1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 455 StringRef::size_type MinLen1 = std::min((uint64_t)Str1.size(), Length); 456 StringRef::size_type MinLen2 = std::min((uint64_t)Str2.size(), Length); 457 StringRef SubStr1 = Str1.substr(0, MinLen1); 458 StringRef SubStr2 = Str2.substr(0, MinLen2); 459 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 460 } 461 462 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 463 return B.CreateNeg(B.CreateZExt( 464 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 465 466 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 467 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 468 CI->getType()); 469 470 uint64_t Len1 = GetStringLength(Str1P); 471 if (Len1) 472 annotateDereferenceableBytes(CI, 0, Len1); 473 uint64_t Len2 = GetStringLength(Str2P); 474 if (Len2) 475 annotateDereferenceableBytes(CI, 1, Len2); 476 477 // strncmp to memcmp 478 if (!HasStr1 && HasStr2) { 479 Len2 = std::min(Len2, Length); 480 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 481 return copyFlags( 482 *CI, 483 emitMemCmp(Str1P, Str2P, 484 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 485 B, DL, TLI)); 486 } else if (HasStr1 && !HasStr2) { 487 Len1 = std::min(Len1, Length); 488 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 489 return copyFlags( 490 *CI, 491 emitMemCmp(Str1P, Str2P, 492 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 493 B, DL, TLI)); 494 } 495 496 return nullptr; 497 } 498 499 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 500 Value *Src = CI->getArgOperand(0); 501 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 502 uint64_t SrcLen = GetStringLength(Src); 503 if (SrcLen && Size) { 504 annotateDereferenceableBytes(CI, 0, SrcLen); 505 if (SrcLen <= Size->getZExtValue() + 1) 506 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 513 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 514 if (Dst == Src) // strcpy(x,x) -> x 515 return Src; 516 517 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 518 // See if we can get the length of the input string. 519 uint64_t Len = GetStringLength(Src); 520 if (Len) 521 annotateDereferenceableBytes(CI, 1, Len); 522 else 523 return nullptr; 524 525 // We have enough information to now generate the memcpy call to do the 526 // copy for us. Make a memcpy to copy the nul byte with align = 1. 527 CallInst *NewCI = 528 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 529 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 530 NewCI->setAttributes(CI->getAttributes()); 531 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 532 copyFlags(*CI, NewCI); 533 return Dst; 534 } 535 536 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 537 Function *Callee = CI->getCalledFunction(); 538 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 539 540 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 541 if (CI->use_empty()) 542 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 543 544 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 545 Value *StrLen = emitStrLen(Src, B, DL, TLI); 546 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 547 } 548 549 // See if we can get the length of the input string. 550 uint64_t Len = GetStringLength(Src); 551 if (Len) 552 annotateDereferenceableBytes(CI, 1, Len); 553 else 554 return nullptr; 555 556 Type *PT = Callee->getFunctionType()->getParamType(0); 557 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 558 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 559 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 560 561 // We have enough information to now generate the memcpy call to do the 562 // copy for us. Make a memcpy to copy the nul byte with align = 1. 563 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 564 NewCI->setAttributes(CI->getAttributes()); 565 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 566 copyFlags(*CI, NewCI); 567 return DstEnd; 568 } 569 570 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 571 Function *Callee = CI->getCalledFunction(); 572 Value *Dst = CI->getArgOperand(0); 573 Value *Src = CI->getArgOperand(1); 574 Value *Size = CI->getArgOperand(2); 575 annotateNonNullNoUndefBasedOnAccess(CI, 0); 576 if (isKnownNonZero(Size, DL)) 577 annotateNonNullNoUndefBasedOnAccess(CI, 1); 578 579 uint64_t Len; 580 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 581 Len = LengthArg->getZExtValue(); 582 else 583 return nullptr; 584 585 // strncpy(x, y, 0) -> x 586 if (Len == 0) 587 return Dst; 588 589 // See if we can get the length of the input string. 590 uint64_t SrcLen = GetStringLength(Src); 591 if (SrcLen) { 592 annotateDereferenceableBytes(CI, 1, SrcLen); 593 --SrcLen; // Unbias length. 594 } else { 595 return nullptr; 596 } 597 598 if (SrcLen == 0) { 599 // strncpy(x, "", y) -> memset(x, '\0', y) 600 Align MemSetAlign = 601 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 602 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 603 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 604 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 605 CI->getContext(), 0, ArgAttrs)); 606 copyFlags(*CI, NewCI); 607 return Dst; 608 } 609 610 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 611 if (Len > SrcLen + 1) { 612 if (Len <= 128) { 613 StringRef Str; 614 if (!getConstantStringInfo(Src, Str)) 615 return nullptr; 616 std::string SrcStr = Str.str(); 617 SrcStr.resize(Len, '\0'); 618 Src = B.CreateGlobalString(SrcStr, "str"); 619 } else { 620 return nullptr; 621 } 622 } 623 624 Type *PT = Callee->getFunctionType()->getParamType(0); 625 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 626 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 627 ConstantInt::get(DL.getIntPtrType(PT), Len)); 628 NewCI->setAttributes(CI->getAttributes()); 629 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 630 copyFlags(*CI, NewCI); 631 return Dst; 632 } 633 634 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 635 unsigned CharSize, 636 Value *Bound) { 637 Value *Src = CI->getArgOperand(0); 638 Type *CharTy = B.getIntNTy(CharSize); 639 640 if (isOnlyUsedInZeroEqualityComparison(CI) && 641 (!Bound || isKnownNonZero(Bound, DL))) { 642 // Fold strlen: 643 // strlen(x) != 0 --> *x != 0 644 // strlen(x) == 0 --> *x == 0 645 // and likewise strnlen with constant N > 0: 646 // strnlen(x, N) != 0 --> *x != 0 647 // strnlen(x, N) == 0 --> *x == 0 648 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 649 CI->getType()); 650 } 651 652 if (Bound) { 653 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 654 if (BoundCst->isZero()) 655 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 656 return ConstantInt::get(CI->getType(), 0); 657 658 if (BoundCst->isOne()) { 659 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 660 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 661 Value *ZeroChar = ConstantInt::get(CharTy, 0); 662 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 663 return B.CreateZExt(Cmp, CI->getType()); 664 } 665 } 666 } 667 668 if (uint64_t Len = GetStringLength(Src, CharSize)) { 669 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 670 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 671 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 672 if (Bound) 673 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 674 return LenC; 675 } 676 677 if (Bound) 678 // Punt for strnlen for now. 679 return nullptr; 680 681 // If s is a constant pointer pointing to a string literal, we can fold 682 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 683 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 684 // We only try to simplify strlen when the pointer s points to an array 685 // of i8. Otherwise, we would need to scale the offset x before doing the 686 // subtraction. This will make the optimization more complex, and it's not 687 // very useful because calling strlen for a pointer of other types is 688 // very uncommon. 689 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 690 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 691 return nullptr; 692 693 ConstantDataArraySlice Slice; 694 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 695 uint64_t NullTermIdx; 696 if (Slice.Array == nullptr) { 697 NullTermIdx = 0; 698 } else { 699 NullTermIdx = ~((uint64_t)0); 700 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 701 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 702 NullTermIdx = I; 703 break; 704 } 705 } 706 // If the string does not have '\0', leave it to strlen to compute 707 // its length. 708 if (NullTermIdx == ~((uint64_t)0)) 709 return nullptr; 710 } 711 712 Value *Offset = GEP->getOperand(2); 713 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 714 uint64_t ArrSize = 715 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 716 717 // If Offset is not provably in the range [0, NullTermIdx], we can still 718 // optimize if we can prove that the program has undefined behavior when 719 // Offset is outside that range. That is the case when GEP->getOperand(0) 720 // is a pointer to an object whose memory extent is NullTermIdx+1. 721 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 722 (isa<GlobalVariable>(GEP->getOperand(0)) && 723 NullTermIdx == ArrSize - 1)) { 724 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 725 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 726 Offset); 727 } 728 } 729 } 730 731 // strlen(x?"foo":"bars") --> x ? 3 : 4 732 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 733 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 734 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 735 if (LenTrue && LenFalse) { 736 ORE.emit([&]() { 737 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 738 << "folded strlen(select) to select of constants"; 739 }); 740 return B.CreateSelect(SI->getCondition(), 741 ConstantInt::get(CI->getType(), LenTrue - 1), 742 ConstantInt::get(CI->getType(), LenFalse - 1)); 743 } 744 } 745 746 return nullptr; 747 } 748 749 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 750 if (Value *V = optimizeStringLength(CI, B, 8)) 751 return V; 752 annotateNonNullNoUndefBasedOnAccess(CI, 0); 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 757 Value *Bound = CI->getArgOperand(1); 758 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 759 return V; 760 761 if (isKnownNonZero(Bound, DL)) 762 annotateNonNullNoUndefBasedOnAccess(CI, 0); 763 return nullptr; 764 } 765 766 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 767 Module &M = *CI->getModule(); 768 unsigned WCharSize = TLI->getWCharSize(M) * 8; 769 // We cannot perform this optimization without wchar_size metadata. 770 if (WCharSize == 0) 771 return nullptr; 772 773 return optimizeStringLength(CI, B, WCharSize); 774 } 775 776 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 777 StringRef S1, S2; 778 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 779 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 780 781 // strpbrk(s, "") -> nullptr 782 // strpbrk("", s) -> nullptr 783 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t I = S1.find_first_of(S2); 789 if (I == StringRef::npos) // No match. 790 return Constant::getNullValue(CI->getType()); 791 792 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 793 "strpbrk"); 794 } 795 796 // strpbrk(s, "a") -> strchr(s, 'a') 797 if (HasS2 && S2.size() == 1) 798 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 799 800 return nullptr; 801 } 802 803 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 804 Value *EndPtr = CI->getArgOperand(1); 805 if (isa<ConstantPointerNull>(EndPtr)) { 806 // With a null EndPtr, this function won't capture the main argument. 807 // It would be readonly too, except that it still may write to errno. 808 CI->addParamAttr(0, Attribute::NoCapture); 809 } 810 811 return nullptr; 812 } 813 814 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 815 StringRef S1, S2; 816 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 817 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 818 819 // strspn(s, "") -> 0 820 // strspn("", s) -> 0 821 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 822 return Constant::getNullValue(CI->getType()); 823 824 // Constant folding. 825 if (HasS1 && HasS2) { 826 size_t Pos = S1.find_first_not_of(S2); 827 if (Pos == StringRef::npos) 828 Pos = S1.size(); 829 return ConstantInt::get(CI->getType(), Pos); 830 } 831 832 return nullptr; 833 } 834 835 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 836 StringRef S1, S2; 837 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 838 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 839 840 // strcspn("", s) -> 0 841 if (HasS1 && S1.empty()) 842 return Constant::getNullValue(CI->getType()); 843 844 // Constant folding. 845 if (HasS1 && HasS2) { 846 size_t Pos = S1.find_first_of(S2); 847 if (Pos == StringRef::npos) 848 Pos = S1.size(); 849 return ConstantInt::get(CI->getType(), Pos); 850 } 851 852 // strcspn(s, "") -> strlen(s) 853 if (HasS2 && S2.empty()) 854 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 855 856 return nullptr; 857 } 858 859 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 860 // fold strstr(x, x) -> x. 861 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 862 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 863 864 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 865 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 866 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 867 if (!StrLen) 868 return nullptr; 869 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 870 StrLen, B, DL, TLI); 871 if (!StrNCmp) 872 return nullptr; 873 for (User *U : llvm::make_early_inc_range(CI->users())) { 874 ICmpInst *Old = cast<ICmpInst>(U); 875 Value *Cmp = 876 B.CreateICmp(Old->getPredicate(), StrNCmp, 877 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 878 replaceAllUsesWith(Old, Cmp); 879 } 880 return CI; 881 } 882 883 // See if either input string is a constant string. 