1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 static void annotateDereferenceableBytes(CallInst *CI, 190 ArrayRef<unsigned> ArgNos, 191 uint64_t DereferenceableBytes) { 192 const Function *F = CI->getFunction(); 193 if (!F) 194 return; 195 for (unsigned ArgNo : ArgNos) { 196 uint64_t DerefBytes = DereferenceableBytes; 197 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 198 if (!llvm::NullPointerIsDefined(F, AS)) 199 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 200 ArgNo + AttributeList::FirstArgIndex), 201 DereferenceableBytes); 202 203 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 204 DerefBytes) { 205 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 206 if (!llvm::NullPointerIsDefined(F, AS)) 207 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 208 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 209 CI->getContext(), DerefBytes)); 210 } 211 } 212 } 213 214 //===----------------------------------------------------------------------===// 215 // String and Memory Library Call Optimizations 216 //===----------------------------------------------------------------------===// 217 218 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 219 // Extract some information from the instruction 220 Value *Dst = CI->getArgOperand(0); 221 Value *Src = CI->getArgOperand(1); 222 223 // See if we can get the length of the input string. 224 uint64_t Len = GetStringLength(Src); 225 if (Len == 0) 226 return nullptr; 227 --Len; // Unbias length. 228 229 // Handle the simple, do-nothing case: strcat(x, "") -> x 230 if (Len == 0) 231 return Dst; 232 233 return emitStrLenMemCpy(Src, Dst, Len, B); 234 } 235 236 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 237 IRBuilder<> &B) { 238 // We need to find the end of the destination string. That's where the 239 // memory is to be moved to. We just generate a call to strlen. 240 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 241 if (!DstLen) 242 return nullptr; 243 244 // Now that we have the destination's length, we must index into the 245 // destination's pointer to get the actual memcpy destination (end of 246 // the string .. we're concatenating). 247 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 248 249 // We have enough information to now generate the memcpy call to do the 250 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 251 B.CreateMemCpy(CpyDst, 1, Src, 1, 252 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 253 return Dst; 254 } 255 256 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 257 // Extract some information from the instruction. 258 Value *Dst = CI->getArgOperand(0); 259 Value *Src = CI->getArgOperand(1); 260 uint64_t Len; 261 262 // We don't do anything if length is not constant. 263 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 264 Len = LengthArg->getZExtValue(); 265 else 266 return nullptr; 267 268 // See if we can get the length of the input string. 269 uint64_t SrcLen = GetStringLength(Src); 270 if (SrcLen == 0) 271 return nullptr; 272 --SrcLen; // Unbias length. 273 274 // Handle the simple, do-nothing cases: 275 // strncat(x, "", c) -> x 276 // strncat(x, c, 0) -> x 277 if (SrcLen == 0 || Len == 0) 278 return Dst; 279 280 // We don't optimize this case. 281 if (Len < SrcLen) 282 return nullptr; 283 284 // strncat(x, s, c) -> strcat(x, s) 285 // s is constant so the strcat can be optimized further. 286 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 287 } 288 289 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 290 Function *Callee = CI->getCalledFunction(); 291 FunctionType *FT = Callee->getFunctionType(); 292 Value *SrcStr = CI->getArgOperand(0); 293 294 // If the second operand is non-constant, see if we can compute the length 295 // of the input string and turn this into memchr. 296 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 297 if (!CharC) { 298 uint64_t Len = GetStringLength(SrcStr); 299 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 300 return nullptr; 301 302 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 303 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 304 B, DL, TLI); 305 } 306 307 // Otherwise, the character is a constant, see if the first argument is 308 // a string literal. If so, we can constant fold. 309 StringRef Str; 310 if (!getConstantStringInfo(SrcStr, Str)) { 311 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 312 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 313 "strchr"); 314 return nullptr; 315 } 316 317 // Compute the offset, make sure to handle the case when we're searching for 318 // zero (a weird way to spell strlen). 319 size_t I = (0xFF & CharC->getSExtValue()) == 0 320 ? Str.size() 321 : Str.find(CharC->getSExtValue()); 322 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 323 return Constant::getNullValue(CI->getType()); 324 325 // strchr(s+n,c) -> gep(s+n+i,c) 326 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 327 } 328 329 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 330 Value *SrcStr = CI->getArgOperand(0); 331 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 332 333 // Cannot fold anything if we're not looking for a constant. 334 if (!CharC) 335 return nullptr; 336 337 StringRef Str; 338 if (!getConstantStringInfo(SrcStr, Str)) { 339 // strrchr(s, 0) -> strchr(s, 0) 340 if (CharC->isZero()) 341 return emitStrChr(SrcStr, '\0', B, TLI); 342 return nullptr; 343 } 344 345 // Compute the offset. 346 size_t I = (0xFF & CharC->getSExtValue()) == 0 347 ? Str.size() 348 : Str.rfind(CharC->getSExtValue()); 349 if (I == StringRef::npos) // Didn't find the char. Return null. 350 return Constant::getNullValue(CI->getType()); 351 352 // strrchr(s+n,c) -> gep(s+n+i,c) 353 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 354 } 355 356 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 357 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 358 if (Str1P == Str2P) // strcmp(x,x) -> 0 359 return ConstantInt::get(CI->getType(), 0); 360 361 StringRef Str1, Str2; 362 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 363 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 364 365 // strcmp(x, y) -> cnst (if both x and y are constant strings) 366 if (HasStr1 && HasStr2) 367 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 368 369 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 370 return B.CreateNeg(B.CreateZExt( 371 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 372 373 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 374 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 375 CI->getType()); 376 377 // strcmp(P, "x") -> memcmp(P, "x", 2) 378 uint64_t Len1 = GetStringLength(Str1P); 379 uint64_t Len2 = GetStringLength(Str2P); 380 if (Len1 && Len2) { 381 return emitMemCmp(Str1P, Str2P, 382 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 383 std::min(Len1, Len2)), 384 B, DL, TLI); 385 } 386 387 // strcmp to memcmp 388 if (!HasStr1 && HasStr2) { 389 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 390 return emitMemCmp( 391 Str1P, Str2P, 392 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 393 TLI); 394 } else if (HasStr1 && !HasStr2) { 395 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 396 return emitMemCmp( 397 Str1P, Str2P, 398 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 399 TLI); 400 } 401 402 return nullptr; 403 } 404 405 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 406 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 407 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 408 return ConstantInt::get(CI->getType(), 0); 409 410 // Get the length argument if it is constant. 411 uint64_t Length; 412 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 413 Length = LengthArg->getZExtValue(); 414 else 415 return nullptr; 416 417 if (Length == 0) // strncmp(x,y,0) -> 0 418 return ConstantInt::get(CI->getType(), 0); 419 420 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 421 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 422 423 StringRef Str1, Str2; 424 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 425 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 426 427 // strncmp(x, y) -> cnst (if both x and y are constant strings) 428 if (HasStr1 && HasStr2) { 429 StringRef SubStr1 = Str1.substr(0, Length); 430 StringRef SubStr2 = Str2.substr(0, Length); 431 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 432 } 433 434 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 435 return B.CreateNeg(B.CreateZExt( 436 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 437 438 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 439 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 440 CI->getType()); 441 442 uint64_t Len1 = GetStringLength(Str1P); 443 uint64_t Len2 = GetStringLength(Str2P); 444 445 // strncmp to memcmp 446 if (!HasStr1 && HasStr2) { 447 Len2 = std::min(Len2, Length); 448 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 449 return emitMemCmp( 450 Str1P, Str2P, 451 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 452 TLI); 453 } else if (HasStr1 && !HasStr2) { 454 Len1 = std::min(Len1, Length); 455 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 456 return emitMemCmp( 457 Str1P, Str2P, 458 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 459 TLI); 460 } 461 462 return nullptr; 463 } 464 465 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 466 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 467 if (Dst == Src) // strcpy(x,x) -> x 468 return Src; 469 470 // See if we can get the length of the input string. 471 uint64_t Len = GetStringLength(Src); 472 if (Len == 0) 473 return nullptr; 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, 478 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 479 return Dst; 480 } 481 482 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 483 Function *Callee = CI->getCalledFunction(); 484 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 485 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 486 Value *StrLen = emitStrLen(Src, B, DL, TLI); 487 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 488 } 489 490 // See if we can get the length of the input string. 491 uint64_t Len = GetStringLength(Src); 492 if (Len == 0) 493 return nullptr; 494 495 Type *PT = Callee->getFunctionType()->getParamType(0); 496 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 497 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 498 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 499 500 // We have enough information to now generate the memcpy call to do the 501 // copy for us. Make a memcpy to copy the nul byte with align = 1. 502 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 503 return DstEnd; 504 } 505 506 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 507 Function *Callee = CI->getCalledFunction(); 508 Value *Dst = CI->getArgOperand(0); 509 Value *Src = CI->getArgOperand(1); 510 Value *LenOp = CI->getArgOperand(2); 511 512 // See if we can get the length of the input string. 513 uint64_t SrcLen = GetStringLength(Src); 514 if (SrcLen == 0) 515 return nullptr; 516 --SrcLen; 517 518 if (SrcLen == 0) { 519 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 520 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 521 return Dst; 522 } 523 524 uint64_t Len; 525 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 526 Len = LengthArg->getZExtValue(); 527 else 528 return nullptr; 529 530 if (Len == 0) 531 return Dst; // strncpy(x, y, 0) -> x 532 533 // Let strncpy handle the zero padding 534 if (Len > SrcLen + 1) 535 return nullptr; 536 537 Type *PT = Callee->getFunctionType()->getParamType(0); 538 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 539 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 540 541 return Dst; 542 } 543 544 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 545 unsigned CharSize) { 546 Value *Src = CI->getArgOperand(0); 547 548 // Constant folding: strlen("xyz") -> 3 549 if (uint64_t Len = GetStringLength(Src, CharSize)) 550 return ConstantInt::get(CI->getType(), Len - 1); 551 552 // If s is a constant pointer pointing to a string literal, we can fold 553 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 554 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 555 // We only try to simplify strlen when the pointer s points to an array 556 // of i8. Otherwise, we would need to scale the offset x before doing the 557 // subtraction. This will make the optimization more complex, and it's not 558 // very useful because calling strlen for a pointer of other types is 559 // very uncommon. 560 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 561 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 562 return nullptr; 563 564 ConstantDataArraySlice Slice; 565 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 566 uint64_t NullTermIdx; 567 if (Slice.Array == nullptr) { 568 NullTermIdx = 0; 569 } else { 570 NullTermIdx = ~((uint64_t)0); 571 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 572 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 573 NullTermIdx = I; 574 break; 575 } 576 } 577 // If the string does not have '\0', leave it to strlen to compute 578 // its length. 