1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 static void annotateDereferenceableBytes(CallInst *CI, 190 ArrayRef<unsigned> ArgNos, 191 uint64_t DereferenceableBytes) { 192 const Function *F = CI->getFunction(); 193 if (!F) 194 return; 195 for (unsigned ArgNo : ArgNos) { 196 uint64_t DerefBytes = DereferenceableBytes; 197 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 198 if (!llvm::NullPointerIsDefined(F, AS)) 199 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 200 ArgNo + AttributeList::FirstArgIndex), 201 DereferenceableBytes); 202 203 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 204 DerefBytes) { 205 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 206 if (!llvm::NullPointerIsDefined(F, AS)) 207 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 208 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 209 CI->getContext(), DerefBytes)); 210 } 211 } 212 } 213 214 //===----------------------------------------------------------------------===// 215 // String and Memory Library Call Optimizations 216 //===----------------------------------------------------------------------===// 217 218 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 219 // Extract some information from the instruction 220 Value *Dst = CI->getArgOperand(0); 221 Value *Src = CI->getArgOperand(1); 222 223 // See if we can get the length of the input string. 224 uint64_t Len = GetStringLength(Src); 225 if (Len == 0) 226 return nullptr; 227 --Len; // Unbias length. 228 229 // Handle the simple, do-nothing case: strcat(x, "") -> x 230 if (Len == 0) 231 return Dst; 232 233 return emitStrLenMemCpy(Src, Dst, Len, B); 234 } 235 236 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 237 IRBuilder<> &B) { 238 // We need to find the end of the destination string. That's where the 239 // memory is to be moved to. We just generate a call to strlen. 240 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 241 if (!DstLen) 242 return nullptr; 243 244 // Now that we have the destination's length, we must index into the 245 // destination's pointer to get the actual memcpy destination (end of 246 // the string .. we're concatenating). 247 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 248 249 // We have enough information to now generate the memcpy call to do the 250 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 251 B.CreateMemCpy(CpyDst, 1, Src, 1, 252 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 253 return Dst; 254 } 255 256 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 257 // Extract some information from the instruction. 258 Value *Dst = CI->getArgOperand(0); 259 Value *Src = CI->getArgOperand(1); 260 uint64_t Len; 261 262 // We don't do anything if length is not constant. 263 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 264 Len = LengthArg->getZExtValue(); 265 else 266 return nullptr; 267 268 // See if we can get the length of the input string. 269 uint64_t SrcLen = GetStringLength(Src); 270 if (SrcLen == 0) 271 return nullptr; 272 --SrcLen; // Unbias length. 273 274 // Handle the simple, do-nothing cases: 275 // strncat(x, "", c) -> x 276 // strncat(x, c, 0) -> x 277 if (SrcLen == 0 || Len == 0) 278 return Dst; 279 280 // We don't optimize this case. 281 if (Len < SrcLen) 282 return nullptr; 283 284 // strncat(x, s, c) -> strcat(x, s) 285 // s is constant so the strcat can be optimized further. 286 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 287 } 288 289 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 290 Function *Callee = CI->getCalledFunction(); 291 FunctionType *FT = Callee->getFunctionType(); 292 Value *SrcStr = CI->getArgOperand(0); 293 294 // If the second operand is non-constant, see if we can compute the length 295 // of the input string and turn this into memchr. 296 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 297 if (!CharC) { 298 uint64_t Len = GetStringLength(SrcStr); 299 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 300 return nullptr; 301 302 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 303 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 304 B, DL, TLI); 305 } 306 307 // Otherwise, the character is a constant, see if the first argument is 308 // a string literal. If so, we can constant fold. 309 StringRef Str; 310 if (!getConstantStringInfo(SrcStr, Str)) { 311 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 312 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 313 "strchr"); 314 return nullptr; 315 } 316 317 // Compute the offset, make sure to handle the case when we're searching for 318 // zero (a weird way to spell strlen). 319 size_t I = (0xFF & CharC->getSExtValue()) == 0 320 ? Str.size() 321 : Str.find(CharC->getSExtValue()); 322 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 323 return Constant::getNullValue(CI->getType()); 324 325 // strchr(s+n,c) -> gep(s+n+i,c) 326 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 327 } 328 329 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 330 Value *SrcStr = CI->getArgOperand(0); 331 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 332 333 // Cannot fold anything if we're not looking for a constant. 334 if (!CharC) 335 return nullptr; 336 337 StringRef Str; 338 if (!getConstantStringInfo(SrcStr, Str)) { 339 // strrchr(s, 0) -> strchr(s, 0) 340 if (CharC->isZero()) 341 return emitStrChr(SrcStr, '\0', B, TLI); 342 return nullptr; 343 } 344 345 // Compute the offset. 346 size_t I = (0xFF & CharC->getSExtValue()) == 0 347 ? Str.size() 348 : Str.rfind(CharC->getSExtValue()); 349 if (I == StringRef::npos) // Didn't find the char. Return null. 350 return Constant::getNullValue(CI->getType()); 351 352 // strrchr(s+n,c) -> gep(s+n+i,c) 353 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 354 } 355 356 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 357 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 358 if (Str1P == Str2P) // strcmp(x,x) -> 0 359 return ConstantInt::get(CI->getType(), 0); 360 361 StringRef Str1, Str2; 362 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 363 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 364 365 // strcmp(x, y) -> cnst (if both x and y are constant strings) 366 if (HasStr1 && HasStr2) 367 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 368 369 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 370 return B.CreateNeg(B.CreateZExt( 371 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 372 373 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 374 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 375 CI->getType()); 376 377 // strcmp(P, "x") -> memcmp(P, "x", 2) 378 uint64_t Len1 = GetStringLength(Str1P); 379 uint64_t Len2 = GetStringLength(Str2P); 380 if (Len1 && Len2) { 381 return emitMemCmp(Str1P, Str2P, 382 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 383 std::min(Len1, Len2)), 384 B, DL, TLI); 385 } 386 387 // strcmp to memcmp 388 if (!HasStr1 && HasStr2) { 389 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 390 return emitMemCmp( 391 Str1P, Str2P, 392 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 393 TLI); 394 } else if (HasStr1 && !HasStr2) { 395 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 396 return emitMemCmp( 397 Str1P, Str2P, 398 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 399 TLI); 400 } 401 402 return nullptr; 403 } 404 405 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 406 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 407 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 408 return ConstantInt::get(CI->getType(), 0); 409 410 // Get the length argument if it is constant. 411 uint64_t Length; 412 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 413 Length = LengthArg->getZExtValue(); 414 else 415 return nullptr; 416 417 if (Length == 0) // strncmp(x,y,0) -> 0 418 return ConstantInt::get(CI->getType(), 0); 419 420 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 421 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 422 423 StringRef Str1, Str2; 424 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 425 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 426 427 // strncmp(x, y) -> cnst (if both x and y are constant strings) 428 if (HasStr1 && HasStr2) { 429 StringRef SubStr1 = Str1.substr(0, Length); 430 StringRef SubStr2 = Str2.substr(0, Length); 431 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 432 } 433 434 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 435 return B.CreateNeg(B.CreateZExt( 436 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 437 438 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 439 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 440 CI->getType()); 441 442 uint64_t Len1 = GetStringLength(Str1P); 443 uint64_t Len2 = GetStringLength(Str2P); 444 445 // strncmp to memcmp 446 if (!HasStr1 && HasStr2) { 447 Len2 = std::min(Len2, Length); 448 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 449 return emitMemCmp( 450 Str1P, Str2P, 451 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 452 TLI); 453 } else if (HasStr1 && !HasStr2) { 454 Len1 = std::min(Len1, Length); 455 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 456 return emitMemCmp( 457 Str1P, Str2P, 458 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 459 TLI); 460 } 461 462 return nullptr; 463 } 464 465 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 466 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 467 if (Dst == Src) // strcpy(x,x) -> x 468 return Src; 469 470 // See if we can get the length of the input string. 471 uint64_t Len = GetStringLength(Src); 472 if (Len == 0) 473 return nullptr; 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, 478 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 479 return Dst; 480 } 481 482 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 483 Function *Callee = CI->getCalledFunction(); 484 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 485 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 486 Value *StrLen = emitStrLen(Src, B, DL, TLI); 487 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 488 } 489 490 // See if we can get the length of the input string. 491 uint64_t Len = GetStringLength(Src); 492 if (Len == 0) 493 return nullptr; 494 495 Type *PT = Callee->getFunctionType()->getParamType(0); 496 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 497 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 498 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 499 500 // We have enough information to now generate the memcpy call to do the 501 // copy for us. Make a memcpy to copy the nul byte with align = 1. 502 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 503 return DstEnd; 504 } 505 506 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 507 Function *Callee = CI->getCalledFunction(); 508 Value *Dst = CI->getArgOperand(0); 509 Value *Src = CI->getArgOperand(1); 510 Value *LenOp = CI->getArgOperand(2); 511 512 // See if we can get the length of the input string. 513 uint64_t SrcLen = GetStringLength(Src); 514 if (SrcLen == 0) 515 return nullptr; 516 --SrcLen; 517 518 if (SrcLen == 0) { 519 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 520 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 521 return Dst; 522 } 523 524 uint64_t Len; 525 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 526 Len = LengthArg->getZExtValue(); 527 else 528 return nullptr; 529 530 if (Len == 0) 531 return Dst; // strncpy(x, y, 0) -> x 532 533 // Let strncpy handle the zero padding 534 if (Len > SrcLen + 1) 535 return nullptr; 536 537 Type *PT = Callee->getFunctionType()->getParamType(0); 538 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 539 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 540 541 return Dst; 542 } 543 544 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 545 unsigned CharSize) { 546 Value *Src = CI->getArgOperand(0); 547 548 // Constant folding: strlen("xyz") -> 3 549 if (uint64_t Len = GetStringLength(Src, CharSize)) 550 return ConstantInt::get(CI->getType(), Len - 1); 551 552 // If s is a constant pointer pointing to a string literal, we can fold 553 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 554 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 555 // We only try to simplify strlen when the pointer s points to an array 556 // of i8. Otherwise, we would need to scale the offset x before doing the 557 // subtraction. This will make the optimization more complex, and it's not 558 // very useful because calling strlen for a pointer of other types is 559 // very uncommon. 560 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 561 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 562 return nullptr; 563 564 ConstantDataArraySlice Slice; 565 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 566 uint64_t NullTermIdx; 567 if (Slice.Array == nullptr) { 568 NullTermIdx = 0; 569 } else { 570 NullTermIdx = ~((uint64_t)0); 571 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 572 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 573 NullTermIdx = I; 574 break; 575 } 576 } 577 // If the string does not have '\0', leave it to strlen to compute 578 // its length. 