884 StringRef SearchStr, ToFindStr; 885 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 886 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 887 888 // fold strstr(x, "") -> x. 889 if (HasStr2 && ToFindStr.empty()) 890 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 891 892 // If both strings are known, constant fold it. 893 if (HasStr1 && HasStr2) { 894 size_t Offset = SearchStr.find(ToFindStr); 895 896 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 897 return Constant::getNullValue(CI->getType()); 898 899 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 900 Value *Result = castToCStr(CI->getArgOperand(0), B); 901 Result = 902 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 903 return B.CreateBitCast(Result, CI->getType()); 904 } 905 906 // fold strstr(x, "y") -> strchr(x, 'y'). 907 if (HasStr2 && ToFindStr.size() == 1) { 908 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 909 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 910 } 911 912 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 913 return nullptr; 914 } 915 916 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 917 Value *SrcStr = CI->getArgOperand(0); 918 Value *Size = CI->getArgOperand(2); 919 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 920 Value *CharVal = CI->getArgOperand(1); 921 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 922 Value *NullPtr = Constant::getNullValue(CI->getType()); 923 924 if (LenC) { 925 if (LenC->isZero()) 926 // Fold memrchr(x, y, 0) --> null. 927 return NullPtr; 928 929 if (LenC->isOne()) { 930 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 931 // constant or otherwise. 932 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 933 // Slice off the character's high end bits. 934 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 935 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 936 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 937 } 938 } 939 940 StringRef Str; 941 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 942 return nullptr; 943 944 uint64_t EndOff = UINT64_MAX; 945 if (LenC) { 946 EndOff = LenC->getZExtValue(); 947 if (Str.size() < EndOff) 948 // Punt out-of-bounds accesses to sanitizers and/or libc. 949 return nullptr; 950 } 951 952 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 953 // Fold memrchr(S, C, N) for a constant C. 954 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 955 if (Pos == StringRef::npos) 956 // When the character is not in the source array fold the result 957 // to null regardless of Size. 958 return NullPtr; 959 960 if (LenC) 961 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 962 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 963 964 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 965 // When there is just a single occurrence of C in S, fold 966 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 967 // for nonconstant N. 968 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 969 Pos), 970 "memrchr.cmp"); 971 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 972 "memrchr.ptr_plus"); 973 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 974 } 975 } 976 977 return nullptr; 978 } 979 980 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 981 Value *SrcStr = CI->getArgOperand(0); 982 Value *Size = CI->getArgOperand(2); 983 if (isKnownNonZero(Size, DL)) 984 annotateNonNullNoUndefBasedOnAccess(CI, 0); 985 986 Value *CharVal = CI->getArgOperand(1); 987 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 988 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 989 990 // memchr(x, y, 0) -> null 991 if (LenC) { 992 if (LenC->isZero()) 993 return Constant::getNullValue(CI->getType()); 994 995 if (LenC->isOne()) { 996 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 997 // constant or otherwise. 998 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 999 // Slice off the character's high end bits. 1000 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1001 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1002 Value *NullPtr = Constant::getNullValue(CI->getType()); 1003 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1004 } 1005 } 1006 1007 StringRef Str; 1008 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1009 return nullptr; 1010 1011 if (CharC) { 1012 size_t Pos = Str.find(CharC->getZExtValue()); 1013 if (Pos == StringRef::npos) 1014 // When the character is not in the source array fold the result 1015 // to null regardless of Size. 1016 return Constant::getNullValue(CI->getType()); 1017 1018 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1019 // When the constant Size is less than or equal to the character 1020 // position also fold the result to null. 1021 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1022 "memchr.cmp"); 1023 Value *NullPtr = Constant::getNullValue(CI->getType()); 1024 Value *SrcPlus = 1025 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1026 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1027 } 1028 1029 if (!LenC) 1030 // From now on we need a constant length and constant array. 1031 return nullptr; 1032 1033 // Truncate the string to LenC without slicing when targeting LP64 1034 // on an ILP32 host. 1035 uint64_t EndOff = std::min(LenC->getZExtValue(), (uint64_t)StringRef::npos); 1036 Str = Str.substr(0, EndOff); 1037 1038 // If the char is variable but the input str and length are not we can turn 1039 // this memchr call into a simple bit field test. Of course this only works 1040 // when the return value is only checked against null. 1041 // 1042 // It would be really nice to reuse switch lowering here but we can't change 1043 // the CFG at this point. 1044 // 1045 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1046 // != 0 1047 // after bounds check. 1048 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1049 return nullptr; 1050 1051 unsigned char Max = 1052 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1053 reinterpret_cast<const unsigned char *>(Str.end())); 1054 1055 // Make sure the bit field we're about to create fits in a register on the 1056 // target. 1057 // FIXME: On a 64 bit architecture this prevents us from using the 1058 // interesting range of alpha ascii chars. We could do better by emitting 1059 // two bitfields or shifting the range by 64 if no lower chars are used. 1060 if (!DL.fitsInLegalInteger(Max + 1)) 1061 return nullptr; 1062 1063 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1064 // creating unnecessary illegal types. 1065 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1066 1067 // Now build the bit field. 1068 APInt Bitfield(Width, 0); 1069 for (char C : Str) 1070 Bitfield.setBit((unsigned char)C); 1071 Value *BitfieldC = B.getInt(Bitfield); 1072 1073 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1074 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1075 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1076 1077 // First check that the bit field access is within bounds. 1078 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1079 "memchr.bounds"); 1080 1081 // Create code that checks if the given bit is set in the field. 1082 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1083 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1084 1085 // Finally merge both checks and cast to pointer type. The inttoptr 1086 // implicitly zexts the i1 to intptr type. 1087 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1088 CI->getType()); 1089 } 1090 1091 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1092 uint64_t Len, IRBuilderBase &B, 1093 const DataLayout &DL) { 1094 if (Len == 0) // memcmp(s1,s2,0) -> 0 1095 return Constant::getNullValue(CI->getType()); 1096 1097 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1098 if (Len == 1) { 1099 Value *LHSV = 1100 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1101 CI->getType(), "lhsv"); 1102 Value *RHSV = 1103 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1104 CI->getType(), "rhsv"); 1105 return B.CreateSub(LHSV, RHSV, "chardiff"); 1106 } 1107 1108 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1109 // TODO: The case where both inputs are constants does not need to be limited 1110 // to legal integers or equality comparison. See block below this. 1111 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1112 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1113 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1114 1115 // First, see if we can fold either argument to a constant. 1116 Value *LHSV = nullptr; 1117 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1118 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1119 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1120 } 1121 Value *RHSV = nullptr; 1122 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1123 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1124 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1125 } 1126 1127 // Don't generate unaligned loads. If either source is constant data, 1128 // alignment doesn't matter for that source because there is no load. 1129 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1130 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1131 if (!LHSV) { 1132 Type *LHSPtrTy = 1133 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1134 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1135 } 1136 if (!RHSV) { 1137 Type *RHSPtrTy = 1138 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1139 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1140 } 1141 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1142 } 1143 } 1144 1145 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1146 // TODO: This is limited to i8 arrays. 1147 StringRef LHSStr, RHSStr; 1148 if (getConstantStringInfo(LHS, LHSStr) && 1149 getConstantStringInfo(RHS, RHSStr)) { 1150 // Make sure we're not reading out-of-bounds memory. 1151 if (Len > LHSStr.size() || Len > RHSStr.size()) 1152 return nullptr; 1153 // Fold the memcmp and normalize the result. This way we get consistent 1154 // results across multiple platforms. 1155 uint64_t Ret = 0; 1156 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1157 if (Cmp < 0) 1158 Ret = -1; 1159 else if (Cmp > 0) 1160 Ret = 1; 1161 return ConstantInt::get(CI->getType(), Ret); 1162 } 1163 1164 return nullptr; 1165 } 1166 1167 // Most simplifications for memcmp also apply to bcmp. 1168 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1169 IRBuilderBase &B) { 1170 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1171 Value *Size = CI->getArgOperand(2); 1172 1173 if (LHS == RHS) // memcmp(s,s,x) -> 0 1174 return Constant::getNullValue(CI->getType()); 1175 1176 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1177 // Handle constant lengths. 1178 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1179 if (!LenC) 1180 return nullptr; 1181 1182 // memcmp(d,s,0) -> 0 1183 if (LenC->getZExtValue() == 0) 1184 return Constant::getNullValue(CI->getType()); 1185 1186 if (Value *Res = 1187 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1188 return Res; 1189 return nullptr; 1190 } 1191 1192 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1193 Module *M = CI->getModule(); 1194 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1195 return V; 1196 1197 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1198 // bcmp can be more efficient than memcmp because it only has to know that 1199 // there is a difference, not how different one is to the other. 1200 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1201 isOnlyUsedInZeroEqualityComparison(CI)) { 1202 Value *LHS = CI->getArgOperand(0); 1203 Value *RHS = CI->getArgOperand(1); 1204 Value *Size = CI->getArgOperand(2); 1205 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1206 } 1207 1208 return nullptr; 1209 } 1210 1211 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1212 return optimizeMemCmpBCmpCommon(CI, B); 1213 } 1214 1215 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1216 Value *Size = CI->getArgOperand(2); 1217 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1218 if (isa<IntrinsicInst>(CI)) 1219 return nullptr; 1220 1221 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1222 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1223 CI->getArgOperand(1), Align(1), Size); 1224 NewCI->setAttributes(CI->getAttributes()); 1225 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1226 copyFlags(*CI, NewCI); 1227 return CI->getArgOperand(0); 1228 } 1229 1230 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1231 Value *Dst = CI->getArgOperand(0); 1232 Value *Src = CI->getArgOperand(1); 1233 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1234 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1235 StringRef SrcStr; 1236 if (CI->use_empty() && Dst == Src) 1237 return Dst; 1238 // memccpy(d, s, c, 0) -> nullptr 1239 if (N) { 1240 if (N->isNullValue()) 1241 return Constant::getNullValue(CI->getType()); 1242 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1243 /*TrimAtNul=*/false) || 1244 !StopChar) 1245 return nullptr; 1246 } else { 1247 return nullptr; 1248 } 1249 1250 // Wrap arg 'c' of type int to char 1251 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1252 if (Pos == StringRef::npos) { 1253 if (N->getZExtValue() <= SrcStr.size()) { 1254 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1255 CI->getArgOperand(3))); 1256 return Constant::getNullValue(CI->getType()); 1257 } 1258 return nullptr; 1259 } 1260 1261 Value *NewN = 1262 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1263 // memccpy -> llvm.memcpy 1264 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1265 return Pos + 1 <= N->getZExtValue() 1266 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1267 : Constant::getNullValue(CI->getType()); 1268 } 1269 1270 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1271 Value *Dst = CI->getArgOperand(0); 1272 Value *N = CI->getArgOperand(2); 1273 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1274 CallInst *NewCI = 1275 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1276 // Propagate attributes, but memcpy has no return value, so make sure that 1277 // any return attributes are compliant. 