579 if (NullTermIdx == ~((uint64_t)0)) 580 return nullptr; 581 } 582 583 Value *Offset = GEP->getOperand(2); 584 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 585 Known.Zero.flipAllBits(); 586 uint64_t ArrSize = 587 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 588 589 // KnownZero's bits are flipped, so zeros in KnownZero now represent 590 // bits known to be zeros in Offset, and ones in KnowZero represent 591 // bits unknown in Offset. Therefore, Offset is known to be in range 592 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 593 // unsigned-less-than NullTermIdx. 594 // 595 // If Offset is not provably in the range [0, NullTermIdx], we can still 596 // optimize if we can prove that the program has undefined behavior when 597 // Offset is outside that range. That is the case when GEP->getOperand(0) 598 // is a pointer to an object whose memory extent is NullTermIdx+1. 599 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 600 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 601 NullTermIdx == ArrSize - 1)) { 602 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 603 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 604 Offset); 605 } 606 } 607 608 return nullptr; 609 } 610 611 // strlen(x?"foo":"bars") --> x ? 3 : 4 612 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 613 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 614 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 615 if (LenTrue && LenFalse) { 616 ORE.emit([&]() { 617 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 618 << "folded strlen(select) to select of constants"; 619 }); 620 return B.CreateSelect(SI->getCondition(), 621 ConstantInt::get(CI->getType(), LenTrue - 1), 622 ConstantInt::get(CI->getType(), LenFalse - 1)); 623 } 624 } 625 626 // strlen(x) != 0 --> *x != 0 627 // strlen(x) == 0 --> *x == 0 628 if (isOnlyUsedInZeroEqualityComparison(CI)) 629 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 630 CI->getType()); 631 632 return nullptr; 633 } 634 635 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 636 return optimizeStringLength(CI, B, 8); 637 } 638 639 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 640 Module &M = *CI->getModule(); 641 unsigned WCharSize = TLI->getWCharSize(M) * 8; 642 // We cannot perform this optimization without wchar_size metadata. 643 if (WCharSize == 0) 644 return nullptr; 645 646 return optimizeStringLength(CI, B, WCharSize); 647 } 648 649 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 650 StringRef S1, S2; 651 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 652 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 653 654 // strpbrk(s, "") -> nullptr 655 // strpbrk("", s) -> nullptr 656 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 657 return Constant::getNullValue(CI->getType()); 658 659 // Constant folding. 660 if (HasS1 && HasS2) { 661 size_t I = S1.find_first_of(S2); 662 if (I == StringRef::npos) // No match. 663 return Constant::getNullValue(CI->getType()); 664 665 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 666 "strpbrk"); 667 } 668 669 // strpbrk(s, "a") -> strchr(s, 'a') 670 if (HasS2 && S2.size() == 1) 671 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 672 673 return nullptr; 674 } 675 676 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 677 Value *EndPtr = CI->getArgOperand(1); 678 if (isa<ConstantPointerNull>(EndPtr)) { 679 // With a null EndPtr, this function won't capture the main argument. 680 // It would be readonly too, except that it still may write to errno. 681 CI->addParamAttr(0, Attribute::NoCapture); 682 } 683 684 return nullptr; 685 } 686 687 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 688 StringRef S1, S2; 689 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 690 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 691 692 // strspn(s, "") -> 0 693 // strspn("", s) -> 0 694 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 695 return Constant::getNullValue(CI->getType()); 696 697 // Constant folding. 698 if (HasS1 && HasS2) { 699 size_t Pos = S1.find_first_not_of(S2); 700 if (Pos == StringRef::npos) 701 Pos = S1.size(); 702 return ConstantInt::get(CI->getType(), Pos); 703 } 704 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 709 StringRef S1, S2; 710 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 711 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 712 713 // strcspn("", s) -> 0 714 if (HasS1 && S1.empty()) 715 return Constant::getNullValue(CI->getType()); 716 717 // Constant folding. 718 if (HasS1 && HasS2) { 719 size_t Pos = S1.find_first_of(S2); 720 if (Pos == StringRef::npos) 721 Pos = S1.size(); 722 return ConstantInt::get(CI->getType(), Pos); 723 } 724 725 // strcspn(s, "") -> strlen(s) 726 if (HasS2 && S2.empty()) 727 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 728 729 return nullptr; 730 } 731 732 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 733 // fold strstr(x, x) -> x. 734 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 735 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 736 737 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 738 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 739 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 740 if (!StrLen) 741 return nullptr; 742 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 743 StrLen, B, DL, TLI); 744 if (!StrNCmp) 745 return nullptr; 746 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 747 ICmpInst *Old = cast<ICmpInst>(*UI++); 748 Value *Cmp = 749 B.CreateICmp(Old->getPredicate(), StrNCmp, 750 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 751 replaceAllUsesWith(Old, Cmp); 752 } 753 return CI; 754 } 755 756 // See if either input string is a constant string. 757 StringRef SearchStr, ToFindStr; 758 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 759 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 760 761 // fold strstr(x, "") -> x. 762 if (HasStr2 && ToFindStr.empty()) 763 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 764 765 // If both strings are known, constant fold it. 766 if (HasStr1 && HasStr2) { 767 size_t Offset = SearchStr.find(ToFindStr); 768 769 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 770 return Constant::getNullValue(CI->getType()); 771 772 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 773 Value *Result = castToCStr(CI->getArgOperand(0), B); 774 Result = 775 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 776 return B.CreateBitCast(Result, CI->getType()); 777 } 778 779 // fold strstr(x, "y") -> strchr(x, 'y'). 780 if (HasStr2 && ToFindStr.size() == 1) { 781 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 782 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 783 } 784 return nullptr; 785 } 786 787 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 788 Value *SrcStr = CI->getArgOperand(0); 789 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 790 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 791 792 // memchr(x, y, 0) -> null 793 if (LenC) { 794 if (LenC->isZero()) 795 return Constant::getNullValue(CI->getType()); 796 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 797 } 798 // From now on we need at least constant length and string. 799 StringRef Str; 800 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 801 return nullptr; 802 803 // Truncate the string to LenC. If Str is smaller than LenC we will still only 804 // scan the string, as reading past the end of it is undefined and we can just 805 // return null if we don't find the char. 806 Str = Str.substr(0, LenC->getZExtValue()); 807 808 // If the char is variable but the input str and length are not we can turn 809 // this memchr call into a simple bit field test. Of course this only works 810 // when the return value is only checked against null. 811 // 812 // It would be really nice to reuse switch lowering here but we can't change 813 // the CFG at this point. 814 // 815 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 816 // != 0 817 // after bounds check. 818 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 819 unsigned char Max = 820 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 821 reinterpret_cast<const unsigned char *>(Str.end())); 822 823 // Make sure the bit field we're about to create fits in a register on the 824 // target. 825 // FIXME: On a 64 bit architecture this prevents us from using the 826 // interesting range of alpha ascii chars. We could do better by emitting 827 // two bitfields or shifting the range by 64 if no lower chars are used. 828 if (!DL.fitsInLegalInteger(Max + 1)) 829 return nullptr; 830 831 // For the bit field use a power-of-2 type with at least 8 bits to avoid 832 // creating unnecessary illegal types. 833 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 834 835 // Now build the bit field. 836 APInt Bitfield(Width, 0); 837 for (char C : Str) 838 Bitfield.setBit((unsigned char)C); 839 Value *BitfieldC = B.getInt(Bitfield); 840 841 // Adjust width of "C" to the bitfield width, then mask off the high bits. 842 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 843 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 844 845 // First check that the bit field access is within bounds. 846 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 847 "memchr.bounds"); 848 849 // Create code that checks if the given bit is set in the field. 850 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 851 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 852 853 // Finally merge both checks and cast to pointer type. The inttoptr 854 // implicitly zexts the i1 to intptr type. 855 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 856 } 857 858 // Check if all arguments are constants. If so, we can constant fold. 859 if (!CharC) 860 return nullptr; 861 862 // Compute the offset. 863 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 864 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 865 return Constant::getNullValue(CI->getType()); 866 867 // memchr(s+n,c,l) -> gep(s+n+i,c) 868 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 869 } 870 871 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 872 uint64_t Len, IRBuilder<> &B, 873 const DataLayout &DL) { 874 if (Len == 0) // memcmp(s1,s2,0) -> 0 875 return Constant::getNullValue(CI->getType()); 876 877 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 878 if (Len == 1) { 879 Value *LHSV = 880 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 881 CI->getType(), "lhsv"); 882 Value *RHSV = 883 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 884 CI->getType(), "rhsv"); 885 return B.CreateSub(LHSV, RHSV, "chardiff"); 886 } 887 888 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 889 // TODO: The case where both inputs are constants does not need to be limited 890 // to legal integers or equality comparison. See block below this. 891 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 892 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 893 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 894 895 // First, see if we can fold either argument to a constant. 896 Value *LHSV = nullptr; 897 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 898 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 899 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 900 } 901 Value *RHSV = nullptr; 902 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 903 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 904 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 905 } 906 907 // Don't generate unaligned loads. If either source is constant data, 908 // alignment doesn't matter for that source because there is no load. 909 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 910 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 911 if (!LHSV) { 912 Type *LHSPtrTy = 913 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 914 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 915 } 916 if (!RHSV) { 917 Type *RHSPtrTy = 918 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 919 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 920 } 921 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 922 } 923 } 924 925 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 926 // TODO: This is limited to i8 arrays. 927 StringRef LHSStr, RHSStr; 928 if (getConstantStringInfo(LHS, LHSStr) && 929 getConstantStringInfo(RHS, RHSStr)) { 930 // Make sure we're not reading out-of-bounds memory. 931 if (Len > LHSStr.size() || Len > RHSStr.size()) 932 return nullptr; 933 // Fold the memcmp and normalize the result. This way we get consistent 934 // results across multiple platforms. 