1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 108 if (Base < 2 || Base > 36) 109 // handle special zero base 110 if (Base != 0) 111 return nullptr; 112 113 char *End; 114 std::string nptr = Str.str(); 115 errno = 0; 116 long long int Result = strtoll(nptr.c_str(), &End, Base); 117 if (errno) 118 return nullptr; 119 120 // if we assume all possible target locales are ASCII supersets, 121 // then if strtoll successfully parses a number on the host, 122 // it will also successfully parse the same way on the target 123 if (*End != '\0') 124 return nullptr; 125 126 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 127 return nullptr; 128 129 return ConstantInt::get(CI->getType(), Result); 130 } 131 132 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 133 const TargetLibraryInfo *TLI) { 134 CallInst *FOpen = dyn_cast<CallInst>(File); 135 if (!FOpen) 136 return false; 137 138 Function *InnerCallee = FOpen->getCalledFunction(); 139 if (!InnerCallee) 140 return false; 141 142 LibFunc Func; 143 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 144 Func != LibFunc_fopen) 145 return false; 146 147 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 148 if (PointerMayBeCaptured(File, true, true)) 149 return false; 150 151 return true; 152 } 153 154 static bool isOnlyUsedInComparisonWithZero(Value *V) { 155 for (User *U : V->users()) { 156 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 157 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 158 if (C->isNullValue()) 159 continue; 160 // Unknown instruction. 161 return false; 162 } 163 return true; 164 } 165 166 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 167 const DataLayout &DL) { 168 if (!isOnlyUsedInComparisonWithZero(CI)) 169 return false; 170 171 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 172 return false; 173 174 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 175 return false; 176 177 return true; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // String and Memory Library Call Optimizations 182 //===----------------------------------------------------------------------===// 183 184 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 185 // Extract some information from the instruction 186 Value *Dst = CI->getArgOperand(0); 187 Value *Src = CI->getArgOperand(1); 188 189 // See if we can get the length of the input string. 190 uint64_t Len = GetStringLength(Src); 191 if (Len == 0) 192 return nullptr; 193 --Len; // Unbias length. 194 195 // Handle the simple, do-nothing case: strcat(x, "") -> x 196 if (Len == 0) 197 return Dst; 198 199 return emitStrLenMemCpy(Src, Dst, Len, B); 200 } 201 202 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 203 IRBuilder<> &B) { 204 // We need to find the end of the destination string. That's where the 205 // memory is to be moved to. We just generate a call to strlen. 206 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 207 if (!DstLen) 208 return nullptr; 209 210 // Now that we have the destination's length, we must index into the 211 // destination's pointer to get the actual memcpy destination (end of 212 // the string .. we're concatenating). 213 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 214 215 // We have enough information to now generate the memcpy call to do the 216 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 217 B.CreateMemCpy(CpyDst, 1, Src, 1, 218 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 219 return Dst; 220 } 221 222 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 223 // Extract some information from the instruction. 224 Value *Dst = CI->getArgOperand(0); 225 Value *Src = CI->getArgOperand(1); 226 uint64_t Len; 227 228 // We don't do anything if length is not constant. 229 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 230 Len = LengthArg->getZExtValue(); 231 else 232 return nullptr; 233 234 // See if we can get the length of the input string. 235 uint64_t SrcLen = GetStringLength(Src); 236 if (SrcLen == 0) 237 return nullptr; 238 --SrcLen; // Unbias length. 239 240 // Handle the simple, do-nothing cases: 241 // strncat(x, "", c) -> x 242 // strncat(x, c, 0) -> x 243 if (SrcLen == 0 || Len == 0) 244 return Dst; 245 246 // We don't optimize this case. 247 if (Len < SrcLen) 248 return nullptr; 249 250 // strncat(x, s, c) -> strcat(x, s) 251 // s is constant so the strcat can be optimized further. 252 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 253 } 254 255 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 256 Function *Callee = CI->getCalledFunction(); 257 FunctionType *FT = Callee->getFunctionType(); 258 Value *SrcStr = CI->getArgOperand(0); 259 260 // If the second operand is non-constant, see if we can compute the length 261 // of the input string and turn this into memchr. 262 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 263 if (!CharC) { 264 uint64_t Len = GetStringLength(SrcStr); 265 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 266 return nullptr; 267 268 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 269 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 270 B, DL, TLI); 271 } 272 273 // Otherwise, the character is a constant, see if the first argument is 274 // a string literal. If so, we can constant fold. 275 StringRef Str; 276 if (!getConstantStringInfo(SrcStr, Str)) { 277 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 278 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 279 "strchr"); 280 return nullptr; 281 } 282 283 // Compute the offset, make sure to handle the case when we're searching for 284 // zero (a weird way to spell strlen). 285 size_t I = (0xFF & CharC->getSExtValue()) == 0 286 ? Str.size() 287 : Str.find(CharC->getSExtValue()); 288 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 289 return Constant::getNullValue(CI->getType()); 290 291 // strchr(s+n,c) -> gep(s+n+i,c) 292 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 293 } 294 295 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 296 Value *SrcStr = CI->getArgOperand(0); 297 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 298 299 // Cannot fold anything if we're not looking for a constant. 300 if (!CharC) 301 return nullptr; 302 303 StringRef Str; 304 if (!getConstantStringInfo(SrcStr, Str)) { 305 // strrchr(s, 0) -> strchr(s, 0) 306 if (CharC->isZero()) 307 return emitStrChr(SrcStr, '\0', B, TLI); 308 return nullptr; 309 } 310 311 // Compute the offset. 312 size_t I = (0xFF & CharC->getSExtValue()) == 0 313 ? Str.size() 314 : Str.rfind(CharC->getSExtValue()); 315 if (I == StringRef::npos) // Didn't find the char. Return null. 316 return Constant::getNullValue(CI->getType()); 317 318 // strrchr(s+n,c) -> gep(s+n+i,c) 319 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 320 } 321 322 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 323 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 324 if (Str1P == Str2P) // strcmp(x,x) -> 0 325 return ConstantInt::get(CI->getType(), 0); 326 327 StringRef Str1, Str2; 328 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 329 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 330 331 // strcmp(x, y) -> cnst (if both x and y are constant strings) 332 if (HasStr1 && HasStr2) 333 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 334 335 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 336 return B.CreateNeg(B.CreateZExt( 337 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 338 339 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 340 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 341 CI->getType()); 342 343 // strcmp(P, "x") -> memcmp(P, "x", 2) 344 uint64_t Len1 = GetStringLength(Str1P); 345 uint64_t Len2 = GetStringLength(Str2P); 346 if (Len1 && Len2) { 347 return emitMemCmp(Str1P, Str2P, 348 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 349 std::min(Len1, Len2)), 350 B, DL, TLI); 351 } 352 353 // strcmp to memcmp 354 if (!HasStr1 && HasStr2) { 355 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 356 return emitMemCmp( 357 Str1P, Str2P, 358 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 359 TLI); 360 } else if (HasStr1 && !HasStr2) { 361 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 362 return emitMemCmp( 363 Str1P, Str2P, 364 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 365 TLI); 366 } 367 368 return nullptr; 369 } 370 371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 372 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 373 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 374 return ConstantInt::get(CI->getType(), 0); 375 376 // Get the length argument if it is constant. 377 uint64_t Length; 378 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 379 Length = LengthArg->getZExtValue(); 380 else 381 return nullptr; 382 383 if (Length == 0) // strncmp(x,y,0) -> 0 384 return ConstantInt::get(CI->getType(), 0); 385 386 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 387 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 388 389 StringRef Str1, Str2; 390 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 391 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 392 393 // strncmp(x, y) -> cnst (if both x and y are constant strings) 394 if (HasStr1 && HasStr2) { 395 StringRef SubStr1 = Str1.substr(0, Length); 396 StringRef SubStr2 = Str2.substr(0, Length); 397 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 398 } 399 400 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 401 return B.CreateNeg(B.CreateZExt( 402 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 403 404 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 405 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 406 CI->getType()); 407 408 uint64_t Len1 = GetStringLength(Str1P); 409 uint64_t Len2 = GetStringLength(Str2P); 410 411 // strncmp to memcmp 412 if (!HasStr1 && HasStr2) { 413 Len2 = std::min(Len2, Length); 414 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 415 return emitMemCmp( 416 Str1P, Str2P, 417 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 418 TLI); 419 } else if (HasStr1 && !HasStr2) { 420 Len1 = std::min(Len1, Length); 421 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 422 return emitMemCmp( 423 Str1P, Str2P, 424 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 425 TLI); 426 } 427 428 return nullptr; 429 } 430 431 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 432 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 433 if (Dst == Src) // strcpy(x,x) -> x 434 return Src; 435 436 // See if we can get the length of the input string. 437 uint64_t Len = GetStringLength(Src); 438 if (Len == 0) 439 return nullptr; 440 441 // We have enough information to now generate the memcpy call to do the 442 // copy for us. Make a memcpy to copy the nul byte with align = 1. 443 B.CreateMemCpy(Dst, 1, Src, 1, 444 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 445 return Dst; 446 } 447 448 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 449 Function *Callee = CI->getCalledFunction(); 450 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 451 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 452 Value *StrLen = emitStrLen(Src, B, DL, TLI); 453 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 454 } 455 456 // See if we can get the length of the input string. 457 uint64_t Len = GetStringLength(Src); 458 if (Len == 0) 459 return nullptr; 460 461 Type *PT = Callee->getFunctionType()->getParamType(0); 462 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 463 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 464 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 465 466 // We have enough information to now generate the memcpy call to do the 467 // copy for us. Make a memcpy to copy the nul byte with align = 1. 468 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 469 return DstEnd; 470 } 471 472 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 473 Function *Callee = CI->getCalledFunction(); 474 Value *Dst = CI->getArgOperand(0); 475 Value *Src = CI->getArgOperand(1); 476 Value *LenOp = CI->getArgOperand(2); 477 478 // See if we can get the length of the input string. 