1278 // TODO: Attach return value attributes to the 1st operand to preserve them? 1279 NewCI->setAttributes(CI->getAttributes()); 1280 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1281 copyFlags(*CI, NewCI); 1282 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1283 } 1284 1285 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1286 Value *Size = CI->getArgOperand(2); 1287 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1288 if (isa<IntrinsicInst>(CI)) 1289 return nullptr; 1290 1291 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1292 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1293 CI->getArgOperand(1), Align(1), Size); 1294 NewCI->setAttributes(CI->getAttributes()); 1295 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1296 copyFlags(*CI, NewCI); 1297 return CI->getArgOperand(0); 1298 } 1299 1300 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1301 Value *Size = CI->getArgOperand(2); 1302 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1303 if (isa<IntrinsicInst>(CI)) 1304 return nullptr; 1305 1306 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1307 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1308 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1309 NewCI->setAttributes(CI->getAttributes()); 1310 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1311 copyFlags(*CI, NewCI); 1312 return CI->getArgOperand(0); 1313 } 1314 1315 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1316 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1317 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1318 1319 return nullptr; 1320 } 1321 1322 //===----------------------------------------------------------------------===// 1323 // Math Library Optimizations 1324 //===----------------------------------------------------------------------===// 1325 1326 // Replace a libcall \p CI with a call to intrinsic \p IID 1327 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1328 Intrinsic::ID IID) { 1329 // Propagate fast-math flags from the existing call to the new call. 1330 IRBuilderBase::FastMathFlagGuard Guard(B); 1331 B.setFastMathFlags(CI->getFastMathFlags()); 1332 1333 Module *M = CI->getModule(); 1334 Value *V = CI->getArgOperand(0); 1335 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1336 CallInst *NewCall = B.CreateCall(F, V); 1337 NewCall->takeName(CI); 1338 return copyFlags(*CI, NewCall); 1339 } 1340 1341 /// Return a variant of Val with float type. 1342 /// Currently this works in two cases: If Val is an FPExtension of a float 1343 /// value to something bigger, simply return the operand. 1344 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1345 /// loss of precision do so. 1346 static Value *valueHasFloatPrecision(Value *Val) { 1347 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1348 Value *Op = Cast->getOperand(0); 1349 if (Op->getType()->isFloatTy()) 1350 return Op; 1351 } 1352 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1353 APFloat F = Const->getValueAPF(); 1354 bool losesInfo; 1355 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1356 &losesInfo); 1357 if (!losesInfo) 1358 return ConstantFP::get(Const->getContext(), F); 1359 } 1360 return nullptr; 1361 } 1362 1363 /// Shrink double -> float functions. 1364 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1365 bool isBinary, const TargetLibraryInfo *TLI, 1366 bool isPrecise = false) { 1367 Function *CalleeFn = CI->getCalledFunction(); 1368 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1369 return nullptr; 1370 1371 // If not all the uses of the function are converted to float, then bail out. 1372 // This matters if the precision of the result is more important than the 1373 // precision of the arguments. 1374 if (isPrecise) 1375 for (User *U : CI->users()) { 1376 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1377 if (!Cast || !Cast->getType()->isFloatTy()) 1378 return nullptr; 1379 } 1380 1381 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1382 Value *V[2]; 1383 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1384 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1385 if (!V[0] || (isBinary && !V[1])) 1386 return nullptr; 1387 1388 // If call isn't an intrinsic, check that it isn't within a function with the 1389 // same name as the float version of this call, otherwise the result is an 1390 // infinite loop. For example, from MinGW-w64: 1391 // 1392 // float expf(float val) { return (float) exp((double) val); } 1393 StringRef CalleeName = CalleeFn->getName(); 1394 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1395 if (!IsIntrinsic) { 1396 StringRef CallerName = CI->getFunction()->getName(); 1397 if (!CallerName.empty() && CallerName.back() == 'f' && 1398 CallerName.size() == (CalleeName.size() + 1) && 1399 CallerName.startswith(CalleeName)) 1400 return nullptr; 1401 } 1402 1403 // Propagate the math semantics from the current function to the new function. 1404 IRBuilderBase::FastMathFlagGuard Guard(B); 1405 B.setFastMathFlags(CI->getFastMathFlags()); 1406 1407 // g((double) float) -> (double) gf(float) 1408 Value *R; 1409 if (IsIntrinsic) { 1410 Module *M = CI->getModule(); 1411 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1412 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1413 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1414 } else { 1415 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1416 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1417 CalleeAttrs) 1418 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1419 } 1420 return B.CreateFPExt(R, B.getDoubleTy()); 1421 } 1422 1423 /// Shrink double -> float for unary functions. 1424 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1425 const TargetLibraryInfo *TLI, 1426 bool isPrecise = false) { 1427 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1428 } 1429 1430 /// Shrink double -> float for binary functions. 1431 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1432 const TargetLibraryInfo *TLI, 1433 bool isPrecise = false) { 1434 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1435 } 1436 1437 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1438 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1439 if (!CI->isFast()) 1440 return nullptr; 1441 1442 // Propagate fast-math flags from the existing call to new instructions. 1443 IRBuilderBase::FastMathFlagGuard Guard(B); 1444 B.setFastMathFlags(CI->getFastMathFlags()); 1445 1446 Value *Real, *Imag; 1447 if (CI->arg_size() == 1) { 1448 Value *Op = CI->getArgOperand(0); 1449 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1450 Real = B.CreateExtractValue(Op, 0, "real"); 1451 Imag = B.CreateExtractValue(Op, 1, "imag"); 1452 } else { 1453 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1454 Real = CI->getArgOperand(0); 1455 Imag = CI->getArgOperand(1); 1456 } 1457 1458 Value *RealReal = B.CreateFMul(Real, Real); 1459 Value *ImagImag = B.CreateFMul(Imag, Imag); 1460 1461 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1462 CI->getType()); 1463 return copyFlags( 1464 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1465 } 1466 1467 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1468 IRBuilderBase &B) { 1469 if (!isa<FPMathOperator>(Call)) 1470 return nullptr; 1471 1472 IRBuilderBase::FastMathFlagGuard Guard(B); 1473 B.setFastMathFlags(Call->getFastMathFlags()); 1474 1475 // TODO: Can this be shared to also handle LLVM intrinsics? 1476 Value *X; 1477 switch (Func) { 1478 case LibFunc_sin: 1479 case LibFunc_sinf: 1480 case LibFunc_sinl: 1481 case LibFunc_tan: 1482 case LibFunc_tanf: 1483 case LibFunc_tanl: 1484 // sin(-X) --> -sin(X) 1485 // tan(-X) --> -tan(X) 1486 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1487 return B.CreateFNeg( 1488 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1489 break; 1490 case LibFunc_cos: 1491 case LibFunc_cosf: 1492 case LibFunc_cosl: 1493 // cos(-X) --> cos(X) 1494 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1495 return copyFlags(*Call, 1496 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1497 break; 1498 default: 1499 break; 1500 } 1501 return nullptr; 1502 } 1503 1504 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1505 // Multiplications calculated using Addition Chains. 1506 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1507 1508 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1509 1510 if (InnerChain[Exp]) 1511 return InnerChain[Exp]; 1512 1513 static const unsigned AddChain[33][2] = { 1514 {0, 0}, // Unused. 1515 {0, 0}, // Unused (base case = pow1). 1516 {1, 1}, // Unused (pre-computed). 1517 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1518 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1519 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1520 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1521 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1522 }; 1523 1524 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1525 getPow(InnerChain, AddChain[Exp][1], B)); 1526 return InnerChain[Exp]; 1527 } 1528 1529 // Return a properly extended integer (DstWidth bits wide) if the operation is 1530 // an itofp. 1531 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1532 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1533 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1534 // Make sure that the exponent fits inside an "int" of size DstWidth, 1535 // thus avoiding any range issues that FP has not. 1536 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1537 if (BitWidth < DstWidth || 1538 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1539 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1540 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1541 } 1542 1543 return nullptr; 1544 } 1545 1546 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1547 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1548 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1549 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1550 Module *M = Pow->getModule(); 1551 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1552 AttributeList Attrs; // Attributes are only meaningful on the original call 1553 Module *Mod = Pow->getModule(); 1554 Type *Ty = Pow->getType(); 1555 bool Ignored; 1556 1557 // Evaluate special cases related to a nested function as the base. 1558 1559 // pow(exp(x), y) -> exp(x * y) 1560 // pow(exp2(x), y) -> exp2(x * y) 1561 // If exp{,2}() is used only once, it is better to fold two transcendental 1562 // math functions into one. If used again, exp{,2}() would still have to be 1563 // called with the original argument, then keep both original transcendental 1564 // functions. However, this transformation is only safe with fully relaxed 1565 // math semantics, since, besides rounding differences, it changes overflow 1566 // and underflow behavior quite dramatically. For example: 1567 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1568 // Whereas: 1569 // exp(1000 * 0.001) = exp(1) 1570 // TODO: Loosen the requirement for fully relaxed math semantics. 1571 // TODO: Handle exp10() when more targets have it available. 1572 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1573 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1574 LibFunc LibFn; 1575 1576 Function *CalleeFn = BaseFn->getCalledFunction(); 1577 if (CalleeFn && 1578 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1579 isLibFuncEmittable(M, TLI, LibFn)) { 1580 StringRef ExpName; 1581 Intrinsic::ID ID; 1582 Value *ExpFn; 1583 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1584 1585 switch (LibFn) { 1586 default: 1587 return nullptr; 1588 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1589 ExpName = TLI->getName(LibFunc_exp); 1590 ID = Intrinsic::exp; 1591 LibFnFloat = LibFunc_expf; 1592 LibFnDouble = LibFunc_exp; 1593 LibFnLongDouble = LibFunc_expl; 1594 break; 1595 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1596 ExpName = TLI->getName(LibFunc_exp2); 1597 ID = Intrinsic::exp2; 1598 LibFnFloat = LibFunc_exp2f; 1599 LibFnDouble = LibFunc_exp2; 1600 LibFnLongDouble = LibFunc_exp2l; 1601 break; 1602 } 1603 1604 // Create new exp{,2}() with the product as its argument. 1605 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1606 ExpFn = BaseFn->doesNotAccessMemory() 1607 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1608 FMul, ExpName) 1609 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1610 LibFnLongDouble, B, 1611 BaseFn->getAttributes()); 1612 1613 // Since the new exp{,2}() is different from the original one, dead code 1614 // elimination cannot be trusted to remove it, since it may have side 1615 // effects (e.g., errno). When the only consumer for the original 1616 // exp{,2}() is pow(), then it has to be explicitly erased. 