intrinsics.
2467   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2468     if (!isCallingConvC)
2469       return nullptr;
2470     // The FP intrinsics have corresponding constrained versions so we don't
2471     // need to check for the StrictFP attribute here.
2472     switch (II->getIntrinsicID()) {
2473     case Intrinsic::pow:
2474       return optimizePow(CI, Builder);
2475     case Intrinsic::exp2:
2476       return optimizeExp2(CI, Builder);
2477     case Intrinsic::log:
2478       return optimizeLog(CI, Builder);
2479     case Intrinsic::sqrt:
2480       return optimizeSqrt(CI, Builder);
2481     // TODO: Use foldMallocMemset() with memset intrinsic.
2482     default:
2483       return nullptr;
2484     }
2485   }
2486 
2487   // Also try to simplify calls to fortified library functions.
2488   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2489     // Try to further simplify the result.
2490     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2491     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2492       // Use an IR Builder from SimplifiedCI if available instead of CI
2493       // to guarantee we reach all uses we might replace later on.
2494       IRBuilder<> TmpBuilder(SimplifiedCI);
2495       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2496         // If we were able to further simplify, remove the now redundant call.
2497         SimplifiedCI->replaceAllUsesWith(V);
2498         SimplifiedCI->eraseFromParent();
2499         return V;
2500       }
2501     }
2502     return SimplifiedFortifiedCI;
2503   }
2504 
2505   // Then check for known library functions.
2506   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2507     // We never change the calling convention.
2508     if (!ignoreCallingConv(Func) && !isCallingConvC)
2509       return nullptr;
2510     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2511       return V;
2512     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2513       return V;
2514     switch (Func) {
2515     case LibFunc_ffs:
2516     case LibFunc_ffsl:
2517     case LibFunc_ffsll:
2518       return optimizeFFS(CI, Builder);
2519     case LibFunc_fls:
2520     case LibFunc_flsl:
2521     case LibFunc_flsll:
2522       return optimizeFls(CI, Builder);
2523     case LibFunc_abs:
2524     case LibFunc_labs:
2525     case LibFunc_llabs:
2526       return optimizeAbs(CI, Builder);
2527     case LibFunc_isdigit:
2528       return optimizeIsDigit(CI, Builder);
2529     case LibFunc_isascii:
2530       return optimizeIsAscii(CI, Builder);
2531     case LibFunc_toascii:
2532       return optimizeToAscii(CI, Builder);
2533     case LibFunc_atoi:
2534     case LibFunc_atol:
2535     case LibFunc_atoll:
2536       return optimizeAtoi(CI, Builder);
2537     case LibFunc_strtol:
2538     case LibFunc_strtoll:
2539       return optimizeStrtol(CI, Builder);
2540     case LibFunc_printf:
2541       return optimizePrintF(CI, Builder);
2542     case LibFunc_sprintf:
2543       return optimizeSPrintF(CI, Builder);
2544     case LibFunc_snprintf:
2545       return optimizeSnPrintF(CI, Builder);
2546     case LibFunc_fprintf:
2547       return optimizeFPrintF(CI, Builder);
2548     case LibFunc_fwrite:
2549       return optimizeFWrite(CI, Builder);
2550     case LibFunc_fread:
2551       return optimizeFRead(CI, Builder);
2552     case LibFunc_fputs:
2553       return optimizeFPuts(CI, Builder);
2554     case LibFunc_fgets:
2555       return optimizeFGets(CI, Builder);
2556     case LibFunc_fputc:
2557       return optimizeFPutc(CI, Builder);
2558     case LibFunc_fgetc:
2559       return optimizeFGetc(CI, Builder);
2560     case LibFunc_puts:
2561       return optimizePuts(CI, Builder);
2562     case LibFunc_perror:
2563       return optimizeErrorReporting(CI, Builder);
2564     case LibFunc_vfprintf:
2565     case LibFunc_fiprintf:
2566       return optimizeErrorReporting(CI, Builder, 0);
2567     default:
2568       return nullptr;
2569     }
2570   }
2571   return nullptr;
2572 }
2573 
2574 LibCallSimplifier::LibCallSimplifier(
2575     const DataLayout &DL, const TargetLibraryInfo *TLI,
2576     OptimizationRemarkEmitter &ORE,
2577     function_ref<void(Instruction *, Value *)> Replacer)
2578     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2579       UnsafeFPShrink(false), Replacer(Replacer) {}
2580 
2581 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2582   // Indirect through the replacer used in this instance.