479 uint64_t SrcLen = GetStringLength(Src); 480 if (SrcLen == 0) 481 return nullptr; 482 --SrcLen; 483 484 if (SrcLen == 0) { 485 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 486 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 487 return Dst; 488 } 489 490 uint64_t Len; 491 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 492 Len = LengthArg->getZExtValue(); 493 else 494 return nullptr; 495 496 if (Len == 0) 497 return Dst; // strncpy(x, y, 0) -> x 498 499 // Let strncpy handle the zero padding 500 if (Len > SrcLen + 1) 501 return nullptr; 502 503 Type *PT = Callee->getFunctionType()->getParamType(0); 504 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 505 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 506 507 return Dst; 508 } 509 510 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 511 unsigned CharSize) { 512 Value *Src = CI->getArgOperand(0); 513 514 // Constant folding: strlen("xyz") -> 3 515 if (uint64_t Len = GetStringLength(Src, CharSize)) 516 return ConstantInt::get(CI->getType(), Len - 1); 517 518 // If s is a constant pointer pointing to a string literal, we can fold 519 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 520 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 521 // We only try to simplify strlen when the pointer s points to an array 522 // of i8. Otherwise, we would need to scale the offset x before doing the 523 // subtraction. This will make the optimization more complex, and it's not 524 // very useful because calling strlen for a pointer of other types is 525 // very uncommon. 526 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 527 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 528 return nullptr; 529 530 ConstantDataArraySlice Slice; 531 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 532 uint64_t NullTermIdx; 533 if (Slice.Array == nullptr) { 534 NullTermIdx = 0; 535 } else { 536 NullTermIdx = ~((uint64_t)0); 537 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 538 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 539 NullTermIdx = I; 540 break; 541 } 542 } 543 // If the string does not have '\0', leave it to strlen to compute 544 // its length. 545 if (NullTermIdx == ~((uint64_t)0)) 546 return nullptr; 547 } 548 549 Value *Offset = GEP->getOperand(2); 550 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 551 Known.Zero.flipAllBits(); 552 uint64_t ArrSize = 553 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 554 555 // KnownZero's bits are flipped, so zeros in KnownZero now represent 556 // bits known to be zeros in Offset, and ones in KnowZero represent 557 // bits unknown in Offset. Therefore, Offset is known to be in range 558 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 559 // unsigned-less-than NullTermIdx. 560 // 561 // If Offset is not provably in the range [0, NullTermIdx], we can still 562 // optimize if we can prove that the program has undefined behavior when 563 // Offset is outside that range. That is the case when GEP->getOperand(0) 564 // is a pointer to an object whose memory extent is NullTermIdx+1. 565 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 566 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 567 NullTermIdx == ArrSize - 1)) { 568 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 569 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 570 Offset); 571 } 572 } 573 574 return nullptr; 575 } 576 577 // strlen(x?"foo":"bars") --> x ? 3 : 4 578 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 579 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 580 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 581 if (LenTrue && LenFalse) { 582 ORE.emit([&]() { 583 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 584 << "folded strlen(select) to select of constants"; 585 }); 586 return B.CreateSelect(SI->getCondition(), 587 ConstantInt::get(CI->getType(), LenTrue - 1), 588 ConstantInt::get(CI->getType(), LenFalse - 1)); 589 } 590 } 591 592 // strlen(x) != 0 --> *x != 0 593 // strlen(x) == 0 --> *x == 0 594 if (isOnlyUsedInZeroEqualityComparison(CI)) 595 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 596 CI->getType()); 597 598 return nullptr; 599 } 600 601 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 602 return optimizeStringLength(CI, B, 8); 603 } 604 605 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 606 Module &M = *CI->getModule(); 607 unsigned WCharSize = TLI->getWCharSize(M) * 8; 608 // We cannot perform this optimization without wchar_size metadata. 609 if (WCharSize == 0) 610 return nullptr; 611 612 return optimizeStringLength(CI, B, WCharSize); 613 } 614 615 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 616 StringRef S1, S2; 617 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 618 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 619 620 // strpbrk(s, "") -> nullptr 621 // strpbrk("", s) -> nullptr 622 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 623 return Constant::getNullValue(CI->getType()); 624 625 // Constant folding. 626 if (HasS1 && HasS2) { 627 size_t I = S1.find_first_of(S2); 628 if (I == StringRef::npos) // No match. 629 return Constant::getNullValue(CI->getType()); 630 631 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 632 "strpbrk"); 633 } 634 635 // strpbrk(s, "a") -> strchr(s, 'a') 636 if (HasS2 && S2.size() == 1) 637 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 638 639 return nullptr; 640 } 641 642 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 643 Value *EndPtr = CI->getArgOperand(1); 644 if (isa<ConstantPointerNull>(EndPtr)) { 645 // With a null EndPtr, this function won't capture the main argument. 646 // It would be readonly too, except that it still may write to errno. 647 CI->addParamAttr(0, Attribute::NoCapture); 648 } 649 650 return nullptr; 651 } 652 653 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 654 StringRef S1, S2; 655 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 656 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 657 658 // strspn(s, "") -> 0 659 // strspn("", s) -> 0 660 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 661 return Constant::getNullValue(CI->getType()); 662 663 // Constant folding. 664 if (HasS1 && HasS2) { 665 size_t Pos = S1.find_first_not_of(S2); 666 if (Pos == StringRef::npos) 667 Pos = S1.size(); 668 return ConstantInt::get(CI->getType(), Pos); 669 } 670 671 return nullptr; 672 } 673 674 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 675 StringRef S1, S2; 676 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 677 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 678 679 // strcspn("", s) -> 0 680 if (HasS1 && S1.empty()) 681 return Constant::getNullValue(CI->getType()); 682 683 // Constant folding. 684 if (HasS1 && HasS2) { 685 size_t Pos = S1.find_first_of(S2); 686 if (Pos == StringRef::npos) 687 Pos = S1.size(); 688 return ConstantInt::get(CI->getType(), Pos); 689 } 690 691 // strcspn(s, "") -> strlen(s) 692 if (HasS2 && S2.empty()) 693 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 694 695 return nullptr; 696 } 697 698 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 699 // fold strstr(x, x) -> x. 700 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 701 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 702 703 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 704 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 705 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 706 if (!StrLen) 707 return nullptr; 708 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 709 StrLen, B, DL, TLI); 710 if (!StrNCmp) 711 return nullptr; 712 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 713 ICmpInst *Old = cast<ICmpInst>(*UI++); 714 Value *Cmp = 715 B.CreateICmp(Old->getPredicate(), StrNCmp, 716 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 717 replaceAllUsesWith(Old, Cmp); 718 } 719 return CI; 720 } 721 722 // See if either input string is a constant string. 723 StringRef SearchStr, ToFindStr; 724 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 725 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 726 727 // fold strstr(x, "") -> x. 728 if (HasStr2 && ToFindStr.empty()) 729 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 730 731 // If both strings are known, constant fold it. 732 if (HasStr1 && HasStr2) { 733 size_t Offset = SearchStr.find(ToFindStr); 734 735 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 736 return Constant::getNullValue(CI->getType()); 737 738 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 739 Value *Result = castToCStr(CI->getArgOperand(0), B); 740 Result = 741 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 742 return B.CreateBitCast(Result, CI->getType()); 743 } 744 745 // fold strstr(x, "y") -> strchr(x, 'y'). 746 if (HasStr2 && ToFindStr.size() == 1) { 747 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 748 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 749 } 750 return nullptr; 751 } 752 753 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 754 Value *SrcStr = CI->getArgOperand(0); 755 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 756 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 757 758 // memchr(x, y, 0) -> null 759 if (LenC && LenC->isZero()) 760 return Constant::getNullValue(CI->getType()); 761 762 // From now on we need at least constant length and string. 763 StringRef Str; 764 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 765 return nullptr; 766 767 // Truncate the string to LenC. If Str is smaller than LenC we will still only 768 // scan the string, as reading past the end of it is undefined and we can just 769 // return null if we don't find the char. 770 Str = Str.substr(0, LenC->getZExtValue()); 771 772 // If the char is variable but the input str and length are not we can turn 773 // this memchr call into a simple bit field test. Of course this only works 774 // when the return value is only checked against null. 775 // 776 // It would be really nice to reuse switch lowering here but we can't change 777 // the CFG at this point. 778 // 779 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 780 // after bounds check. 781 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 782 unsigned char Max = 783 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 784 reinterpret_cast<const unsigned char *>(Str.end())); 785 786 // Make sure the bit field we're about to create fits in a register on the 787 // target. 788 // FIXME: On a 64 bit architecture this prevents us from using the 789 // interesting range of alpha ascii chars. We could do better by emitting 790 // two bitfields or shifting the range by 64 if no lower chars are used. 791 if (!DL.fitsInLegalInteger(Max + 1)) 792 return nullptr; 793 794 // For the bit field use a power-of-2 type with at least 8 bits to avoid 795 // creating unnecessary illegal types. 796 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 797 798 // Now build the bit field. 799 APInt Bitfield(Width, 0); 800 for (char C : Str) 801 Bitfield.setBit((unsigned char)C); 802 Value *BitfieldC = B.getInt(Bitfield); 803 804 // Adjust width of "C" to the bitfield width, then mask off the high bits. 805 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 806 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 807 808 // First check that the bit field access is within bounds. 809 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 810 "memchr.bounds"); 811 812 // Create code that checks if the given bit is set in the field. 813 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 814 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 815 816 // Finally merge both checks and cast to pointer type. The inttoptr 817 // implicitly zexts the i1 to intptr type. 818 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 819 } 820 821 // Check if all arguments are constants. If so, we can constant fold. 822 if (!CharC) 823 return nullptr; 824 825 // Compute the offset. 