935 uint64_t Ret = 0; 936 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 937 if (Cmp < 0) 938 Ret = -1; 939 else if (Cmp > 0) 940 Ret = 1; 941 return ConstantInt::get(CI->getType(), Ret); 942 } 943 return nullptr; 944 } 945 946 // Most simplifications for memcmp also apply to bcmp. 947 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 948 IRBuilder<> &B) { 949 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 950 Value *Size = CI->getArgOperand(2); 951 952 if (LHS == RHS) // memcmp(s,s,x) -> 0 953 return Constant::getNullValue(CI->getType()); 954 955 // Handle constant lengths. 956 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 957 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 958 LenC->getZExtValue(), B, DL)) 959 return Res; 960 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 961 } 962 963 return nullptr; 964 } 965 966 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 967 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 968 return V; 969 970 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 971 // bcmp can be more efficient than memcmp because it only has to know that 972 // there is a difference, not how different one is to the other. 973 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 974 Value *LHS = CI->getArgOperand(0); 975 Value *RHS = CI->getArgOperand(1); 976 Value *Size = CI->getArgOperand(2); 977 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 978 } 979 980 return nullptr; 981 } 982 983 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 984 return optimizeMemCmpBCmpCommon(CI, B); 985 } 986 987 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B, 988 bool isIntrinsic) { 989 Value *Size = CI->getArgOperand(2); 990 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 991 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 992 993 if (isIntrinsic) 994 return nullptr; 995 996 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 997 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 998 return CI->getArgOperand(0); 999 } 1000 1001 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B, bool isIntrinsic) { 1002 Value *Size = CI->getArgOperand(2); 1003 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1004 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 1005 1006 if (isIntrinsic) 1007 return nullptr; 1008 1009 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1010 B.CreateMemMove( CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 1011 return CI->getArgOperand(0); 1012 } 1013 1014 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1015 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 1016 // This has to be a memset of zeros (bzero). 1017 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1018 if (!FillValue || FillValue->getZExtValue() != 0) 1019 return nullptr; 1020 1021 // TODO: We should handle the case where the malloc has more than one use. 1022 // This is necessary to optimize common patterns such as when the result of 1023 // the malloc is checked against null or when a memset intrinsic is used in 1024 // place of a memset library call. 1025 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1026 if (!Malloc || !Malloc->hasOneUse()) 1027 return nullptr; 1028 1029 // Is the inner call really malloc()? 1030 Function *InnerCallee = Malloc->getCalledFunction(); 1031 if (!InnerCallee) 1032 return nullptr; 1033 1034 LibFunc Func; 1035 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1036 Func != LibFunc_malloc) 1037 return nullptr; 1038 1039 // The memset must cover the same number of bytes that are malloc'd. 1040 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1041 return nullptr; 1042 1043 // Replace the malloc with a calloc. We need the data layout to know what the 1044 // actual size of a 'size_t' parameter is. 1045 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1046 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1047 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1048 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1049 Malloc->getArgOperand(0), Malloc->getAttributes(), 1050 B, *TLI); 1051 if (!Calloc) 1052 return nullptr; 1053 1054 Malloc->replaceAllUsesWith(Calloc); 1055 eraseFromParent(Malloc); 1056 1057 return Calloc; 1058 } 1059 1060 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B, 1061 bool isIntrinsic) { 1062 Value *Size = CI->getArgOperand(2); 1063 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1064 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 1065 1066 if (isIntrinsic) 1067 return nullptr; 1068 1069 if (auto *Calloc = foldMallocMemset(CI, B)) 1070 return Calloc; 1071 1072 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1073 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1074 B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1); 1075 return CI->getArgOperand(0); 1076 } 1077 1078 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1079 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1080 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1081 1082 return nullptr; 1083 } 1084 1085 //===----------------------------------------------------------------------===// 1086 // Math Library Optimizations 1087 //===----------------------------------------------------------------------===// 1088 1089 // Replace a libcall \p CI with a call to intrinsic \p IID 1090 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1091 // Propagate fast-math flags from the existing call to the new call. 1092 IRBuilder<>::FastMathFlagGuard Guard(B); 1093 B.setFastMathFlags(CI->getFastMathFlags()); 1094 1095 Module *M = CI->getModule(); 1096 Value *V = CI->getArgOperand(0); 1097 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1098 CallInst *NewCall = B.CreateCall(F, V); 1099 NewCall->takeName(CI); 1100 return NewCall; 1101 } 1102 1103 /// Return a variant of Val with float type. 1104 /// Currently this works in two cases: If Val is an FPExtension of a float 1105 /// value to something bigger, simply return the operand. 1106 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1107 /// loss of precision do so. 1108 static Value *valueHasFloatPrecision(Value *Val) { 1109 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1110 Value *Op = Cast->getOperand(0); 1111 if (Op->getType()->isFloatTy()) 1112 return Op; 1113 } 1114 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1115 APFloat F = Const->getValueAPF(); 1116 bool losesInfo; 1117 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1118 &losesInfo); 1119 if (!losesInfo) 1120 return ConstantFP::get(Const->getContext(), F); 1121 } 1122 return nullptr; 1123 } 1124 1125 /// Shrink double -> float functions. 1126 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1127 bool isBinary, bool isPrecise = false) { 1128 Function *CalleeFn = CI->getCalledFunction(); 1129 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1130 return nullptr; 1131 1132 // If not all the uses of the function are converted to float, then bail out. 1133 // This matters if the precision of the result is more important than the 1134 // precision of the arguments. 1135 if (isPrecise) 1136 for (User *U : CI->users()) { 1137 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1138 if (!Cast || !Cast->getType()->isFloatTy()) 1139 return nullptr; 1140 } 1141 1142 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1143 Value *V[2]; 1144 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1145 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1146 if (!V[0] || (isBinary && !V[1])) 1147 return nullptr; 1148 1149 StringRef CalleeNm = CalleeFn->getName(); 1150 AttributeList CalleeAt = CalleeFn->getAttributes(); 1151 bool CalleeIn = CalleeFn->isIntrinsic(); 1152 1153 // If call isn't an intrinsic, check that it isn't within a function with the 1154 // same name as the float version of this call, otherwise the result is an 1155 // infinite loop. For example, from MinGW-w64: 1156 // 1157 // float expf(float val) { return (float) exp((double) val); } 1158 if (!CalleeIn) { 1159 const Function *Fn = CI->getFunction(); 1160 StringRef FnName = Fn->getName(); 1161 if (FnName.back() == 'f' && 1162 FnName.size() == (CalleeNm.size() + 1) && 1163 FnName.startswith(CalleeNm)) 1164 return nullptr; 1165 } 1166 1167 // Propagate the math semantics from the current function to the new function. 1168 IRBuilder<>::FastMathFlagGuard Guard(B); 1169 B.setFastMathFlags(CI->getFastMathFlags()); 1170 1171 // g((double) float) -> (double) gf(float) 1172 Value *R; 1173 if (CalleeIn) { 1174 Module *M = CI->getModule(); 1175 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1176 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1177 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1178 } 1179 else 1180 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1181 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1182 1183 return B.CreateFPExt(R, B.getDoubleTy()); 1184 } 1185 1186 /// Shrink double -> float for unary functions. 1187 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1188 bool isPrecise = false) { 1189 return optimizeDoubleFP(CI, B, false, isPrecise); 1190 } 1191 1192 /// Shrink double -> float for binary functions. 1193 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1194 bool isPrecise = false) { 1195 return optimizeDoubleFP(CI, B, true, isPrecise); 1196 } 1197 1198 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1199 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1200 if (!CI->isFast()) 1201 return nullptr; 1202 1203 // Propagate fast-math flags from the existing call to new instructions. 1204 IRBuilder<>::FastMathFlagGuard Guard(B); 1205 B.setFastMathFlags(CI->getFastMathFlags()); 1206 1207 Value *Real, *Imag; 1208 if (CI->getNumArgOperands() == 1) { 1209 Value *Op = CI->getArgOperand(0); 1210 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1211 Real = B.CreateExtractValue(Op, 0, "real"); 1212 Imag = B.CreateExtractValue(Op, 1, "imag"); 1213 } else { 1214 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1215 Real = CI->getArgOperand(0); 1216 Imag = CI->getArgOperand(1); 1217 } 1218 1219 Value *RealReal = B.CreateFMul(Real, Real); 1220 Value *ImagImag = B.CreateFMul(Imag, Imag); 1221 1222 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1223 CI->getType()); 1224 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1225 } 1226 1227 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1228 IRBuilder<> &B) { 1229 if (!isa<FPMathOperator>(Call)) 1230 return nullptr; 1231 1232 IRBuilder<>::FastMathFlagGuard Guard(B); 1233 B.setFastMathFlags(Call->getFastMathFlags()); 1234 1235 // TODO: Can this be shared to also handle LLVM intrinsics? 1236 Value *X; 1237 switch (Func) { 1238 case LibFunc_sin: 1239 case LibFunc_sinf: 1240 case LibFunc_sinl: 1241 case LibFunc_tan: 1242 case LibFunc_tanf: 1243 case LibFunc_tanl: 1244 // sin(-X) --> -sin(X) 1245 // tan(-X) --> -tan(X) 1246 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1247 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1248 break; 1249 case LibFunc_cos: 1250 case LibFunc_cosf: 1251 case LibFunc_cosl: 1252 // cos(-X) --> cos(X) 1253 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1254 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1255 break; 1256 default: 1257 break; 1258 } 1259 return nullptr; 1260 } 1261 1262 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1263 // Multiplications calculated using Addition Chains. 1264 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1265 1266 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1267 1268 if (InnerChain[Exp]) 1269 return InnerChain[Exp]; 1270 1271 static const unsigned AddChain[33][2] = { 1272 {0, 0}, // Unused. 1273 {0, 0}, // Unused (base case = pow1). 1274 {1, 1}, // Unused (pre-computed). 1275 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1276 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1277 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1278 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1279 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1280 }; 1281 1282 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1283 getPow(InnerChain, AddChain[Exp][1], B)); 1284 return InnerChain[Exp]; 1285 } 1286 1287 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1288 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x); 1289 /// exp2(log2(n) * x) for pow(n, x). 1290 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1291 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1292 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1293 Module *Mod = Pow->getModule(); 1294 Type *Ty = Pow->getType(); 1295 bool Ignored; 1296 1297 // Evaluate special cases related to a nested function as the base. 1298 1299 // pow(exp(x), y) -> exp(x * y) 1300 // pow(exp2(x), y) -> exp2(x * y) 1301 // If exp{,2}() is used only once, it is better to fold two transcendental 1302 // math functions into one. If used again, exp{,2}() would still have to be 1303 // called with the original argument, then keep both original transcendental 1304 // functions. However, this transformation is only safe with fully relaxed 1305 // math semantics, since, besides rounding differences, it changes overflow 1306 // and underflow behavior quite dramatically. For example: 1307 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1308 // Whereas: 1309 // exp(1000 * 0.001) = exp(1) 1310 // TODO: Loosen the requirement for fully relaxed math semantics. 