579 if (NullTermIdx == ~((uint64_t)0)) 580 return nullptr; 581 } 582 583 Value *Offset = GEP->getOperand(2); 584 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 585 Known.Zero.flipAllBits(); 586 uint64_t ArrSize = 587 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 588 589 // KnownZero's bits are flipped, so zeros in KnownZero now represent 590 // bits known to be zeros in Offset, and ones in KnowZero represent 591 // bits unknown in Offset. Therefore, Offset is known to be in range 592 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 593 // unsigned-less-than NullTermIdx. 594 // 595 // If Offset is not provably in the range [0, NullTermIdx], we can still 596 // optimize if we can prove that the program has undefined behavior when 597 // Offset is outside that range. That is the case when GEP->getOperand(0) 598 // is a pointer to an object whose memory extent is NullTermIdx+1. 599 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 600 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 601 NullTermIdx == ArrSize - 1)) { 602 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 603 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 604 Offset); 605 } 606 } 607 608 return nullptr; 609 } 610 611 // strlen(x?"foo":"bars") --> x ? 3 : 4 612 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 613 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 614 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 615 if (LenTrue && LenFalse) { 616 ORE.emit([&]() { 617 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 618 << "folded strlen(select) to select of constants"; 619 }); 620 return B.CreateSelect(SI->getCondition(), 621 ConstantInt::get(CI->getType(), LenTrue - 1), 622 ConstantInt::get(CI->getType(), LenFalse - 1)); 623 } 624 } 625 626 // strlen(x) != 0 --> *x != 0 627 // strlen(x) == 0 --> *x == 0 628 if (isOnlyUsedInZeroEqualityComparison(CI)) 629 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 630 CI->getType()); 631 632 return nullptr; 633 } 634 635 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 636 return optimizeStringLength(CI, B, 8); 637 } 638 639 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 640 Module &M = *CI->getModule(); 641 unsigned WCharSize = TLI->getWCharSize(M) * 8; 642 // We cannot perform this optimization without wchar_size metadata. 643 if (WCharSize == 0) 644 return nullptr; 645 646 return optimizeStringLength(CI, B, WCharSize); 647 } 648 649 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 650 StringRef S1, S2; 651 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 652 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 653 654 // strpbrk(s, "") -> nullptr 655 // strpbrk("", s) -> nullptr 656 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 657 return Constant::getNullValue(CI->getType()); 658 659 // Constant folding. 660 if (HasS1 && HasS2) { 661 size_t I = S1.find_first_of(S2); 662 if (I == StringRef::npos) // No match. 663 return Constant::getNullValue(CI->getType()); 664 665 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 666 "strpbrk"); 667 } 668 669 // strpbrk(s, "a") -> strchr(s, 'a') 670 if (HasS2 && S2.size() == 1) 671 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 672 673 return nullptr; 674 } 675 676 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 677 Value *EndPtr = CI->getArgOperand(1); 678 if (isa<ConstantPointerNull>(EndPtr)) { 679 // With a null EndPtr, this function won't capture the main argument. 680 // It would be readonly too, except that it still may write to errno. 681 CI->addParamAttr(0, Attribute::NoCapture); 682 } 683 684 return nullptr; 685 } 686 687 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 688 StringRef S1, S2; 689 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 690 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 691 692 // strspn(s, "") -> 0 693 // strspn("", s) -> 0 694 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 695 return Constant::getNullValue(CI->getType()); 696 697 // Constant folding. 698 if (HasS1 && HasS2) { 699 size_t Pos = S1.find_first_not_of(S2); 700 if (Pos == StringRef::npos) 701 Pos = S1.size(); 702 return ConstantInt::get(CI->getType(), Pos); 703 } 704 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 709 StringRef S1, S2; 710 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 711 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 712 713 // strcspn("", s) -> 0 714 if (HasS1 && S1.empty()) 715 return Constant::getNullValue(CI->getType()); 716 717 // Constant folding. 718 if (HasS1 && HasS2) { 719 size_t Pos = S1.find_first_of(S2); 720 if (Pos == StringRef::npos) 721 Pos = S1.size(); 722 return ConstantInt::get(CI->getType(), Pos); 723 } 724 725 // strcspn(s, "") -> strlen(s) 726 if (HasS2 && S2.empty()) 727 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 728 729 return nullptr; 730 } 731 732 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 733 // fold strstr(x, x) -> x. 734 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 735 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 736 737 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 738 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 739 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 740 if (!StrLen) 741 return nullptr; 742 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 743 StrLen, B, DL, TLI); 744 if (!StrNCmp) 745 return nullptr; 746 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 747 ICmpInst *Old = cast<ICmpInst>(*UI++); 748 Value *Cmp = 749 B.CreateICmp(Old->getPredicate(), StrNCmp, 750 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 751 replaceAllUsesWith(Old, Cmp); 752 } 753 return CI; 754 } 755 756 // See if either input string is a constant string. 757 StringRef SearchStr, ToFindStr; 758 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 759 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 760 761 // fold strstr(x, "") -> x. 762 if (HasStr2 && ToFindStr.empty()) 763 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 764 765 // If both strings are known, constant fold it. 766 if (HasStr1 && HasStr2) { 767 size_t Offset = SearchStr.find(ToFindStr); 768 769 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 770 return Constant::getNullValue(CI->getType()); 771 772 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 773 Value *Result = castToCStr(CI->getArgOperand(0), B); 774 Result = 775 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 776 return B.CreateBitCast(Result, CI->getType()); 777 } 778 779 // fold strstr(x, "y") -> strchr(x, 'y'). 780 if (HasStr2 && ToFindStr.size() == 1) { 781 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 782 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 783 } 784 return nullptr; 785 } 786 787 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 788 Value *SrcStr = CI->getArgOperand(0); 789 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 790 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 791 792 // memchr(x, y, 0) -> null 793 if (LenC) { 794 if (LenC->isZero()) 795 return Constant::getNullValue(CI->getType()); 796 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 797 } 798 // From now on we need at least constant length and string. 799 StringRef Str; 800 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 801 return nullptr; 802 803 // Truncate the string to LenC. If Str is smaller than LenC we will still only 804 // scan the string, as reading past the end of it is undefined and we can just 805 // return null if we don't find the char. 806 Str = Str.substr(0, LenC->getZExtValue()); 807 808 // If the char is variable but the input str and length are not we can turn 809 // this memchr call into a simple bit field test. Of course this only works 810 // when the return value is only checked against null. 811 // 812 // It would be really nice to reuse switch lowering here but we can't change 813 // the CFG at this point. 814 // 815 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 816 // != 0 817 // after bounds check. 818 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 819 unsigned char Max = 820 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 821 reinterpret_cast<const unsigned char *>(Str.end())); 822 823 // Make sure the bit field we're about to create fits in a register on the 824 // target. 825 // FIXME: On a 64 bit architecture this prevents us from using the 826 // interesting range of alpha ascii chars. We could do better by emitting 827 // two bitfields or shifting the range by 64 if no lower chars are used. 828 if (!DL.fitsInLegalInteger(Max + 1)) 829 return nullptr; 830 831 // For the bit field use a power-of-2 type with at least 8 bits to avoid 832 // creating unnecessary illegal types. 833 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 834 835 // Now build the bit field. 836 APInt Bitfield(Width, 0); 837 for (char C : Str) 838 Bitfield.setBit((unsigned char)C); 839 Value *BitfieldC = B.getInt(Bitfield); 840 841 // Adjust width of "C" to the bitfield width, then mask off the high bits. 842 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 843 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 844 845 // First check that the bit field access is within bounds. 846 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 847 "memchr.bounds"); 848 849 // Create code that checks if the given bit is set in the field. 850 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 851 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 852 853 // Finally merge both checks and cast to pointer type. The inttoptr 854 // implicitly zexts the i1 to intptr type. 855 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 856 } 857 858 // Check if all arguments are constants. If so, we can constant fold. 859 if (!CharC) 860 return nullptr; 861 862 // Compute the offset. 863 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 864 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 865 return Constant::getNullValue(CI->getType()); 866 867 // memchr(s+n,c,l) -> gep(s+n+i,c) 868 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 869 } 870 871 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 872 uint64_t Len, IRBuilder<> &B, 873 const DataLayout &DL) { 874 if (Len == 0) // memcmp(s1,s2,0) -> 0 875 return Constant::getNullValue(CI->getType()); 876 877 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 878 if (Len == 1) { 879 Value *LHSV = 880 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 881 CI->getType(), "lhsv"); 882 Value *RHSV = 883 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 884 CI->getType(), "rhsv"); 885 return B.CreateSub(LHSV, RHSV, "chardiff"); 886 } 887 888 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 889 // TODO: The case where both inputs are constants does not need to be limited 890 // to legal integers or equality comparison. See block below this. 891 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 892 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 893 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 894 895 // First, see if we can fold either argument to a constant. 896 Value *LHSV = nullptr; 897 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 898 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 899 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 900 } 901 Value *RHSV = nullptr; 902 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 903 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 904 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 905 } 906 907 // Don't generate unaligned loads. If either source is constant data, 908 // alignment doesn't matter for that source because there is no load. 909 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 910 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 911 if (!LHSV) { 912 Type *LHSPtrTy = 913 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 914 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 915 } 916 if (!RHSV) { 917 Type *RHSPtrTy = 918 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 919 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 920 } 921 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 922 } 923 } 924 925 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 926 // TODO: This is limited to i8 arrays. 927 StringRef LHSStr, RHSStr; 928 if (getConstantStringInfo(LHS, LHSStr) && 929 getConstantStringInfo(RHS, RHSStr)) { 930 // Make sure we're not reading out-of-bounds memory. 931 if (Len > LHSStr.size() || Len > RHSStr.size()) 932 return nullptr; 933 // Fold the memcmp and normalize the result. This way we get consistent 934 // results across multiple platforms. 935 uint64_t Ret = 0; 936 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 937 if (Cmp < 0) 938 Ret = -1; 939 else if (Cmp > 0) 940 Ret = 1; 941 return ConstantInt::get(CI->getType(), Ret); 942 } 943 return nullptr; 944 } 945 946 // Most simplifications for memcmp also apply to bcmp. 947 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 948 IRBuilder<> &B) { 949 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 950 Value *Size = CI->getArgOperand(2); 951 952 if (LHS == RHS) // memcmp(s,s,x) -> 0 953 return Constant::getNullValue(CI->getType()); 954 955 // Handle constant lengths. 