826 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 827 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 828 return Constant::getNullValue(CI->getType()); 829 830 // memchr(s+n,c,l) -> gep(s+n+i,c) 831 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 832 } 833 834 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 835 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 836 837 if (LHS == RHS) // memcmp(s,s,x) -> 0 838 return Constant::getNullValue(CI->getType()); 839 840 // Make sure we have a constant length. 841 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 842 if (!LenC) 843 return nullptr; 844 845 uint64_t Len = LenC->getZExtValue(); 846 if (Len == 0) // memcmp(s1,s2,0) -> 0 847 return Constant::getNullValue(CI->getType()); 848 849 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 850 if (Len == 1) { 851 Value *LHSV = 852 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 853 CI->getType(), "lhsv"); 854 Value *RHSV = 855 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 856 CI->getType(), "rhsv"); 857 return B.CreateSub(LHSV, RHSV, "chardiff"); 858 } 859 860 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 861 // TODO: The case where both inputs are constants does not need to be limited 862 // to legal integers or equality comparison. See block below this. 863 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 864 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 865 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 866 867 // First, see if we can fold either argument to a constant. 868 Value *LHSV = nullptr; 869 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 870 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 871 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 872 } 873 Value *RHSV = nullptr; 874 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 875 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 876 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 877 } 878 879 // Don't generate unaligned loads. If either source is constant data, 880 // alignment doesn't matter for that source because there is no load. 881 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 882 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 883 if (!LHSV) { 884 Type *LHSPtrTy = 885 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 886 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 887 } 888 if (!RHSV) { 889 Type *RHSPtrTy = 890 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 891 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 892 } 893 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 894 } 895 } 896 897 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 898 // TODO: This is limited to i8 arrays. 899 StringRef LHSStr, RHSStr; 900 if (getConstantStringInfo(LHS, LHSStr) && 901 getConstantStringInfo(RHS, RHSStr)) { 902 // Make sure we're not reading out-of-bounds memory. 903 if (Len > LHSStr.size() || Len > RHSStr.size()) 904 return nullptr; 905 // Fold the memcmp and normalize the result. This way we get consistent 906 // results across multiple platforms. 907 uint64_t Ret = 0; 908 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 909 if (Cmp < 0) 910 Ret = -1; 911 else if (Cmp > 0) 912 Ret = 1; 913 return ConstantInt::get(CI->getType(), Ret); 914 } 915 916 return nullptr; 917 } 918 919 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 920 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 921 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 922 CI->getArgOperand(2)); 923 return CI->getArgOperand(0); 924 } 925 926 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 927 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 928 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 929 CI->getArgOperand(2)); 930 return CI->getArgOperand(0); 931 } 932 933 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 934 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 935 // This has to be a memset of zeros (bzero). 936 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 937 if (!FillValue || FillValue->getZExtValue() != 0) 938 return nullptr; 939 940 // TODO: We should handle the case where the malloc has more than one use. 941 // This is necessary to optimize common patterns such as when the result of 942 // the malloc is checked against null or when a memset intrinsic is used in 943 // place of a memset library call. 944 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 945 if (!Malloc || !Malloc->hasOneUse()) 946 return nullptr; 947 948 // Is the inner call really malloc()? 949 Function *InnerCallee = Malloc->getCalledFunction(); 950 if (!InnerCallee) 951 return nullptr; 952 953 LibFunc Func; 954 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 955 Func != LibFunc_malloc) 956 return nullptr; 957 958 // The memset must cover the same number of bytes that are malloc'd. 959 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 960 return nullptr; 961 962 // Replace the malloc with a calloc. We need the data layout to know what the 963 // actual size of a 'size_t' parameter is. 964 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 965 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 966 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 967 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 968 Malloc->getArgOperand(0), Malloc->getAttributes(), 969 B, *TLI); 970 if (!Calloc) 971 return nullptr; 972 973 Malloc->replaceAllUsesWith(Calloc); 974 eraseFromParent(Malloc); 975 976 return Calloc; 977 } 978 979 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 980 if (auto *Calloc = foldMallocMemset(CI, B)) 981 return Calloc; 982 983 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 984 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 985 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 986 return CI->getArgOperand(0); 987 } 988 989 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 990 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 991 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 992 993 return nullptr; 994 } 995 996 //===----------------------------------------------------------------------===// 997 // Math Library Optimizations 998 //===----------------------------------------------------------------------===// 999 1000 // Replace a libcall \p CI with a call to intrinsic \p IID 1001 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1002 // Propagate fast-math flags from the existing call to the new call. 1003 IRBuilder<>::FastMathFlagGuard Guard(B); 1004 B.setFastMathFlags(CI->getFastMathFlags()); 1005 1006 Module *M = CI->getModule(); 1007 Value *V = CI->getArgOperand(0); 1008 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1009 CallInst *NewCall = B.CreateCall(F, V); 1010 NewCall->takeName(CI); 1011 return NewCall; 1012 } 1013 1014 /// Return a variant of Val with float type. 1015 /// Currently this works in two cases: If Val is an FPExtension of a float 1016 /// value to something bigger, simply return the operand. 1017 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1018 /// loss of precision do so. 1019 static Value *valueHasFloatPrecision(Value *Val) { 1020 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1021 Value *Op = Cast->getOperand(0); 1022 if (Op->getType()->isFloatTy()) 1023 return Op; 1024 } 1025 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1026 APFloat F = Const->getValueAPF(); 1027 bool losesInfo; 1028 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1029 &losesInfo); 1030 if (!losesInfo) 1031 return ConstantFP::get(Const->getContext(), F); 1032 } 1033 return nullptr; 1034 } 1035 1036 /// Shrink double -> float functions. 1037 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1038 bool isBinary, bool isPrecise = false) { 1039 if (!CI->getType()->isDoubleTy()) 1040 return nullptr; 1041 1042 // If not all the uses of the function are converted to float, then bail out. 1043 // This matters if the precision of the result is more important than the 1044 // precision of the arguments. 1045 if (isPrecise) 1046 for (User *U : CI->users()) { 1047 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1048 if (!Cast || !Cast->getType()->isFloatTy()) 1049 return nullptr; 1050 } 1051 1052 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1053 Value *V[2]; 1054 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1055 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1056 if (!V[0] || (isBinary && !V[1])) 1057 return nullptr; 1058 1059 // If call isn't an intrinsic, check that it isn't within a function with the 1060 // same name as the float version of this call, otherwise the result is an 1061 // infinite loop. For example, from MinGW-w64: 1062 // 1063 // float expf(float val) { return (float) exp((double) val); } 1064 Function *CalleeFn = CI->getCalledFunction(); 1065 StringRef CalleeNm = CalleeFn->getName(); 1066 AttributeList CalleeAt = CalleeFn->getAttributes(); 1067 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1068 const Function *Fn = CI->getFunction(); 1069 StringRef FnName = Fn->getName(); 1070 if (FnName.back() == 'f' && 1071 FnName.size() == (CalleeNm.size() + 1) && 1072 FnName.startswith(CalleeNm)) 1073 return nullptr; 1074 } 1075 1076 // Propagate the math semantics from the current function to the new function. 1077 IRBuilder<>::FastMathFlagGuard Guard(B); 1078 B.setFastMathFlags(CI->getFastMathFlags()); 1079 1080 // g((double) float) -> (double) gf(float) 1081 Value *R; 1082 if (CalleeFn->isIntrinsic()) { 1083 Module *M = CI->getModule(); 1084 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1085 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1086 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1087 } 1088 else 1089 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1090 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1091 1092 return B.CreateFPExt(R, B.getDoubleTy()); 1093 } 1094 1095 /// Shrink double -> float for unary functions. 1096 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1097 bool isPrecise = false) { 1098 return optimizeDoubleFP(CI, B, false, isPrecise); 1099 } 1100 1101 /// Shrink double -> float for binary functions. 1102 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1103 bool isPrecise = false) { 1104 return optimizeDoubleFP(CI, B, true, isPrecise); 1105 } 1106 1107 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1108 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1109 if (!CI->isFast()) 1110 return nullptr; 1111 1112 // Propagate fast-math flags from the existing call to new instructions. 1113 IRBuilder<>::FastMathFlagGuard Guard(B); 1114 B.setFastMathFlags(CI->getFastMathFlags()); 1115 1116 Value *Real, *Imag; 1117 if (CI->getNumArgOperands() == 1) { 1118 Value *Op = CI->getArgOperand(0); 1119 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1120 Real = B.CreateExtractValue(Op, 0, "real"); 1121 Imag = B.CreateExtractValue(Op, 1, "imag"); 1122 } else { 1123 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1124 Real = CI->getArgOperand(0); 1125 Imag = CI->getArgOperand(1); 1126 } 1127 1128 Value *RealReal = B.CreateFMul(Real, Real); 1129 Value *ImagImag = B.CreateFMul(Imag, Imag); 1130 1131 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1132 CI->getType()); 1133 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1134 } 1135 1136 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1137 IRBuilder<> &B) { 1138 if (!isa<FPMathOperator>(Call)) 1139 return nullptr; 1140 1141 IRBuilder<>::FastMathFlagGuard Guard(B); 1142 B.setFastMathFlags(Call->getFastMathFlags()); 1143 1144 // TODO: Can this be shared to also handle LLVM intrinsics? 1145 Value *X; 1146 switch (Func) { 1147 case LibFunc_sin: 1148 case LibFunc_sinf: 1149 case LibFunc_sinl: 1150 case LibFunc_tan: 1151 case LibFunc_tanf: 1152 case LibFunc_tanl: 1153 // sin(-X) --> -sin(X) 1154 // tan(-X) --> -tan(X) 1155 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1156 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1157 break; 1158 case LibFunc_cos: 1159 case LibFunc_cosf: 1160 case LibFunc_cosl: 1161 // cos(-X) --> cos(X) 1162 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1163 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1164 break; 1165 default: 1166 break; 1167 } 1168 return nullptr; 1169 } 1170 1171 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1172 // Multiplications calculated using Addition Chains. 