1311 // TODO: Handle exp10() when more targets have it available. 1312 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1313 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1314 LibFunc LibFn; 1315 1316 Function *CalleeFn = BaseFn->getCalledFunction(); 1317 if (CalleeFn && 1318 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1319 StringRef ExpName; 1320 Intrinsic::ID ID; 1321 Value *ExpFn; 1322 LibFunc LibFnFloat; 1323 LibFunc LibFnDouble; 1324 LibFunc LibFnLongDouble; 1325 1326 switch (LibFn) { 1327 default: 1328 return nullptr; 1329 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1330 ExpName = TLI->getName(LibFunc_exp); 1331 ID = Intrinsic::exp; 1332 LibFnFloat = LibFunc_expf; 1333 LibFnDouble = LibFunc_exp; 1334 LibFnLongDouble = LibFunc_expl; 1335 break; 1336 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1337 ExpName = TLI->getName(LibFunc_exp2); 1338 ID = Intrinsic::exp2; 1339 LibFnFloat = LibFunc_exp2f; 1340 LibFnDouble = LibFunc_exp2; 1341 LibFnLongDouble = LibFunc_exp2l; 1342 break; 1343 } 1344 1345 // Create new exp{,2}() with the product as its argument. 1346 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1347 ExpFn = BaseFn->doesNotAccessMemory() 1348 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1349 FMul, ExpName) 1350 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1351 LibFnLongDouble, B, 1352 BaseFn->getAttributes()); 1353 1354 // Since the new exp{,2}() is different from the original one, dead code 1355 // elimination cannot be trusted to remove it, since it may have side 1356 // effects (e.g., errno). When the only consumer for the original 1357 // exp{,2}() is pow(), then it has to be explicitly erased. 1358 BaseFn->replaceAllUsesWith(ExpFn); 1359 eraseFromParent(BaseFn); 1360 1361 return ExpFn; 1362 } 1363 } 1364 1365 // Evaluate special cases related to a constant base. 1366 1367 const APFloat *BaseF; 1368 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1369 return nullptr; 1370 1371 // pow(2.0 ** n, x) -> exp2(n * x) 1372 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1373 APFloat BaseR = APFloat(1.0); 1374 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1375 BaseR = BaseR / *BaseF; 1376 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1377 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1378 APSInt NI(64, false); 1379 if ((IsInteger || IsReciprocal) && 1380 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1381 APFloat::opOK && 1382 NI > 1 && NI.isPowerOf2()) { 1383 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1384 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1385 if (Pow->doesNotAccessMemory()) 1386 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1387 FMul, "exp2"); 1388 else 1389 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1390 LibFunc_exp2l, B, Attrs); 1391 } 1392 } 1393 1394 // pow(10.0, x) -> exp10(x) 1395 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1396 if (match(Base, m_SpecificFP(10.0)) && 1397 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1398 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1399 LibFunc_exp10l, B, Attrs); 1400 1401 // pow(n, x) -> exp2(log2(n) * x) 1402 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() && 1403 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) { 1404 Value *Log = nullptr; 1405 if (Ty->isFloatTy()) 1406 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1407 else if (Ty->isDoubleTy()) 1408 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1409 1410 if (Log) { 1411 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1412 if (Pow->doesNotAccessMemory()) 1413 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1414 FMul, "exp2"); 1415 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1416 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1417 LibFunc_exp2l, B, Attrs); 1418 } 1419 } 1420 1421 return nullptr; 1422 } 1423 1424 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1425 Module *M, IRBuilder<> &B, 1426 const TargetLibraryInfo *TLI) { 1427 // If errno is never set, then use the intrinsic for sqrt(). 1428 if (NoErrno) { 1429 Function *SqrtFn = 1430 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1431 return B.CreateCall(SqrtFn, V, "sqrt"); 1432 } 1433 1434 // Otherwise, use the libcall for sqrt(). 1435 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1436 // TODO: We also should check that the target can in fact lower the sqrt() 1437 // libcall. We currently have no way to ask this question, so we ask if 1438 // the target has a sqrt() libcall, which is not exactly the same. 1439 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1440 LibFunc_sqrtl, B, Attrs); 1441 1442 return nullptr; 1443 } 1444 1445 /// Use square root in place of pow(x, +/-0.5). 1446 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1447 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1448 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1449 Module *Mod = Pow->getModule(); 1450 Type *Ty = Pow->getType(); 1451 1452 const APFloat *ExpoF; 1453 if (!match(Expo, m_APFloat(ExpoF)) || 1454 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1455 return nullptr; 1456 1457 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1458 if (!Sqrt) 1459 return nullptr; 1460 1461 // Handle signed zero base by expanding to fabs(sqrt(x)). 1462 if (!Pow->hasNoSignedZeros()) { 1463 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1464 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1465 } 1466 1467 // Handle non finite base by expanding to 1468 // (x == -infinity ? +infinity : sqrt(x)). 1469 if (!Pow->hasNoInfs()) { 1470 Value *PosInf = ConstantFP::getInfinity(Ty), 1471 *NegInf = ConstantFP::getInfinity(Ty, true); 1472 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1473 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1474 } 1475 1476 // If the exponent is negative, then get the reciprocal. 1477 if (ExpoF->isNegative()) 1478 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1479 1480 return Sqrt; 1481 } 1482 1483 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1484 IRBuilder<> &B) { 1485 Value *Args[] = {Base, Expo}; 1486 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1487 return B.CreateCall(F, Args); 1488 } 1489 1490 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1491 Value *Base = Pow->getArgOperand(0); 1492 Value *Expo = Pow->getArgOperand(1); 1493 Function *Callee = Pow->getCalledFunction(); 1494 StringRef Name = Callee->getName(); 1495 Type *Ty = Pow->getType(); 1496 Module *M = Pow->getModule(); 1497 Value *Shrunk = nullptr; 1498 bool AllowApprox = Pow->hasApproxFunc(); 1499 bool Ignored; 1500 1501 // Bail out if simplifying libcalls to pow() is disabled. 1502 if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1503 return nullptr; 1504 1505 // Propagate the math semantics from the call to any created instructions. 1506 IRBuilder<>::FastMathFlagGuard Guard(B); 1507 B.setFastMathFlags(Pow->getFastMathFlags()); 1508 1509 // Shrink pow() to powf() if the arguments are single precision, 1510 // unless the result is expected to be double precision. 1511 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1512 hasFloatVersion(Name)) 1513 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1514 1515 // Evaluate special cases related to the base. 1516 1517 // pow(1.0, x) -> 1.0 1518 if (match(Base, m_FPOne())) 1519 return Base; 1520 1521 if (Value *Exp = replacePowWithExp(Pow, B)) 1522 return Exp; 1523 1524 // Evaluate special cases related to the exponent. 1525 1526 // pow(x, -1.0) -> 1.0 / x 1527 if (match(Expo, m_SpecificFP(-1.0))) 1528 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1529 1530 // pow(x, 0.0) -> 1.0 1531 if (match(Expo, m_SpecificFP(0.0))) 1532 return ConstantFP::get(Ty, 1.0); 1533 1534 // pow(x, 1.0) -> x 1535 if (match(Expo, m_FPOne())) 1536 return Base; 1537 1538 // pow(x, 2.0) -> x * x 1539 if (match(Expo, m_SpecificFP(2.0))) 1540 return B.CreateFMul(Base, Base, "square"); 1541 1542 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1543 return Sqrt; 1544 1545 // pow(x, n) -> x * x * x * ... 1546 const APFloat *ExpoF; 1547 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1548 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1549 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1550 // additional fmul. 1551 // TODO: This whole transformation should be backend specific (e.g. some 1552 // backends might prefer libcalls or the limit for the exponent might 1553 // be different) and it should also consider optimizing for size. 1554 APFloat LimF(ExpoF->getSemantics(), 33.0), 1555 ExpoA(abs(*ExpoF)); 1556 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1557 // This transformation applies to integer or integer+0.5 exponents only. 1558 // For integer+0.5, we create a sqrt(Base) call. 1559 Value *Sqrt = nullptr; 1560 if (!ExpoA.isInteger()) { 1561 APFloat Expo2 = ExpoA; 1562 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1563 // is no floating point exception and the result is an integer, then 1564 // ExpoA == integer + 0.5 1565 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1566 return nullptr; 1567 1568 if (!Expo2.isInteger()) 1569 return nullptr; 1570 1571 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1572 Pow->doesNotAccessMemory(), M, B, TLI); 1573 } 1574 1575 // We will memoize intermediate products of the Addition Chain. 1576 Value *InnerChain[33] = {nullptr}; 1577 InnerChain[1] = Base; 1578 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1579 1580 // We cannot readily convert a non-double type (like float) to a double. 1581 // So we first convert it to something which could be converted to double. 1582 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1583 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1584 1585 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1586 if (Sqrt) 1587 FMul = B.CreateFMul(FMul, Sqrt); 1588 1589 // If the exponent is negative, then get the reciprocal. 1590 if (ExpoF->isNegative()) 1591 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1592 1593 return FMul; 1594 } 1595 1596 APSInt IntExpo(32, /*isUnsigned=*/false); 1597 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1598 if (ExpoF->isInteger() && 1599 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1600 APFloat::opOK) { 1601 return createPowWithIntegerExponent( 1602 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1603 } 1604 } 1605 1606 // powf(x, itofp(y)) -> powi(x, y) 1607 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1608 Value *IntExpo = cast<Instruction>(Expo)->getOperand(0); 1609 Value *NewExpo = nullptr; 1610 unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits(); 1611 if (isa<SIToFPInst>(Expo) && BitWidth == 32) 1612 NewExpo = IntExpo; 1613 else if (BitWidth < 32) 1614 NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty()) 1615 : B.CreateZExt(IntExpo, B.getInt32Ty()); 1616 if (NewExpo) 1617 return createPowWithIntegerExponent(Base, NewExpo, M, B); 1618 } 1619 1620 return Shrunk; 1621 } 1622 1623 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1624 Function *Callee = CI->getCalledFunction(); 1625 StringRef Name = Callee->getName(); 1626 Value *Ret = nullptr; 1627 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1628 hasFloatVersion(Name)) 1629 Ret = optimizeUnaryDoubleFP(CI, B, true); 1630 1631 Type *Ty = CI->getType(); 1632 Value *Op = CI->getArgOperand(0); 1633 1634 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1635 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1636 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1637 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1638 Instruction *OpC = cast<Instruction>(Op); 1639 Value *Exp = OpC->getOperand(0); 1640 unsigned BitWidth = Exp->getType()->getPrimitiveSizeInBits(); 1641 1642 if (BitWidth < 32 || 1643 (BitWidth == 32 && isa<SIToFPInst>(Op))) { 1644 Exp = isa<SIToFPInst>(Op) ? B.CreateSExt(Exp, B.getInt32Ty()) 1645 : B.CreateZExt(Exp, B.getInt32Ty()); 1646 1647 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1648 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1649 B, CI->getCalledFunction()->getAttributes()); 1650 } 1651 } 1652 return Ret; 1653 } 1654 1655 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1656 // If we can shrink the call to a float function rather than a double 1657 // function, do that first. 1658 Function *Callee = CI->getCalledFunction(); 1659 StringRef Name = Callee->getName(); 1660 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1661 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1662 return Ret; 1663 1664 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1665 // the intrinsics for improved optimization (for example, vectorization). 