956 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 957 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 958 LenC->getZExtValue(), B, DL)) 959 return Res; 960 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 961 } 962 963 return nullptr; 964 } 965 966 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 967 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 968 return V; 969 970 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 971 // bcmp can be more efficient than memcmp because it only has to know that 972 // there is a difference, not how different one is to the other. 973 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 974 Value *LHS = CI->getArgOperand(0); 975 Value *RHS = CI->getArgOperand(1); 976 Value *Size = CI->getArgOperand(2); 977 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 978 } 979 980 return nullptr; 981 } 982 983 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 984 return optimizeMemCmpBCmpCommon(CI, B); 985 } 986 987 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B, 988 bool isIntrinsic) { 989 Value *Size = CI->getArgOperand(2); 990 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 991 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 992 993 if (isIntrinsic) 994 return nullptr; 995 996 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 997 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 998 return CI->getArgOperand(0); 999 } 1000 1001 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) { 1002 Value *Dst = CI->getArgOperand(0); 1003 Value *N = CI->getArgOperand(2); 1004 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1005 CallInst *NewCI = B.CreateMemCpy(Dst, 1, CI->getArgOperand(1), 1, N); 1006 NewCI->setAttributes(CI->getAttributes()); 1007 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1008 } 1009 1010 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B, bool isIntrinsic) { 1011 Value *Size = CI->getArgOperand(2); 1012 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1013 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 1014 1015 if (isIntrinsic) 1016 return nullptr; 1017 1018 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1019 B.CreateMemMove( CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 1020 return CI->getArgOperand(0); 1021 } 1022 1023 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1024 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 1025 // This has to be a memset of zeros (bzero). 1026 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1027 if (!FillValue || FillValue->getZExtValue() != 0) 1028 return nullptr; 1029 1030 // TODO: We should handle the case where the malloc has more than one use. 1031 // This is necessary to optimize common patterns such as when the result of 1032 // the malloc is checked against null or when a memset intrinsic is used in 1033 // place of a memset library call. 1034 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1035 if (!Malloc || !Malloc->hasOneUse()) 1036 return nullptr; 1037 1038 // Is the inner call really malloc()? 1039 Function *InnerCallee = Malloc->getCalledFunction(); 1040 if (!InnerCallee) 1041 return nullptr; 1042 1043 LibFunc Func; 1044 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1045 Func != LibFunc_malloc) 1046 return nullptr; 1047 1048 // The memset must cover the same number of bytes that are malloc'd. 1049 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1050 return nullptr; 1051 1052 // Replace the malloc with a calloc. We need the data layout to know what the 1053 // actual size of a 'size_t' parameter is. 1054 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1055 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1056 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1057 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1058 Malloc->getArgOperand(0), 1059 Malloc->getAttributes(), B, *TLI)) { 1060 substituteInParent(Malloc, Calloc); 1061 return Calloc; 1062 } 1063 1064 return nullptr; 1065 } 1066 1067 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B, 1068 bool isIntrinsic) { 1069 Value *Size = CI->getArgOperand(2); 1070 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1071 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 1072 1073 if (isIntrinsic) 1074 return nullptr; 1075 1076 if (auto *Calloc = foldMallocMemset(CI, B)) 1077 return Calloc; 1078 1079 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1080 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1081 B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1); 1082 return CI->getArgOperand(0); 1083 } 1084 1085 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1086 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1087 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1088 1089 return nullptr; 1090 } 1091 1092 //===----------------------------------------------------------------------===// 1093 // Math Library Optimizations 1094 //===----------------------------------------------------------------------===// 1095 1096 // Replace a libcall \p CI with a call to intrinsic \p IID 1097 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1098 // Propagate fast-math flags from the existing call to the new call. 1099 IRBuilder<>::FastMathFlagGuard Guard(B); 1100 B.setFastMathFlags(CI->getFastMathFlags()); 1101 1102 Module *M = CI->getModule(); 1103 Value *V = CI->getArgOperand(0); 1104 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1105 CallInst *NewCall = B.CreateCall(F, V); 1106 NewCall->takeName(CI); 1107 return NewCall; 1108 } 1109 1110 /// Return a variant of Val with float type. 1111 /// Currently this works in two cases: If Val is an FPExtension of a float 1112 /// value to something bigger, simply return the operand. 1113 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1114 /// loss of precision do so. 1115 static Value *valueHasFloatPrecision(Value *Val) { 1116 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1117 Value *Op = Cast->getOperand(0); 1118 if (Op->getType()->isFloatTy()) 1119 return Op; 1120 } 1121 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1122 APFloat F = Const->getValueAPF(); 1123 bool losesInfo; 1124 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1125 &losesInfo); 1126 if (!losesInfo) 1127 return ConstantFP::get(Const->getContext(), F); 1128 } 1129 return nullptr; 1130 } 1131 1132 /// Shrink double -> float functions. 1133 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1134 bool isBinary, bool isPrecise = false) { 1135 Function *CalleeFn = CI->getCalledFunction(); 1136 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1137 return nullptr; 1138 1139 // If not all the uses of the function are converted to float, then bail out. 1140 // This matters if the precision of the result is more important than the 1141 // precision of the arguments. 1142 if (isPrecise) 1143 for (User *U : CI->users()) { 1144 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1145 if (!Cast || !Cast->getType()->isFloatTy()) 1146 return nullptr; 1147 } 1148 1149 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1150 Value *V[2]; 1151 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1152 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1153 if (!V[0] || (isBinary && !V[1])) 1154 return nullptr; 1155 1156 StringRef CalleeNm = CalleeFn->getName(); 1157 AttributeList CalleeAt = CalleeFn->getAttributes(); 1158 bool CalleeIn = CalleeFn->isIntrinsic(); 1159 1160 // If call isn't an intrinsic, check that it isn't within a function with the 1161 // same name as the float version of this call, otherwise the result is an 1162 // infinite loop. For example, from MinGW-w64: 1163 // 1164 // float expf(float val) { return (float) exp((double) val); } 1165 if (!CalleeIn) { 1166 const Function *Fn = CI->getFunction(); 1167 StringRef FnName = Fn->getName(); 1168 if (FnName.back() == 'f' && 1169 FnName.size() == (CalleeNm.size() + 1) && 1170 FnName.startswith(CalleeNm)) 1171 return nullptr; 1172 } 1173 1174 // Propagate the math semantics from the current function to the new function. 1175 IRBuilder<>::FastMathFlagGuard Guard(B); 1176 B.setFastMathFlags(CI->getFastMathFlags()); 1177 1178 // g((double) float) -> (double) gf(float) 1179 Value *R; 1180 if (CalleeIn) { 1181 Module *M = CI->getModule(); 1182 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1183 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1184 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1185 } 1186 else 1187 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1188 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1189 1190 return B.CreateFPExt(R, B.getDoubleTy()); 1191 } 1192 1193 /// Shrink double -> float for unary functions. 1194 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1195 bool isPrecise = false) { 1196 return optimizeDoubleFP(CI, B, false, isPrecise); 1197 } 1198 1199 /// Shrink double -> float for binary functions. 1200 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1201 bool isPrecise = false) { 1202 return optimizeDoubleFP(CI, B, true, isPrecise); 1203 } 1204 1205 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1206 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1207 if (!CI->isFast()) 1208 return nullptr; 1209 1210 // Propagate fast-math flags from the existing call to new instructions. 1211 IRBuilder<>::FastMathFlagGuard Guard(B); 1212 B.setFastMathFlags(CI->getFastMathFlags()); 1213 1214 Value *Real, *Imag; 1215 if (CI->getNumArgOperands() == 1) { 1216 Value *Op = CI->getArgOperand(0); 1217 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1218 Real = B.CreateExtractValue(Op, 0, "real"); 1219 Imag = B.CreateExtractValue(Op, 1, "imag"); 1220 } else { 1221 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1222 Real = CI->getArgOperand(0); 1223 Imag = CI->getArgOperand(1); 1224 } 1225 1226 Value *RealReal = B.CreateFMul(Real, Real); 1227 Value *ImagImag = B.CreateFMul(Imag, Imag); 1228 1229 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1230 CI->getType()); 1231 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1232 } 1233 1234 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1235 IRBuilder<> &B) { 1236 if (!isa<FPMathOperator>(Call)) 1237 return nullptr; 1238 1239 IRBuilder<>::FastMathFlagGuard Guard(B); 1240 B.setFastMathFlags(Call->getFastMathFlags()); 1241 1242 // TODO: Can this be shared to also handle LLVM intrinsics? 1243 Value *X; 1244 switch (Func) { 1245 case LibFunc_sin: 1246 case LibFunc_sinf: 1247 case LibFunc_sinl: 1248 case LibFunc_tan: 1249 case LibFunc_tanf: 1250 case LibFunc_tanl: 1251 // sin(-X) --> -sin(X) 1252 // tan(-X) --> -tan(X) 1253 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1254 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1255 break; 1256 case LibFunc_cos: 1257 case LibFunc_cosf: 1258 case LibFunc_cosl: 1259 // cos(-X) --> cos(X) 1260 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1261 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1262 break; 1263 default: 1264 break; 1265 } 1266 return nullptr; 1267 } 1268 1269 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1270 // Multiplications calculated using Addition Chains. 1271 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1272 1273 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1274 1275 if (InnerChain[Exp]) 1276 return InnerChain[Exp]; 1277 1278 static const unsigned AddChain[33][2] = { 1279 {0, 0}, // Unused. 1280 {0, 0}, // Unused (base case = pow1). 1281 {1, 1}, // Unused (pre-computed). 1282 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1283 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1284 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1285 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1286 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1287 }; 1288 1289 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1290 getPow(InnerChain, AddChain[Exp][1], B)); 1291 return InnerChain[Exp]; 1292 } 1293 1294 // Return a properly extended 32-bit integer if the operation is an itofp. 