1617 substituteInParent(BaseFn, ExpFn); 1618 return ExpFn; 1619 } 1620 } 1621 1622 // Evaluate special cases related to a constant base. 1623 1624 const APFloat *BaseF; 1625 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1626 return nullptr; 1627 1628 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1629 if (match(Base, m_SpecificFP(2.0)) && 1630 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1631 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1632 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1633 return copyFlags(*Pow, 1634 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1635 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1636 LibFunc_ldexpl, B, Attrs)); 1637 } 1638 1639 // pow(2.0 ** n, x) -> exp2(n * x) 1640 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1641 APFloat BaseR = APFloat(1.0); 1642 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1643 BaseR = BaseR / *BaseF; 1644 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1645 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1646 APSInt NI(64, false); 1647 if ((IsInteger || IsReciprocal) && 1648 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1649 APFloat::opOK && 1650 NI > 1 && NI.isPowerOf2()) { 1651 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1652 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1653 if (Pow->doesNotAccessMemory()) 1654 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1655 Mod, Intrinsic::exp2, Ty), 1656 FMul, "exp2")); 1657 else 1658 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1659 LibFunc_exp2f, 1660 LibFunc_exp2l, B, Attrs)); 1661 } 1662 } 1663 1664 // pow(10.0, x) -> exp10(x) 1665 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1666 if (match(Base, m_SpecificFP(10.0)) && 1667 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1668 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1669 LibFunc_exp10f, LibFunc_exp10l, 1670 B, Attrs)); 1671 1672 // pow(x, y) -> exp2(log2(x) * y) 1673 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1674 !BaseF->isNegative()) { 1675 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1676 // Luckily optimizePow has already handled the x == 1 case. 1677 assert(!match(Base, m_FPOne()) && 1678 "pow(1.0, y) should have been simplified earlier!"); 1679 1680 Value *Log = nullptr; 1681 if (Ty->isFloatTy()) 1682 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1683 else if (Ty->isDoubleTy()) 1684 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1685 1686 if (Log) { 1687 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1688 if (Pow->doesNotAccessMemory()) 1689 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1690 Mod, Intrinsic::exp2, Ty), 1691 FMul, "exp2")); 1692 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1693 LibFunc_exp2l)) 1694 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1695 LibFunc_exp2f, 1696 LibFunc_exp2l, B, Attrs)); 1697 } 1698 } 1699 1700 return nullptr; 1701 } 1702 1703 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1704 Module *M, IRBuilderBase &B, 1705 const TargetLibraryInfo *TLI) { 1706 // If errno is never set, then use the intrinsic for sqrt(). 1707 if (NoErrno) { 1708 Function *SqrtFn = 1709 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1710 return B.CreateCall(SqrtFn, V, "sqrt"); 1711 } 1712 1713 // Otherwise, use the libcall for sqrt(). 1714 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1715 LibFunc_sqrtl)) 1716 // TODO: We also should check that the target can in fact lower the sqrt() 1717 // libcall. We currently have no way to ask this question, so we ask if 1718 // the target has a sqrt() libcall, which is not exactly the same. 1719 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1720 LibFunc_sqrtl, B, Attrs); 1721 1722 return nullptr; 1723 } 1724 1725 /// Use square root in place of pow(x, +/-0.5). 1726 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1727 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1728 AttributeList Attrs; // Attributes are only meaningful on the original call 1729 Module *Mod = Pow->getModule(); 1730 Type *Ty = Pow->getType(); 1731 1732 const APFloat *ExpoF; 1733 if (!match(Expo, m_APFloat(ExpoF)) || 1734 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1735 return nullptr; 1736 1737 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1738 // so that requires fast-math-flags (afn or reassoc). 1739 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1740 return nullptr; 1741 1742 // If we have a pow() library call (accesses memory) and we can't guarantee 1743 // that the base is not an infinity, give up: 1744 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1745 // errno), but sqrt(-Inf) is required by various standards to set errno. 1746 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1747 !isKnownNeverInfinity(Base, TLI)) 1748 return nullptr; 1749 1750 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1751 if (!Sqrt) 1752 return nullptr; 1753 1754 // Handle signed zero base by expanding to fabs(sqrt(x)). 1755 if (!Pow->hasNoSignedZeros()) { 1756 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1757 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1758 } 1759 1760 Sqrt = copyFlags(*Pow, Sqrt); 1761 1762 // Handle non finite base by expanding to 1763 // (x == -infinity ? +infinity : sqrt(x)). 1764 if (!Pow->hasNoInfs()) { 1765 Value *PosInf = ConstantFP::getInfinity(Ty), 1766 *NegInf = ConstantFP::getInfinity(Ty, true); 1767 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1768 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1769 } 1770 1771 // If the exponent is negative, then get the reciprocal. 1772 if (ExpoF->isNegative()) 1773 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1774 1775 return Sqrt; 1776 } 1777 1778 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1779 IRBuilderBase &B) { 1780 Value *Args[] = {Base, Expo}; 1781 Type *Types[] = {Base->getType(), Expo->getType()}; 1782 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1783 return B.CreateCall(F, Args); 1784 } 1785 1786 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1787 Value *Base = Pow->getArgOperand(0); 1788 Value *Expo = Pow->getArgOperand(1); 1789 Function *Callee = Pow->getCalledFunction(); 1790 StringRef Name = Callee->getName(); 1791 Type *Ty = Pow->getType(); 1792 Module *M = Pow->getModule(); 1793 bool AllowApprox = Pow->hasApproxFunc(); 1794 bool Ignored; 1795 1796 // Propagate the math semantics from the call to any created instructions. 1797 IRBuilderBase::FastMathFlagGuard Guard(B); 1798 B.setFastMathFlags(Pow->getFastMathFlags()); 1799 // Evaluate special cases related to the base. 1800 1801 // pow(1.0, x) -> 1.0 1802 if (match(Base, m_FPOne())) 1803 return Base; 1804 1805 if (Value *Exp = replacePowWithExp(Pow, B)) 1806 return Exp; 1807 1808 // Evaluate special cases related to the exponent. 1809 1810 // pow(x, -1.0) -> 1.0 / x 1811 if (match(Expo, m_SpecificFP(-1.0))) 1812 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1813 1814 // pow(x, +/-0.0) -> 1.0 1815 if (match(Expo, m_AnyZeroFP())) 1816 return ConstantFP::get(Ty, 1.0); 1817 1818 // pow(x, 1.0) -> x 1819 if (match(Expo, m_FPOne())) 1820 return Base; 1821 1822 // pow(x, 2.0) -> x * x 1823 if (match(Expo, m_SpecificFP(2.0))) 1824 return B.CreateFMul(Base, Base, "square"); 1825 1826 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1827 return Sqrt; 1828 1829 // pow(x, n) -> x * x * x * ... 1830 const APFloat *ExpoF; 1831 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1832 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1833 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1834 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1835 // additional fmul. 1836 // TODO: This whole transformation should be backend specific (e.g. some 1837 // backends might prefer libcalls or the limit for the exponent might 1838 // be different) and it should also consider optimizing for size. 1839 APFloat LimF(ExpoF->getSemantics(), 33), 1840 ExpoA(abs(*ExpoF)); 1841 if (ExpoA < LimF) { 1842 // This transformation applies to integer or integer+0.5 exponents only. 1843 // For integer+0.5, we create a sqrt(Base) call. 1844 Value *Sqrt = nullptr; 1845 if (!ExpoA.isInteger()) { 1846 APFloat Expo2 = ExpoA; 1847 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1848 // is no floating point exception and the result is an integer, then 1849 // ExpoA == integer + 0.5 1850 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1851 return nullptr; 1852 1853 if (!Expo2.isInteger()) 1854 return nullptr; 1855 1856 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1857 Pow->doesNotAccessMemory(), M, B, TLI); 1858 if (!Sqrt) 1859 return nullptr; 1860 } 1861 1862 // We will memoize intermediate products of the Addition Chain. 1863 Value *InnerChain[33] = {nullptr}; 1864 InnerChain[1] = Base; 1865 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1866 1867 // We cannot readily convert a non-double type (like float) to a double. 1868 // So we first convert it to something which could be converted to double. 1869 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1870 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1871 1872 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1873 if (Sqrt) 1874 FMul = B.CreateFMul(FMul, Sqrt); 1875 1876 // If the exponent is negative, then get the reciprocal. 1877 if (ExpoF->isNegative()) 1878 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1879 1880 return FMul; 1881 } 1882 1883 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1884 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1885 if (ExpoF->isInteger() && 1886 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1887 APFloat::opOK) { 1888 return copyFlags( 1889 *Pow, 1890 createPowWithIntegerExponent( 1891 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1892 M, B)); 1893 } 1894 } 1895 1896 // powf(x, itofp(y)) -> powi(x, y) 1897 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1898 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1899 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1900 } 1901 1902 // Shrink pow() to powf() if the arguments are single precision, 1903 // unless the result is expected to be double precision. 1904 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1905 hasFloatVersion(M, Name)) { 1906 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 1907 return Shrunk; 1908 } 1909 1910 return nullptr; 1911 } 1912 1913 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1914 Module *M = CI->getModule(); 1915 Function *Callee = CI->getCalledFunction(); 1916 AttributeList Attrs; // Attributes are only meaningful on the original call 1917 StringRef Name = Callee->getName(); 1918 Value *Ret = nullptr; 1919 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1920 hasFloatVersion(M, Name)) 1921 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 1922 1923 Type *Ty = CI->getType(); 1924 Value *Op = CI->getArgOperand(0); 1925 1926 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1927 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1928 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1929 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1930 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1931 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1932 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1933 B, Attrs); 1934 } 1935 1936 return Ret; 1937 } 1938 1939 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1940 Module *M = CI->getModule(); 1941 1942 // If we can shrink the call to a float function rather than a double 1943 // function, do that first. 1944 Function *Callee = CI->getCalledFunction(); 1945 StringRef Name = Callee->getName(); 1946 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 1947 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 1948 return Ret; 1949 1950 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1951 // the intrinsics for improved optimization (for example, vectorization). 1952 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1953 // From the C standard draft WG14/N1256: 1954 // "Ideally, fmax would be sensitive to the sign of zero, for example 1955 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1956 // might be impractical." 1957 IRBuilderBase::FastMathFlagGuard Guard(B); 1958 FastMathFlags FMF = CI->getFastMathFlags(); 1959 FMF.setNoSignedZeros(); 1960 B.setFastMathFlags(FMF); 1961 1962 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1963 : Intrinsic::maxnum; 1964 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1965 return copyFlags( 1966 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1967 } 1968 1969 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1970 Function *LogFn = Log->getCalledFunction(); 1971 AttributeList Attrs; // Attributes are only meaningful on the original call 1972 StringRef LogNm = LogFn->getName(); 1973 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1974 Module *Mod = Log->getModule(); 1975 Type *Ty = Log->getType(); 1976 Value *Ret = nullptr; 1977 1978 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 1979 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 1980 1981 // The earlier call must also be 'fast' in order to do these transforms. 1982 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1983 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1984 return Ret; 1985 1986 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1987 1988 // This is only applicable to log(), log2(), log10(). 1989 if (TLI->getLibFunc(LogNm, LogLb)) 1990 switch (LogLb) { 1991 case LibFunc_logf: 1992 LogID = Intrinsic::log; 1993 ExpLb = LibFunc_expf; 1994 Exp2Lb = LibFunc_exp2f; 1995 Exp10Lb = LibFunc_exp10f; 1996 PowLb = LibFunc_powf; 1997 break; 1998 case LibFunc_log: 1999 LogID = Intrinsic::log; 2000 ExpLb = LibFunc_exp; 2001 Exp2Lb = LibFunc_exp2; 2002 Exp10Lb = LibFunc_exp10; 2003 PowLb = LibFunc_pow; 2004 break; 2005 case LibFunc_logl: 2006 LogID = Intrinsic::log; 2007 ExpLb = LibFunc_expl; 2008 Exp2Lb = LibFunc_exp2l; 2009 Exp10Lb = LibFunc_exp10l; 2010 PowLb = LibFunc_powl; 2011 break; 2012 case LibFunc_log2f: 2013 LogID = Intrinsic::log2; 2014 ExpLb = LibFunc_expf; 2015 Exp2Lb = LibFunc_exp2f; 2016 Exp10Lb = LibFunc_exp10f; 2017 PowLb = LibFunc_powf; 2018 break; 2019 case LibFunc_log2: 2020 LogID = Intrinsic::log2; 2021 ExpLb = LibFunc_exp; 2022 Exp2Lb = LibFunc_exp2; 2023 Exp10Lb = LibFunc_exp10; 2024 PowLb = LibFunc_pow; 2025 break; 2026 case LibFunc_log2l: 2027 LogID = Intrinsic::log2; 2028 ExpLb = LibFunc_expl; 2029 Exp2Lb = LibFunc_exp2l; 2030 Exp10Lb = LibFunc_exp10l; 2031 PowLb = LibFunc_powl; 2032 break; 2033 case LibFunc_log10f: 2034 LogID = Intrinsic::log10; 2035 ExpLb = LibFunc_expf; 2036 Exp2Lb = LibFunc_exp2f; 2037 Exp10Lb = LibFunc_exp10f; 2038 PowLb = LibFunc_powf; 2039 break; 2040 case LibFunc_log10: 2041 LogID = Intrinsic::log10; 2042 ExpLb = LibFunc_exp; 2043 Exp2Lb = LibFunc_exp2; 2044 Exp10Lb = LibFunc_exp10; 2045 PowLb = LibFunc_pow; 2046 break; 2047 case LibFunc_log10l: 2048 LogID = Intrinsic::log10; 2049 ExpLb = LibFunc_expl; 2050 Exp2Lb = LibFunc_exp2l; 2051 Exp10Lb = LibFunc_exp10l; 2052 PowLb = LibFunc_powl; 2053 break; 2054 default: 2055 return Ret; 2056 } 2057 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2058 LogID == Intrinsic::log10) { 2059 if (Ty->getScalarType()->isFloatTy()) { 2060 ExpLb = LibFunc_expf; 2061 Exp2Lb = LibFunc_exp2f; 2062 Exp10Lb = LibFunc_exp10f; 2063 PowLb = LibFunc_powf; 2064 } else if (Ty->getScalarType()->isDoubleTy()) { 2065 ExpLb = LibFunc_exp; 2066 Exp2Lb = LibFunc_exp2; 2067 Exp10Lb = LibFunc_exp10; 2068 PowLb = LibFunc_pow; 2069 } else 2070 return Ret; 2071 } else 2072 return Ret; 2073 2074 IRBuilderBase::FastMathFlagGuard Guard(B); 2075 B.setFastMathFlags(FastMathFlags::getFast()); 2076 2077 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2078 LibFunc ArgLb = NotLibFunc; 2079 TLI->getLibFunc(*Arg, ArgLb); 2080 2081 // log(pow(x,y)) -> y*log(x) 2082 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2083 Value *LogX = 2084 Log->doesNotAccessMemory() 2085 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2086 Arg->getOperand(0), "log") 2087 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2088 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2089 // Since pow() may have side effects, e.g. errno, 2090 // dead code elimination may not be trusted to remove it. 2091 substituteInParent(Arg, MulY); 2092 return MulY; 2093 } 2094 2095 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2096 // TODO: There is no exp10() intrinsic yet. 2097 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2098 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2099 Constant *Eul; 2100 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2101 // FIXME: Add more precise value of e for long double. 