1666 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1667 // From the C standard draft WG14/N1256: 1668 // "Ideally, fmax would be sensitive to the sign of zero, for example 1669 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1670 // might be impractical." 1671 IRBuilder<>::FastMathFlagGuard Guard(B); 1672 FastMathFlags FMF = CI->getFastMathFlags(); 1673 FMF.setNoSignedZeros(); 1674 B.setFastMathFlags(FMF); 1675 1676 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1677 : Intrinsic::maxnum; 1678 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1679 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1680 } 1681 1682 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1683 Function *Callee = CI->getCalledFunction(); 1684 Value *Ret = nullptr; 1685 StringRef Name = Callee->getName(); 1686 if (UnsafeFPShrink && hasFloatVersion(Name)) 1687 Ret = optimizeUnaryDoubleFP(CI, B, true); 1688 1689 if (!CI->isFast()) 1690 return Ret; 1691 Value *Op1 = CI->getArgOperand(0); 1692 auto *OpC = dyn_cast<CallInst>(Op1); 1693 1694 // The earlier call must also be 'fast' in order to do these transforms. 1695 if (!OpC || !OpC->isFast()) 1696 return Ret; 1697 1698 // log(pow(x,y)) -> y*log(x) 1699 // This is only applicable to log, log2, log10. 1700 if (Name != "log" && Name != "log2" && Name != "log10") 1701 return Ret; 1702 1703 IRBuilder<>::FastMathFlagGuard Guard(B); 1704 FastMathFlags FMF; 1705 FMF.setFast(); 1706 B.setFastMathFlags(FMF); 1707 1708 LibFunc Func; 1709 Function *F = OpC->getCalledFunction(); 1710 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1711 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1712 return B.CreateFMul(OpC->getArgOperand(1), 1713 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1714 Callee->getAttributes()), "mul"); 1715 1716 // log(exp2(y)) -> y*log(2) 1717 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1718 TLI->has(Func) && Func == LibFunc_exp2) 1719 return B.CreateFMul( 1720 OpC->getArgOperand(0), 1721 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1722 Callee->getName(), B, Callee->getAttributes()), 1723 "logmul"); 1724 return Ret; 1725 } 1726 1727 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1728 Function *Callee = CI->getCalledFunction(); 1729 Value *Ret = nullptr; 1730 // TODO: Once we have a way (other than checking for the existince of the 1731 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1732 // condition below. 1733 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1734 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1735 Ret = optimizeUnaryDoubleFP(CI, B, true); 1736 1737 if (!CI->isFast()) 1738 return Ret; 1739 1740 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1741 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1742 return Ret; 1743 1744 // We're looking for a repeated factor in a multiplication tree, 1745 // so we can do this fold: sqrt(x * x) -> fabs(x); 1746 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1747 Value *Op0 = I->getOperand(0); 1748 Value *Op1 = I->getOperand(1); 1749 Value *RepeatOp = nullptr; 1750 Value *OtherOp = nullptr; 1751 if (Op0 == Op1) { 1752 // Simple match: the operands of the multiply are identical. 1753 RepeatOp = Op0; 1754 } else { 1755 // Look for a more complicated pattern: one of the operands is itself 1756 // a multiply, so search for a common factor in that multiply. 1757 // Note: We don't bother looking any deeper than this first level or for 1758 // variations of this pattern because instcombine's visitFMUL and/or the 1759 // reassociation pass should give us this form. 1760 Value *OtherMul0, *OtherMul1; 1761 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1762 // Pattern: sqrt((x * y) * z) 1763 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1764 // Matched: sqrt((x * x) * z) 1765 RepeatOp = OtherMul0; 1766 OtherOp = Op1; 1767 } 1768 } 1769 } 1770 if (!RepeatOp) 1771 return Ret; 1772 1773 // Fast math flags for any created instructions should match the sqrt 1774 // and multiply. 1775 IRBuilder<>::FastMathFlagGuard Guard(B); 1776 B.setFastMathFlags(I->getFastMathFlags()); 1777 1778 // If we found a repeated factor, hoist it out of the square root and 1779 // replace it with the fabs of that factor. 1780 Module *M = Callee->getParent(); 1781 Type *ArgType = I->getType(); 1782 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1783 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1784 if (OtherOp) { 1785 // If we found a non-repeated factor, we still need to get its square 1786 // root. We then multiply that by the value that was simplified out 1787 // of the square root calculation. 1788 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1789 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1790 return B.CreateFMul(FabsCall, SqrtCall); 1791 } 1792 return FabsCall; 1793 } 1794 1795 // TODO: Generalize to handle any trig function and its inverse. 1796 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1797 Function *Callee = CI->getCalledFunction(); 1798 Value *Ret = nullptr; 1799 StringRef Name = Callee->getName(); 1800 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1801 Ret = optimizeUnaryDoubleFP(CI, B, true); 1802 1803 Value *Op1 = CI->getArgOperand(0); 1804 auto *OpC = dyn_cast<CallInst>(Op1); 1805 if (!OpC) 1806 return Ret; 1807 1808 // Both calls must be 'fast' in order to remove them. 1809 if (!CI->isFast() || !OpC->isFast()) 1810 return Ret; 1811 1812 // tan(atan(x)) -> x 1813 // tanf(atanf(x)) -> x 1814 // tanl(atanl(x)) -> x 1815 LibFunc Func; 1816 Function *F = OpC->getCalledFunction(); 1817 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1818 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1819 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1820 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1821 Ret = OpC->getArgOperand(0); 1822 return Ret; 1823 } 1824 1825 static bool isTrigLibCall(CallInst *CI) { 1826 // We can only hope to do anything useful if we can ignore things like errno 1827 // and floating-point exceptions. 1828 // We already checked the prototype. 1829 return CI->hasFnAttr(Attribute::NoUnwind) && 1830 CI->hasFnAttr(Attribute::ReadNone); 1831 } 1832 1833 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1834 bool UseFloat, Value *&Sin, Value *&Cos, 1835 Value *&SinCos) { 1836 Type *ArgTy = Arg->getType(); 1837 Type *ResTy; 1838 StringRef Name; 1839 1840 Triple T(OrigCallee->getParent()->getTargetTriple()); 1841 if (UseFloat) { 1842 Name = "__sincospif_stret"; 1843 1844 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1845 // x86_64 can't use {float, float} since that would be returned in both 1846 // xmm0 and xmm1, which isn't what a real struct would do. 1847 ResTy = T.getArch() == Triple::x86_64 1848 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1849 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1850 } else { 1851 Name = "__sincospi_stret"; 1852 ResTy = StructType::get(ArgTy, ArgTy); 1853 } 1854 1855 Module *M = OrigCallee->getParent(); 1856 FunctionCallee Callee = 1857 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1858 1859 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1860 // If the argument is an instruction, it must dominate all uses so put our 1861 // sincos call there. 1862 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1863 } else { 1864 // Otherwise (e.g. for a constant) the beginning of the function is as 1865 // good a place as any. 1866 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1867 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1868 } 1869 1870 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1871 1872 if (SinCos->getType()->isStructTy()) { 1873 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1874 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1875 } else { 1876 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1877 "sinpi"); 1878 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1879 "cospi"); 1880 } 1881 } 1882 1883 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1884 // Make sure the prototype is as expected, otherwise the rest of the 1885 // function is probably invalid and likely to abort. 1886 if (!isTrigLibCall(CI)) 1887 return nullptr; 1888 1889 Value *Arg = CI->getArgOperand(0); 1890 SmallVector<CallInst *, 1> SinCalls; 1891 SmallVector<CallInst *, 1> CosCalls; 1892 SmallVector<CallInst *, 1> SinCosCalls; 1893 1894 bool IsFloat = Arg->getType()->isFloatTy(); 1895 1896 // Look for all compatible sinpi, cospi and sincospi calls with the same 1897 // argument. If there are enough (in some sense) we can make the 1898 // substitution. 1899 Function *F = CI->getFunction(); 1900 for (User *U : Arg->users()) 1901 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1902 1903 // It's only worthwhile if both sinpi and cospi are actually used. 1904 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1905 return nullptr; 1906 1907 Value *Sin, *Cos, *SinCos; 1908 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1909 1910 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1911 Value *Res) { 1912 for (CallInst *C : Calls) 1913 replaceAllUsesWith(C, Res); 1914 }; 1915 1916 replaceTrigInsts(SinCalls, Sin); 1917 replaceTrigInsts(CosCalls, Cos); 1918 replaceTrigInsts(SinCosCalls, SinCos); 1919 1920 return nullptr; 1921 } 1922 1923 void LibCallSimplifier::classifyArgUse( 1924 Value *Val, Function *F, bool IsFloat, 1925 SmallVectorImpl<CallInst *> &SinCalls, 1926 SmallVectorImpl<CallInst *> &CosCalls, 1927 SmallVectorImpl<CallInst *> &SinCosCalls) { 1928 CallInst *CI = dyn_cast<CallInst>(Val); 1929 1930 if (!CI) 1931 return; 1932 1933 // Don't consider calls in other functions. 1934 if (CI->getFunction() != F) 1935 return; 1936 1937 Function *Callee = CI->getCalledFunction(); 1938 LibFunc Func; 1939 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1940 !isTrigLibCall(CI)) 1941 return; 1942 1943 if (IsFloat) { 1944 if (Func == LibFunc_sinpif) 1945 SinCalls.push_back(CI); 1946 else if (Func == LibFunc_cospif) 1947 CosCalls.push_back(CI); 1948 else if (Func == LibFunc_sincospif_stret) 1949 SinCosCalls.push_back(CI); 1950 } else { 1951 if (Func == LibFunc_sinpi) 1952 SinCalls.push_back(CI); 1953 else if (Func == LibFunc_cospi) 1954 CosCalls.push_back(CI); 1955 else if (Func == LibFunc_sincospi_stret) 1956 SinCosCalls.push_back(CI); 1957 } 1958 } 1959 1960 //===----------------------------------------------------------------------===// 1961 // Integer Library Call Optimizations 1962 //===----------------------------------------------------------------------===// 1963 1964 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1965 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1966 Value *Op = CI->getArgOperand(0); 1967 Type *ArgType = Op->getType(); 1968 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1969 Intrinsic::cttz, ArgType); 1970 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1971 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1972 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1973 1974 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1975 return B.CreateSelect(Cond, V, B.getInt32(0)); 1976 } 1977 1978 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1979 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1980 Value *Op = CI->getArgOperand(0); 1981 Type *ArgType = Op->getType(); 1982 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1983 Intrinsic::ctlz, ArgType); 1984 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1985 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1986 V); 1987 return B.CreateIntCast(V, CI->getType(), false); 1988 } 1989 1990 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1991 // abs(x) -> x <s 0 ? -x : x 1992 // The negation has 'nsw' because abs of INT_MIN is undefined. 1993 Value *X = CI->getArgOperand(0); 1994 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1995 Value *NegX = B.CreateNSWNeg(X, "neg"); 1996 return B.CreateSelect(IsNeg, NegX, X); 1997 } 1998 1999 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 2000 // isdigit(c) -> (c-'0') <u 10 2001 Value *Op = CI->getArgOperand(0); 2002 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2003 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2004 return B.CreateZExt(Op, CI->getType()); 2005 } 2006 2007 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 2008 // isascii(c) -> c <u 128 2009 Value *Op = CI->getArgOperand(0); 2010 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2011 return B.CreateZExt(Op, CI->getType()); 2012 } 2013 2014 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 2015 // toascii(c) -> c & 0x7f 2016 return B.CreateAnd(CI->getArgOperand(0), 2017 ConstantInt::get(CI->getType(), 0x7F)); 2018 } 2019 2020 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 2021 StringRef Str; 2022 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2023 return nullptr; 2024 2025 return convertStrToNumber(CI, Str, 10); 2026 } 2027 2028 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 2029 StringRef Str; 2030 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2031 return nullptr; 2032 2033 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2034 return nullptr; 2035 2036 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2037 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2038 } 2039 2040 return nullptr; 2041 } 2042 2043 //===----------------------------------------------------------------------===// 2044 // Formatting and IO Library Call Optimizations 2045 //===----------------------------------------------------------------------===// 2046 2047 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2048 2049 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 2050 int StreamArg) { 2051 Function *Callee = CI->getCalledFunction(); 2052 // Error reporting calls should be cold, mark them as such. 2053 // This applies even to non-builtin calls: it is only a hint and applies to 2054 // functions that the frontend might not understand as builtins. 