1295 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) { 1296 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1297 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1298 // Make sure that the exponent fits inside an int32_t, 1299 // thus avoiding any range issues that FP has not. 1300 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1301 if (BitWidth < 32 || 1302 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1303 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1304 : B.CreateZExt(Op, B.getInt32Ty()); 1305 } 1306 1307 return nullptr; 1308 } 1309 1310 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1311 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1312 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1313 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1314 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1315 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1316 Module *Mod = Pow->getModule(); 1317 Type *Ty = Pow->getType(); 1318 bool Ignored; 1319 1320 // Evaluate special cases related to a nested function as the base. 1321 1322 // pow(exp(x), y) -> exp(x * y) 1323 // pow(exp2(x), y) -> exp2(x * y) 1324 // If exp{,2}() is used only once, it is better to fold two transcendental 1325 // math functions into one. If used again, exp{,2}() would still have to be 1326 // called with the original argument, then keep both original transcendental 1327 // functions. However, this transformation is only safe with fully relaxed 1328 // math semantics, since, besides rounding differences, it changes overflow 1329 // and underflow behavior quite dramatically. For example: 1330 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1331 // Whereas: 1332 // exp(1000 * 0.001) = exp(1) 1333 // TODO: Loosen the requirement for fully relaxed math semantics. 1334 // TODO: Handle exp10() when more targets have it available. 1335 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1336 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1337 LibFunc LibFn; 1338 1339 Function *CalleeFn = BaseFn->getCalledFunction(); 1340 if (CalleeFn && 1341 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1342 StringRef ExpName; 1343 Intrinsic::ID ID; 1344 Value *ExpFn; 1345 LibFunc LibFnFloat; 1346 LibFunc LibFnDouble; 1347 LibFunc LibFnLongDouble; 1348 1349 switch (LibFn) { 1350 default: 1351 return nullptr; 1352 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1353 ExpName = TLI->getName(LibFunc_exp); 1354 ID = Intrinsic::exp; 1355 LibFnFloat = LibFunc_expf; 1356 LibFnDouble = LibFunc_exp; 1357 LibFnLongDouble = LibFunc_expl; 1358 break; 1359 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1360 ExpName = TLI->getName(LibFunc_exp2); 1361 ID = Intrinsic::exp2; 1362 LibFnFloat = LibFunc_exp2f; 1363 LibFnDouble = LibFunc_exp2; 1364 LibFnLongDouble = LibFunc_exp2l; 1365 break; 1366 } 1367 1368 // Create new exp{,2}() with the product as its argument. 1369 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1370 ExpFn = BaseFn->doesNotAccessMemory() 1371 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1372 FMul, ExpName) 1373 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1374 LibFnLongDouble, B, 1375 BaseFn->getAttributes()); 1376 1377 // Since the new exp{,2}() is different from the original one, dead code 1378 // elimination cannot be trusted to remove it, since it may have side 1379 // effects (e.g., errno). When the only consumer for the original 1380 // exp{,2}() is pow(), then it has to be explicitly erased. 1381 substituteInParent(BaseFn, ExpFn); 1382 return ExpFn; 1383 } 1384 } 1385 1386 // Evaluate special cases related to a constant base. 1387 1388 const APFloat *BaseF; 1389 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1390 return nullptr; 1391 1392 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1393 if (match(Base, m_SpecificFP(2.0)) && 1394 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1395 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1396 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1397 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1398 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1399 B, Attrs); 1400 } 1401 1402 // pow(2.0 ** n, x) -> exp2(n * x) 1403 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1404 APFloat BaseR = APFloat(1.0); 1405 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1406 BaseR = BaseR / *BaseF; 1407 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1408 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1409 APSInt NI(64, false); 1410 if ((IsInteger || IsReciprocal) && 1411 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1412 APFloat::opOK && 1413 NI > 1 && NI.isPowerOf2()) { 1414 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1415 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1416 if (Pow->doesNotAccessMemory()) 1417 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1418 FMul, "exp2"); 1419 else 1420 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1421 LibFunc_exp2l, B, Attrs); 1422 } 1423 } 1424 1425 // pow(10.0, x) -> exp10(x) 1426 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1427 if (match(Base, m_SpecificFP(10.0)) && 1428 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1429 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1430 LibFunc_exp10l, B, Attrs); 1431 1432 // pow(n, x) -> exp2(log2(n) * x) 1433 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() && 1434 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) { 1435 Value *Log = nullptr; 1436 if (Ty->isFloatTy()) 1437 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1438 else if (Ty->isDoubleTy()) 1439 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1440 1441 if (Log) { 1442 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1443 if (Pow->doesNotAccessMemory()) 1444 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1445 FMul, "exp2"); 1446 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1447 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1448 LibFunc_exp2l, B, Attrs); 1449 } 1450 } 1451 1452 return nullptr; 1453 } 1454 1455 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1456 Module *M, IRBuilder<> &B, 1457 const TargetLibraryInfo *TLI) { 1458 // If errno is never set, then use the intrinsic for sqrt(). 1459 if (NoErrno) { 1460 Function *SqrtFn = 1461 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1462 return B.CreateCall(SqrtFn, V, "sqrt"); 1463 } 1464 1465 // Otherwise, use the libcall for sqrt(). 1466 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1467 // TODO: We also should check that the target can in fact lower the sqrt() 1468 // libcall. We currently have no way to ask this question, so we ask if 1469 // the target has a sqrt() libcall, which is not exactly the same. 1470 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1471 LibFunc_sqrtl, B, Attrs); 1472 1473 return nullptr; 1474 } 1475 1476 /// Use square root in place of pow(x, +/-0.5). 1477 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1478 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1479 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1480 Module *Mod = Pow->getModule(); 1481 Type *Ty = Pow->getType(); 1482 1483 const APFloat *ExpoF; 1484 if (!match(Expo, m_APFloat(ExpoF)) || 1485 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1486 return nullptr; 1487 1488 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1489 if (!Sqrt) 1490 return nullptr; 1491 1492 // Handle signed zero base by expanding to fabs(sqrt(x)). 1493 if (!Pow->hasNoSignedZeros()) { 1494 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1495 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1496 } 1497 1498 // Handle non finite base by expanding to 1499 // (x == -infinity ? +infinity : sqrt(x)). 1500 if (!Pow->hasNoInfs()) { 1501 Value *PosInf = ConstantFP::getInfinity(Ty), 1502 *NegInf = ConstantFP::getInfinity(Ty, true); 1503 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1504 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1505 } 1506 1507 // If the exponent is negative, then get the reciprocal. 1508 if (ExpoF->isNegative()) 1509 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1510 1511 return Sqrt; 1512 } 1513 1514 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1515 IRBuilder<> &B) { 1516 Value *Args[] = {Base, Expo}; 1517 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1518 return B.CreateCall(F, Args); 1519 } 1520 1521 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1522 Value *Base = Pow->getArgOperand(0); 1523 Value *Expo = Pow->getArgOperand(1); 1524 Function *Callee = Pow->getCalledFunction(); 1525 StringRef Name = Callee->getName(); 1526 Type *Ty = Pow->getType(); 1527 Module *M = Pow->getModule(); 1528 Value *Shrunk = nullptr; 1529 bool AllowApprox = Pow->hasApproxFunc(); 1530 bool Ignored; 1531 1532 // Bail out if simplifying libcalls to pow() is disabled. 1533 if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1534 return nullptr; 1535 1536 // Propagate the math semantics from the call to any created instructions. 1537 IRBuilder<>::FastMathFlagGuard Guard(B); 1538 B.setFastMathFlags(Pow->getFastMathFlags()); 1539 1540 // Shrink pow() to powf() if the arguments are single precision, 1541 // unless the result is expected to be double precision. 1542 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1543 hasFloatVersion(Name)) 1544 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1545 1546 // Evaluate special cases related to the base. 1547 1548 // pow(1.0, x) -> 1.0 1549 if (match(Base, m_FPOne())) 1550 return Base; 1551 1552 if (Value *Exp = replacePowWithExp(Pow, B)) 1553 return Exp; 1554 1555 // Evaluate special cases related to the exponent. 1556 1557 // pow(x, -1.0) -> 1.0 / x 1558 if (match(Expo, m_SpecificFP(-1.0))) 1559 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1560 1561 // pow(x, +/-0.0) -> 1.0 1562 if (match(Expo, m_AnyZeroFP())) 1563 return ConstantFP::get(Ty, 1.0); 1564 1565 // pow(x, 1.0) -> x 1566 if (match(Expo, m_FPOne())) 1567 return Base; 1568 1569 // pow(x, 2.0) -> x * x 1570 if (match(Expo, m_SpecificFP(2.0))) 1571 return B.CreateFMul(Base, Base, "square"); 1572 1573 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1574 return Sqrt; 1575 1576 // pow(x, n) -> x * x * x * ... 1577 const APFloat *ExpoF; 1578 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1579 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1580 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1581 // additional fmul. 1582 // TODO: This whole transformation should be backend specific (e.g. some 1583 // backends might prefer libcalls or the limit for the exponent might 1584 // be different) and it should also consider optimizing for size. 1585 APFloat LimF(ExpoF->getSemantics(), 33.0), 1586 ExpoA(abs(*ExpoF)); 1587 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1588 // This transformation applies to integer or integer+0.5 exponents only. 1589 // For integer+0.5, we create a sqrt(Base) call. 1590 Value *Sqrt = nullptr; 1591 if (!ExpoA.isInteger()) { 1592 APFloat Expo2 = ExpoA; 1593 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1594 // is no floating point exception and the result is an integer, then 1595 // ExpoA == integer + 0.5 1596 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1597 return nullptr; 1598 1599 if (!Expo2.isInteger()) 1600 return nullptr; 1601 1602 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1603 Pow->doesNotAccessMemory(), M, B, TLI); 1604 } 1605 1606 // We will memoize intermediate products of the Addition Chain. 1607 Value *InnerChain[33] = {nullptr}; 1608 InnerChain[1] = Base; 1609 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1610 1611 // We cannot readily convert a non-double type (like float) to a double. 1612 // So we first convert it to something which could be converted to double. 1613 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1614 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1615 1616 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1617 if (Sqrt) 1618 FMul = B.CreateFMul(FMul, Sqrt); 1619 1620 // If the exponent is negative, then get the reciprocal. 1621 if (ExpoF->isNegative()) 1622 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1623 1624 return FMul; 1625 } 1626 1627 APSInt IntExpo(32, /*isUnsigned=*/false); 1628 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1629 if (ExpoF->isInteger() && 1630 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1631 APFloat::opOK) { 1632 return createPowWithIntegerExponent( 1633 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1634 } 1635 } 1636 1637 // powf(x, itofp(y)) -> powi(x, y) 1638 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1639 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1640 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1641 } 1642 1643 return Shrunk; 1644 } 1645 1646 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1647 Function *Callee = CI->getCalledFunction(); 1648 StringRef Name = Callee->getName(); 1649 Value *Ret = nullptr; 1650 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1651 hasFloatVersion(Name)) 1652 Ret = optimizeUnaryDoubleFP(CI, B, true); 1653 1654 Type *Ty = CI->getType(); 1655 Value *Op = CI->getArgOperand(0); 1656 1657 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1658 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1659 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1660 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1661 if (Value *Exp = getIntToFPVal(Op, B)) 1662 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1663 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1664 B, CI->getCalledFunction()->getAttributes()); 1665 } 1666 1667 return Ret; 1668 } 1669 1670 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1671 // If we can shrink the call to a float function rather than a double 1672 // function, do that first. 