1173 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1174 1175 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1176 1177 if (InnerChain[Exp]) 1178 return InnerChain[Exp]; 1179 1180 static const unsigned AddChain[33][2] = { 1181 {0, 0}, // Unused. 1182 {0, 0}, // Unused (base case = pow1). 1183 {1, 1}, // Unused (pre-computed). 1184 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1185 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1186 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1187 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1188 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1189 }; 1190 1191 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1192 getPow(InnerChain, AddChain[Exp][1], B)); 1193 return InnerChain[Exp]; 1194 } 1195 1196 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1197 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1198 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1199 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1200 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1201 Module *Mod = Pow->getModule(); 1202 Type *Ty = Pow->getType(); 1203 bool Ignored; 1204 1205 // Evaluate special cases related to a nested function as the base. 1206 1207 // pow(exp(x), y) -> exp(x * y) 1208 // pow(exp2(x), y) -> exp2(x * y) 1209 // If exp{,2}() is used only once, it is better to fold two transcendental 1210 // math functions into one. If used again, exp{,2}() would still have to be 1211 // called with the original argument, then keep both original transcendental 1212 // functions. However, this transformation is only safe with fully relaxed 1213 // math semantics, since, besides rounding differences, it changes overflow 1214 // and underflow behavior quite dramatically. For example: 1215 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1216 // Whereas: 1217 // exp(1000 * 0.001) = exp(1) 1218 // TODO: Loosen the requirement for fully relaxed math semantics. 1219 // TODO: Handle exp10() when more targets have it available. 1220 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1221 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1222 LibFunc LibFn; 1223 1224 Function *CalleeFn = BaseFn->getCalledFunction(); 1225 if (CalleeFn && 1226 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1227 StringRef ExpName; 1228 Intrinsic::ID ID; 1229 Value *ExpFn; 1230 LibFunc LibFnFloat; 1231 LibFunc LibFnDouble; 1232 LibFunc LibFnLongDouble; 1233 1234 switch (LibFn) { 1235 default: 1236 return nullptr; 1237 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1238 ExpName = TLI->getName(LibFunc_exp); 1239 ID = Intrinsic::exp; 1240 LibFnFloat = LibFunc_expf; 1241 LibFnDouble = LibFunc_exp; 1242 LibFnLongDouble = LibFunc_expl; 1243 break; 1244 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1245 ExpName = TLI->getName(LibFunc_exp2); 1246 ID = Intrinsic::exp2; 1247 LibFnFloat = LibFunc_exp2f; 1248 LibFnDouble = LibFunc_exp2; 1249 LibFnLongDouble = LibFunc_exp2l; 1250 break; 1251 } 1252 1253 // Create new exp{,2}() with the product as its argument. 1254 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1255 ExpFn = BaseFn->doesNotAccessMemory() 1256 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1257 FMul, ExpName) 1258 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1259 LibFnLongDouble, B, 1260 BaseFn->getAttributes()); 1261 1262 // Since the new exp{,2}() is different from the original one, dead code 1263 // elimination cannot be trusted to remove it, since it may have side 1264 // effects (e.g., errno). When the only consumer for the original 1265 // exp{,2}() is pow(), then it has to be explicitly erased. 1266 BaseFn->replaceAllUsesWith(ExpFn); 1267 eraseFromParent(BaseFn); 1268 1269 return ExpFn; 1270 } 1271 } 1272 1273 // Evaluate special cases related to a constant base. 1274 1275 const APFloat *BaseF; 1276 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1277 return nullptr; 1278 1279 // pow(2.0 ** n, x) -> exp2(n * x) 1280 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1281 APFloat BaseR = APFloat(1.0); 1282 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1283 BaseR = BaseR / *BaseF; 1284 bool IsInteger = BaseF->isInteger(), 1285 IsReciprocal = BaseR.isInteger(); 1286 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1287 APSInt NI(64, false); 1288 if ((IsInteger || IsReciprocal) && 1289 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1290 NI > 1 && NI.isPowerOf2()) { 1291 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1292 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1293 if (Pow->doesNotAccessMemory()) 1294 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1295 FMul, "exp2"); 1296 else 1297 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1298 LibFunc_exp2l, B, Attrs); 1299 } 1300 } 1301 1302 // pow(10.0, x) -> exp10(x) 1303 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1304 if (match(Base, m_SpecificFP(10.0)) && 1305 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1306 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1307 LibFunc_exp10l, B, Attrs); 1308 1309 return nullptr; 1310 } 1311 1312 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1313 Module *M, IRBuilder<> &B, 1314 const TargetLibraryInfo *TLI) { 1315 // If errno is never set, then use the intrinsic for sqrt(). 1316 if (NoErrno) { 1317 Function *SqrtFn = 1318 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1319 return B.CreateCall(SqrtFn, V, "sqrt"); 1320 } 1321 1322 // Otherwise, use the libcall for sqrt(). 1323 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1324 LibFunc_sqrtl)) 1325 // TODO: We also should check that the target can in fact lower the sqrt() 1326 // libcall. We currently have no way to ask this question, so we ask if 1327 // the target has a sqrt() libcall, which is not exactly the same. 1328 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1329 LibFunc_sqrtl, B, Attrs); 1330 1331 return nullptr; 1332 } 1333 1334 /// Use square root in place of pow(x, +/-0.5). 1335 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1336 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1337 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1338 Module *Mod = Pow->getModule(); 1339 Type *Ty = Pow->getType(); 1340 1341 const APFloat *ExpoF; 1342 if (!match(Expo, m_APFloat(ExpoF)) || 1343 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1344 return nullptr; 1345 1346 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1347 if (!Sqrt) 1348 return nullptr; 1349 1350 // Handle signed zero base by expanding to fabs(sqrt(x)). 1351 if (!Pow->hasNoSignedZeros()) { 1352 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1353 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1354 } 1355 1356 // Handle non finite base by expanding to 1357 // (x == -infinity ? +infinity : sqrt(x)). 1358 if (!Pow->hasNoInfs()) { 1359 Value *PosInf = ConstantFP::getInfinity(Ty), 1360 *NegInf = ConstantFP::getInfinity(Ty, true); 1361 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1362 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1363 } 1364 1365 // If the exponent is negative, then get the reciprocal. 1366 if (ExpoF->isNegative()) 1367 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1368 1369 return Sqrt; 1370 } 1371 1372 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1373 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1374 Function *Callee = Pow->getCalledFunction(); 1375 StringRef Name = Callee->getName(); 1376 Type *Ty = Pow->getType(); 1377 Value *Shrunk = nullptr; 1378 bool Ignored; 1379 1380 // Bail out if simplifying libcalls to pow() is disabled. 1381 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1382 return nullptr; 1383 1384 // Propagate the math semantics from the call to any created instructions. 1385 IRBuilder<>::FastMathFlagGuard Guard(B); 1386 B.setFastMathFlags(Pow->getFastMathFlags()); 1387 1388 // Shrink pow() to powf() if the arguments are single precision, 1389 // unless the result is expected to be double precision. 1390 if (UnsafeFPShrink && 1391 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1392 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1393 1394 // Evaluate special cases related to the base. 1395 1396 // pow(1.0, x) -> 1.0 1397 if (match(Base, m_FPOne())) 1398 return Base; 1399 1400 if (Value *Exp = replacePowWithExp(Pow, B)) 1401 return Exp; 1402 1403 // Evaluate special cases related to the exponent. 1404 1405 // pow(x, -1.0) -> 1.0 / x 1406 if (match(Expo, m_SpecificFP(-1.0))) 1407 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1408 1409 // pow(x, 0.0) -> 1.0 1410 if (match(Expo, m_SpecificFP(0.0))) 1411 return ConstantFP::get(Ty, 1.0); 1412 1413 // pow(x, 1.0) -> x 1414 if (match(Expo, m_FPOne())) 1415 return Base; 1416 1417 // pow(x, 2.0) -> x * x 1418 if (match(Expo, m_SpecificFP(2.0))) 1419 return B.CreateFMul(Base, Base, "square"); 1420 1421 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1422 return Sqrt; 1423 1424 // pow(x, n) -> x * x * x * ... 1425 const APFloat *ExpoF; 1426 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1427 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1428 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1429 // additional fmul. 1430 // TODO: This whole transformation should be backend specific (e.g. some 1431 // backends might prefer libcalls or the limit for the exponent might 1432 // be different) and it should also consider optimizing for size. 1433 APFloat LimF(ExpoF->getSemantics(), 33.0), 1434 ExpoA(abs(*ExpoF)); 1435 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1436 // This transformation applies to integer or integer+0.5 exponents only. 1437 // For integer+0.5, we create a sqrt(Base) call. 1438 Value *Sqrt = nullptr; 1439 if (!ExpoA.isInteger()) { 1440 APFloat Expo2 = ExpoA; 1441 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1442 // is no floating point exception and the result is an integer, then 1443 // ExpoA == integer + 0.5 1444 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1445 return nullptr; 1446 1447 if (!Expo2.isInteger()) 1448 return nullptr; 1449 1450 Sqrt = 1451 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1452 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1453 } 1454 1455 // We will memoize intermediate products of the Addition Chain. 1456 Value *InnerChain[33] = {nullptr}; 1457 InnerChain[1] = Base; 1458 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1459 1460 // We cannot readily convert a non-double type (like float) to a double. 1461 // So we first convert it to something which could be converted to double. 1462 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1463 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1464 1465 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1466 if (Sqrt) 1467 FMul = B.CreateFMul(FMul, Sqrt); 1468 1469 // If the exponent is negative, then get the reciprocal. 1470 if (ExpoF->isNegative()) 1471 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1472 1473 return FMul; 1474 } 1475 } 1476 1477 return Shrunk; 1478 } 1479 1480 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1481 Function *Callee = CI->getCalledFunction(); 1482 Value *Ret = nullptr; 1483 StringRef Name = Callee->getName(); 1484 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1485 Ret = optimizeUnaryDoubleFP(CI, B, true); 1486 1487 Value *Op = CI->getArgOperand(0); 1488 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1489 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1490 LibFunc LdExp = LibFunc_ldexpl; 1491 if (Op->getType()->isFloatTy()) 1492 LdExp = LibFunc_ldexpf; 1493 else if (Op->getType()->isDoubleTy()) 1494 LdExp = LibFunc_ldexp; 1495 1496 if (TLI->has(LdExp)) { 1497 Value *LdExpArg = nullptr; 1498 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1499 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1500 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1501 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1502 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1503 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1504 } 1505 1506 if (LdExpArg) { 1507 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1508 if (!Op->getType()->isFloatTy()) 1509 One = ConstantExpr::getFPExtend(One, Op->getType()); 1510 1511 Module *M = CI->getModule(); 1512 FunctionCallee NewCallee = M->getOrInsertFunction( 1513 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); 1514 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1515 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1516 CI->setCallingConv(F->getCallingConv()); 1517 1518 return CI; 1519 } 1520 } 1521 return Ret; 1522 } 1523 1524 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1525 Function *Callee = CI->getCalledFunction(); 1526 // If we can shrink the call to a float function rather than a double 1527 // function, do that first. 