2055 2056 // This heuristic was suggested in: 2057 // Improving Static Branch Prediction in a Compiler 2058 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2059 // Proceedings of PACT'98, Oct. 1998, IEEE 2060 if (!CI->hasFnAttr(Attribute::Cold) && 2061 isReportingError(Callee, CI, StreamArg)) { 2062 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2063 } 2064 2065 return nullptr; 2066 } 2067 2068 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2069 if (!Callee || !Callee->isDeclaration()) 2070 return false; 2071 2072 if (StreamArg < 0) 2073 return true; 2074 2075 // These functions might be considered cold, but only if their stream 2076 // argument is stderr. 2077 2078 if (StreamArg >= (int)CI->getNumArgOperands()) 2079 return false; 2080 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2081 if (!LI) 2082 return false; 2083 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2084 if (!GV || !GV->isDeclaration()) 2085 return false; 2086 return GV->getName() == "stderr"; 2087 } 2088 2089 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2090 // Check for a fixed format string. 2091 StringRef FormatStr; 2092 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2093 return nullptr; 2094 2095 // Empty format string -> noop. 2096 if (FormatStr.empty()) // Tolerate printf's declared void. 2097 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2098 2099 // Do not do any of the following transformations if the printf return value 2100 // is used, in general the printf return value is not compatible with either 2101 // putchar() or puts(). 2102 if (!CI->use_empty()) 2103 return nullptr; 2104 2105 // printf("x") -> putchar('x'), even for "%" and "%%". 2106 if (FormatStr.size() == 1 || FormatStr == "%%") 2107 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2108 2109 // printf("%s", "a") --> putchar('a') 2110 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2111 StringRef ChrStr; 2112 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2113 return nullptr; 2114 if (ChrStr.size() != 1) 2115 return nullptr; 2116 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2117 } 2118 2119 // printf("foo\n") --> puts("foo") 2120 if (FormatStr[FormatStr.size() - 1] == '\n' && 2121 FormatStr.find('%') == StringRef::npos) { // No format characters. 2122 // Create a string literal with no \n on it. We expect the constant merge 2123 // pass to be run after this pass, to merge duplicate strings. 2124 FormatStr = FormatStr.drop_back(); 2125 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2126 return emitPutS(GV, B, TLI); 2127 } 2128 2129 // Optimize specific format strings. 2130 // printf("%c", chr) --> putchar(chr) 2131 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2132 CI->getArgOperand(1)->getType()->isIntegerTy()) 2133 return emitPutChar(CI->getArgOperand(1), B, TLI); 2134 2135 // printf("%s\n", str) --> puts(str) 2136 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2137 CI->getArgOperand(1)->getType()->isPointerTy()) 2138 return emitPutS(CI->getArgOperand(1), B, TLI); 2139 return nullptr; 2140 } 2141 2142 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2143 2144 Function *Callee = CI->getCalledFunction(); 2145 FunctionType *FT = Callee->getFunctionType(); 2146 if (Value *V = optimizePrintFString(CI, B)) { 2147 return V; 2148 } 2149 2150 // printf(format, ...) -> iprintf(format, ...) if no floating point 2151 // arguments. 2152 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2153 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2154 FunctionCallee IPrintFFn = 2155 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2156 CallInst *New = cast<CallInst>(CI->clone()); 2157 New->setCalledFunction(IPrintFFn); 2158 B.Insert(New); 2159 return New; 2160 } 2161 2162 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2163 // arguments. 2164 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2165 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2166 auto SmallPrintFFn = 2167 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2168 FT, Callee->getAttributes()); 2169 CallInst *New = cast<CallInst>(CI->clone()); 2170 New->setCalledFunction(SmallPrintFFn); 2171 B.Insert(New); 2172 return New; 2173 } 2174 2175 return nullptr; 2176 } 2177 2178 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2179 // Check for a fixed format string. 2180 StringRef FormatStr; 2181 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2182 return nullptr; 2183 2184 // If we just have a format string (nothing else crazy) transform it. 2185 if (CI->getNumArgOperands() == 2) { 2186 // Make sure there's no % in the constant array. We could try to handle 2187 // %% -> % in the future if we cared. 2188 if (FormatStr.find('%') != StringRef::npos) 2189 return nullptr; // we found a format specifier, bail out. 2190 2191 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2192 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2193 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2194 FormatStr.size() + 1)); // Copy the null byte. 2195 return ConstantInt::get(CI->getType(), FormatStr.size()); 2196 } 2197 2198 // The remaining optimizations require the format string to be "%s" or "%c" 2199 // and have an extra operand. 2200 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2201 CI->getNumArgOperands() < 3) 2202 return nullptr; 2203 2204 // Decode the second character of the format string. 2205 if (FormatStr[1] == 'c') { 2206 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2207 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2208 return nullptr; 2209 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2210 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2211 B.CreateStore(V, Ptr); 2212 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2213 B.CreateStore(B.getInt8(0), Ptr); 2214 2215 return ConstantInt::get(CI->getType(), 1); 2216 } 2217 2218 if (FormatStr[1] == 's') { 2219 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2220 // strlen(str)+1) 2221 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2222 return nullptr; 2223 2224 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2225 if (!Len) 2226 return nullptr; 2227 Value *IncLen = 2228 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2229 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2230 2231 // The sprintf result is the unincremented number of bytes in the string. 2232 return B.CreateIntCast(Len, CI->getType(), false); 2233 } 2234 return nullptr; 2235 } 2236 2237 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2238 Function *Callee = CI->getCalledFunction(); 2239 FunctionType *FT = Callee->getFunctionType(); 2240 if (Value *V = optimizeSPrintFString(CI, B)) { 2241 return V; 2242 } 2243 2244 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2245 // point arguments. 2246 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2247 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2248 FunctionCallee SIPrintFFn = 2249 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2250 CallInst *New = cast<CallInst>(CI->clone()); 2251 New->setCalledFunction(SIPrintFFn); 2252 B.Insert(New); 2253 return New; 2254 } 2255 2256 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2257 // floating point arguments. 2258 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2259 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2260 auto SmallSPrintFFn = 2261 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2262 FT, Callee->getAttributes()); 2263 CallInst *New = cast<CallInst>(CI->clone()); 2264 New->setCalledFunction(SmallSPrintFFn); 2265 B.Insert(New); 2266 return New; 2267 } 2268 2269 return nullptr; 2270 } 2271 2272 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2273 // Check for a fixed format string. 2274 StringRef FormatStr; 2275 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2276 return nullptr; 2277 2278 // Check for size 2279 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2280 if (!Size) 2281 return nullptr; 2282 2283 uint64_t N = Size->getZExtValue(); 2284 2285 // If we just have a format string (nothing else crazy) transform it. 2286 if (CI->getNumArgOperands() == 3) { 2287 // Make sure there's no % in the constant array. We could try to handle 2288 // %% -> % in the future if we cared. 2289 if (FormatStr.find('%') != StringRef::npos) 2290 return nullptr; // we found a format specifier, bail out. 2291 2292 if (N == 0) 2293 return ConstantInt::get(CI->getType(), FormatStr.size()); 2294 else if (N < FormatStr.size() + 1) 2295 return nullptr; 2296 2297 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2298 // strlen(fmt)+1) 2299 B.CreateMemCpy( 2300 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2301 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2302 FormatStr.size() + 1)); // Copy the null byte. 2303 return ConstantInt::get(CI->getType(), FormatStr.size()); 2304 } 2305 2306 // The remaining optimizations require the format string to be "%s" or "%c" 2307 // and have an extra operand. 2308 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2309 CI->getNumArgOperands() == 4) { 2310 2311 // Decode the second character of the format string. 2312 if (FormatStr[1] == 'c') { 2313 if (N == 0) 2314 return ConstantInt::get(CI->getType(), 1); 2315 else if (N == 1) 2316 return nullptr; 2317 2318 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2319 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2320 return nullptr; 2321 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2322 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2323 B.CreateStore(V, Ptr); 2324 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2325 B.CreateStore(B.getInt8(0), Ptr); 2326 2327 return ConstantInt::get(CI->getType(), 1); 2328 } 2329 2330 if (FormatStr[1] == 's') { 2331 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2332 StringRef Str; 2333 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2334 return nullptr; 2335 2336 if (N == 0) 2337 return ConstantInt::get(CI->getType(), Str.size()); 2338 else if (N < Str.size() + 1) 2339 return nullptr; 2340 2341 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2342 ConstantInt::get(CI->getType(), Str.size() + 1)); 2343 2344 // The snprintf result is the unincremented number of bytes in the string. 2345 return ConstantInt::get(CI->getType(), Str.size()); 2346 } 2347 } 2348 return nullptr; 2349 } 2350 2351 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2352 if (Value *V = optimizeSnPrintFString(CI, B)) { 2353 return V; 2354 } 2355 2356 return nullptr; 2357 } 2358 2359 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2360 optimizeErrorReporting(CI, B, 0); 2361 2362 // All the optimizations depend on the format string. 2363 StringRef FormatStr; 2364 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2365 return nullptr; 2366 2367 // Do not do any of the following transformations if the fprintf return 2368 // value is used, in general the fprintf return value is not compatible 2369 // with fwrite(), fputc() or fputs(). 2370 if (!CI->use_empty()) 2371 return nullptr; 2372 2373 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2374 if (CI->getNumArgOperands() == 2) { 2375 // Could handle %% -> % if we cared. 2376 if (FormatStr.find('%') != StringRef::npos) 2377 return nullptr; // We found a format specifier. 2378 2379 return emitFWrite( 2380 CI->getArgOperand(1), 2381 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2382 CI->getArgOperand(0), B, DL, TLI); 2383 } 2384 2385 // The remaining optimizations require the format string to be "%s" or "%c" 2386 // and have an extra operand. 2387 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2388 CI->getNumArgOperands() < 3) 2389 return nullptr; 2390 2391 // Decode the second character of the format string. 