1673 Function *Callee = CI->getCalledFunction(); 1674 StringRef Name = Callee->getName(); 1675 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1676 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1677 return Ret; 1678 1679 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1680 // the intrinsics for improved optimization (for example, vectorization). 1681 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1682 // From the C standard draft WG14/N1256: 1683 // "Ideally, fmax would be sensitive to the sign of zero, for example 1684 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1685 // might be impractical." 1686 IRBuilder<>::FastMathFlagGuard Guard(B); 1687 FastMathFlags FMF = CI->getFastMathFlags(); 1688 FMF.setNoSignedZeros(); 1689 B.setFastMathFlags(FMF); 1690 1691 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1692 : Intrinsic::maxnum; 1693 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1694 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1695 } 1696 1697 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1698 Function *Callee = CI->getCalledFunction(); 1699 Value *Ret = nullptr; 1700 StringRef Name = Callee->getName(); 1701 if (UnsafeFPShrink && hasFloatVersion(Name)) 1702 Ret = optimizeUnaryDoubleFP(CI, B, true); 1703 1704 if (!CI->isFast()) 1705 return Ret; 1706 Value *Op1 = CI->getArgOperand(0); 1707 auto *OpC = dyn_cast<CallInst>(Op1); 1708 1709 // The earlier call must also be 'fast' in order to do these transforms. 1710 if (!OpC || !OpC->isFast()) 1711 return Ret; 1712 1713 // log(pow(x,y)) -> y*log(x) 1714 // This is only applicable to log, log2, log10. 1715 if (Name != "log" && Name != "log2" && Name != "log10") 1716 return Ret; 1717 1718 IRBuilder<>::FastMathFlagGuard Guard(B); 1719 FastMathFlags FMF; 1720 FMF.setFast(); 1721 B.setFastMathFlags(FMF); 1722 1723 LibFunc Func; 1724 Function *F = OpC->getCalledFunction(); 1725 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1726 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1727 return B.CreateFMul(OpC->getArgOperand(1), 1728 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1729 Callee->getAttributes()), "mul"); 1730 1731 // log(exp2(y)) -> y*log(2) 1732 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1733 TLI->has(Func) && Func == LibFunc_exp2) 1734 return B.CreateFMul( 1735 OpC->getArgOperand(0), 1736 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1737 Callee->getName(), B, Callee->getAttributes()), 1738 "logmul"); 1739 return Ret; 1740 } 1741 1742 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1743 Function *Callee = CI->getCalledFunction(); 1744 Value *Ret = nullptr; 1745 // TODO: Once we have a way (other than checking for the existince of the 1746 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1747 // condition below. 1748 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1749 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1750 Ret = optimizeUnaryDoubleFP(CI, B, true); 1751 1752 if (!CI->isFast()) 1753 return Ret; 1754 1755 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1756 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1757 return Ret; 1758 1759 // We're looking for a repeated factor in a multiplication tree, 1760 // so we can do this fold: sqrt(x * x) -> fabs(x); 1761 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1762 Value *Op0 = I->getOperand(0); 1763 Value *Op1 = I->getOperand(1); 1764 Value *RepeatOp = nullptr; 1765 Value *OtherOp = nullptr; 1766 if (Op0 == Op1) { 1767 // Simple match: the operands of the multiply are identical. 1768 RepeatOp = Op0; 1769 } else { 1770 // Look for a more complicated pattern: one of the operands is itself 1771 // a multiply, so search for a common factor in that multiply. 1772 // Note: We don't bother looking any deeper than this first level or for 1773 // variations of this pattern because instcombine's visitFMUL and/or the 1774 // reassociation pass should give us this form. 1775 Value *OtherMul0, *OtherMul1; 1776 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1777 // Pattern: sqrt((x * y) * z) 1778 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1779 // Matched: sqrt((x * x) * z) 1780 RepeatOp = OtherMul0; 1781 OtherOp = Op1; 1782 } 1783 } 1784 } 1785 if (!RepeatOp) 1786 return Ret; 1787 1788 // Fast math flags for any created instructions should match the sqrt 1789 // and multiply. 1790 IRBuilder<>::FastMathFlagGuard Guard(B); 1791 B.setFastMathFlags(I->getFastMathFlags()); 1792 1793 // If we found a repeated factor, hoist it out of the square root and 1794 // replace it with the fabs of that factor. 1795 Module *M = Callee->getParent(); 1796 Type *ArgType = I->getType(); 1797 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1798 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1799 if (OtherOp) { 1800 // If we found a non-repeated factor, we still need to get its square 1801 // root. We then multiply that by the value that was simplified out 1802 // of the square root calculation. 1803 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1804 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1805 return B.CreateFMul(FabsCall, SqrtCall); 1806 } 1807 return FabsCall; 1808 } 1809 1810 // TODO: Generalize to handle any trig function and its inverse. 1811 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1812 Function *Callee = CI->getCalledFunction(); 1813 Value *Ret = nullptr; 1814 StringRef Name = Callee->getName(); 1815 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1816 Ret = optimizeUnaryDoubleFP(CI, B, true); 1817 1818 Value *Op1 = CI->getArgOperand(0); 1819 auto *OpC = dyn_cast<CallInst>(Op1); 1820 if (!OpC) 1821 return Ret; 1822 1823 // Both calls must be 'fast' in order to remove them. 1824 if (!CI->isFast() || !OpC->isFast()) 1825 return Ret; 1826 1827 // tan(atan(x)) -> x 1828 // tanf(atanf(x)) -> x 1829 // tanl(atanl(x)) -> x 1830 LibFunc Func; 1831 Function *F = OpC->getCalledFunction(); 1832 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1833 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1834 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1835 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1836 Ret = OpC->getArgOperand(0); 1837 return Ret; 1838 } 1839 1840 static bool isTrigLibCall(CallInst *CI) { 1841 // We can only hope to do anything useful if we can ignore things like errno 1842 // and floating-point exceptions. 1843 // We already checked the prototype. 1844 return CI->hasFnAttr(Attribute::NoUnwind) && 1845 CI->hasFnAttr(Attribute::ReadNone); 1846 } 1847 1848 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1849 bool UseFloat, Value *&Sin, Value *&Cos, 1850 Value *&SinCos) { 1851 Type *ArgTy = Arg->getType(); 1852 Type *ResTy; 1853 StringRef Name; 1854 1855 Triple T(OrigCallee->getParent()->getTargetTriple()); 1856 if (UseFloat) { 1857 Name = "__sincospif_stret"; 1858 1859 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1860 // x86_64 can't use {float, float} since that would be returned in both 1861 // xmm0 and xmm1, which isn't what a real struct would do. 1862 ResTy = T.getArch() == Triple::x86_64 1863 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1864 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1865 } else { 1866 Name = "__sincospi_stret"; 1867 ResTy = StructType::get(ArgTy, ArgTy); 1868 } 1869 1870 Module *M = OrigCallee->getParent(); 1871 FunctionCallee Callee = 1872 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1873 1874 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1875 // If the argument is an instruction, it must dominate all uses so put our 1876 // sincos call there. 1877 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1878 } else { 1879 // Otherwise (e.g. for a constant) the beginning of the function is as 1880 // good a place as any. 1881 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1882 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1883 } 1884 1885 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1886 1887 if (SinCos->getType()->isStructTy()) { 1888 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1889 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1890 } else { 1891 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1892 "sinpi"); 1893 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1894 "cospi"); 1895 } 1896 } 1897 1898 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1899 // Make sure the prototype is as expected, otherwise the rest of the 1900 // function is probably invalid and likely to abort. 1901 if (!isTrigLibCall(CI)) 1902 return nullptr; 1903 1904 Value *Arg = CI->getArgOperand(0); 1905 SmallVector<CallInst *, 1> SinCalls; 1906 SmallVector<CallInst *, 1> CosCalls; 1907 SmallVector<CallInst *, 1> SinCosCalls; 1908 1909 bool IsFloat = Arg->getType()->isFloatTy(); 1910 1911 // Look for all compatible sinpi, cospi and sincospi calls with the same 1912 // argument. If there are enough (in some sense) we can make the 1913 // substitution. 1914 Function *F = CI->getFunction(); 1915 for (User *U : Arg->users()) 1916 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1917 1918 // It's only worthwhile if both sinpi and cospi are actually used. 1919 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1920 return nullptr; 1921 1922 Value *Sin, *Cos, *SinCos; 1923 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1924 1925 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1926 Value *Res) { 1927 for (CallInst *C : Calls) 1928 replaceAllUsesWith(C, Res); 1929 }; 1930 1931 replaceTrigInsts(SinCalls, Sin); 1932 replaceTrigInsts(CosCalls, Cos); 1933 replaceTrigInsts(SinCosCalls, SinCos); 1934 1935 return nullptr; 1936 } 1937 1938 void LibCallSimplifier::classifyArgUse( 1939 Value *Val, Function *F, bool IsFloat, 1940 SmallVectorImpl<CallInst *> &SinCalls, 1941 SmallVectorImpl<CallInst *> &CosCalls, 1942 SmallVectorImpl<CallInst *> &SinCosCalls) { 1943 CallInst *CI = dyn_cast<CallInst>(Val); 1944 1945 if (!CI) 1946 return; 1947 1948 // Don't consider calls in other functions. 1949 if (CI->getFunction() != F) 1950 return; 1951 1952 Function *Callee = CI->getCalledFunction(); 1953 LibFunc Func; 1954 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1955 !isTrigLibCall(CI)) 1956 return; 1957 1958 if (IsFloat) { 1959 if (Func == LibFunc_sinpif) 1960 SinCalls.push_back(CI); 1961 else if (Func == LibFunc_cospif) 1962 CosCalls.push_back(CI); 1963 else if (Func == LibFunc_sincospif_stret) 1964 SinCosCalls.push_back(CI); 1965 } else { 1966 if (Func == LibFunc_sinpi) 1967 SinCalls.push_back(CI); 1968 else if (Func == LibFunc_cospi) 1969 CosCalls.push_back(CI); 1970 else if (Func == LibFunc_sincospi_stret) 1971 SinCosCalls.push_back(CI); 1972 } 1973 } 1974 1975 //===----------------------------------------------------------------------===// 1976 // Integer Library Call Optimizations 1977 //===----------------------------------------------------------------------===// 1978 1979 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1980 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1981 Value *Op = CI->getArgOperand(0); 1982 Type *ArgType = Op->getType(); 1983 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1984 Intrinsic::cttz, ArgType); 1985 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1986 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1987 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1988 1989 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1990 return B.CreateSelect(Cond, V, B.getInt32(0)); 1991 } 1992 1993 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1994 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1995 Value *Op = CI->getArgOperand(0); 1996 Type *ArgType = Op->getType(); 1997 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1998 Intrinsic::ctlz, ArgType); 1999 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2000 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2001 V); 2002 return B.CreateIntCast(V, CI->getType(), false); 2003 } 2004 2005 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 2006 // abs(x) -> x <s 0 ? -x : x 2007 // The negation has 'nsw' because abs of INT_MIN is undefined. 