2583   Replacer(I, With);
2584 }
2585 
2586 // TODO:
2587 //   Additional cases that we need to add to this file:
2588 //
2589 // cbrt:
2590 //   * cbrt(expN(X))  -> expN(x/3)
2591 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2592 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2593 //
2594 // exp, expf, expl:
2595 //   * exp(log(x))  -> x
2596 //
2597 // log, logf, logl:
2598 //   * log(exp(x))   -> x
2599 //   * log(exp(y))   -> y*log(e)
2600 //   * log(exp10(y)) -> y*log(10)
2601 //   * log(sqrt(x))  -> 0.5*log(x)
2602 //
2603 // pow, powf, powl:
2604 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2605 //   * pow(pow(x,y),z)-> pow(x,y*z)
2606 //
2607 // signbit:
2608 //   * signbit(cnst) -> cnst'
2609 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2610 //
2611 // sqrt, sqrtf, sqrtl:
2612 //   * sqrt(expN(x))  -> expN(x*0.5)
2613 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2614 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2615 //
2616 
2617 //===----------------------------------------------------------------------===//
2618 // Fortified Library Call Optimizations
2619 //===----------------------------------------------------------------------===//
2620 
2621 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2622                                                          unsigned ObjSizeOp,
2623                                                          unsigned SizeOp,
2624                                                          bool isString) {
2625   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2626     return true;
2627   if (ConstantInt *ObjSizeCI =
2628           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2629     if (ObjSizeCI->isMinusOne())
2630       return true;
2631     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2632     if (OnlyLowerUnknownSize)
2633       return false;
2634     if (isString) {
2635       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2636       // If the length is 0 we don't know how long it is and so we can't
2637       // remove the check.
2638       if (Len == 0)
2639         return false;
2640       return ObjSizeCI->getZExtValue() >= Len;
2641     }
2642     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2643       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2644   }
2645   return false;
2646 }
2647 
2648 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2649                                                      IRBuilder<> &B) {
2650   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2651     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2652                    CI->getArgOperand(2));
2653     return CI->getArgOperand(0);
2654   }
2655   return nullptr;
2656 }
2657 
2658 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2659                                                       IRBuilder<> &B) {
2660   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2661     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2662                     CI->getArgOperand(2));
2663     return CI->getArgOperand(0);
2664   }
2665   return nullptr;
2666 }
2667 
2668 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2669                                                      IRBuilder<> &B) {
2670   // TODO: Try foldMallocMemset() here.
2671 
2672   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2673     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2674     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2675     return CI->getArgOperand(0);
2676   }
2677   return nullptr;
2678 }
2679 
2680 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2681                                                       IRBuilder<> &B,
2682                                                       LibFunc Func) {
2683   Function *Callee = CI->getCalledFunction();
2684   StringRef Name = Callee->getName();
2685   const DataLayout &DL = CI->getModule()->getDataLayout();
2686   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2687         *ObjSize = CI->getArgOperand(2);
2688 
2689   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2690   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2691     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2692     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2693   }
2694 
2695   // If a) we don't have any length information, or b) we know this will
2696   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2697   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2698   // TODO: It might be nice to get a maximum length out of the possible
2699   // string lengths for varying.
2700   if (isFortifiedCallFoldable(CI, 2, 1, true))
2701     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2702 
2703   if (OnlyLowerUnknownSize)
2704     return nullptr;
2705 
2706   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2707   uint64_t Len = GetStringLength(Src);
2708   if (Len == 0)
2709     return nullptr;
2710 
2711   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2712   Value *LenV = ConstantInt::get(SizeTTy, Len);
2713   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2714   // If the function was an __stpcpy_chk, and we were able to fold it into
2715   // a __memcpy_chk, we still need to return the correct end pointer.
2716   if (Ret && Func == LibFunc_stpcpy_chk)
2717     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2718   return Ret;
2719 }
2720 
2721 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2722                                                        IRBuilder<> &B,
2723                                                        LibFunc Func) {
2724   Function *Callee = CI->getCalledFunction();
2725   StringRef Name = Callee->getName();
2726   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2727     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2728                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2729     return Ret;
2730   }
2731   return nullptr;
2732 }
2733 
2734 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2735   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2736   // Some clang users checked for _chk libcall availability using:
2737   //   __has_builtin(__builtin___memcpy_chk)
2738   // When compiling with -fno-builtin, this is always true.
2739   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2740   // end up with fortified libcalls, which isn't acceptable in a freestanding
2741   // environment which only provides their non-fortified counterparts.
2742   //
2743   // Until we change clang and/or teach external users to check for availability
2744   // differently, disregard the "nobuiltin" attribute and TLI::has.
2745   //
2746   // PR23093.
2747 
2748   LibFunc Func;
2749   Function *Callee = CI->getCalledFunction();
2750 
2751   SmallVector<OperandBundleDef, 2> OpBundles;
2752   CI->getOperandBundlesAsDefs(OpBundles);
2753   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2754   bool isCallingConvC = isCallingConvCCompatible(CI);
2755 
2756   // First, check that this is a known library functions and that the prototype
2757   // is correct.
2758   if (!TLI->getLibFunc(*Callee, Func))
2759     return nullptr;
2760 
2761   // We never change the calling convention.
2762   if (!ignoreCallingConv(Func) && !isCallingConvC)
2763     return nullptr;
2764 
2765   switch (Func) {
2766   case LibFunc_memcpy_chk:
2767     return optimizeMemCpyChk(CI, Builder);
2768   case LibFunc_memmove_chk:
2769     return optimizeMemMoveChk(CI, Builder);
2770   case LibFunc_memset_chk:
2771     return optimizeMemSetChk(CI, Builder);
2772   case LibFunc_stpcpy_chk:
2773   case LibFunc_strcpy_chk:
2774     return optimizeStrpCpyChk(CI, Builder, Func);
2775   case LibFunc_stpncpy_chk:
2776   case LibFunc_strncpy_chk:
2777     return optimizeStrpNCpyChk(CI, Builder, Func);
2778   default:
2779     break;
2780   }
2781   return nullptr;
2782 }
2783 
2784 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2785     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2786     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2787