2392 if (FormatStr[1] == 'c') { 2393 // fprintf(F, "%c", chr) --> fputc(chr, F) 2394 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2395 return nullptr; 2396 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2397 } 2398 2399 if (FormatStr[1] == 's') { 2400 // fprintf(F, "%s", str) --> fputs(str, F) 2401 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2402 return nullptr; 2403 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2404 } 2405 return nullptr; 2406 } 2407 2408 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2409 Function *Callee = CI->getCalledFunction(); 2410 FunctionType *FT = Callee->getFunctionType(); 2411 if (Value *V = optimizeFPrintFString(CI, B)) { 2412 return V; 2413 } 2414 2415 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2416 // floating point arguments. 2417 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2418 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2419 FunctionCallee FIPrintFFn = 2420 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2421 CallInst *New = cast<CallInst>(CI->clone()); 2422 New->setCalledFunction(FIPrintFFn); 2423 B.Insert(New); 2424 return New; 2425 } 2426 2427 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2428 // 128-bit floating point arguments. 2429 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2430 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2431 auto SmallFPrintFFn = 2432 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2433 FT, Callee->getAttributes()); 2434 CallInst *New = cast<CallInst>(CI->clone()); 2435 New->setCalledFunction(SmallFPrintFFn); 2436 B.Insert(New); 2437 return New; 2438 } 2439 2440 return nullptr; 2441 } 2442 2443 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2444 optimizeErrorReporting(CI, B, 3); 2445 2446 // Get the element size and count. 2447 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2448 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2449 if (SizeC && CountC) { 2450 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2451 2452 // If this is writing zero records, remove the call (it's a noop). 2453 if (Bytes == 0) 2454 return ConstantInt::get(CI->getType(), 0); 2455 2456 // If this is writing one byte, turn it into fputc. 2457 // This optimisation is only valid, if the return value is unused. 2458 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2459 Value *Char = B.CreateLoad(B.getInt8Ty(), 2460 castToCStr(CI->getArgOperand(0), B), "char"); 2461 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2462 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2463 } 2464 } 2465 2466 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2467 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2468 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2469 TLI); 2470 2471 return nullptr; 2472 } 2473 2474 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2475 optimizeErrorReporting(CI, B, 1); 2476 2477 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2478 // requires more arguments and thus extra MOVs are required. 2479 bool OptForSize = CI->getFunction()->hasOptSize() || 2480 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2481 if (OptForSize) 2482 return nullptr; 2483 2484 // Check if has any use 2485 if (!CI->use_empty()) { 2486 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2487 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2488 TLI); 2489 else 2490 // We can't optimize if return value is used. 2491 return nullptr; 2492 } 2493 2494 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2495 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2496 if (!Len) 2497 return nullptr; 2498 2499 // Known to have no uses (see above). 2500 return emitFWrite( 2501 CI->getArgOperand(0), 2502 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2503 CI->getArgOperand(1), B, DL, TLI); 2504 } 2505 2506 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2507 optimizeErrorReporting(CI, B, 1); 2508 2509 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2510 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2511 TLI); 2512 2513 return nullptr; 2514 } 2515 2516 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2517 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2518 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2519 2520 return nullptr; 2521 } 2522 2523 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2524 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2525 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2526 CI->getArgOperand(2), B, TLI); 2527 2528 return nullptr; 2529 } 2530 2531 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2532 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2533 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2534 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2535 TLI); 2536 2537 return nullptr; 2538 } 2539 2540 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2541 if (!CI->use_empty()) 2542 return nullptr; 2543 2544 // Check for a constant string. 2545 // puts("") -> putchar('\n') 2546 StringRef Str; 2547 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2548 return emitPutChar(B.getInt32('\n'), B, TLI); 2549 2550 return nullptr; 2551 } 2552 2553 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2554 LibFunc Func; 2555 SmallString<20> FloatFuncName = FuncName; 2556 FloatFuncName += 'f'; 2557 if (TLI->getLibFunc(FloatFuncName, Func)) 2558 return TLI->has(Func); 2559 return false; 2560 } 2561 2562 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2563 IRBuilder<> &Builder) { 2564 LibFunc Func; 2565 Function *Callee = CI->getCalledFunction(); 2566 // Check for string/memory library functions. 2567 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2568 // Make sure we never change the calling convention. 2569 assert((ignoreCallingConv(Func) || 2570 isCallingConvCCompatible(CI)) && 2571 "Optimizing string/memory libcall would change the calling convention"); 2572 switch (Func) { 2573 case LibFunc_strcat: 2574 return optimizeStrCat(CI, Builder); 2575 case LibFunc_strncat: 2576 return optimizeStrNCat(CI, Builder); 2577 case LibFunc_strchr: 2578 return optimizeStrChr(CI, Builder); 2579 case LibFunc_strrchr: 2580 return optimizeStrRChr(CI, Builder); 2581 case LibFunc_strcmp: 2582 return optimizeStrCmp(CI, Builder); 2583 case LibFunc_strncmp: 2584 return optimizeStrNCmp(CI, Builder); 2585 case LibFunc_strcpy: 2586 return optimizeStrCpy(CI, Builder); 2587 case LibFunc_stpcpy: 2588 return optimizeStpCpy(CI, Builder); 2589 case LibFunc_strncpy: 2590 return optimizeStrNCpy(CI, Builder); 2591 case LibFunc_strlen: 2592 return optimizeStrLen(CI, Builder); 2593 case LibFunc_strpbrk: 2594 return optimizeStrPBrk(CI, Builder); 2595 case LibFunc_strtol: 2596 case LibFunc_strtod: 2597 case LibFunc_strtof: 2598 case LibFunc_strtoul: 2599 case LibFunc_strtoll: 2600 case LibFunc_strtold: 2601 case LibFunc_strtoull: 2602 return optimizeStrTo(CI, Builder); 2603 case LibFunc_strspn: 2604 return optimizeStrSpn(CI, Builder); 2605 case LibFunc_strcspn: 2606 return optimizeStrCSpn(CI, Builder); 2607 case LibFunc_strstr: 2608 return optimizeStrStr(CI, Builder); 2609 case LibFunc_memchr: 2610 return optimizeMemChr(CI, Builder); 2611 case LibFunc_bcmp: 2612 return optimizeBCmp(CI, Builder); 2613 case LibFunc_memcmp: 2614 return optimizeMemCmp(CI, Builder); 2615 case LibFunc_memcpy: 2616 return optimizeMemCpy(CI, Builder); 2617 case LibFunc_memmove: 2618 return optimizeMemMove(CI, Builder); 2619 case LibFunc_memset: 2620 return optimizeMemSet(CI, Builder); 2621 case LibFunc_realloc: 2622 return optimizeRealloc(CI, Builder); 2623 case LibFunc_wcslen: 2624 return optimizeWcslen(CI, Builder); 2625 default: 2626 break; 2627 } 2628 } 2629 return nullptr; 2630 } 2631 2632 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2633 LibFunc Func, 2634 IRBuilder<> &Builder) { 2635 // Don't optimize calls that require strict floating point semantics. 2636 if (CI->isStrictFP()) 2637 return nullptr; 2638 2639 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2640 return V; 2641 2642 switch (Func) { 2643 case LibFunc_sinpif: 2644 case LibFunc_sinpi: 2645 case LibFunc_cospif: 2646 case LibFunc_cospi: 2647 return optimizeSinCosPi(CI, Builder); 2648 case LibFunc_powf: 2649 case LibFunc_pow: 2650 case LibFunc_powl: 2651 return optimizePow(CI, Builder); 2652 case LibFunc_exp2l: 2653 case LibFunc_exp2: 2654 case LibFunc_exp2f: 2655 return optimizeExp2(CI, Builder); 2656 case LibFunc_fabsf: 2657 case LibFunc_fabs: 2658 case LibFunc_fabsl: 2659 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2660 case LibFunc_sqrtf: 2661 case LibFunc_sqrt: 2662 case LibFunc_sqrtl: 2663 return optimizeSqrt(CI, Builder); 2664 case LibFunc_log: 2665 case LibFunc_log10: 2666 case LibFunc_log1p: 2667 case LibFunc_log2: 2668 case LibFunc_logb: 2669 return optimizeLog(CI, Builder); 2670 case LibFunc_tan: 2671 case LibFunc_tanf: 2672 case LibFunc_tanl: 2673 return optimizeTan(CI, Builder); 2674 case LibFunc_ceil: 2675 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2676 case LibFunc_floor: 2677 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2678 case LibFunc_round: 2679 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2680 case LibFunc_nearbyint: 2681 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2682 case LibFunc_rint: 2683 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2684 case LibFunc_trunc: 2685 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2686 case LibFunc_acos: 2687 case LibFunc_acosh: 2688 case LibFunc_asin: 2689 case LibFunc_asinh: 2690 case LibFunc_atan: 2691 case LibFunc_atanh: 2692 case LibFunc_cbrt: 2693 case LibFunc_cosh: 2694 case LibFunc_exp: 2695 case LibFunc_exp10: 2696 case LibFunc_expm1: 2697 case LibFunc_cos: 2698 case LibFunc_sin: 2699 case LibFunc_sinh: 2700 case LibFunc_tanh: 2701 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2702 return optimizeUnaryDoubleFP(CI, Builder, true); 2703 return nullptr; 2704 case LibFunc_copysign: 2705 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2706 return optimizeBinaryDoubleFP(CI, Builder); 2707 return nullptr; 2708 case LibFunc_fminf: 2709 case LibFunc_fmin: 2710 case LibFunc_fminl: 2711 case LibFunc_fmaxf: 2712 case LibFunc_fmax: 2713 case LibFunc_fmaxl: 2714 return optimizeFMinFMax(CI, Builder); 2715 case LibFunc_cabs: 2716 case LibFunc_cabsf: 2717 case LibFunc_cabsl: 2718 return optimizeCAbs(CI, Builder); 2719 default: 2720 return nullptr; 2721 } 2722 } 2723 2724 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2725 // TODO: Split out the code below that operates on FP calls so that 2726 // we can all non-FP calls with the StrictFP attribute to be 2727 // optimized. 2728 if (CI->isNoBuiltin()) 2729 return nullptr; 2730 2731 LibFunc Func; 2732 Function *Callee = CI->getCalledFunction(); 2733 2734 SmallVector<OperandBundleDef, 2> OpBundles; 2735 CI->getOperandBundlesAsDefs(OpBundles); 2736 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2737 bool isCallingConvC = isCallingConvCCompatible(CI); 2738 2739 // Command-line parameter overrides instruction attribute. 2740 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2741 // used by the intrinsic optimizations. 2742 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2743 UnsafeFPShrink = EnableUnsafeFPShrink; 2744 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2745 UnsafeFPShrink = true; 2746 2747 // First, check for intrinsics. 2748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2749 if (!isCallingConvC) 2750 return nullptr; 2751 // The FP intrinsics have corresponding constrained versions so we don't 2752 // need to check for the StrictFP attribute here. 2753 switch (II->getIntrinsicID()) { 2754 case Intrinsic::pow: 2755 return optimizePow(CI, Builder); 2756 case Intrinsic::exp2: 2757 return optimizeExp2(CI, Builder); 2758 case Intrinsic::log: 2759 return optimizeLog(CI, Builder); 2760 case Intrinsic::sqrt: 2761 return optimizeSqrt(CI, Builder); 2762 // TODO: Use foldMallocMemset() with memset intrinsic. 2763 case Intrinsic::memset: 2764 return optimizeMemSet(CI, Builder, true); 2765 case Intrinsic::memcpy: 2766 return optimizeMemCpy(CI, Builder, true); 2767 case Intrinsic::memmove: 2768 return optimizeMemMove(CI, Builder, true); 2769 default: 2770 return nullptr; 2771 } 2772 } 2773 2774 // Also try to simplify calls to fortified library functions. 2775 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2776 // Try to further simplify the result. 2777 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2778 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2779 // Use an IR Builder from SimplifiedCI if available instead of CI 2780 // to guarantee we reach all uses we might replace later on. 2781 IRBuilder<> TmpBuilder(SimplifiedCI); 2782 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2783 // If we were able to further simplify, remove the now redundant call. 2784 SimplifiedCI->replaceAllUsesWith(V); 2785 eraseFromParent(SimplifiedCI); 2786 return V; 2787 } 2788 } 2789 return SimplifiedFortifiedCI; 2790 } 2791 2792 // Then check for known library functions. 2793 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2794 // We never change the calling convention. 