2008 Value *X = CI->getArgOperand(0); 2009 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2010 Value *NegX = B.CreateNSWNeg(X, "neg"); 2011 return B.CreateSelect(IsNeg, NegX, X); 2012 } 2013 2014 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 2015 // isdigit(c) -> (c-'0') <u 10 2016 Value *Op = CI->getArgOperand(0); 2017 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2018 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2019 return B.CreateZExt(Op, CI->getType()); 2020 } 2021 2022 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 2023 // isascii(c) -> c <u 128 2024 Value *Op = CI->getArgOperand(0); 2025 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2026 return B.CreateZExt(Op, CI->getType()); 2027 } 2028 2029 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 2030 // toascii(c) -> c & 0x7f 2031 return B.CreateAnd(CI->getArgOperand(0), 2032 ConstantInt::get(CI->getType(), 0x7F)); 2033 } 2034 2035 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 2036 StringRef Str; 2037 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2038 return nullptr; 2039 2040 return convertStrToNumber(CI, Str, 10); 2041 } 2042 2043 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 2044 StringRef Str; 2045 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2046 return nullptr; 2047 2048 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2049 return nullptr; 2050 2051 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2052 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2053 } 2054 2055 return nullptr; 2056 } 2057 2058 //===----------------------------------------------------------------------===// 2059 // Formatting and IO Library Call Optimizations 2060 //===----------------------------------------------------------------------===// 2061 2062 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2063 2064 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 2065 int StreamArg) { 2066 Function *Callee = CI->getCalledFunction(); 2067 // Error reporting calls should be cold, mark them as such. 2068 // This applies even to non-builtin calls: it is only a hint and applies to 2069 // functions that the frontend might not understand as builtins. 2070 2071 // This heuristic was suggested in: 2072 // Improving Static Branch Prediction in a Compiler 2073 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2074 // Proceedings of PACT'98, Oct. 1998, IEEE 2075 if (!CI->hasFnAttr(Attribute::Cold) && 2076 isReportingError(Callee, CI, StreamArg)) { 2077 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2078 } 2079 2080 return nullptr; 2081 } 2082 2083 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2084 if (!Callee || !Callee->isDeclaration()) 2085 return false; 2086 2087 if (StreamArg < 0) 2088 return true; 2089 2090 // These functions might be considered cold, but only if their stream 2091 // argument is stderr. 2092 2093 if (StreamArg >= (int)CI->getNumArgOperands()) 2094 return false; 2095 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2096 if (!LI) 2097 return false; 2098 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2099 if (!GV || !GV->isDeclaration()) 2100 return false; 2101 return GV->getName() == "stderr"; 2102 } 2103 2104 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2105 // Check for a fixed format string. 2106 StringRef FormatStr; 2107 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2108 return nullptr; 2109 2110 // Empty format string -> noop. 2111 if (FormatStr.empty()) // Tolerate printf's declared void. 2112 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2113 2114 // Do not do any of the following transformations if the printf return value 2115 // is used, in general the printf return value is not compatible with either 2116 // putchar() or puts(). 2117 if (!CI->use_empty()) 2118 return nullptr; 2119 2120 // printf("x") -> putchar('x'), even for "%" and "%%". 2121 if (FormatStr.size() == 1 || FormatStr == "%%") 2122 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2123 2124 // printf("%s", "a") --> putchar('a') 2125 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2126 StringRef ChrStr; 2127 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2128 return nullptr; 2129 if (ChrStr.size() != 1) 2130 return nullptr; 2131 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2132 } 2133 2134 // printf("foo\n") --> puts("foo") 2135 if (FormatStr[FormatStr.size() - 1] == '\n' && 2136 FormatStr.find('%') == StringRef::npos) { // No format characters. 2137 // Create a string literal with no \n on it. We expect the constant merge 2138 // pass to be run after this pass, to merge duplicate strings. 2139 FormatStr = FormatStr.drop_back(); 2140 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2141 return emitPutS(GV, B, TLI); 2142 } 2143 2144 // Optimize specific format strings. 2145 // printf("%c", chr) --> putchar(chr) 2146 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2147 CI->getArgOperand(1)->getType()->isIntegerTy()) 2148 return emitPutChar(CI->getArgOperand(1), B, TLI); 2149 2150 // printf("%s\n", str) --> puts(str) 2151 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2152 CI->getArgOperand(1)->getType()->isPointerTy()) 2153 return emitPutS(CI->getArgOperand(1), B, TLI); 2154 return nullptr; 2155 } 2156 2157 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2158 2159 Function *Callee = CI->getCalledFunction(); 2160 FunctionType *FT = Callee->getFunctionType(); 2161 if (Value *V = optimizePrintFString(CI, B)) { 2162 return V; 2163 } 2164 2165 // printf(format, ...) -> iprintf(format, ...) if no floating point 2166 // arguments. 2167 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2168 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2169 FunctionCallee IPrintFFn = 2170 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2171 CallInst *New = cast<CallInst>(CI->clone()); 2172 New->setCalledFunction(IPrintFFn); 2173 B.Insert(New); 2174 return New; 2175 } 2176 2177 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2178 // arguments. 2179 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2180 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2181 auto SmallPrintFFn = 2182 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2183 FT, Callee->getAttributes()); 2184 CallInst *New = cast<CallInst>(CI->clone()); 2185 New->setCalledFunction(SmallPrintFFn); 2186 B.Insert(New); 2187 return New; 2188 } 2189 2190 return nullptr; 2191 } 2192 2193 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2194 // Check for a fixed format string. 2195 StringRef FormatStr; 2196 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2197 return nullptr; 2198 2199 // If we just have a format string (nothing else crazy) transform it. 2200 if (CI->getNumArgOperands() == 2) { 2201 // Make sure there's no % in the constant array. We could try to handle 2202 // %% -> % in the future if we cared. 2203 if (FormatStr.find('%') != StringRef::npos) 2204 return nullptr; // we found a format specifier, bail out. 2205 2206 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2207 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2208 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2209 FormatStr.size() + 1)); // Copy the null byte. 2210 return ConstantInt::get(CI->getType(), FormatStr.size()); 2211 } 2212 2213 // The remaining optimizations require the format string to be "%s" or "%c" 2214 // and have an extra operand. 2215 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2216 CI->getNumArgOperands() < 3) 2217 return nullptr; 2218 2219 // Decode the second character of the format string. 2220 if (FormatStr[1] == 'c') { 2221 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2222 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2223 return nullptr; 2224 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2225 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2226 B.CreateStore(V, Ptr); 2227 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2228 B.CreateStore(B.getInt8(0), Ptr); 2229 2230 return ConstantInt::get(CI->getType(), 1); 2231 } 2232 2233 if (FormatStr[1] == 's') { 2234 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2235 // strlen(str)+1) 2236 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2237 return nullptr; 2238 2239 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2240 if (!Len) 2241 return nullptr; 2242 Value *IncLen = 2243 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2244 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2245 2246 // The sprintf result is the unincremented number of bytes in the string. 2247 return B.CreateIntCast(Len, CI->getType(), false); 2248 } 2249 return nullptr; 2250 } 2251 2252 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2253 Function *Callee = CI->getCalledFunction(); 2254 FunctionType *FT = Callee->getFunctionType(); 2255 if (Value *V = optimizeSPrintFString(CI, B)) { 2256 return V; 2257 } 2258 2259 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2260 // point arguments. 2261 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2262 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2263 FunctionCallee SIPrintFFn = 2264 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2265 CallInst *New = cast<CallInst>(CI->clone()); 2266 New->setCalledFunction(SIPrintFFn); 2267 B.Insert(New); 2268 return New; 2269 } 2270 2271 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2272 // floating point arguments. 2273 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2274 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2275 auto SmallSPrintFFn = 2276 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2277 FT, Callee->getAttributes()); 2278 CallInst *New = cast<CallInst>(CI->clone()); 2279 New->setCalledFunction(SmallSPrintFFn); 2280 B.Insert(New); 2281 return New; 2282 } 2283 2284 return nullptr; 2285 } 2286 2287 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2288 // Check for a fixed format string. 2289 StringRef FormatStr; 2290 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2291 return nullptr; 2292 2293 // Check for size 2294 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2295 if (!Size) 2296 return nullptr; 2297 2298 uint64_t N = Size->getZExtValue(); 2299 2300 // If we just have a format string (nothing else crazy) transform it. 2301 if (CI->getNumArgOperands() == 3) { 2302 // Make sure there's no % in the constant array. We could try to handle 2303 // %% -> % in the future if we cared. 2304 if (FormatStr.find('%') != StringRef::npos) 2305 return nullptr; // we found a format specifier, bail out. 2306 2307 if (N == 0) 2308 return ConstantInt::get(CI->getType(), FormatStr.size()); 2309 else if (N < FormatStr.size() + 1) 2310 return nullptr; 2311 2312 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2313 // strlen(fmt)+1) 2314 B.CreateMemCpy( 2315 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2316 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2317 FormatStr.size() + 1)); // Copy the null byte. 2318 return ConstantInt::get(CI->getType(), FormatStr.size()); 2319 } 2320 2321 // The remaining optimizations require the format string to be "%s" or "%c" 2322 // and have an extra operand. 2323 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2324 CI->getNumArgOperands() == 4) { 2325 2326 // Decode the second character of the format string. 2327 if (FormatStr[1] == 'c') { 2328 if (N == 0) 2329 return ConstantInt::get(CI->getType(), 1); 2330 else if (N == 1) 2331 return nullptr; 2332 2333 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2334 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2335 return nullptr; 2336 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2337 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2338 B.CreateStore(V, Ptr); 2339 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2340 B.CreateStore(B.getInt8(0), Ptr); 2341 2342 return ConstantInt::get(CI->getType(), 1); 2343 } 2344 2345 if (FormatStr[1] == 's') { 2346 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2347 StringRef Str; 2348 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2349 return nullptr; 2350 2351 if (N == 0) 2352 return ConstantInt::get(CI->getType(), Str.size()); 2353 else if (N < Str.size() + 1) 2354 return nullptr; 2355 2356 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2357 ConstantInt::get(CI->getType(), Str.size() + 1)); 2358 2359 // The snprintf result is the unincremented number of bytes in the string. 2360 return ConstantInt::get(CI->getType(), Str.size()); 2361 } 2362 } 2363 return nullptr; 2364 } 2365 2366 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2367 if (Value *V = optimizeSnPrintFString(CI, B)) { 2368 return V; 2369 } 2370 2371 return nullptr; 2372 } 2373 2374 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2375 optimizeErrorReporting(CI, B, 0); 2376 2377 // All the optimizations depend on the format string. 2378 StringRef FormatStr; 2379 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2380 return nullptr; 2381 2382 // Do not do any of the following transformations if the fprintf return 2383 // value is used, in general the fprintf return value is not compatible 2384 // with fwrite(), fputc() or fputs(). 2385 if (!CI->use_empty()) 2386 return nullptr; 2387 2388 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2389 if (CI->getNumArgOperands() == 2) { 2390 // Could handle %% -> % if we cared. 2391 if (FormatStr.find('%') != StringRef::npos) 2392 return nullptr; // We found a format specifier. 2393 2394 return emitFWrite( 2395 CI->getArgOperand(1), 2396 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2397 CI->getArgOperand(0), B, DL, TLI); 2398 } 2399 2400 // The remaining optimizations require the format string to be "%s" or "%c" 2401 // and have an extra operand. 2402 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2403 CI->getNumArgOperands() < 3) 2404 return nullptr; 2405 2406 // Decode the second character of the format string. 