1528 StringRef Name = Callee->getName(); 1529 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1530 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1531 return Ret; 1532 1533 IRBuilder<>::FastMathFlagGuard Guard(B); 1534 FastMathFlags FMF; 1535 if (CI->isFast()) { 1536 // If the call is 'fast', then anything we create here will also be 'fast'. 1537 FMF.setFast(); 1538 } else { 1539 // At a minimum, no-nans-fp-math must be true. 1540 if (!CI->hasNoNaNs()) 1541 return nullptr; 1542 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1543 // "Ideally, fmax would be sensitive to the sign of zero, for example 1544 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1545 // might be impractical." 1546 FMF.setNoSignedZeros(); 1547 FMF.setNoNaNs(); 1548 } 1549 B.setFastMathFlags(FMF); 1550 1551 // We have a relaxed floating-point environment. We can ignore NaN-handling 1552 // and transform to a compare and select. We do not have to consider errno or 1553 // exceptions, because fmin/fmax do not have those. 1554 Value *Op0 = CI->getArgOperand(0); 1555 Value *Op1 = CI->getArgOperand(1); 1556 Value *Cmp = Callee->getName().startswith("fmin") ? 1557 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1558 return B.CreateSelect(Cmp, Op0, Op1); 1559 } 1560 1561 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1562 Function *Callee = CI->getCalledFunction(); 1563 Value *Ret = nullptr; 1564 StringRef Name = Callee->getName(); 1565 if (UnsafeFPShrink && hasFloatVersion(Name)) 1566 Ret = optimizeUnaryDoubleFP(CI, B, true); 1567 1568 if (!CI->isFast()) 1569 return Ret; 1570 Value *Op1 = CI->getArgOperand(0); 1571 auto *OpC = dyn_cast<CallInst>(Op1); 1572 1573 // The earlier call must also be 'fast' in order to do these transforms. 1574 if (!OpC || !OpC->isFast()) 1575 return Ret; 1576 1577 // log(pow(x,y)) -> y*log(x) 1578 // This is only applicable to log, log2, log10. 1579 if (Name != "log" && Name != "log2" && Name != "log10") 1580 return Ret; 1581 1582 IRBuilder<>::FastMathFlagGuard Guard(B); 1583 FastMathFlags FMF; 1584 FMF.setFast(); 1585 B.setFastMathFlags(FMF); 1586 1587 LibFunc Func; 1588 Function *F = OpC->getCalledFunction(); 1589 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1590 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1591 return B.CreateFMul(OpC->getArgOperand(1), 1592 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1593 Callee->getAttributes()), "mul"); 1594 1595 // log(exp2(y)) -> y*log(2) 1596 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1597 TLI->has(Func) && Func == LibFunc_exp2) 1598 return B.CreateFMul( 1599 OpC->getArgOperand(0), 1600 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1601 Callee->getName(), B, Callee->getAttributes()), 1602 "logmul"); 1603 return Ret; 1604 } 1605 1606 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1607 Function *Callee = CI->getCalledFunction(); 1608 Value *Ret = nullptr; 1609 // TODO: Once we have a way (other than checking for the existince of the 1610 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1611 // condition below. 1612 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1613 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1614 Ret = optimizeUnaryDoubleFP(CI, B, true); 1615 1616 if (!CI->isFast()) 1617 return Ret; 1618 1619 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1620 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1621 return Ret; 1622 1623 // We're looking for a repeated factor in a multiplication tree, 1624 // so we can do this fold: sqrt(x * x) -> fabs(x); 1625 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1626 Value *Op0 = I->getOperand(0); 1627 Value *Op1 = I->getOperand(1); 1628 Value *RepeatOp = nullptr; 1629 Value *OtherOp = nullptr; 1630 if (Op0 == Op1) { 1631 // Simple match: the operands of the multiply are identical. 1632 RepeatOp = Op0; 1633 } else { 1634 // Look for a more complicated pattern: one of the operands is itself 1635 // a multiply, so search for a common factor in that multiply. 1636 // Note: We don't bother looking any deeper than this first level or for 1637 // variations of this pattern because instcombine's visitFMUL and/or the 1638 // reassociation pass should give us this form. 1639 Value *OtherMul0, *OtherMul1; 1640 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1641 // Pattern: sqrt((x * y) * z) 1642 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1643 // Matched: sqrt((x * x) * z) 1644 RepeatOp = OtherMul0; 1645 OtherOp = Op1; 1646 } 1647 } 1648 } 1649 if (!RepeatOp) 1650 return Ret; 1651 1652 // Fast math flags for any created instructions should match the sqrt 1653 // and multiply. 1654 IRBuilder<>::FastMathFlagGuard Guard(B); 1655 B.setFastMathFlags(I->getFastMathFlags()); 1656 1657 // If we found a repeated factor, hoist it out of the square root and 1658 // replace it with the fabs of that factor. 1659 Module *M = Callee->getParent(); 1660 Type *ArgType = I->getType(); 1661 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1662 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1663 if (OtherOp) { 1664 // If we found a non-repeated factor, we still need to get its square 1665 // root. We then multiply that by the value that was simplified out 1666 // of the square root calculation. 1667 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1668 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1669 return B.CreateFMul(FabsCall, SqrtCall); 1670 } 1671 return FabsCall; 1672 } 1673 1674 // TODO: Generalize to handle any trig function and its inverse. 1675 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1676 Function *Callee = CI->getCalledFunction(); 1677 Value *Ret = nullptr; 1678 StringRef Name = Callee->getName(); 1679 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1680 Ret = optimizeUnaryDoubleFP(CI, B, true); 1681 1682 Value *Op1 = CI->getArgOperand(0); 1683 auto *OpC = dyn_cast<CallInst>(Op1); 1684 if (!OpC) 1685 return Ret; 1686 1687 // Both calls must be 'fast' in order to remove them. 1688 if (!CI->isFast() || !OpC->isFast()) 1689 return Ret; 1690 1691 // tan(atan(x)) -> x 1692 // tanf(atanf(x)) -> x 1693 // tanl(atanl(x)) -> x 1694 LibFunc Func; 1695 Function *F = OpC->getCalledFunction(); 1696 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1697 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1698 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1699 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1700 Ret = OpC->getArgOperand(0); 1701 return Ret; 1702 } 1703 1704 static bool isTrigLibCall(CallInst *CI) { 1705 // We can only hope to do anything useful if we can ignore things like errno 1706 // and floating-point exceptions. 1707 // We already checked the prototype. 1708 return CI->hasFnAttr(Attribute::NoUnwind) && 1709 CI->hasFnAttr(Attribute::ReadNone); 1710 } 1711 1712 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1713 bool UseFloat, Value *&Sin, Value *&Cos, 1714 Value *&SinCos) { 1715 Type *ArgTy = Arg->getType(); 1716 Type *ResTy; 1717 StringRef Name; 1718 1719 Triple T(OrigCallee->getParent()->getTargetTriple()); 1720 if (UseFloat) { 1721 Name = "__sincospif_stret"; 1722 1723 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1724 // x86_64 can't use {float, float} since that would be returned in both 1725 // xmm0 and xmm1, which isn't what a real struct would do. 1726 ResTy = T.getArch() == Triple::x86_64 1727 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1728 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1729 } else { 1730 Name = "__sincospi_stret"; 1731 ResTy = StructType::get(ArgTy, ArgTy); 1732 } 1733 1734 Module *M = OrigCallee->getParent(); 1735 FunctionCallee Callee = 1736 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1737 1738 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1739 // If the argument is an instruction, it must dominate all uses so put our 1740 // sincos call there. 1741 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1742 } else { 1743 // Otherwise (e.g. for a constant) the beginning of the function is as 1744 // good a place as any. 1745 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1746 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1747 } 1748 1749 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1750 1751 if (SinCos->getType()->isStructTy()) { 1752 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1753 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1754 } else { 1755 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1756 "sinpi"); 1757 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1758 "cospi"); 1759 } 1760 } 1761 1762 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1763 // Make sure the prototype is as expected, otherwise the rest of the 1764 // function is probably invalid and likely to abort. 1765 if (!isTrigLibCall(CI)) 1766 return nullptr; 1767 1768 Value *Arg = CI->getArgOperand(0); 1769 SmallVector<CallInst *, 1> SinCalls; 1770 SmallVector<CallInst *, 1> CosCalls; 1771 SmallVector<CallInst *, 1> SinCosCalls; 1772 1773 bool IsFloat = Arg->getType()->isFloatTy(); 1774 1775 // Look for all compatible sinpi, cospi and sincospi calls with the same 1776 // argument. If there are enough (in some sense) we can make the 1777 // substitution. 1778 Function *F = CI->getFunction(); 1779 for (User *U : Arg->users()) 1780 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1781 1782 // It's only worthwhile if both sinpi and cospi are actually used. 1783 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1784 return nullptr; 1785 1786 Value *Sin, *Cos, *SinCos; 1787 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1788 1789 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1790 Value *Res) { 1791 for (CallInst *C : Calls) 1792 replaceAllUsesWith(C, Res); 1793 }; 1794 1795 replaceTrigInsts(SinCalls, Sin); 1796 replaceTrigInsts(CosCalls, Cos); 1797 replaceTrigInsts(SinCosCalls, SinCos); 1798 1799 return nullptr; 1800 } 1801 1802 void LibCallSimplifier::classifyArgUse( 1803 Value *Val, Function *F, bool IsFloat, 1804 SmallVectorImpl<CallInst *> &SinCalls, 1805 SmallVectorImpl<CallInst *> &CosCalls, 1806 SmallVectorImpl<CallInst *> &SinCosCalls) { 1807 CallInst *CI = dyn_cast<CallInst>(Val); 1808 1809 if (!CI) 1810 return; 1811 1812 // Don't consider calls in other functions. 