2102 Eul = ConstantFP::get(Log->getType(), numbers::e); 2103 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2104 Eul = ConstantFP::get(Log->getType(), 2.0); 2105 else 2106 Eul = ConstantFP::get(Log->getType(), 10.0); 2107 Value *LogE = Log->doesNotAccessMemory() 2108 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2109 Eul, "log") 2110 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2111 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2112 // Since exp() may have side effects, e.g. errno, 2113 // dead code elimination may not be trusted to remove it. 2114 substituteInParent(Arg, MulY); 2115 return MulY; 2116 } 2117 2118 return Ret; 2119 } 2120 2121 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2122 Module *M = CI->getModule(); 2123 Function *Callee = CI->getCalledFunction(); 2124 Value *Ret = nullptr; 2125 // TODO: Once we have a way (other than checking for the existince of the 2126 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2127 // condition below. 2128 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2129 (Callee->getName() == "sqrt" || 2130 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2131 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2132 2133 if (!CI->isFast()) 2134 return Ret; 2135 2136 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2137 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2138 return Ret; 2139 2140 // We're looking for a repeated factor in a multiplication tree, 2141 // so we can do this fold: sqrt(x * x) -> fabs(x); 2142 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2143 Value *Op0 = I->getOperand(0); 2144 Value *Op1 = I->getOperand(1); 2145 Value *RepeatOp = nullptr; 2146 Value *OtherOp = nullptr; 2147 if (Op0 == Op1) { 2148 // Simple match: the operands of the multiply are identical. 2149 RepeatOp = Op0; 2150 } else { 2151 // Look for a more complicated pattern: one of the operands is itself 2152 // a multiply, so search for a common factor in that multiply. 2153 // Note: We don't bother looking any deeper than this first level or for 2154 // variations of this pattern because instcombine's visitFMUL and/or the 2155 // reassociation pass should give us this form. 2156 Value *OtherMul0, *OtherMul1; 2157 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2158 // Pattern: sqrt((x * y) * z) 2159 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2160 // Matched: sqrt((x * x) * z) 2161 RepeatOp = OtherMul0; 2162 OtherOp = Op1; 2163 } 2164 } 2165 } 2166 if (!RepeatOp) 2167 return Ret; 2168 2169 // Fast math flags for any created instructions should match the sqrt 2170 // and multiply. 2171 IRBuilderBase::FastMathFlagGuard Guard(B); 2172 B.setFastMathFlags(I->getFastMathFlags()); 2173 2174 // If we found a repeated factor, hoist it out of the square root and 2175 // replace it with the fabs of that factor. 2176 Type *ArgType = I->getType(); 2177 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2178 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2179 if (OtherOp) { 2180 // If we found a non-repeated factor, we still need to get its square 2181 // root. We then multiply that by the value that was simplified out 2182 // of the square root calculation. 2183 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2184 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2185 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2186 } 2187 return copyFlags(*CI, FabsCall); 2188 } 2189 2190 // TODO: Generalize to handle any trig function and its inverse. 2191 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2192 Module *M = CI->getModule(); 2193 Function *Callee = CI->getCalledFunction(); 2194 Value *Ret = nullptr; 2195 StringRef Name = Callee->getName(); 2196 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2197 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2198 2199 Value *Op1 = CI->getArgOperand(0); 2200 auto *OpC = dyn_cast<CallInst>(Op1); 2201 if (!OpC) 2202 return Ret; 2203 2204 // Both calls must be 'fast' in order to remove them. 2205 if (!CI->isFast() || !OpC->isFast()) 2206 return Ret; 2207 2208 // tan(atan(x)) -> x 2209 // tanf(atanf(x)) -> x 2210 // tanl(atanl(x)) -> x 2211 LibFunc Func; 2212 Function *F = OpC->getCalledFunction(); 2213 if (F && TLI->getLibFunc(F->getName(), Func) && 2214 isLibFuncEmittable(M, TLI, Func) && 2215 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2216 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2217 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2218 Ret = OpC->getArgOperand(0); 2219 return Ret; 2220 } 2221 2222 static bool isTrigLibCall(CallInst *CI) { 2223 // We can only hope to do anything useful if we can ignore things like errno 2224 // and floating-point exceptions. 2225 // We already checked the prototype. 2226 return CI->hasFnAttr(Attribute::NoUnwind) && 2227 CI->hasFnAttr(Attribute::ReadNone); 2228 } 2229 2230 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2231 bool UseFloat, Value *&Sin, Value *&Cos, 2232 Value *&SinCos, const TargetLibraryInfo *TLI) { 2233 Module *M = OrigCallee->getParent(); 2234 Type *ArgTy = Arg->getType(); 2235 Type *ResTy; 2236 StringRef Name; 2237 2238 Triple T(OrigCallee->getParent()->getTargetTriple()); 2239 if (UseFloat) { 2240 Name = "__sincospif_stret"; 2241 2242 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2243 // x86_64 can't use {float, float} since that would be returned in both 2244 // xmm0 and xmm1, which isn't what a real struct would do. 2245 ResTy = T.getArch() == Triple::x86_64 2246 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2247 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2248 } else { 2249 Name = "__sincospi_stret"; 2250 ResTy = StructType::get(ArgTy, ArgTy); 2251 } 2252 2253 if (!isLibFuncEmittable(M, TLI, Name)) 2254 return false; 2255 LibFunc TheLibFunc; 2256 TLI->getLibFunc(Name, TheLibFunc); 2257 FunctionCallee Callee = getOrInsertLibFunc( 2258 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2259 2260 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2261 // If the argument is an instruction, it must dominate all uses so put our 2262 // sincos call there. 2263 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2264 } else { 2265 // Otherwise (e.g. for a constant) the beginning of the function is as 2266 // good a place as any. 2267 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2268 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2269 } 2270 2271 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2272 2273 if (SinCos->getType()->isStructTy()) { 2274 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2275 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2276 } else { 2277 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2278 "sinpi"); 2279 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2280 "cospi"); 2281 } 2282 2283 return true; 2284 } 2285 2286 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2287 // Make sure the prototype is as expected, otherwise the rest of the 2288 // function is probably invalid and likely to abort. 2289 if (!isTrigLibCall(CI)) 2290 return nullptr; 2291 2292 Value *Arg = CI->getArgOperand(0); 2293 SmallVector<CallInst *, 1> SinCalls; 2294 SmallVector<CallInst *, 1> CosCalls; 2295 SmallVector<CallInst *, 1> SinCosCalls; 2296 2297 bool IsFloat = Arg->getType()->isFloatTy(); 2298 2299 // Look for all compatible sinpi, cospi and sincospi calls with the same 2300 // argument. If there are enough (in some sense) we can make the 2301 // substitution. 2302 Function *F = CI->getFunction(); 2303 for (User *U : Arg->users()) 2304 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2305 2306 // It's only worthwhile if both sinpi and cospi are actually used. 2307 if (SinCalls.empty() || CosCalls.empty()) 2308 return nullptr; 2309 2310 Value *Sin, *Cos, *SinCos; 2311 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2312 SinCos, TLI)) 2313 return nullptr; 2314 2315 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2316 Value *Res) { 2317 for (CallInst *C : Calls) 2318 replaceAllUsesWith(C, Res); 2319 }; 2320 2321 replaceTrigInsts(SinCalls, Sin); 2322 replaceTrigInsts(CosCalls, Cos); 2323 replaceTrigInsts(SinCosCalls, SinCos); 2324 2325 return nullptr; 2326 } 2327 2328 void LibCallSimplifier::classifyArgUse( 2329 Value *Val, Function *F, bool IsFloat, 2330 SmallVectorImpl<CallInst *> &SinCalls, 2331 SmallVectorImpl<CallInst *> &CosCalls, 2332 SmallVectorImpl<CallInst *> &SinCosCalls) { 2333 CallInst *CI = dyn_cast<CallInst>(Val); 2334 Module *M = CI->getModule(); 2335 2336 if (!CI || CI->use_empty()) 2337 return; 2338 2339 // Don't consider calls in other functions. 2340 if (CI->getFunction() != F) 2341 return; 2342 2343 Function *Callee = CI->getCalledFunction(); 2344 LibFunc Func; 2345 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2346 !isLibFuncEmittable(M, TLI, Func) || 2347 !isTrigLibCall(CI)) 2348 return; 2349 2350 if (IsFloat) { 2351 if (Func == LibFunc_sinpif) 2352 SinCalls.push_back(CI); 2353 else if (Func == LibFunc_cospif) 2354 CosCalls.push_back(CI); 2355 else if (Func == LibFunc_sincospif_stret) 2356 SinCosCalls.push_back(CI); 2357 } else { 2358 if (Func == LibFunc_sinpi) 2359 SinCalls.push_back(CI); 2360 else if (Func == LibFunc_cospi) 2361 CosCalls.push_back(CI); 2362 else if (Func == LibFunc_sincospi_stret) 2363 SinCosCalls.push_back(CI); 2364 } 2365 } 2366 2367 //===----------------------------------------------------------------------===// 2368 // Integer Library Call Optimizations 2369 //===----------------------------------------------------------------------===// 2370 2371 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2372 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2373 Value *Op = CI->getArgOperand(0); 2374 Type *ArgType = Op->getType(); 2375 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2376 Intrinsic::cttz, ArgType); 2377 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2378 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2379 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2380 2381 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2382 return B.CreateSelect(Cond, V, B.getInt32(0)); 2383 } 2384 2385 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2386 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2387 Value *Op = CI->getArgOperand(0); 2388 Type *ArgType = Op->getType(); 2389 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2390 Intrinsic::ctlz, ArgType); 2391 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2392 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2393 V); 2394 return B.CreateIntCast(V, CI->getType(), false); 2395 } 2396 2397 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2398 // abs(x) -> x <s 0 ? -x : x 2399 // The negation has 'nsw' because abs of INT_MIN is undefined. 2400 Value *X = CI->getArgOperand(0); 2401 Value *IsNeg = B.CreateIsNeg(X); 2402 Value *NegX = B.CreateNSWNeg(X, "neg"); 2403 return B.CreateSelect(IsNeg, NegX, X); 2404 } 2405 2406 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2407 // isdigit(c) -> (c-'0') <u 10 2408 Value *Op = CI->getArgOperand(0); 2409 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2410 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2411 return B.CreateZExt(Op, CI->getType()); 2412 } 2413 2414 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2415 // isascii(c) -> c <u 128 2416 Value *Op = CI->getArgOperand(0); 2417 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2418 return B.CreateZExt(Op, CI->getType()); 2419 } 2420 2421 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2422 // toascii(c) -> c & 0x7f 2423 return B.CreateAnd(CI->getArgOperand(0), 2424 ConstantInt::get(CI->getType(), 0x7F)); 2425 } 2426 2427 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2428 StringRef Str; 2429 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2430 return nullptr; 2431 2432 return convertStrToNumber(CI, Str, 10); 2433 } 2434 2435 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2436 StringRef Str; 2437 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2438 return nullptr; 2439 2440 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2441 return nullptr; 2442 2443 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2444 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2445 } 2446 2447 return nullptr; 2448 } 2449 2450 //===----------------------------------------------------------------------===// 2451 // Formatting and IO Library Call Optimizations 2452 //===----------------------------------------------------------------------===// 2453 2454 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2455 2456 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2457 int StreamArg) { 2458 Function *Callee = CI->getCalledFunction(); 2459 // Error reporting calls should be cold, mark them as such. 2460 // This applies even to non-builtin calls: it is only a hint and applies to 2461 // functions that the frontend might not understand as builtins. 