2407 if (FormatStr[1] == 'c') { 2408 // fprintf(F, "%c", chr) --> fputc(chr, F) 2409 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2410 return nullptr; 2411 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2412 } 2413 2414 if (FormatStr[1] == 's') { 2415 // fprintf(F, "%s", str) --> fputs(str, F) 2416 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2417 return nullptr; 2418 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2419 } 2420 return nullptr; 2421 } 2422 2423 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2424 Function *Callee = CI->getCalledFunction(); 2425 FunctionType *FT = Callee->getFunctionType(); 2426 if (Value *V = optimizeFPrintFString(CI, B)) { 2427 return V; 2428 } 2429 2430 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2431 // floating point arguments. 2432 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2433 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2434 FunctionCallee FIPrintFFn = 2435 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2436 CallInst *New = cast<CallInst>(CI->clone()); 2437 New->setCalledFunction(FIPrintFFn); 2438 B.Insert(New); 2439 return New; 2440 } 2441 2442 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2443 // 128-bit floating point arguments. 2444 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2445 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2446 auto SmallFPrintFFn = 2447 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2448 FT, Callee->getAttributes()); 2449 CallInst *New = cast<CallInst>(CI->clone()); 2450 New->setCalledFunction(SmallFPrintFFn); 2451 B.Insert(New); 2452 return New; 2453 } 2454 2455 return nullptr; 2456 } 2457 2458 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2459 optimizeErrorReporting(CI, B, 3); 2460 2461 // Get the element size and count. 2462 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2463 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2464 if (SizeC && CountC) { 2465 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2466 2467 // If this is writing zero records, remove the call (it's a noop). 2468 if (Bytes == 0) 2469 return ConstantInt::get(CI->getType(), 0); 2470 2471 // If this is writing one byte, turn it into fputc. 2472 // This optimisation is only valid, if the return value is unused. 2473 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2474 Value *Char = B.CreateLoad(B.getInt8Ty(), 2475 castToCStr(CI->getArgOperand(0), B), "char"); 2476 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2477 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2478 } 2479 } 2480 2481 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2482 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2483 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2484 TLI); 2485 2486 return nullptr; 2487 } 2488 2489 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2490 optimizeErrorReporting(CI, B, 1); 2491 2492 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2493 // requires more arguments and thus extra MOVs are required. 2494 bool OptForSize = CI->getFunction()->hasOptSize() || 2495 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2496 if (OptForSize) 2497 return nullptr; 2498 2499 // Check if has any use 2500 if (!CI->use_empty()) { 2501 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2502 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2503 TLI); 2504 else 2505 // We can't optimize if return value is used. 2506 return nullptr; 2507 } 2508 2509 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2510 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2511 if (!Len) 2512 return nullptr; 2513 2514 // Known to have no uses (see above). 2515 return emitFWrite( 2516 CI->getArgOperand(0), 2517 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2518 CI->getArgOperand(1), B, DL, TLI); 2519 } 2520 2521 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2522 optimizeErrorReporting(CI, B, 1); 2523 2524 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2525 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2526 TLI); 2527 2528 return nullptr; 2529 } 2530 2531 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2532 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2533 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2534 2535 return nullptr; 2536 } 2537 2538 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2539 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2540 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2541 CI->getArgOperand(2), B, TLI); 2542 2543 return nullptr; 2544 } 2545 2546 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2547 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2548 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2549 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2550 TLI); 2551 2552 return nullptr; 2553 } 2554 2555 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2556 if (!CI->use_empty()) 2557 return nullptr; 2558 2559 // Check for a constant string. 2560 // puts("") -> putchar('\n') 2561 StringRef Str; 2562 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2563 return emitPutChar(B.getInt32('\n'), B, TLI); 2564 2565 return nullptr; 2566 } 2567 2568 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2569 LibFunc Func; 2570 SmallString<20> FloatFuncName = FuncName; 2571 FloatFuncName += 'f'; 2572 if (TLI->getLibFunc(FloatFuncName, Func)) 2573 return TLI->has(Func); 2574 return false; 2575 } 2576 2577 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2578 IRBuilder<> &Builder) { 2579 LibFunc Func; 2580 Function *Callee = CI->getCalledFunction(); 2581 // Check for string/memory library functions. 2582 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2583 // Make sure we never change the calling convention. 2584 assert((ignoreCallingConv(Func) || 2585 isCallingConvCCompatible(CI)) && 2586 "Optimizing string/memory libcall would change the calling convention"); 2587 switch (Func) { 2588 case LibFunc_strcat: 2589 return optimizeStrCat(CI, Builder); 2590 case LibFunc_strncat: 2591 return optimizeStrNCat(CI, Builder); 2592 case LibFunc_strchr: 2593 return optimizeStrChr(CI, Builder); 2594 case LibFunc_strrchr: 2595 return optimizeStrRChr(CI, Builder); 2596 case LibFunc_strcmp: 2597 return optimizeStrCmp(CI, Builder); 2598 case LibFunc_strncmp: 2599 return optimizeStrNCmp(CI, Builder); 2600 case LibFunc_strcpy: 2601 return optimizeStrCpy(CI, Builder); 2602 case LibFunc_stpcpy: 2603 return optimizeStpCpy(CI, Builder); 2604 case LibFunc_strncpy: 2605 return optimizeStrNCpy(CI, Builder); 2606 case LibFunc_strlen: 2607 return optimizeStrLen(CI, Builder); 2608 case LibFunc_strpbrk: 2609 return optimizeStrPBrk(CI, Builder); 2610 case LibFunc_strtol: 2611 case LibFunc_strtod: 2612 case LibFunc_strtof: 2613 case LibFunc_strtoul: 2614 case LibFunc_strtoll: 2615 case LibFunc_strtold: 2616 case LibFunc_strtoull: 2617 return optimizeStrTo(CI, Builder); 2618 case LibFunc_strspn: 2619 return optimizeStrSpn(CI, Builder); 2620 case LibFunc_strcspn: 2621 return optimizeStrCSpn(CI, Builder); 2622 case LibFunc_strstr: 2623 return optimizeStrStr(CI, Builder); 2624 case LibFunc_memchr: 2625 return optimizeMemChr(CI, Builder); 2626 case LibFunc_bcmp: 2627 return optimizeBCmp(CI, Builder); 2628 case LibFunc_memcmp: 2629 return optimizeMemCmp(CI, Builder); 2630 case LibFunc_memcpy: 2631 return optimizeMemCpy(CI, Builder); 2632 case LibFunc_mempcpy: 2633 return optimizeMemPCpy(CI, Builder); 2634 case LibFunc_memmove: 2635 return optimizeMemMove(CI, Builder); 2636 case LibFunc_memset: 2637 return optimizeMemSet(CI, Builder); 2638 case LibFunc_realloc: 2639 return optimizeRealloc(CI, Builder); 2640 case LibFunc_wcslen: 2641 return optimizeWcslen(CI, Builder); 2642 default: 2643 break; 2644 } 2645 } 2646 return nullptr; 2647 } 2648 2649 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2650 LibFunc Func, 2651 IRBuilder<> &Builder) { 2652 // Don't optimize calls that require strict floating point semantics. 2653 if (CI->isStrictFP()) 2654 return nullptr; 2655 2656 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2657 return V; 2658 2659 switch (Func) { 2660 case LibFunc_sinpif: 2661 case LibFunc_sinpi: 2662 case LibFunc_cospif: 2663 case LibFunc_cospi: 2664 return optimizeSinCosPi(CI, Builder); 2665 case LibFunc_powf: 2666 case LibFunc_pow: 2667 case LibFunc_powl: 2668 return optimizePow(CI, Builder); 2669 case LibFunc_exp2l: 2670 case LibFunc_exp2: 2671 case LibFunc_exp2f: 2672 return optimizeExp2(CI, Builder); 2673 case LibFunc_fabsf: 2674 case LibFunc_fabs: 2675 case LibFunc_fabsl: 2676 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2677 case LibFunc_sqrtf: 2678 case LibFunc_sqrt: 2679 case LibFunc_sqrtl: 2680 return optimizeSqrt(CI, Builder); 2681 case LibFunc_log: 2682 case LibFunc_log10: 2683 case LibFunc_log1p: 2684 case LibFunc_log2: 2685 case LibFunc_logb: 2686 return optimizeLog(CI, Builder); 2687 case LibFunc_tan: 2688 case LibFunc_tanf: 2689 case LibFunc_tanl: 2690 return optimizeTan(CI, Builder); 2691 case LibFunc_ceil: 2692 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2693 case LibFunc_floor: 2694 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2695 case LibFunc_round: 2696 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2697 case LibFunc_nearbyint: 2698 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2699 case LibFunc_rint: 2700 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2701 case LibFunc_trunc: 2702 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2703 case LibFunc_acos: 2704 case LibFunc_acosh: 2705 case LibFunc_asin: 2706 case LibFunc_asinh: 2707 case LibFunc_atan: 2708 case LibFunc_atanh: 2709 case LibFunc_cbrt: 2710 case LibFunc_cosh: 2711 case LibFunc_exp: 2712 case LibFunc_exp10: 2713 case LibFunc_expm1: 2714 case LibFunc_cos: 2715 case LibFunc_sin: 2716 case LibFunc_sinh: 2717 case LibFunc_tanh: 2718 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2719 return optimizeUnaryDoubleFP(CI, Builder, true); 2720 return nullptr; 2721 case LibFunc_copysign: 2722 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2723 return optimizeBinaryDoubleFP(CI, Builder); 2724 return nullptr; 2725 case LibFunc_fminf: 2726 case LibFunc_fmin: 2727 case LibFunc_fminl: 2728 case LibFunc_fmaxf: 2729 case LibFunc_fmax: 2730 case LibFunc_fmaxl: 2731 return optimizeFMinFMax(CI, Builder); 2732 case LibFunc_cabs: 2733 case LibFunc_cabsf: 2734 case LibFunc_cabsl: 2735 return optimizeCAbs(CI, Builder); 2736 default: 2737 return nullptr; 2738 } 2739 } 2740 2741 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2742 // TODO: Split out the code below that operates on FP calls so that 2743 // we can all non-FP calls with the StrictFP attribute to be 2744 // optimized. 2745 if (CI->isNoBuiltin()) 2746 return nullptr; 2747 2748 LibFunc Func; 2749 Function *Callee = CI->getCalledFunction(); 2750 2751 SmallVector<OperandBundleDef, 2> OpBundles; 2752 CI->getOperandBundlesAsDefs(OpBundles); 2753 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2754 bool isCallingConvC = isCallingConvCCompatible(CI); 2755 2756 // Command-line parameter overrides instruction attribute. 2757 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2758 // used by the intrinsic optimizations. 2759 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2760 UnsafeFPShrink = EnableUnsafeFPShrink; 2761 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2762 UnsafeFPShrink = true; 2763 2764 // First, check for intrinsics. 2765 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2766 if (!isCallingConvC) 2767 return nullptr; 2768 // The FP intrinsics have corresponding constrained versions so we don't 2769 // need to check for the StrictFP attribute here. 2770 switch (II->getIntrinsicID()) { 2771 case Intrinsic::pow: 2772 return optimizePow(CI, Builder); 2773 case Intrinsic::exp2: 2774 return optimizeExp2(CI, Builder); 2775 case Intrinsic::log: 2776 return optimizeLog(CI, Builder); 2777 case Intrinsic::sqrt: 2778 return optimizeSqrt(CI, Builder); 2779 // TODO: Use foldMallocMemset() with memset intrinsic. 2780 case Intrinsic::memset: 2781 return optimizeMemSet(CI, Builder, true); 2782 case Intrinsic::memcpy: 2783 return optimizeMemCpy(CI, Builder, true); 2784 case Intrinsic::memmove: 2785 return optimizeMemMove(CI, Builder, true); 2786 default: 2787 return nullptr; 2788 } 2789 } 2790 2791 // Also try to simplify calls to fortified library functions. 2792 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2793 // Try to further simplify the result. 2794 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2795 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2796 // Use an IR Builder from SimplifiedCI if available instead of CI 2797 // to guarantee we reach all uses we might replace later on. 2798 IRBuilder<> TmpBuilder(SimplifiedCI); 2799 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2800 // If we were able to further simplify, remove the now redundant call. 2801 substituteInParent(SimplifiedCI, V); 2802 return V; 2803 } 2804 } 2805 return SimplifiedFortifiedCI; 2806 } 2807 2808 // Then check for known library functions. 2809 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2810 // We never change the calling convention. 