1813 if (CI->getFunction() != F) 1814 return; 1815 1816 Function *Callee = CI->getCalledFunction(); 1817 LibFunc Func; 1818 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1819 !isTrigLibCall(CI)) 1820 return; 1821 1822 if (IsFloat) { 1823 if (Func == LibFunc_sinpif) 1824 SinCalls.push_back(CI); 1825 else if (Func == LibFunc_cospif) 1826 CosCalls.push_back(CI); 1827 else if (Func == LibFunc_sincospif_stret) 1828 SinCosCalls.push_back(CI); 1829 } else { 1830 if (Func == LibFunc_sinpi) 1831 SinCalls.push_back(CI); 1832 else if (Func == LibFunc_cospi) 1833 CosCalls.push_back(CI); 1834 else if (Func == LibFunc_sincospi_stret) 1835 SinCosCalls.push_back(CI); 1836 } 1837 } 1838 1839 //===----------------------------------------------------------------------===// 1840 // Integer Library Call Optimizations 1841 //===----------------------------------------------------------------------===// 1842 1843 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1844 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1845 Value *Op = CI->getArgOperand(0); 1846 Type *ArgType = Op->getType(); 1847 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1848 Intrinsic::cttz, ArgType); 1849 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1850 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1851 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1852 1853 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1854 return B.CreateSelect(Cond, V, B.getInt32(0)); 1855 } 1856 1857 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1858 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1859 Value *Op = CI->getArgOperand(0); 1860 Type *ArgType = Op->getType(); 1861 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1862 Intrinsic::ctlz, ArgType); 1863 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1864 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1865 V); 1866 return B.CreateIntCast(V, CI->getType(), false); 1867 } 1868 1869 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1870 // abs(x) -> x <s 0 ? -x : x 1871 // The negation has 'nsw' because abs of INT_MIN is undefined. 1872 Value *X = CI->getArgOperand(0); 1873 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1874 Value *NegX = B.CreateNSWNeg(X, "neg"); 1875 return B.CreateSelect(IsNeg, NegX, X); 1876 } 1877 1878 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1879 // isdigit(c) -> (c-'0') <u 10 1880 Value *Op = CI->getArgOperand(0); 1881 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1882 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1883 return B.CreateZExt(Op, CI->getType()); 1884 } 1885 1886 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1887 // isascii(c) -> c <u 128 1888 Value *Op = CI->getArgOperand(0); 1889 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1890 return B.CreateZExt(Op, CI->getType()); 1891 } 1892 1893 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1894 // toascii(c) -> c & 0x7f 1895 return B.CreateAnd(CI->getArgOperand(0), 1896 ConstantInt::get(CI->getType(), 0x7F)); 1897 } 1898 1899 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1900 StringRef Str; 1901 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1902 return nullptr; 1903 1904 return convertStrToNumber(CI, Str, 10); 1905 } 1906 1907 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1908 StringRef Str; 1909 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1910 return nullptr; 1911 1912 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1913 return nullptr; 1914 1915 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1916 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1917 } 1918 1919 return nullptr; 1920 } 1921 1922 //===----------------------------------------------------------------------===// 1923 // Formatting and IO Library Call Optimizations 1924 //===----------------------------------------------------------------------===// 1925 1926 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1927 1928 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1929 int StreamArg) { 1930 Function *Callee = CI->getCalledFunction(); 1931 // Error reporting calls should be cold, mark them as such. 1932 // This applies even to non-builtin calls: it is only a hint and applies to 1933 // functions that the frontend might not understand as builtins. 1934 1935 // This heuristic was suggested in: 1936 // Improving Static Branch Prediction in a Compiler 1937 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1938 // Proceedings of PACT'98, Oct. 1998, IEEE 1939 if (!CI->hasFnAttr(Attribute::Cold) && 1940 isReportingError(Callee, CI, StreamArg)) { 1941 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1942 } 1943 1944 return nullptr; 1945 } 1946 1947 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1948 if (!Callee || !Callee->isDeclaration()) 1949 return false; 1950 1951 if (StreamArg < 0) 1952 return true; 1953 1954 // These functions might be considered cold, but only if their stream 1955 // argument is stderr. 1956 1957 if (StreamArg >= (int)CI->getNumArgOperands()) 1958 return false; 1959 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1960 if (!LI) 1961 return false; 1962 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1963 if (!GV || !GV->isDeclaration()) 1964 return false; 1965 return GV->getName() == "stderr"; 1966 } 1967 1968 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1969 // Check for a fixed format string. 1970 StringRef FormatStr; 1971 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1972 return nullptr; 1973 1974 // Empty format string -> noop. 1975 if (FormatStr.empty()) // Tolerate printf's declared void. 1976 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1977 1978 // Do not do any of the following transformations if the printf return value 1979 // is used, in general the printf return value is not compatible with either 1980 // putchar() or puts(). 1981 if (!CI->use_empty()) 1982 return nullptr; 1983 1984 // printf("x") -> putchar('x'), even for "%" and "%%". 1985 if (FormatStr.size() == 1 || FormatStr == "%%") 1986 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1987 1988 // printf("%s", "a") --> putchar('a') 1989 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1990 StringRef ChrStr; 1991 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1992 return nullptr; 1993 if (ChrStr.size() != 1) 1994 return nullptr; 1995 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1996 } 1997 1998 // printf("foo\n") --> puts("foo") 1999 if (FormatStr[FormatStr.size() - 1] == '\n' && 2000 FormatStr.find('%') == StringRef::npos) { // No format characters. 2001 // Create a string literal with no \n on it. We expect the constant merge 2002 // pass to be run after this pass, to merge duplicate strings. 2003 FormatStr = FormatStr.drop_back(); 2004 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2005 return emitPutS(GV, B, TLI); 2006 } 2007 2008 // Optimize specific format strings. 2009 // printf("%c", chr) --> putchar(chr) 2010 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2011 CI->getArgOperand(1)->getType()->isIntegerTy()) 2012 return emitPutChar(CI->getArgOperand(1), B, TLI); 2013 2014 // printf("%s\n", str) --> puts(str) 2015 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2016 CI->getArgOperand(1)->getType()->isPointerTy()) 2017 return emitPutS(CI->getArgOperand(1), B, TLI); 2018 return nullptr; 2019 } 2020 2021 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2022 2023 Function *Callee = CI->getCalledFunction(); 2024 FunctionType *FT = Callee->getFunctionType(); 2025 if (Value *V = optimizePrintFString(CI, B)) { 2026 return V; 2027 } 2028 2029 // printf(format, ...) -> iprintf(format, ...) if no floating point 2030 // arguments. 2031 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2032 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2033 FunctionCallee IPrintFFn = 2034 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2035 CallInst *New = cast<CallInst>(CI->clone()); 2036 New->setCalledFunction(IPrintFFn); 2037 B.Insert(New); 2038 return New; 2039 } 2040 return nullptr; 2041 } 2042 2043 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2044 // Check for a fixed format string. 2045 StringRef FormatStr; 2046 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2047 return nullptr; 2048 2049 // If we just have a format string (nothing else crazy) transform it. 2050 if (CI->getNumArgOperands() == 2) { 2051 // Make sure there's no % in the constant array. We could try to handle 2052 // %% -> % in the future if we cared. 2053 if (FormatStr.find('%') != StringRef::npos) 2054 return nullptr; // we found a format specifier, bail out. 2055 2056 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2057 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2058 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2059 FormatStr.size() + 1)); // Copy the null byte. 2060 return ConstantInt::get(CI->getType(), FormatStr.size()); 2061 } 2062 2063 // The remaining optimizations require the format string to be "%s" or "%c" 2064 // and have an extra operand. 2065 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2066 CI->getNumArgOperands() < 3) 2067 return nullptr; 2068 2069 // Decode the second character of the format string. 2070 if (FormatStr[1] == 'c') { 2071 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2072 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2073 return nullptr; 2074 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2075 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2076 B.CreateStore(V, Ptr); 2077 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2078 B.CreateStore(B.getInt8(0), Ptr); 2079 2080 return ConstantInt::get(CI->getType(), 1); 2081 } 2082 2083 if (FormatStr[1] == 's') { 2084 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 2085 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2086 return nullptr; 2087 2088 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2089 if (!Len) 2090 return nullptr; 2091 Value *IncLen = 2092 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2093 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2094 2095 // The sprintf result is the unincremented number of bytes in the string. 2096 return B.CreateIntCast(Len, CI->getType(), false); 2097 } 2098 return nullptr; 2099 } 2100 2101 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2102 Function *Callee = CI->getCalledFunction(); 2103 FunctionType *FT = Callee->getFunctionType(); 2104 if (Value *V = optimizeSPrintFString(CI, B)) { 2105 return V; 2106 } 2107 2108 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2109 // point arguments. 2110 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2111 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2112 FunctionCallee SIPrintFFn = 2113 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2114 CallInst *New = cast<CallInst>(CI->clone()); 2115 New->setCalledFunction(SIPrintFFn); 2116 B.Insert(New); 2117 return New; 2118 } 2119 return nullptr; 2120 } 2121 2122 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2123 // Check for a fixed format string. 2124 StringRef FormatStr; 2125 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2126 return nullptr; 2127 2128 // Check for size 2129 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2130 if (!Size) 2131 return nullptr; 2132 2133 uint64_t N = Size->getZExtValue(); 2134 2135 // If we just have a format string (nothing else crazy) transform it. 2136 if (CI->getNumArgOperands() == 3) { 2137 // Make sure there's no % in the constant array. We could try to handle 2138 // %% -> % in the future if we cared. 2139 if (FormatStr.find('%') != StringRef::npos) 2140 return nullptr; // we found a format specifier, bail out. 2141 2142 if (N == 0) 2143 return ConstantInt::get(CI->getType(), FormatStr.size()); 2144 else if (N < FormatStr.size() + 1) 2145 return nullptr; 2146 2147 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 2148 // strlen(fmt)+1) 2149 B.CreateMemCpy( 2150 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2151 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2152 FormatStr.size() + 1)); // Copy the null byte. 2153 return ConstantInt::get(CI->getType(), FormatStr.size()); 2154 } 2155 2156 // The remaining optimizations require the format string to be "%s" or "%c" 2157 // and have an extra operand. 2158 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2159 CI->getNumArgOperands() == 4) { 2160 2161 // Decode the second character of the format string. 