2462 2463 // This heuristic was suggested in: 2464 // Improving Static Branch Prediction in a Compiler 2465 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2466 // Proceedings of PACT'98, Oct. 1998, IEEE 2467 if (!CI->hasFnAttr(Attribute::Cold) && 2468 isReportingError(Callee, CI, StreamArg)) { 2469 CI->addFnAttr(Attribute::Cold); 2470 } 2471 2472 return nullptr; 2473 } 2474 2475 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2476 if (!Callee || !Callee->isDeclaration()) 2477 return false; 2478 2479 if (StreamArg < 0) 2480 return true; 2481 2482 // These functions might be considered cold, but only if their stream 2483 // argument is stderr. 2484 2485 if (StreamArg >= (int)CI->arg_size()) 2486 return false; 2487 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2488 if (!LI) 2489 return false; 2490 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2491 if (!GV || !GV->isDeclaration()) 2492 return false; 2493 return GV->getName() == "stderr"; 2494 } 2495 2496 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2497 // Check for a fixed format string. 2498 StringRef FormatStr; 2499 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2500 return nullptr; 2501 2502 // Empty format string -> noop. 2503 if (FormatStr.empty()) // Tolerate printf's declared void. 2504 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2505 2506 // Do not do any of the following transformations if the printf return value 2507 // is used, in general the printf return value is not compatible with either 2508 // putchar() or puts(). 2509 if (!CI->use_empty()) 2510 return nullptr; 2511 2512 // printf("x") -> putchar('x'), even for "%" and "%%". 2513 if (FormatStr.size() == 1 || FormatStr == "%%") 2514 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2515 2516 // Try to remove call or emit putchar/puts. 2517 if (FormatStr == "%s" && CI->arg_size() > 1) { 2518 StringRef OperandStr; 2519 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2520 return nullptr; 2521 // printf("%s", "") --> NOP 2522 if (OperandStr.empty()) 2523 return (Value *)CI; 2524 // printf("%s", "a") --> putchar('a') 2525 if (OperandStr.size() == 1) 2526 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2527 // printf("%s", str"\n") --> puts(str) 2528 if (OperandStr.back() == '\n') { 2529 OperandStr = OperandStr.drop_back(); 2530 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2531 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2532 } 2533 return nullptr; 2534 } 2535 2536 // printf("foo\n") --> puts("foo") 2537 if (FormatStr.back() == '\n' && 2538 !FormatStr.contains('%')) { // No format characters. 2539 // Create a string literal with no \n on it. We expect the constant merge 2540 // pass to be run after this pass, to merge duplicate strings. 2541 FormatStr = FormatStr.drop_back(); 2542 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2543 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2544 } 2545 2546 // Optimize specific format strings. 2547 // printf("%c", chr) --> putchar(chr) 2548 if (FormatStr == "%c" && CI->arg_size() > 1 && 2549 CI->getArgOperand(1)->getType()->isIntegerTy()) 2550 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2551 2552 // printf("%s\n", str) --> puts(str) 2553 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2554 CI->getArgOperand(1)->getType()->isPointerTy()) 2555 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2556 return nullptr; 2557 } 2558 2559 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2560 2561 Module *M = CI->getModule(); 2562 Function *Callee = CI->getCalledFunction(); 2563 FunctionType *FT = Callee->getFunctionType(); 2564 if (Value *V = optimizePrintFString(CI, B)) { 2565 return V; 2566 } 2567 2568 // printf(format, ...) -> iprintf(format, ...) if no floating point 2569 // arguments. 2570 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2571 !callHasFloatingPointArgument(CI)) { 2572 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2573 Callee->getAttributes()); 2574 CallInst *New = cast<CallInst>(CI->clone()); 2575 New->setCalledFunction(IPrintFFn); 2576 B.Insert(New); 2577 return New; 2578 } 2579 2580 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2581 // arguments. 2582 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2583 !callHasFP128Argument(CI)) { 2584 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2585 Callee->getAttributes()); 2586 CallInst *New = cast<CallInst>(CI->clone()); 2587 New->setCalledFunction(SmallPrintFFn); 2588 B.Insert(New); 2589 return New; 2590 } 2591 2592 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2593 return nullptr; 2594 } 2595 2596 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2597 IRBuilderBase &B) { 2598 // Check for a fixed format string. 2599 StringRef FormatStr; 2600 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2601 return nullptr; 2602 2603 // If we just have a format string (nothing else crazy) transform it. 2604 Value *Dest = CI->getArgOperand(0); 2605 if (CI->arg_size() == 2) { 2606 // Make sure there's no % in the constant array. We could try to handle 2607 // %% -> % in the future if we cared. 2608 if (FormatStr.contains('%')) 2609 return nullptr; // we found a format specifier, bail out. 2610 2611 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2612 B.CreateMemCpy( 2613 Dest, Align(1), CI->getArgOperand(1), Align(1), 2614 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2615 FormatStr.size() + 1)); // Copy the null byte. 2616 return ConstantInt::get(CI->getType(), FormatStr.size()); 2617 } 2618 2619 // The remaining optimizations require the format string to be "%s" or "%c" 2620 // and have an extra operand. 2621 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2622 return nullptr; 2623 2624 // Decode the second character of the format string. 2625 if (FormatStr[1] == 'c') { 2626 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2627 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2628 return nullptr; 2629 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2630 Value *Ptr = castToCStr(Dest, B); 2631 B.CreateStore(V, Ptr); 2632 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2633 B.CreateStore(B.getInt8(0), Ptr); 2634 2635 return ConstantInt::get(CI->getType(), 1); 2636 } 2637 2638 if (FormatStr[1] == 's') { 2639 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2640 // strlen(str)+1) 2641 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2642 return nullptr; 2643 2644 if (CI->use_empty()) 2645 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2646 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2647 2648 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2649 if (SrcLen) { 2650 B.CreateMemCpy( 2651 Dest, Align(1), CI->getArgOperand(2), Align(1), 2652 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2653 // Returns total number of characters written without null-character. 2654 return ConstantInt::get(CI->getType(), SrcLen - 1); 2655 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2656 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2657 // Handle mismatched pointer types (goes away with typeless pointers?). 2658 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2659 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2660 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2661 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2662 } 2663 2664 bool OptForSize = CI->getFunction()->hasOptSize() || 2665 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2666 PGSOQueryType::IRPass); 2667 if (OptForSize) 2668 return nullptr; 2669 2670 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2671 if (!Len) 2672 return nullptr; 2673 Value *IncLen = 2674 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2675 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2676 2677 // The sprintf result is the unincremented number of bytes in the string. 2678 return B.CreateIntCast(Len, CI->getType(), false); 2679 } 2680 return nullptr; 2681 } 2682 2683 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2684 Module *M = CI->getModule(); 2685 Function *Callee = CI->getCalledFunction(); 2686 FunctionType *FT = Callee->getFunctionType(); 2687 if (Value *V = optimizeSPrintFString(CI, B)) { 2688 return V; 2689 } 2690 2691 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2692 // point arguments. 2693 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2694 !callHasFloatingPointArgument(CI)) { 2695 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2696 FT, Callee->getAttributes()); 2697 CallInst *New = cast<CallInst>(CI->clone()); 2698 New->setCalledFunction(SIPrintFFn); 2699 B.Insert(New); 2700 return New; 2701 } 2702 2703 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2704 // floating point arguments. 2705 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2706 !callHasFP128Argument(CI)) { 2707 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2708 Callee->getAttributes()); 2709 CallInst *New = cast<CallInst>(CI->clone()); 2710 New->setCalledFunction(SmallSPrintFFn); 2711 B.Insert(New); 2712 return New; 2713 } 2714 2715 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2716 return nullptr; 2717 } 2718 2719 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2720 IRBuilderBase &B) { 2721 // Check for size 2722 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2723 if (!Size) 2724 return nullptr; 2725 2726 uint64_t N = Size->getZExtValue(); 2727 // Check for a fixed format string. 2728 StringRef FormatStr; 2729 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2730 return nullptr; 2731 2732 // If we just have a format string (nothing else crazy) transform it. 2733 if (CI->arg_size() == 3) { 2734 // Make sure there's no % in the constant array. We could try to handle 2735 // %% -> % in the future if we cared. 2736 if (FormatStr.contains('%')) 2737 return nullptr; // we found a format specifier, bail out. 2738 2739 if (N == 0) 2740 return ConstantInt::get(CI->getType(), FormatStr.size()); 2741 else if (N < FormatStr.size() + 1) 2742 return nullptr; 2743 2744 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2745 // strlen(fmt)+1) 2746 copyFlags( 2747 *CI, 2748 B.CreateMemCpy( 2749 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2750 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2751 FormatStr.size() + 1))); // Copy the null byte. 2752 return ConstantInt::get(CI->getType(), FormatStr.size()); 2753 } 2754 2755 // The remaining optimizations require the format string to be "%s" or "%c" 2756 // and have an extra operand. 2757 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2758 2759 // Decode the second character of the format string. 2760 if (FormatStr[1] == 'c') { 2761 if (N == 0) 2762 return ConstantInt::get(CI->getType(), 1); 2763 else if (N == 1) 2764 return nullptr; 2765 2766 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2767 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2768 return nullptr; 2769 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2770 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2771 B.CreateStore(V, Ptr); 2772 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2773 B.CreateStore(B.getInt8(0), Ptr); 2774 2775 return ConstantInt::get(CI->getType(), 1); 2776 } 2777 2778 if (FormatStr[1] == 's') { 2779 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2780 StringRef Str; 2781 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2782 return nullptr; 2783 2784 if (N == 0) 2785 return ConstantInt::get(CI->getType(), Str.size()); 2786 else if (N < Str.size() + 1) 2787 return nullptr; 2788 2789 copyFlags( 2790 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2791 CI->getArgOperand(3), Align(1), 2792 ConstantInt::get(CI->getType(), Str.size() + 1))); 2793 2794 // The snprintf result is the unincremented number of bytes in the string. 2795 return ConstantInt::get(CI->getType(), Str.size()); 2796 } 2797 } 2798 return nullptr; 2799 } 2800 2801 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2802 if (Value *V = optimizeSnPrintFString(CI, B)) { 2803 return V; 2804 } 2805 2806 if (isKnownNonZero(CI->getOperand(1), DL)) 2807 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2808 return nullptr; 2809 } 2810 2811 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2812 IRBuilderBase &B) { 2813 optimizeErrorReporting(CI, B, 0); 2814 2815 // All the optimizations depend on the format string. 2816 StringRef FormatStr; 2817 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2818 return nullptr; 2819 2820 // Do not do any of the following transformations if the fprintf return 2821 // value is used, in general the fprintf return value is not compatible 2822 // with fwrite(), fputc() or fputs(). 2823 if (!CI->use_empty()) 2824 return nullptr; 2825 2826 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2827 if (CI->arg_size() == 2) { 2828 // Could handle %% -> % if we cared. 2829 if (FormatStr.contains('%')) 2830 return nullptr; // We found a format specifier. 2831 2832 return copyFlags( 2833 *CI, emitFWrite(CI->getArgOperand(1), 2834 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2835 FormatStr.size()), 2836 CI->getArgOperand(0), B, DL, TLI)); 2837 } 2838 2839 // The remaining optimizations require the format string to be "%s" or "%c" 2840 // and have an extra operand. 2841 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2842 return nullptr; 2843 2844 // Decode the second character of the format string. 