2811 if (!ignoreCallingConv(Func) && !isCallingConvC) 2812 return nullptr; 2813 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2814 return V; 2815 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2816 return V; 2817 switch (Func) { 2818 case LibFunc_ffs: 2819 case LibFunc_ffsl: 2820 case LibFunc_ffsll: 2821 return optimizeFFS(CI, Builder); 2822 case LibFunc_fls: 2823 case LibFunc_flsl: 2824 case LibFunc_flsll: 2825 return optimizeFls(CI, Builder); 2826 case LibFunc_abs: 2827 case LibFunc_labs: 2828 case LibFunc_llabs: 2829 return optimizeAbs(CI, Builder); 2830 case LibFunc_isdigit: 2831 return optimizeIsDigit(CI, Builder); 2832 case LibFunc_isascii: 2833 return optimizeIsAscii(CI, Builder); 2834 case LibFunc_toascii: 2835 return optimizeToAscii(CI, Builder); 2836 case LibFunc_atoi: 2837 case LibFunc_atol: 2838 case LibFunc_atoll: 2839 return optimizeAtoi(CI, Builder); 2840 case LibFunc_strtol: 2841 case LibFunc_strtoll: 2842 return optimizeStrtol(CI, Builder); 2843 case LibFunc_printf: 2844 return optimizePrintF(CI, Builder); 2845 case LibFunc_sprintf: 2846 return optimizeSPrintF(CI, Builder); 2847 case LibFunc_snprintf: 2848 return optimizeSnPrintF(CI, Builder); 2849 case LibFunc_fprintf: 2850 return optimizeFPrintF(CI, Builder); 2851 case LibFunc_fwrite: 2852 return optimizeFWrite(CI, Builder); 2853 case LibFunc_fread: 2854 return optimizeFRead(CI, Builder); 2855 case LibFunc_fputs: 2856 return optimizeFPuts(CI, Builder); 2857 case LibFunc_fgets: 2858 return optimizeFGets(CI, Builder); 2859 case LibFunc_fputc: 2860 return optimizeFPutc(CI, Builder); 2861 case LibFunc_fgetc: 2862 return optimizeFGetc(CI, Builder); 2863 case LibFunc_puts: 2864 return optimizePuts(CI, Builder); 2865 case LibFunc_perror: 2866 return optimizeErrorReporting(CI, Builder); 2867 case LibFunc_vfprintf: 2868 case LibFunc_fiprintf: 2869 return optimizeErrorReporting(CI, Builder, 0); 2870 default: 2871 return nullptr; 2872 } 2873 } 2874 return nullptr; 2875 } 2876 2877 LibCallSimplifier::LibCallSimplifier( 2878 const DataLayout &DL, const TargetLibraryInfo *TLI, 2879 OptimizationRemarkEmitter &ORE, 2880 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2881 function_ref<void(Instruction *, Value *)> Replacer, 2882 function_ref<void(Instruction *)> Eraser) 2883 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2884 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2885 2886 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2887 // Indirect through the replacer used in this instance. 2888 Replacer(I, With); 2889 } 2890 2891 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2892 Eraser(I); 2893 } 2894 2895 // TODO: 2896 // Additional cases that we need to add to this file: 2897 // 2898 // cbrt: 2899 // * cbrt(expN(X)) -> expN(x/3) 2900 // * cbrt(sqrt(x)) -> pow(x,1/6) 2901 // * cbrt(cbrt(x)) -> pow(x,1/9) 2902 // 2903 // exp, expf, expl: 2904 // * exp(log(x)) -> x 2905 // 2906 // log, logf, logl: 2907 // * log(exp(x)) -> x 2908 // * log(exp(y)) -> y*log(e) 2909 // * log(exp10(y)) -> y*log(10) 2910 // * log(sqrt(x)) -> 0.5*log(x) 2911 // 2912 // pow, powf, powl: 2913 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2914 // * pow(pow(x,y),z)-> pow(x,y*z) 2915 // 2916 // signbit: 2917 // * signbit(cnst) -> cnst' 2918 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2919 // 2920 // sqrt, sqrtf, sqrtl: 2921 // * sqrt(expN(x)) -> expN(x*0.5) 2922 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2923 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2924 // 2925 2926 //===----------------------------------------------------------------------===// 2927 // Fortified Library Call Optimizations 2928 //===----------------------------------------------------------------------===// 2929 2930 bool 2931 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2932 unsigned ObjSizeOp, 2933 Optional<unsigned> SizeOp, 2934 Optional<unsigned> StrOp, 2935 Optional<unsigned> FlagOp) { 2936 // If this function takes a flag argument, the implementation may use it to 2937 // perform extra checks. Don't fold into the non-checking variant. 2938 if (FlagOp) { 2939 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 2940 if (!Flag || !Flag->isZero()) 2941 return false; 2942 } 2943 2944 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 2945 return true; 2946 2947 if (ConstantInt *ObjSizeCI = 2948 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2949 if (ObjSizeCI->isMinusOne()) 2950 return true; 2951 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2952 if (OnlyLowerUnknownSize) 2953 return false; 2954 if (StrOp) { 2955 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 2956 // If the length is 0 we don't know how long it is and so we can't 2957 // remove the check. 2958 if (Len == 0) 2959 return false; 2960 return ObjSizeCI->getZExtValue() >= Len; 2961 } 2962 2963 if (SizeOp) { 2964 if (ConstantInt *SizeCI = 2965 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 2966 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2967 } 2968 } 2969 return false; 2970 } 2971 2972 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2973 IRBuilder<> &B) { 2974 if (isFortifiedCallFoldable(CI, 3, 2)) { 2975 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2976 CI->getArgOperand(2)); 2977 return CI->getArgOperand(0); 2978 } 2979 return nullptr; 2980 } 2981 2982 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2983 IRBuilder<> &B) { 2984 if (isFortifiedCallFoldable(CI, 3, 2)) { 2985 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2986 CI->getArgOperand(2)); 2987 return CI->getArgOperand(0); 2988 } 2989 return nullptr; 2990 } 2991 2992 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2993 IRBuilder<> &B) { 2994 // TODO: Try foldMallocMemset() here. 2995 2996 if (isFortifiedCallFoldable(CI, 3, 2)) { 2997 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2998 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2999 return CI->getArgOperand(0); 3000 } 3001 return nullptr; 3002 } 3003 3004 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3005 IRBuilder<> &B, 3006 LibFunc Func) { 3007 const DataLayout &DL = CI->getModule()->getDataLayout(); 3008 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3009 *ObjSize = CI->getArgOperand(2); 3010 3011 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3012 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3013 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3014 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3015 } 3016 3017 // If a) we don't have any length information, or b) we know this will 3018 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3019 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3020 // TODO: It might be nice to get a maximum length out of the possible 3021 // string lengths for varying. 3022 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3023 if (Func == LibFunc_strcpy_chk) 3024 return emitStrCpy(Dst, Src, B, TLI); 3025 else 3026 return emitStpCpy(Dst, Src, B, TLI); 3027 } 3028 3029 if (OnlyLowerUnknownSize) 3030 return nullptr; 3031 3032 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3033 uint64_t Len = GetStringLength(Src); 3034 if (Len == 0) 3035 return nullptr; 3036 3037 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3038 Value *LenV = ConstantInt::get(SizeTTy, Len); 3039 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3040 // If the function was an __stpcpy_chk, and we were able to fold it into 3041 // a __memcpy_chk, we still need to return the correct end pointer. 3042 if (Ret && Func == LibFunc_stpcpy_chk) 3043 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3044 return Ret; 3045 } 3046 3047 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3048 IRBuilder<> &B, 3049 LibFunc Func) { 3050 if (isFortifiedCallFoldable(CI, 3, 2)) { 3051 if (Func == LibFunc_strncpy_chk) 3052 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3053 CI->getArgOperand(2), B, TLI); 3054 else 3055 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3056 CI->getArgOperand(2), B, TLI); 3057 } 3058 3059 return nullptr; 3060 } 3061 3062 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3063 IRBuilder<> &B) { 3064 if (isFortifiedCallFoldable(CI, 4, 3)) 3065 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3066 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3067 3068 return nullptr; 3069 } 3070 3071 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3072 IRBuilder<> &B) { 3073 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3074 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3075 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3076 CI->getArgOperand(4), VariadicArgs, B, TLI); 3077 } 3078 3079 return nullptr; 3080 } 3081 3082 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3083 IRBuilder<> &B) { 3084 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3085 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3086 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3087 B, TLI); 3088 } 3089 3090 return nullptr; 3091 } 3092 3093 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3094 IRBuilder<> &B) { 3095 if (isFortifiedCallFoldable(CI, 2)) 3096 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3097 3098 return nullptr; 3099 } 3100 3101 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3102 IRBuilder<> &B) { 3103 if (isFortifiedCallFoldable(CI, 3)) 3104 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3105 CI->getArgOperand(2), B, TLI); 3106 3107 return nullptr; 3108 } 3109 3110 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3111 IRBuilder<> &B) { 3112 if (isFortifiedCallFoldable(CI, 3)) 3113 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3114 CI->getArgOperand(2), B, TLI); 3115 3116 return nullptr; 3117 } 3118 3119 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3120 IRBuilder<> &B) { 3121 if (isFortifiedCallFoldable(CI, 3)) 3122 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3123 CI->getArgOperand(2), B, TLI); 3124 3125 return nullptr; 3126 } 3127 3128 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3129 IRBuilder<> &B) { 3130 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3131 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3132 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3133 3134 return nullptr; 3135 } 3136 3137 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3138 IRBuilder<> &B) { 3139 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3140 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3141 CI->getArgOperand(4), B, TLI); 3142 3143 return nullptr; 3144 } 3145 3146 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 3147 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3148 // Some clang users checked for _chk libcall availability using: 3149 // __has_builtin(__builtin___memcpy_chk) 3150 // When compiling with -fno-builtin, this is always true. 3151 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3152 // end up with fortified libcalls, which isn't acceptable in a freestanding 3153 // environment which only provides their non-fortified counterparts. 3154 // 3155 // Until we change clang and/or teach external users to check for availability 3156 // differently, disregard the "nobuiltin" attribute and TLI::has. 3157 // 3158 // PR23093. 3159 3160 LibFunc Func; 3161 Function *Callee = CI->getCalledFunction(); 3162 3163 SmallVector<OperandBundleDef, 2> OpBundles; 3164 CI->getOperandBundlesAsDefs(OpBundles); 3165 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 3166 bool isCallingConvC = isCallingConvCCompatible(CI); 3167 3168 // First, check that this is a known library functions and that the prototype 3169 // is correct. 3170 if (!TLI->getLibFunc(*Callee, Func)) 3171 return nullptr; 3172 3173 // We never change the calling convention. 3174 if (!ignoreCallingConv(Func) && !isCallingConvC) 3175 return nullptr; 3176 3177 switch (Func) { 3178 case LibFunc_memcpy_chk: 3179 return optimizeMemCpyChk(CI, Builder); 3180 case LibFunc_memmove_chk: 3181 return optimizeMemMoveChk(CI, Builder); 3182 case LibFunc_memset_chk: 3183 return optimizeMemSetChk(CI, Builder); 3184 case LibFunc_stpcpy_chk: 3185 case LibFunc_strcpy_chk: 3186 return optimizeStrpCpyChk(CI, Builder, Func); 3187 case LibFunc_stpncpy_chk: 3188 case LibFunc_strncpy_chk: 3189 return optimizeStrpNCpyChk(CI, Builder, Func); 3190 case LibFunc_memccpy_chk: 3191 return optimizeMemCCpyChk(CI, Builder); 3192 case LibFunc_snprintf_chk: 3193 return optimizeSNPrintfChk(CI, Builder); 3194 case LibFunc_sprintf_chk: 3195 return optimizeSPrintfChk(CI, Builder); 3196 case LibFunc_strcat_chk: 3197 return optimizeStrCatChk(CI, Builder); 3198 case LibFunc_strlcat_chk: 3199 return optimizeStrLCat(CI, Builder); 3200 case LibFunc_strncat_chk: 3201 return optimizeStrNCatChk(CI, Builder); 3202 case LibFunc_strlcpy_chk: 3203 return optimizeStrLCpyChk(CI, Builder); 3204 case LibFunc_vsnprintf_chk: 3205 return optimizeVSNPrintfChk(CI, Builder); 3206 case LibFunc_vsprintf_chk: 3207 return optimizeVSPrintfChk(CI, Builder); 3208 default: 3209 break; 3210 } 3211 return nullptr; 3212 } 3213 3214 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3215 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3216 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3217