2162 if (FormatStr[1] == 'c') { 2163 if (N == 0) 2164 return ConstantInt::get(CI->getType(), 1); 2165 else if (N == 1) 2166 return nullptr; 2167 2168 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2169 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2170 return nullptr; 2171 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2172 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2173 B.CreateStore(V, Ptr); 2174 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2175 B.CreateStore(B.getInt8(0), Ptr); 2176 2177 return ConstantInt::get(CI->getType(), 1); 2178 } 2179 2180 if (FormatStr[1] == 's') { 2181 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2182 StringRef Str; 2183 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2184 return nullptr; 2185 2186 if (N == 0) 2187 return ConstantInt::get(CI->getType(), Str.size()); 2188 else if (N < Str.size() + 1) 2189 return nullptr; 2190 2191 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2192 ConstantInt::get(CI->getType(), Str.size() + 1)); 2193 2194 // The snprintf result is the unincremented number of bytes in the string. 2195 return ConstantInt::get(CI->getType(), Str.size()); 2196 } 2197 } 2198 return nullptr; 2199 } 2200 2201 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2202 if (Value *V = optimizeSnPrintFString(CI, B)) { 2203 return V; 2204 } 2205 2206 return nullptr; 2207 } 2208 2209 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2210 optimizeErrorReporting(CI, B, 0); 2211 2212 // All the optimizations depend on the format string. 2213 StringRef FormatStr; 2214 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2215 return nullptr; 2216 2217 // Do not do any of the following transformations if the fprintf return 2218 // value is used, in general the fprintf return value is not compatible 2219 // with fwrite(), fputc() or fputs(). 2220 if (!CI->use_empty()) 2221 return nullptr; 2222 2223 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2224 if (CI->getNumArgOperands() == 2) { 2225 // Could handle %% -> % if we cared. 2226 if (FormatStr.find('%') != StringRef::npos) 2227 return nullptr; // We found a format specifier. 2228 2229 return emitFWrite( 2230 CI->getArgOperand(1), 2231 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2232 CI->getArgOperand(0), B, DL, TLI); 2233 } 2234 2235 // The remaining optimizations require the format string to be "%s" or "%c" 2236 // and have an extra operand. 2237 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2238 CI->getNumArgOperands() < 3) 2239 return nullptr; 2240 2241 // Decode the second character of the format string. 2242 if (FormatStr[1] == 'c') { 2243 // fprintf(F, "%c", chr) --> fputc(chr, F) 2244 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2245 return nullptr; 2246 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2247 } 2248 2249 if (FormatStr[1] == 's') { 2250 // fprintf(F, "%s", str) --> fputs(str, F) 2251 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2252 return nullptr; 2253 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2254 } 2255 return nullptr; 2256 } 2257 2258 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2259 Function *Callee = CI->getCalledFunction(); 2260 FunctionType *FT = Callee->getFunctionType(); 2261 if (Value *V = optimizeFPrintFString(CI, B)) { 2262 return V; 2263 } 2264 2265 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2266 // floating point arguments. 2267 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2268 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2269 FunctionCallee FIPrintFFn = 2270 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2271 CallInst *New = cast<CallInst>(CI->clone()); 2272 New->setCalledFunction(FIPrintFFn); 2273 B.Insert(New); 2274 return New; 2275 } 2276 return nullptr; 2277 } 2278 2279 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2280 optimizeErrorReporting(CI, B, 3); 2281 2282 // Get the element size and count. 2283 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2284 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2285 if (SizeC && CountC) { 2286 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2287 2288 // If this is writing zero records, remove the call (it's a noop). 2289 if (Bytes == 0) 2290 return ConstantInt::get(CI->getType(), 0); 2291 2292 // If this is writing one byte, turn it into fputc. 2293 // This optimisation is only valid, if the return value is unused. 2294 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2295 Value *Char = B.CreateLoad(B.getInt8Ty(), 2296 castToCStr(CI->getArgOperand(0), B), "char"); 2297 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2298 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2299 } 2300 } 2301 2302 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2303 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2304 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2305 TLI); 2306 2307 return nullptr; 2308 } 2309 2310 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2311 optimizeErrorReporting(CI, B, 1); 2312 2313 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2314 // requires more arguments and thus extra MOVs are required. 2315 if (CI->getFunction()->optForSize()) 2316 return nullptr; 2317 2318 // Check if has any use 2319 if (!CI->use_empty()) { 2320 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2321 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2322 TLI); 2323 else 2324 // We can't optimize if return value is used. 2325 return nullptr; 2326 } 2327 2328 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2329 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2330 if (!Len) 2331 return nullptr; 2332 2333 // Known to have no uses (see above). 2334 return emitFWrite( 2335 CI->getArgOperand(0), 2336 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2337 CI->getArgOperand(1), B, DL, TLI); 2338 } 2339 2340 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2341 optimizeErrorReporting(CI, B, 1); 2342 2343 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2344 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2345 TLI); 2346 2347 return nullptr; 2348 } 2349 2350 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2351 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2352 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2353 2354 return nullptr; 2355 } 2356 2357 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2358 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2359 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2360 CI->getArgOperand(2), B, TLI); 2361 2362 return nullptr; 2363 } 2364 2365 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2366 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2367 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2368 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2369 TLI); 2370 2371 return nullptr; 2372 } 2373 2374 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2375 // Check for a constant string. 2376 StringRef Str; 2377 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2378 return nullptr; 2379 2380 if (Str.empty() && CI->use_empty()) { 2381 // puts("") -> putchar('\n') 2382 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2383 if (CI->use_empty() || !Res) 2384 return Res; 2385 return B.CreateIntCast(Res, CI->getType(), true); 2386 } 2387 2388 return nullptr; 2389 } 2390 2391 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2392 LibFunc Func; 2393 SmallString<20> FloatFuncName = FuncName; 2394 FloatFuncName += 'f'; 2395 if (TLI->getLibFunc(FloatFuncName, Func)) 2396 return TLI->has(Func); 2397 return false; 2398 } 2399 2400 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2401 IRBuilder<> &Builder) { 2402 LibFunc Func; 2403 Function *Callee = CI->getCalledFunction(); 2404 // Check for string/memory library functions. 2405 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2406 // Make sure we never change the calling convention. 2407 assert((ignoreCallingConv(Func) || 2408 isCallingConvCCompatible(CI)) && 2409 "Optimizing string/memory libcall would change the calling convention"); 2410 switch (Func) { 2411 case LibFunc_strcat: 2412 return optimizeStrCat(CI, Builder); 2413 case LibFunc_strncat: 2414 return optimizeStrNCat(CI, Builder); 2415 case LibFunc_strchr: 2416 return optimizeStrChr(CI, Builder); 2417 case LibFunc_strrchr: 2418 return optimizeStrRChr(CI, Builder); 2419 case LibFunc_strcmp: 2420 return optimizeStrCmp(CI, Builder); 2421 case LibFunc_strncmp: 2422 return optimizeStrNCmp(CI, Builder); 2423 case LibFunc_strcpy: 2424 return optimizeStrCpy(CI, Builder); 2425 case LibFunc_stpcpy: 2426 return optimizeStpCpy(CI, Builder); 2427 case LibFunc_strncpy: 2428 return optimizeStrNCpy(CI, Builder); 2429 case LibFunc_strlen: 2430 return optimizeStrLen(CI, Builder); 2431 case LibFunc_strpbrk: 2432 return optimizeStrPBrk(CI, Builder); 2433 case LibFunc_strtol: 2434 case LibFunc_strtod: 2435 case LibFunc_strtof: 2436 case LibFunc_strtoul: 2437 case LibFunc_strtoll: 2438 case LibFunc_strtold: 2439 case LibFunc_strtoull: 2440 return optimizeStrTo(CI, Builder); 2441 case LibFunc_strspn: 2442 return optimizeStrSpn(CI, Builder); 2443 case LibFunc_strcspn: 2444 return optimizeStrCSpn(CI, Builder); 2445 case LibFunc_strstr: 2446 return optimizeStrStr(CI, Builder); 2447 case LibFunc_memchr: 2448 return optimizeMemChr(CI, Builder); 2449 case LibFunc_memcmp: 2450 return optimizeMemCmp(CI, Builder); 2451 case LibFunc_memcpy: 2452 return optimizeMemCpy(CI, Builder); 2453 case LibFunc_memmove: 2454 return optimizeMemMove(CI, Builder); 2455 case LibFunc_memset: 2456 return optimizeMemSet(CI, Builder); 2457 case LibFunc_realloc: 2458 return optimizeRealloc(CI, Builder); 2459 case LibFunc_wcslen: 2460 return optimizeWcslen(CI, Builder); 2461 default: 2462 break; 2463 } 2464 } 2465 return nullptr; 2466 } 2467 2468 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2469 LibFunc Func, 2470 IRBuilder<> &Builder) { 2471 // Don't optimize calls that require strict floating point semantics. 2472 if (CI->isStrictFP()) 2473 return nullptr; 2474 2475 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2476 return V; 2477 2478 switch (Func) { 2479 case LibFunc_sinpif: 2480 case LibFunc_sinpi: 2481 case LibFunc_cospif: 2482 case LibFunc_cospi: 2483 return optimizeSinCosPi(CI, Builder); 2484 case LibFunc_powf: 2485 case LibFunc_pow: 2486 case LibFunc_powl: 2487 return optimizePow(CI, Builder); 2488 case LibFunc_exp2l: 2489 case LibFunc_exp2: 2490 case LibFunc_exp2f: 2491 return optimizeExp2(CI, Builder); 2492 case LibFunc_fabsf: 2493 case LibFunc_fabs: 2494 case LibFunc_fabsl: 2495 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2496 case LibFunc_sqrtf: 2497 case LibFunc_sqrt: 2498 case LibFunc_sqrtl: 2499 return optimizeSqrt(CI, Builder); 2500 case LibFunc_log: 2501 case LibFunc_log10: 2502 case LibFunc_log1p: 2503 case LibFunc_log2: 2504 case LibFunc_logb: 2505 return optimizeLog(CI, Builder); 2506 case LibFunc_tan: 2507 case LibFunc_tanf: 2508 case LibFunc_tanl: 2509 return optimizeTan(CI, Builder); 2510 case LibFunc_ceil: 2511 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2512 case LibFunc_floor: 2513 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2514 case LibFunc_round: 2515 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2516 case LibFunc_nearbyint: 2517 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2518 case LibFunc_rint: 2519 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2520 case LibFunc_trunc: 2521 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2522 case LibFunc_acos: 2523 case LibFunc_acosh: 2524 case LibFunc_asin: 2525 case LibFunc_asinh: 2526 case LibFunc_atan: 2527 case LibFunc_atanh: 2528 case LibFunc_cbrt: 2529 case LibFunc_cosh: 2530 case LibFunc_exp: 2531 case LibFunc_exp10: 2532 case LibFunc_expm1: 2533 case LibFunc_cos: 2534 case LibFunc_sin: 2535 case LibFunc_sinh: 2536 case LibFunc_tanh: 2537 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2538 return optimizeUnaryDoubleFP(CI, Builder, true); 2539 return nullptr; 2540 case LibFunc_copysign: 2541 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2542 return optimizeBinaryDoubleFP(CI, Builder); 2543 return nullptr; 2544 case LibFunc_fminf: 2545 case LibFunc_fmin: 2546 case LibFunc_fminl: 2547 case LibFunc_fmaxf: 2548 case LibFunc_fmax: 2549 case LibFunc_fmaxl: 2550 return optimizeFMinFMax(CI, Builder); 2551 case LibFunc_cabs: 2552 case LibFunc_cabsf: 2553 case LibFunc_cabsl: 2554 return optimizeCAbs(CI, Builder); 2555 default: 2556 return nullptr; 2557 } 2558 } 2559 2560 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2561 // TODO: Split out the code below that operates on FP calls so that 2562 // we can all non-FP calls with the StrictFP attribute to be 2563 // optimized. 