2845 if (FormatStr[1] == 'c') { 2846 // fprintf(F, "%c", chr) --> fputc(chr, F) 2847 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2848 return nullptr; 2849 return copyFlags( 2850 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2851 } 2852 2853 if (FormatStr[1] == 's') { 2854 // fprintf(F, "%s", str) --> fputs(str, F) 2855 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2856 return nullptr; 2857 return copyFlags( 2858 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2859 } 2860 return nullptr; 2861 } 2862 2863 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2864 Module *M = CI->getModule(); 2865 Function *Callee = CI->getCalledFunction(); 2866 FunctionType *FT = Callee->getFunctionType(); 2867 if (Value *V = optimizeFPrintFString(CI, B)) { 2868 return V; 2869 } 2870 2871 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2872 // floating point arguments. 2873 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 2874 !callHasFloatingPointArgument(CI)) { 2875 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 2876 FT, Callee->getAttributes()); 2877 CallInst *New = cast<CallInst>(CI->clone()); 2878 New->setCalledFunction(FIPrintFFn); 2879 B.Insert(New); 2880 return New; 2881 } 2882 2883 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2884 // 128-bit floating point arguments. 2885 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 2886 !callHasFP128Argument(CI)) { 2887 auto SmallFPrintFFn = 2888 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 2889 Callee->getAttributes()); 2890 CallInst *New = cast<CallInst>(CI->clone()); 2891 New->setCalledFunction(SmallFPrintFFn); 2892 B.Insert(New); 2893 return New; 2894 } 2895 2896 return nullptr; 2897 } 2898 2899 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2900 optimizeErrorReporting(CI, B, 3); 2901 2902 // Get the element size and count. 2903 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2904 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2905 if (SizeC && CountC) { 2906 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2907 2908 // If this is writing zero records, remove the call (it's a noop). 2909 if (Bytes == 0) 2910 return ConstantInt::get(CI->getType(), 0); 2911 2912 // If this is writing one byte, turn it into fputc. 2913 // This optimisation is only valid, if the return value is unused. 2914 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2915 Value *Char = B.CreateLoad(B.getInt8Ty(), 2916 castToCStr(CI->getArgOperand(0), B), "char"); 2917 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2918 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2919 } 2920 } 2921 2922 return nullptr; 2923 } 2924 2925 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2926 optimizeErrorReporting(CI, B, 1); 2927 2928 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2929 // requires more arguments and thus extra MOVs are required. 2930 bool OptForSize = CI->getFunction()->hasOptSize() || 2931 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2932 PGSOQueryType::IRPass); 2933 if (OptForSize) 2934 return nullptr; 2935 2936 // We can't optimize if return value is used. 2937 if (!CI->use_empty()) 2938 return nullptr; 2939 2940 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2941 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2942 if (!Len) 2943 return nullptr; 2944 2945 // Known to have no uses (see above). 2946 return copyFlags( 2947 *CI, 2948 emitFWrite(CI->getArgOperand(0), 2949 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2950 CI->getArgOperand(1), B, DL, TLI)); 2951 } 2952 2953 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2954 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2955 if (!CI->use_empty()) 2956 return nullptr; 2957 2958 // Check for a constant string. 2959 // puts("") -> putchar('\n') 2960 StringRef Str; 2961 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2962 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2963 2964 return nullptr; 2965 } 2966 2967 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2968 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2969 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2970 CI->getArgOperand(0), Align(1), 2971 CI->getArgOperand(2))); 2972 } 2973 2974 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 2975 SmallString<20> FloatFuncName = FuncName; 2976 FloatFuncName += 'f'; 2977 return isLibFuncEmittable(M, TLI, FloatFuncName); 2978 } 2979 2980 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2981 IRBuilderBase &Builder) { 2982 Module *M = CI->getModule(); 2983 LibFunc Func; 2984 Function *Callee = CI->getCalledFunction(); 2985 // Check for string/memory library functions. 2986 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 2987 // Make sure we never change the calling convention. 2988 assert( 2989 (ignoreCallingConv(Func) || 2990 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2991 "Optimizing string/memory libcall would change the calling convention"); 2992 switch (Func) { 2993 case LibFunc_strcat: 2994 return optimizeStrCat(CI, Builder); 2995 case LibFunc_strncat: 2996 return optimizeStrNCat(CI, Builder); 2997 case LibFunc_strchr: 2998 return optimizeStrChr(CI, Builder); 2999 case LibFunc_strrchr: 3000 return optimizeStrRChr(CI, Builder); 3001 case LibFunc_strcmp: 3002 return optimizeStrCmp(CI, Builder); 3003 case LibFunc_strncmp: 3004 return optimizeStrNCmp(CI, Builder); 3005 case LibFunc_strcpy: 3006 return optimizeStrCpy(CI, Builder); 3007 case LibFunc_stpcpy: 3008 return optimizeStpCpy(CI, Builder); 3009 case LibFunc_strncpy: 3010 return optimizeStrNCpy(CI, Builder); 3011 case LibFunc_strlen: 3012 return optimizeStrLen(CI, Builder); 3013 case LibFunc_strnlen: 3014 return optimizeStrNLen(CI, Builder); 3015 case LibFunc_strpbrk: 3016 return optimizeStrPBrk(CI, Builder); 3017 case LibFunc_strndup: 3018 return optimizeStrNDup(CI, Builder); 3019 case LibFunc_strtol: 3020 case LibFunc_strtod: 3021 case LibFunc_strtof: 3022 case LibFunc_strtoul: 3023 case LibFunc_strtoll: 3024 case LibFunc_strtold: 3025 case LibFunc_strtoull: 3026 return optimizeStrTo(CI, Builder); 3027 case LibFunc_strspn: 3028 return optimizeStrSpn(CI, Builder); 3029 case LibFunc_strcspn: 3030 return optimizeStrCSpn(CI, Builder); 3031 case LibFunc_strstr: 3032 return optimizeStrStr(CI, Builder); 3033 case LibFunc_memchr: 3034 return optimizeMemChr(CI, Builder); 3035 case LibFunc_memrchr: 3036 return optimizeMemRChr(CI, Builder); 3037 case LibFunc_bcmp: 3038 return optimizeBCmp(CI, Builder); 3039 case LibFunc_memcmp: 3040 return optimizeMemCmp(CI, Builder); 3041 case LibFunc_memcpy: 3042 return optimizeMemCpy(CI, Builder); 3043 case LibFunc_memccpy: 3044 return optimizeMemCCpy(CI, Builder); 3045 case LibFunc_mempcpy: 3046 return optimizeMemPCpy(CI, Builder); 3047 case LibFunc_memmove: 3048 return optimizeMemMove(CI, Builder); 3049 case LibFunc_memset: 3050 return optimizeMemSet(CI, Builder); 3051 case LibFunc_realloc: 3052 return optimizeRealloc(CI, Builder); 3053 case LibFunc_wcslen: 3054 return optimizeWcslen(CI, Builder); 3055 case LibFunc_bcopy: 3056 return optimizeBCopy(CI, Builder); 3057 default: 3058 break; 3059 } 3060 } 3061 return nullptr; 3062 } 3063 3064 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3065 LibFunc Func, 3066 IRBuilderBase &Builder) { 3067 const Module *M = CI->getModule(); 3068 3069 // Don't optimize calls that require strict floating point semantics. 3070 if (CI->isStrictFP()) 3071 return nullptr; 3072 3073 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3074 return V; 3075 3076 switch (Func) { 3077 case LibFunc_sinpif: 3078 case LibFunc_sinpi: 3079 case LibFunc_cospif: 3080 case LibFunc_cospi: 3081 return optimizeSinCosPi(CI, Builder); 3082 case LibFunc_powf: 3083 case LibFunc_pow: 3084 case LibFunc_powl: 3085 return optimizePow(CI, Builder); 3086 case LibFunc_exp2l: 3087 case LibFunc_exp2: 3088 case LibFunc_exp2f: 3089 return optimizeExp2(CI, Builder); 3090 case LibFunc_fabsf: 3091 case LibFunc_fabs: 3092 case LibFunc_fabsl: 3093 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3094 case LibFunc_sqrtf: 3095 case LibFunc_sqrt: 3096 case LibFunc_sqrtl: 3097 return optimizeSqrt(CI, Builder); 3098 case LibFunc_logf: 3099 case LibFunc_log: 3100 case LibFunc_logl: 3101 case LibFunc_log10f: 3102 case LibFunc_log10: 3103 case LibFunc_log10l: 3104 case LibFunc_log1pf: 3105 case LibFunc_log1p: 3106 case LibFunc_log1pl: 3107 case LibFunc_log2f: 3108 case LibFunc_log2: 3109 case LibFunc_log2l: 3110 case LibFunc_logbf: 3111 case LibFunc_logb: 3112 case LibFunc_logbl: 3113 return optimizeLog(CI, Builder); 3114 case LibFunc_tan: 3115 case LibFunc_tanf: 3116 case LibFunc_tanl: 3117 return optimizeTan(CI, Builder); 3118 case LibFunc_ceil: 3119 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3120 case LibFunc_floor: 3121 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3122 case LibFunc_round: 3123 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3124 case LibFunc_roundeven: 3125 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3126 case LibFunc_nearbyint: 3127 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3128 case LibFunc_rint: 3129 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3130 case LibFunc_trunc: 3131 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3132 case LibFunc_acos: 3133 case LibFunc_acosh: 3134 case LibFunc_asin: 3135 case LibFunc_asinh: 3136 case LibFunc_atan: 3137 case LibFunc_atanh: 3138 case LibFunc_cbrt: 3139 case LibFunc_cosh: 3140 case LibFunc_exp: 3141 case LibFunc_exp10: 3142 case LibFunc_expm1: 3143 case LibFunc_cos: 3144 case LibFunc_sin: 3145 case LibFunc_sinh: 3146 case LibFunc_tanh: 3147 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3148 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3149 return nullptr; 3150 case LibFunc_copysign: 3151 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3152 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3153 return nullptr; 3154 case LibFunc_fminf: 3155 case LibFunc_fmin: 3156 case LibFunc_fminl: 3157 case LibFunc_fmaxf: 3158 case LibFunc_fmax: 3159 case LibFunc_fmaxl: 3160 return optimizeFMinFMax(CI, Builder); 3161 case LibFunc_cabs: 3162 case LibFunc_cabsf: 3163 case LibFunc_cabsl: 3164 return optimizeCAbs(CI, Builder); 3165 default: 3166 return nullptr; 3167 } 3168 } 3169 3170 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3171 Module *M = CI->getModule(); 3172 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3173 3174 // TODO: Split out the code below that operates on FP calls so that 3175 // we can all non-FP calls with the StrictFP attribute to be 3176 // optimized. 3177 if (CI->isNoBuiltin()) 3178 return nullptr; 3179 3180 LibFunc Func; 3181 Function *Callee = CI->getCalledFunction(); 3182 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3183 3184 SmallVector<OperandBundleDef, 2> OpBundles; 3185 CI->getOperandBundlesAsDefs(OpBundles); 3186 3187 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3188 Builder.setDefaultOperandBundles(OpBundles); 3189 3190 // Command-line parameter overrides instruction attribute. 3191 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3192 // used by the intrinsic optimizations. 3193 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3194 UnsafeFPShrink = EnableUnsafeFPShrink; 3195 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3196 UnsafeFPShrink = true; 3197 3198 // First, check for intrinsics. 3199 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3200 if (!IsCallingConvC) 3201 return nullptr; 3202 // The FP intrinsics have corresponding constrained versions so we don't 3203 // need to check for the StrictFP attribute here. 3204 switch (II->getIntrinsicID()) { 3205 case Intrinsic::pow: 3206 return optimizePow(CI, Builder); 3207 case Intrinsic::exp2: 3208 return optimizeExp2(CI, Builder); 3209 case Intrinsic::log: 3210 case Intrinsic::log2: 3211 case Intrinsic::log10: 3212 return optimizeLog(CI, Builder); 3213 case Intrinsic::sqrt: 3214 return optimizeSqrt(CI, Builder); 3215 case Intrinsic::memset: 3216 return optimizeMemSet(CI, Builder); 3217 case Intrinsic::memcpy: 3218 return optimizeMemCpy(CI, Builder); 3219 case Intrinsic::memmove: 3220 return optimizeMemMove(CI, Builder); 3221 default: 3222 return nullptr; 3223 } 3224 } 3225 3226 // Also try to simplify calls to fortified library functions. 3227 if (Value *SimplifiedFortifiedCI = 3228 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3229 // Try to further simplify the result. 3230 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3231 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3232 // Ensure that SimplifiedCI's uses are complete, since some calls have 3233 // their uses analyzed. 3234 replaceAllUsesWith(CI, SimplifiedCI); 3235 3236 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3237 // we might replace later on. 3238 IRBuilderBase::InsertPointGuard Guard(Builder); 3239 Builder.SetInsertPoint(SimplifiedCI); 3240 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3241 // If we were able to further simplify, remove the now redundant call. 3242 substituteInParent(SimplifiedCI, V); 3243 return V; 3244 } 3245 } 3246 return SimplifiedFortifiedCI; 3247 } 3248 3249 // Then check for known library functions. 3250 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3251 // We never change the calling convention. 3252 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3253 return nullptr; 3254 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3255 return V; 3256 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3257 return V; 3258 switch (Func) { 3259 case LibFunc_ffs: 3260 case LibFunc_ffsl: 3261 case LibFunc_ffsll: 3262 return optimizeFFS(CI, Builder); 3263 case LibFunc_fls: 3264 case LibFunc_flsl: 3265 case LibFunc_flsll: 3266 return optimizeFls(CI, Builder); 3267 case LibFunc_abs: 3268 case LibFunc_labs: 3269 case LibFunc_llabs: 3270 return optimizeAbs(CI, Builder); 3271 case LibFunc_isdigit: 3272 return optimizeIsDigit(CI, Builder); 3273 case LibFunc_isascii: 3274 return optimizeIsAscii(CI, Builder); 3275 case LibFunc_toascii: 3276 return optimizeToAscii(CI, Builder); 3277 case LibFunc_atoi: 3278 case LibFunc_atol: 3279 case LibFunc_atoll: 3280 return optimizeAtoi(CI, Builder); 3281 case LibFunc_strtol: 3282 case LibFunc_strtoll: 3283 return optimizeStrtol(CI, Builder); 3284 case LibFunc_printf: 3285 return optimizePrintF(CI, Builder); 3286 case LibFunc_sprintf: 3287 return optimizeSPrintF(CI, Builder); 3288 case LibFunc_snprintf: 3289 return optimizeSnPrintF(CI, Builder); 3290 case LibFunc_fprintf: 3291 return optimizeFPrintF(CI, Builder); 3292 case LibFunc_fwrite: 3293 return optimizeFWrite(CI, Builder); 3294 case LibFunc_fputs: 3295 return optimizeFPuts(CI, Builder); 3296 case LibFunc_puts: 3297 return optimizePuts(CI, Builder); 3298 case LibFunc_perror: 3299 return optimizeErrorReporting(CI, Builder); 3300 case LibFunc_vfprintf: 3301 case LibFunc_fiprintf: 3302 return optimizeErrorReporting(CI, Builder, 0); 3303 default: 3304 return nullptr; 3305 } 3306 } 3307 return nullptr; 3308 } 3309 3310 LibCallSimplifier::LibCallSimplifier( 3311 const DataLayout &DL, const TargetLibraryInfo *TLI, 3312 OptimizationRemarkEmitter &ORE, 3313 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3314 function_ref<void(Instruction *, Value *)> Replacer, 3315 function_ref<void(Instruction *)> Eraser) 3316 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3317 Replacer(Replacer), Eraser(Eraser) {} 3318 3319 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3320 // Indirect through the replacer used in this instance. 