2795 if (!ignoreCallingConv(Func) && !isCallingConvC) 2796 return nullptr; 2797 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2798 return V; 2799 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2800 return V; 2801 switch (Func) { 2802 case LibFunc_ffs: 2803 case LibFunc_ffsl: 2804 case LibFunc_ffsll: 2805 return optimizeFFS(CI, Builder); 2806 case LibFunc_fls: 2807 case LibFunc_flsl: 2808 case LibFunc_flsll: 2809 return optimizeFls(CI, Builder); 2810 case LibFunc_abs: 2811 case LibFunc_labs: 2812 case LibFunc_llabs: 2813 return optimizeAbs(CI, Builder); 2814 case LibFunc_isdigit: 2815 return optimizeIsDigit(CI, Builder); 2816 case LibFunc_isascii: 2817 return optimizeIsAscii(CI, Builder); 2818 case LibFunc_toascii: 2819 return optimizeToAscii(CI, Builder); 2820 case LibFunc_atoi: 2821 case LibFunc_atol: 2822 case LibFunc_atoll: 2823 return optimizeAtoi(CI, Builder); 2824 case LibFunc_strtol: 2825 case LibFunc_strtoll: 2826 return optimizeStrtol(CI, Builder); 2827 case LibFunc_printf: 2828 return optimizePrintF(CI, Builder); 2829 case LibFunc_sprintf: 2830 return optimizeSPrintF(CI, Builder); 2831 case LibFunc_snprintf: 2832 return optimizeSnPrintF(CI, Builder); 2833 case LibFunc_fprintf: 2834 return optimizeFPrintF(CI, Builder); 2835 case LibFunc_fwrite: 2836 return optimizeFWrite(CI, Builder); 2837 case LibFunc_fread: 2838 return optimizeFRead(CI, Builder); 2839 case LibFunc_fputs: 2840 return optimizeFPuts(CI, Builder); 2841 case LibFunc_fgets: 2842 return optimizeFGets(CI, Builder); 2843 case LibFunc_fputc: 2844 return optimizeFPutc(CI, Builder); 2845 case LibFunc_fgetc: 2846 return optimizeFGetc(CI, Builder); 2847 case LibFunc_puts: 2848 return optimizePuts(CI, Builder); 2849 case LibFunc_perror: 2850 return optimizeErrorReporting(CI, Builder); 2851 case LibFunc_vfprintf: 2852 case LibFunc_fiprintf: 2853 return optimizeErrorReporting(CI, Builder, 0); 2854 default: 2855 return nullptr; 2856 } 2857 } 2858 return nullptr; 2859 } 2860 2861 LibCallSimplifier::LibCallSimplifier( 2862 const DataLayout &DL, const TargetLibraryInfo *TLI, 2863 OptimizationRemarkEmitter &ORE, 2864 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2865 function_ref<void(Instruction *, Value *)> Replacer, 2866 function_ref<void(Instruction *)> Eraser) 2867 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2868 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2869 2870 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2871 // Indirect through the replacer used in this instance. 2872 Replacer(I, With); 2873 } 2874 2875 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2876 Eraser(I); 2877 } 2878 2879 // TODO: 2880 // Additional cases that we need to add to this file: 2881 // 2882 // cbrt: 2883 // * cbrt(expN(X)) -> expN(x/3) 2884 // * cbrt(sqrt(x)) -> pow(x,1/6) 2885 // * cbrt(cbrt(x)) -> pow(x,1/9) 2886 // 2887 // exp, expf, expl: 2888 // * exp(log(x)) -> x 2889 // 2890 // log, logf, logl: 2891 // * log(exp(x)) -> x 2892 // * log(exp(y)) -> y*log(e) 2893 // * log(exp10(y)) -> y*log(10) 2894 // * log(sqrt(x)) -> 0.5*log(x) 2895 // 2896 // pow, powf, powl: 2897 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2898 // * pow(pow(x,y),z)-> pow(x,y*z) 2899 // 2900 // signbit: 2901 // * signbit(cnst) -> cnst' 2902 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2903 // 2904 // sqrt, sqrtf, sqrtl: 2905 // * sqrt(expN(x)) -> expN(x*0.5) 2906 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2907 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2908 // 2909 2910 //===----------------------------------------------------------------------===// 2911 // Fortified Library Call Optimizations 2912 //===----------------------------------------------------------------------===// 2913 2914 bool 2915 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2916 unsigned ObjSizeOp, 2917 Optional<unsigned> SizeOp, 2918 Optional<unsigned> StrOp, 2919 Optional<unsigned> FlagOp) { 2920 // If this function takes a flag argument, the implementation may use it to 2921 // perform extra checks. Don't fold into the non-checking variant. 2922 if (FlagOp) { 2923 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 2924 if (!Flag || !Flag->isZero()) 2925 return false; 2926 } 2927 2928 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 2929 return true; 2930 2931 if (ConstantInt *ObjSizeCI = 2932 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2933 if (ObjSizeCI->isMinusOne()) 2934 return true; 2935 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2936 if (OnlyLowerUnknownSize) 2937 return false; 2938 if (StrOp) { 2939 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 2940 // If the length is 0 we don't know how long it is and so we can't 2941 // remove the check. 2942 if (Len == 0) 2943 return false; 2944 return ObjSizeCI->getZExtValue() >= Len; 2945 } 2946 2947 if (SizeOp) { 2948 if (ConstantInt *SizeCI = 2949 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 2950 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2951 } 2952 } 2953 return false; 2954 } 2955 2956 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2957 IRBuilder<> &B) { 2958 if (isFortifiedCallFoldable(CI, 3, 2)) { 2959 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2960 CI->getArgOperand(2)); 2961 return CI->getArgOperand(0); 2962 } 2963 return nullptr; 2964 } 2965 2966 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2967 IRBuilder<> &B) { 2968 if (isFortifiedCallFoldable(CI, 3, 2)) { 2969 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2970 CI->getArgOperand(2)); 2971 return CI->getArgOperand(0); 2972 } 2973 return nullptr; 2974 } 2975 2976 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2977 IRBuilder<> &B) { 2978 // TODO: Try foldMallocMemset() here. 2979 2980 if (isFortifiedCallFoldable(CI, 3, 2)) { 2981 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2982 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2983 return CI->getArgOperand(0); 2984 } 2985 return nullptr; 2986 } 2987 2988 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2989 IRBuilder<> &B, 2990 LibFunc Func) { 2991 const DataLayout &DL = CI->getModule()->getDataLayout(); 2992 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2993 *ObjSize = CI->getArgOperand(2); 2994 2995 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2996 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2997 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2998 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2999 } 3000 3001 // If a) we don't have any length information, or b) we know this will 3002 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3003 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3004 // TODO: It might be nice to get a maximum length out of the possible 3005 // string lengths for varying. 3006 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3007 if (Func == LibFunc_strcpy_chk) 3008 return emitStrCpy(Dst, Src, B, TLI); 3009 else 3010 return emitStpCpy(Dst, Src, B, TLI); 3011 } 3012 3013 if (OnlyLowerUnknownSize) 3014 return nullptr; 3015 3016 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3017 uint64_t Len = GetStringLength(Src); 3018 if (Len == 0) 3019 return nullptr; 3020 3021 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3022 Value *LenV = ConstantInt::get(SizeTTy, Len); 3023 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3024 // If the function was an __stpcpy_chk, and we were able to fold it into 3025 // a __memcpy_chk, we still need to return the correct end pointer. 3026 if (Ret && Func == LibFunc_stpcpy_chk) 3027 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3028 return Ret; 3029 } 3030 3031 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3032 IRBuilder<> &B, 3033 LibFunc Func) { 3034 if (isFortifiedCallFoldable(CI, 3, 2)) { 3035 if (Func == LibFunc_strncpy_chk) 3036 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3037 CI->getArgOperand(2), B, TLI); 3038 else 3039 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3040 CI->getArgOperand(2), B, TLI); 3041 } 3042 3043 return nullptr; 3044 } 3045 3046 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3047 IRBuilder<> &B) { 3048 if (isFortifiedCallFoldable(CI, 4, 3)) 3049 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3050 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3051 3052 return nullptr; 3053 } 3054 3055 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3056 IRBuilder<> &B) { 3057 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3058 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3059 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3060 CI->getArgOperand(4), VariadicArgs, B, TLI); 3061 } 3062 3063 return nullptr; 3064 } 3065 3066 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3067 IRBuilder<> &B) { 3068 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3069 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3070 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3071 B, TLI); 3072 } 3073 3074 return nullptr; 3075 } 3076 3077 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3078 IRBuilder<> &B) { 3079 if (isFortifiedCallFoldable(CI, 2)) 3080 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3081 3082 return nullptr; 3083 } 3084 3085 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3086 IRBuilder<> &B) { 3087 if (isFortifiedCallFoldable(CI, 3)) 3088 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3089 CI->getArgOperand(2), B, TLI); 3090 3091 return nullptr; 3092 } 3093 3094 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3095 IRBuilder<> &B) { 3096 if (isFortifiedCallFoldable(CI, 3)) 3097 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3098 CI->getArgOperand(2), B, TLI); 3099 3100 return nullptr; 3101 } 3102 3103 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3104 IRBuilder<> &B) { 3105 if (isFortifiedCallFoldable(CI, 3)) 3106 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3107 CI->getArgOperand(2), B, TLI); 3108 3109 return nullptr; 3110 } 3111 3112 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3113 IRBuilder<> &B) { 3114 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3115 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3116 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3117 3118 return nullptr; 3119 } 3120 3121 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3122 IRBuilder<> &B) { 3123 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3124 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3125 CI->getArgOperand(4), B, TLI); 3126 3127 return nullptr; 3128 } 3129 3130 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 3131 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3132 // Some clang users checked for _chk libcall availability using: 3133 // __has_builtin(__builtin___memcpy_chk) 3134 // When compiling with -fno-builtin, this is always true. 3135 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3136 // end up with fortified libcalls, which isn't acceptable in a freestanding 3137 // environment which only provides their non-fortified counterparts. 3138 // 3139 // Until we change clang and/or teach external users to check for availability 3140 // differently, disregard the "nobuiltin" attribute and TLI::has. 3141 // 3142 // PR23093. 3143 3144 LibFunc Func; 3145 Function *Callee = CI->getCalledFunction(); 3146 3147 SmallVector<OperandBundleDef, 2> OpBundles; 3148 CI->getOperandBundlesAsDefs(OpBundles); 3149 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 3150 bool isCallingConvC = isCallingConvCCompatible(CI); 3151 3152 // First, check that this is a known library functions and that the prototype 3153 // is correct. 3154 if (!TLI->getLibFunc(*Callee, Func)) 3155 return nullptr; 3156 3157 // We never change the calling convention. 3158 if (!ignoreCallingConv(Func) && !isCallingConvC) 3159 return nullptr; 3160 3161 switch (Func) { 3162 case LibFunc_memcpy_chk: 3163 return optimizeMemCpyChk(CI, Builder); 3164 case LibFunc_memmove_chk: 3165 return optimizeMemMoveChk(CI, Builder); 3166 case LibFunc_memset_chk: 3167 return optimizeMemSetChk(CI, Builder); 3168 case LibFunc_stpcpy_chk: 3169 case LibFunc_strcpy_chk: 3170 return optimizeStrpCpyChk(CI, Builder, Func); 3171 case LibFunc_stpncpy_chk: 3172 case LibFunc_strncpy_chk: 3173 return optimizeStrpNCpyChk(CI, Builder, Func); 3174 case LibFunc_memccpy_chk: 3175 return optimizeMemCCpyChk(CI, Builder); 3176 case LibFunc_snprintf_chk: 3177 return optimizeSNPrintfChk(CI, Builder); 3178 case LibFunc_sprintf_chk: 3179 return optimizeSPrintfChk(CI, Builder); 3180 case LibFunc_strcat_chk: 3181 return optimizeStrCatChk(CI, Builder); 3182 case LibFunc_strlcat_chk: 3183 return optimizeStrLCat(CI, Builder); 3184 case LibFunc_strncat_chk: 3185 return optimizeStrNCatChk(CI, Builder); 3186 case LibFunc_strlcpy_chk: 3187 return optimizeStrLCpyChk(CI, Builder); 3188 case LibFunc_vsnprintf_chk: 3189 return optimizeVSNPrintfChk(CI, Builder); 3190 case LibFunc_vsprintf_chk: 3191 return optimizeVSPrintfChk(CI, Builder); 3192 default: 3193 break; 3194 } 3195 return nullptr; 3196 } 3197 3198 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3199 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3200 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3201