2564 if (CI->isNoBuiltin()) 2565 return nullptr; 2566 2567 LibFunc Func; 2568 Function *Callee = CI->getCalledFunction(); 2569 2570 SmallVector<OperandBundleDef, 2> OpBundles; 2571 CI->getOperandBundlesAsDefs(OpBundles); 2572 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2573 bool isCallingConvC = isCallingConvCCompatible(CI); 2574 2575 // Command-line parameter overrides instruction attribute. 2576 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2577 // used by the intrinsic optimizations. 2578 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2579 UnsafeFPShrink = EnableUnsafeFPShrink; 2580 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2581 UnsafeFPShrink = true; 2582 2583 // First, check for intrinsics. 2584 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2585 if (!isCallingConvC) 2586 return nullptr; 2587 // The FP intrinsics have corresponding constrained versions so we don't 2588 // need to check for the StrictFP attribute here. 2589 switch (II->getIntrinsicID()) { 2590 case Intrinsic::pow: 2591 return optimizePow(CI, Builder); 2592 case Intrinsic::exp2: 2593 return optimizeExp2(CI, Builder); 2594 case Intrinsic::log: 2595 return optimizeLog(CI, Builder); 2596 case Intrinsic::sqrt: 2597 return optimizeSqrt(CI, Builder); 2598 // TODO: Use foldMallocMemset() with memset intrinsic. 2599 default: 2600 return nullptr; 2601 } 2602 } 2603 2604 // Also try to simplify calls to fortified library functions. 2605 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2606 // Try to further simplify the result. 2607 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2608 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2609 // Use an IR Builder from SimplifiedCI if available instead of CI 2610 // to guarantee we reach all uses we might replace later on. 2611 IRBuilder<> TmpBuilder(SimplifiedCI); 2612 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2613 // If we were able to further simplify, remove the now redundant call. 2614 SimplifiedCI->replaceAllUsesWith(V); 2615 eraseFromParent(SimplifiedCI); 2616 return V; 2617 } 2618 } 2619 return SimplifiedFortifiedCI; 2620 } 2621 2622 // Then check for known library functions. 2623 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2624 // We never change the calling convention. 2625 if (!ignoreCallingConv(Func) && !isCallingConvC) 2626 return nullptr; 2627 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2628 return V; 2629 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2630 return V; 2631 switch (Func) { 2632 case LibFunc_ffs: 2633 case LibFunc_ffsl: 2634 case LibFunc_ffsll: 2635 return optimizeFFS(CI, Builder); 2636 case LibFunc_fls: 2637 case LibFunc_flsl: 2638 case LibFunc_flsll: 2639 return optimizeFls(CI, Builder); 2640 case LibFunc_abs: 2641 case LibFunc_labs: 2642 case LibFunc_llabs: 2643 return optimizeAbs(CI, Builder); 2644 case LibFunc_isdigit: 2645 return optimizeIsDigit(CI, Builder); 2646 case LibFunc_isascii: 2647 return optimizeIsAscii(CI, Builder); 2648 case LibFunc_toascii: 2649 return optimizeToAscii(CI, Builder); 2650 case LibFunc_atoi: 2651 case LibFunc_atol: 2652 case LibFunc_atoll: 2653 return optimizeAtoi(CI, Builder); 2654 case LibFunc_strtol: 2655 case LibFunc_strtoll: 2656 return optimizeStrtol(CI, Builder); 2657 case LibFunc_printf: 2658 return optimizePrintF(CI, Builder); 2659 case LibFunc_sprintf: 2660 return optimizeSPrintF(CI, Builder); 2661 case LibFunc_snprintf: 2662 return optimizeSnPrintF(CI, Builder); 2663 case LibFunc_fprintf: 2664 return optimizeFPrintF(CI, Builder); 2665 case LibFunc_fwrite: 2666 return optimizeFWrite(CI, Builder); 2667 case LibFunc_fread: 2668 return optimizeFRead(CI, Builder); 2669 case LibFunc_fputs: 2670 return optimizeFPuts(CI, Builder); 2671 case LibFunc_fgets: 2672 return optimizeFGets(CI, Builder); 2673 case LibFunc_fputc: 2674 return optimizeFPutc(CI, Builder); 2675 case LibFunc_fgetc: 2676 return optimizeFGetc(CI, Builder); 2677 case LibFunc_puts: 2678 return optimizePuts(CI, Builder); 2679 case LibFunc_perror: 2680 return optimizeErrorReporting(CI, Builder); 2681 case LibFunc_vfprintf: 2682 case LibFunc_fiprintf: 2683 return optimizeErrorReporting(CI, Builder, 0); 2684 default: 2685 return nullptr; 2686 } 2687 } 2688 return nullptr; 2689 } 2690 2691 LibCallSimplifier::LibCallSimplifier( 2692 const DataLayout &DL, const TargetLibraryInfo *TLI, 2693 OptimizationRemarkEmitter &ORE, 2694 function_ref<void(Instruction *, Value *)> Replacer, 2695 function_ref<void(Instruction *)> Eraser) 2696 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2697 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2698 2699 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2700 // Indirect through the replacer used in this instance. 2701 Replacer(I, With); 2702 } 2703 2704 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2705 Eraser(I); 2706 } 2707 2708 // TODO: 2709 // Additional cases that we need to add to this file: 2710 // 2711 // cbrt: 2712 // * cbrt(expN(X)) -> expN(x/3) 2713 // * cbrt(sqrt(x)) -> pow(x,1/6) 2714 // * cbrt(cbrt(x)) -> pow(x,1/9) 2715 // 2716 // exp, expf, expl: 2717 // * exp(log(x)) -> x 2718 // 2719 // log, logf, logl: 2720 // * log(exp(x)) -> x 2721 // * log(exp(y)) -> y*log(e) 2722 // * log(exp10(y)) -> y*log(10) 2723 // * log(sqrt(x)) -> 0.5*log(x) 2724 // 2725 // pow, powf, powl: 2726 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2727 // * pow(pow(x,y),z)-> pow(x,y*z) 2728 // 2729 // signbit: 2730 // * signbit(cnst) -> cnst' 2731 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2732 // 2733 // sqrt, sqrtf, sqrtl: 2734 // * sqrt(expN(x)) -> expN(x*0.5) 2735 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2736 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2737 // 2738 2739 //===----------------------------------------------------------------------===// 2740 // Fortified Library Call Optimizations 2741 //===----------------------------------------------------------------------===// 2742 2743 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2744 unsigned ObjSizeOp, 2745 unsigned SizeOp, 2746 bool isString) { 2747 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2748 return true; 2749 if (ConstantInt *ObjSizeCI = 2750 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2751 if (ObjSizeCI->isMinusOne()) 2752 return true; 2753 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2754 if (OnlyLowerUnknownSize) 2755 return false; 2756 if (isString) { 2757 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2758 // If the length is 0 we don't know how long it is and so we can't 2759 // remove the check. 2760 if (Len == 0) 2761 return false; 2762 return ObjSizeCI->getZExtValue() >= Len; 2763 } 2764 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2765 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2766 } 2767 return false; 2768 } 2769 2770 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2771 IRBuilder<> &B) { 2772 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2773 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2774 CI->getArgOperand(2)); 2775 return CI->getArgOperand(0); 2776 } 2777 return nullptr; 2778 } 2779 2780 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2781 IRBuilder<> &B) { 2782 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2783 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2784 CI->getArgOperand(2)); 2785 return CI->getArgOperand(0); 2786 } 2787 return nullptr; 2788 } 2789 2790 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2791 IRBuilder<> &B) { 2792 // TODO: Try foldMallocMemset() here. 2793 2794 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2795 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2796 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2797 return CI->getArgOperand(0); 2798 } 2799 return nullptr; 2800 } 2801 2802 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2803 IRBuilder<> &B, 2804 LibFunc Func) { 2805 Function *Callee = CI->getCalledFunction(); 2806 StringRef Name = Callee->getName(); 2807 const DataLayout &DL = CI->getModule()->getDataLayout(); 2808 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2809 *ObjSize = CI->getArgOperand(2); 2810 2811 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2812 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2813 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2814 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2815 } 2816 2817 // If a) we don't have any length information, or b) we know this will 2818 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2819 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2820 // TODO: It might be nice to get a maximum length out of the possible 2821 // string lengths for varying. 2822 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2823 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2824 2825 if (OnlyLowerUnknownSize) 2826 return nullptr; 2827 2828 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2829 uint64_t Len = GetStringLength(Src); 2830 if (Len == 0) 2831 return nullptr; 2832 2833 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2834 Value *LenV = ConstantInt::get(SizeTTy, Len); 2835 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2836 // If the function was an __stpcpy_chk, and we were able to fold it into 2837 // a __memcpy_chk, we still need to return the correct end pointer. 2838 if (Ret && Func == LibFunc_stpcpy_chk) 2839 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2840 return Ret; 2841 } 2842 2843 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2844 IRBuilder<> &B, 2845 LibFunc Func) { 2846 Function *Callee = CI->getCalledFunction(); 2847 StringRef Name = Callee->getName(); 2848 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2849 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2850 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2851 return Ret; 2852 } 2853 return nullptr; 2854 } 2855 2856 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2857 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2858 // Some clang users checked for _chk libcall availability using: 2859 // __has_builtin(__builtin___memcpy_chk) 2860 // When compiling with -fno-builtin, this is always true. 2861 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2862 // end up with fortified libcalls, which isn't acceptable in a freestanding 2863 // environment which only provides their non-fortified counterparts. 2864 // 2865 // Until we change clang and/or teach external users to check for availability 2866 // differently, disregard the "nobuiltin" attribute and TLI::has. 2867 // 2868 // PR23093. 2869 2870 LibFunc Func; 2871 Function *Callee = CI->getCalledFunction(); 2872 2873 SmallVector<OperandBundleDef, 2> OpBundles; 2874 CI->getOperandBundlesAsDefs(OpBundles); 2875 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2876 bool isCallingConvC = isCallingConvCCompatible(CI); 2877 2878 // First, check that this is a known library functions and that the prototype 2879 // is correct. 2880 if (!TLI->getLibFunc(*Callee, Func)) 2881 return nullptr; 2882 2883 // We never change the calling convention. 2884 if (!ignoreCallingConv(Func) && !isCallingConvC) 2885 return nullptr; 2886 2887 switch (Func) { 2888 case LibFunc_memcpy_chk: 2889 return optimizeMemCpyChk(CI, Builder); 2890 case LibFunc_memmove_chk: 2891 return optimizeMemMoveChk(CI, Builder); 2892 case LibFunc_memset_chk: 2893 return optimizeMemSetChk(CI, Builder); 2894 case LibFunc_stpcpy_chk: 2895 case LibFunc_strcpy_chk: 2896 return optimizeStrpCpyChk(CI, Builder, Func); 2897 case LibFunc_stpncpy_chk: 2898 case LibFunc_strncpy_chk: 2899 return optimizeStrpNCpyChk(CI, Builder, Func); 2900 default: 2901 break; 2902 } 2903 return nullptr; 2904 } 2905 2906 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2907 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2908 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2909