3321 Replacer(I, With); 3322 } 3323 3324 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3325 Eraser(I); 3326 } 3327 3328 // TODO: 3329 // Additional cases that we need to add to this file: 3330 // 3331 // cbrt: 3332 // * cbrt(expN(X)) -> expN(x/3) 3333 // * cbrt(sqrt(x)) -> pow(x,1/6) 3334 // * cbrt(cbrt(x)) -> pow(x,1/9) 3335 // 3336 // exp, expf, expl: 3337 // * exp(log(x)) -> x 3338 // 3339 // log, logf, logl: 3340 // * log(exp(x)) -> x 3341 // * log(exp(y)) -> y*log(e) 3342 // * log(exp10(y)) -> y*log(10) 3343 // * log(sqrt(x)) -> 0.5*log(x) 3344 // 3345 // pow, powf, powl: 3346 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3347 // * pow(pow(x,y),z)-> pow(x,y*z) 3348 // 3349 // signbit: 3350 // * signbit(cnst) -> cnst' 3351 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3352 // 3353 // sqrt, sqrtf, sqrtl: 3354 // * sqrt(expN(x)) -> expN(x*0.5) 3355 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3356 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3357 // 3358 3359 //===----------------------------------------------------------------------===// 3360 // Fortified Library Call Optimizations 3361 //===----------------------------------------------------------------------===// 3362 3363 bool 3364 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3365 unsigned ObjSizeOp, 3366 Optional<unsigned> SizeOp, 3367 Optional<unsigned> StrOp, 3368 Optional<unsigned> FlagOp) { 3369 // If this function takes a flag argument, the implementation may use it to 3370 // perform extra checks. Don't fold into the non-checking variant. 3371 if (FlagOp) { 3372 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3373 if (!Flag || !Flag->isZero()) 3374 return false; 3375 } 3376 3377 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3378 return true; 3379 3380 if (ConstantInt *ObjSizeCI = 3381 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3382 if (ObjSizeCI->isMinusOne()) 3383 return true; 3384 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3385 if (OnlyLowerUnknownSize) 3386 return false; 3387 if (StrOp) { 3388 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3389 // If the length is 0 we don't know how long it is and so we can't 3390 // remove the check. 3391 if (Len) 3392 annotateDereferenceableBytes(CI, *StrOp, Len); 3393 else 3394 return false; 3395 return ObjSizeCI->getZExtValue() >= Len; 3396 } 3397 3398 if (SizeOp) { 3399 if (ConstantInt *SizeCI = 3400 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3401 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3402 } 3403 } 3404 return false; 3405 } 3406 3407 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3408 IRBuilderBase &B) { 3409 if (isFortifiedCallFoldable(CI, 3, 2)) { 3410 CallInst *NewCI = 3411 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3412 Align(1), CI->getArgOperand(2)); 3413 NewCI->setAttributes(CI->getAttributes()); 3414 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3415 copyFlags(*CI, NewCI); 3416 return CI->getArgOperand(0); 3417 } 3418 return nullptr; 3419 } 3420 3421 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3422 IRBuilderBase &B) { 3423 if (isFortifiedCallFoldable(CI, 3, 2)) { 3424 CallInst *NewCI = 3425 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3426 Align(1), CI->getArgOperand(2)); 3427 NewCI->setAttributes(CI->getAttributes()); 3428 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3429 copyFlags(*CI, NewCI); 3430 return CI->getArgOperand(0); 3431 } 3432 return nullptr; 3433 } 3434 3435 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3436 IRBuilderBase &B) { 3437 if (isFortifiedCallFoldable(CI, 3, 2)) { 3438 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3439 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3440 CI->getArgOperand(2), Align(1)); 3441 NewCI->setAttributes(CI->getAttributes()); 3442 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3443 copyFlags(*CI, NewCI); 3444 return CI->getArgOperand(0); 3445 } 3446 return nullptr; 3447 } 3448 3449 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3450 IRBuilderBase &B) { 3451 const DataLayout &DL = CI->getModule()->getDataLayout(); 3452 if (isFortifiedCallFoldable(CI, 3, 2)) 3453 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3454 CI->getArgOperand(2), B, DL, TLI)) { 3455 CallInst *NewCI = cast<CallInst>(Call); 3456 NewCI->setAttributes(CI->getAttributes()); 3457 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3458 return copyFlags(*CI, NewCI); 3459 } 3460 return nullptr; 3461 } 3462 3463 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3464 IRBuilderBase &B, 3465 LibFunc Func) { 3466 const DataLayout &DL = CI->getModule()->getDataLayout(); 3467 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3468 *ObjSize = CI->getArgOperand(2); 3469 3470 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3471 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3472 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3473 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3474 } 3475 3476 // If a) we don't have any length information, or b) we know this will 3477 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3478 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3479 // TODO: It might be nice to get a maximum length out of the possible 3480 // string lengths for varying. 3481 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3482 if (Func == LibFunc_strcpy_chk) 3483 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3484 else 3485 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3486 } 3487 3488 if (OnlyLowerUnknownSize) 3489 return nullptr; 3490 3491 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3492 uint64_t Len = GetStringLength(Src); 3493 if (Len) 3494 annotateDereferenceableBytes(CI, 1, Len); 3495 else 3496 return nullptr; 3497 3498 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3499 // sizeof(int*) for every target. So the assumption used here to derive the 3500 // SizeTBits based on the size of an integer pointer in address space zero 3501 // isn't always valid. 3502 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3503 Value *LenV = ConstantInt::get(SizeTTy, Len); 3504 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3505 // If the function was an __stpcpy_chk, and we were able to fold it into 3506 // a __memcpy_chk, we still need to return the correct end pointer. 3507 if (Ret && Func == LibFunc_stpcpy_chk) 3508 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3509 return copyFlags(*CI, cast<CallInst>(Ret)); 3510 } 3511 3512 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3513 IRBuilderBase &B) { 3514 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3515 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3516 CI->getModule()->getDataLayout(), TLI)); 3517 return nullptr; 3518 } 3519 3520 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3521 IRBuilderBase &B, 3522 LibFunc Func) { 3523 if (isFortifiedCallFoldable(CI, 3, 2)) { 3524 if (Func == LibFunc_strncpy_chk) 3525 return copyFlags(*CI, 3526 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3527 CI->getArgOperand(2), B, TLI)); 3528 else 3529 return copyFlags(*CI, 3530 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3531 CI->getArgOperand(2), B, TLI)); 3532 } 3533 3534 return nullptr; 3535 } 3536 3537 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3538 IRBuilderBase &B) { 3539 if (isFortifiedCallFoldable(CI, 4, 3)) 3540 return copyFlags( 3541 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3542 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3543 3544 return nullptr; 3545 } 3546 3547 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3548 IRBuilderBase &B) { 3549 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3550 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3551 return copyFlags(*CI, 3552 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3553 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3554 } 3555 3556 return nullptr; 3557 } 3558 3559 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3560 IRBuilderBase &B) { 3561 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3562 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3563 return copyFlags(*CI, 3564 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3565 VariadicArgs, B, TLI)); 3566 } 3567 3568 return nullptr; 3569 } 3570 3571 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3572 IRBuilderBase &B) { 3573 if (isFortifiedCallFoldable(CI, 2)) 3574 return copyFlags( 3575 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3576 3577 return nullptr; 3578 } 3579 3580 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3581 IRBuilderBase &B) { 3582 if (isFortifiedCallFoldable(CI, 3)) 3583 return copyFlags(*CI, 3584 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3585 CI->getArgOperand(2), B, TLI)); 3586 3587 return nullptr; 3588 } 3589 3590 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3591 IRBuilderBase &B) { 3592 if (isFortifiedCallFoldable(CI, 3)) 3593 return copyFlags(*CI, 3594 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3595 CI->getArgOperand(2), B, TLI)); 3596 3597 return nullptr; 3598 } 3599 3600 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3601 IRBuilderBase &B) { 3602 if (isFortifiedCallFoldable(CI, 3)) 3603 return copyFlags(*CI, 3604 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3605 CI->getArgOperand(2), B, TLI)); 3606 3607 return nullptr; 3608 } 3609 3610 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3611 IRBuilderBase &B) { 3612 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3613 return copyFlags( 3614 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3615 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3616 3617 return nullptr; 3618 } 3619 3620 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3621 IRBuilderBase &B) { 3622 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3623 return copyFlags(*CI, 3624 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3625 CI->getArgOperand(4), B, TLI)); 3626 3627 return nullptr; 3628 } 3629 3630 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3631 IRBuilderBase &Builder) { 3632 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3633 // Some clang users checked for _chk libcall availability using: 3634 // __has_builtin(__builtin___memcpy_chk) 3635 // When compiling with -fno-builtin, this is always true. 3636 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3637 // end up with fortified libcalls, which isn't acceptable in a freestanding 3638 // environment which only provides their non-fortified counterparts. 3639 // 3640 // Until we change clang and/or teach external users to check for availability 3641 // differently, disregard the "nobuiltin" attribute and TLI::has. 3642 // 3643 // PR23093. 3644 3645 LibFunc Func; 3646 Function *Callee = CI->getCalledFunction(); 3647 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3648 3649 SmallVector<OperandBundleDef, 2> OpBundles; 3650 CI->getOperandBundlesAsDefs(OpBundles); 3651 3652 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3653 Builder.setDefaultOperandBundles(OpBundles); 3654 3655 // First, check that this is a known library functions and that the prototype 3656 // is correct. 3657 if (!TLI->getLibFunc(*Callee, Func)) 3658 return nullptr; 3659 3660 // We never change the calling convention. 3661 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3662 return nullptr; 3663 3664 switch (Func) { 3665 case LibFunc_memcpy_chk: 3666 return optimizeMemCpyChk(CI, Builder); 3667 case LibFunc_mempcpy_chk: 3668 return optimizeMemPCpyChk(CI, Builder); 3669 case LibFunc_memmove_chk: 3670 return optimizeMemMoveChk(CI, Builder); 3671 case LibFunc_memset_chk: 3672 return optimizeMemSetChk(CI, Builder); 3673 case LibFunc_stpcpy_chk: 3674 case LibFunc_strcpy_chk: 3675 return optimizeStrpCpyChk(CI, Builder, Func); 3676 case LibFunc_strlen_chk: 3677 return optimizeStrLenChk(CI, Builder); 3678 case LibFunc_stpncpy_chk: 3679 case LibFunc_strncpy_chk: 3680 return optimizeStrpNCpyChk(CI, Builder, Func); 3681 case LibFunc_memccpy_chk: 3682 return optimizeMemCCpyChk(CI, Builder); 3683 case LibFunc_snprintf_chk: 3684 return optimizeSNPrintfChk(CI, Builder); 3685 case LibFunc_sprintf_chk: 3686 return optimizeSPrintfChk(CI, Builder); 3687 case LibFunc_strcat_chk: 3688 return optimizeStrCatChk(CI, Builder); 3689 case LibFunc_strlcat_chk: 3690 return optimizeStrLCat(CI, Builder); 3691 case LibFunc_strncat_chk: 3692 return optimizeStrNCatChk(CI, Builder); 3693 case LibFunc_strlcpy_chk: 3694 return optimizeStrLCpyChk(CI, Builder); 3695 case LibFunc_vsnprintf_chk: 3696 return optimizeVSNPrintfChk(CI, Builder); 3697 case LibFunc_vsprintf_chk: 3698 return optimizeVSPrintfChk(CI, Builder); 3699 default: 3700 break; 3701 } 3702 return nullptr; 3703 } 3704 3705 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3706 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3707 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3708