1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 //===----------------------------------------------------------------------===//
108 // String and Memory Library Call Optimizations
109 //===----------------------------------------------------------------------===//
110 
111 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
112   // Extract some information from the instruction
113   Value *Dst = CI->getArgOperand(0);
114   Value *Src = CI->getArgOperand(1);
115 
116   // See if we can get the length of the input string.
117   uint64_t Len = GetStringLength(Src);
118   if (Len == 0)
119     return nullptr;
120   --Len; // Unbias length.
121 
122   // Handle the simple, do-nothing case: strcat(x, "") -> x
123   if (Len == 0)
124     return Dst;
125 
126   return emitStrLenMemCpy(Src, Dst, Len, B);
127 }
128 
129 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
130                                            IRBuilder<> &B) {
131   // We need to find the end of the destination string.  That's where the
132   // memory is to be moved to. We just generate a call to strlen.
133   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
134   if (!DstLen)
135     return nullptr;
136 
137   // Now that we have the destination's length, we must index into the
138   // destination's pointer to get the actual memcpy destination (end of
139   // the string .. we're concatenating).
140   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
141 
142   // We have enough information to now generate the memcpy call to do the
143   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
144   B.CreateMemCpy(CpyDst, 1, Src, 1,
145                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
146   return Dst;
147 }
148 
149 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
150   // Extract some information from the instruction.
151   Value *Dst = CI->getArgOperand(0);
152   Value *Src = CI->getArgOperand(1);
153   uint64_t Len;
154 
155   // We don't do anything if length is not constant.
156   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
157     Len = LengthArg->getZExtValue();
158   else
159     return nullptr;
160 
161   // See if we can get the length of the input string.
162   uint64_t SrcLen = GetStringLength(Src);
163   if (SrcLen == 0)
164     return nullptr;
165   --SrcLen; // Unbias length.
166 
167   // Handle the simple, do-nothing cases:
168   // strncat(x, "", c) -> x
169   // strncat(x,  c, 0) -> x
170   if (SrcLen == 0 || Len == 0)
171     return Dst;
172 
173   // We don't optimize this case.
174   if (Len < SrcLen)
175     return nullptr;
176 
177   // strncat(x, s, c) -> strcat(x, s)
178   // s is constant so the strcat can be optimized further.
179   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
180 }
181 
182 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
183   Function *Callee = CI->getCalledFunction();
184   FunctionType *FT = Callee->getFunctionType();
185   Value *SrcStr = CI->getArgOperand(0);
186 
187   // If the second operand is non-constant, see if we can compute the length
188   // of the input string and turn this into memchr.
189   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
190   if (!CharC) {
191     uint64_t Len = GetStringLength(SrcStr);
192     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
193       return nullptr;
194 
195     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
196                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
197                       B, DL, TLI);
198   }
199 
200   // Otherwise, the character is a constant, see if the first argument is
201   // a string literal.  If so, we can constant fold.
202   StringRef Str;
203   if (!getConstantStringInfo(SrcStr, Str)) {
204     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
205       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
206                          "strchr");
207     return nullptr;
208   }
209 
210   // Compute the offset, make sure to handle the case when we're searching for
211   // zero (a weird way to spell strlen).
212   size_t I = (0xFF & CharC->getSExtValue()) == 0
213                  ? Str.size()
214                  : Str.find(CharC->getSExtValue());
215   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
216     return Constant::getNullValue(CI->getType());
217 
218   // strchr(s+n,c)  -> gep(s+n+i,c)
219   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
220 }
221 
222 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
223   Value *SrcStr = CI->getArgOperand(0);
224   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
225 
226   // Cannot fold anything if we're not looking for a constant.
227   if (!CharC)
228     return nullptr;
229 
230   StringRef Str;
231   if (!getConstantStringInfo(SrcStr, Str)) {
232     // strrchr(s, 0) -> strchr(s, 0)
233     if (CharC->isZero())
234       return emitStrChr(SrcStr, '\0', B, TLI);
235     return nullptr;
236   }
237 
238   // Compute the offset.
239   size_t I = (0xFF & CharC->getSExtValue()) == 0
240                  ? Str.size()
241                  : Str.rfind(CharC->getSExtValue());
242   if (I == StringRef::npos) // Didn't find the char. Return null.
243     return Constant::getNullValue(CI->getType());
244 
245   // strrchr(s+n,c) -> gep(s+n+i,c)
246   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
247 }
248 
249 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
250   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
251   if (Str1P == Str2P) // strcmp(x,x)  -> 0
252     return ConstantInt::get(CI->getType(), 0);
253 
254   StringRef Str1, Str2;
255   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
256   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
257 
258   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
259   if (HasStr1 && HasStr2)
260     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
261 
262   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
263     return B.CreateNeg(
264         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
265 
266   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
267     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
268 
269   // strcmp(P, "x") -> memcmp(P, "x", 2)
270   uint64_t Len1 = GetStringLength(Str1P);
271   uint64_t Len2 = GetStringLength(Str2P);
272   if (Len1 && Len2) {
273     return emitMemCmp(Str1P, Str2P,
274                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
275                                        std::min(Len1, Len2)),
276                       B, DL, TLI);
277   }
278 
279   return nullptr;
280 }
281 
282 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
283   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
284   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
285     return ConstantInt::get(CI->getType(), 0);
286 
287   // Get the length argument if it is constant.
288   uint64_t Length;
289   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
290     Length = LengthArg->getZExtValue();
291   else
292     return nullptr;
293 
294   if (Length == 0) // strncmp(x,y,0)   -> 0
295     return ConstantInt::get(CI->getType(), 0);
296 
297   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
298     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
299 
300   StringRef Str1, Str2;
301   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
302   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
303 
304   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
305   if (HasStr1 && HasStr2) {
306     StringRef SubStr1 = Str1.substr(0, Length);
307     StringRef SubStr2 = Str2.substr(0, Length);
308     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
309   }
310 
311   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
312     return B.CreateNeg(
313         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
314 
315   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
316     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
317 
318   return nullptr;
319 }
320 
321 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
322   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
323   if (Dst == Src) // strcpy(x,x)  -> x
324     return Src;
325 
326   // See if we can get the length of the input string.
327   uint64_t Len = GetStringLength(Src);
328   if (Len == 0)
329     return nullptr;
330 
331   // We have enough information to now generate the memcpy call to do the
332   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
333   B.CreateMemCpy(Dst, 1, Src, 1,
334                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
335   return Dst;
336 }
337 
338 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
339   Function *Callee = CI->getCalledFunction();
340   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
341   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
342     Value *StrLen = emitStrLen(Src, B, DL, TLI);
343     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
344   }
345 
346   // See if we can get the length of the input string.
347   uint64_t Len = GetStringLength(Src);
348   if (Len == 0)
349     return nullptr;
350 
351   Type *PT = Callee->getFunctionType()->getParamType(0);
352   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
353   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
354                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
355 
356   // We have enough information to now generate the memcpy call to do the
357   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
358   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
359   return DstEnd;
360 }
361 
362 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
363   Function *Callee = CI->getCalledFunction();
364   Value *Dst = CI->getArgOperand(0);
365   Value *Src = CI->getArgOperand(1);
366   Value *LenOp = CI->getArgOperand(2);
367 
368   // See if we can get the length of the input string.
369   uint64_t SrcLen = GetStringLength(Src);
370   if (SrcLen == 0)
371     return nullptr;
372   --SrcLen;
373 
374   if (SrcLen == 0) {
375     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
376     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
377     return Dst;
378   }
379 
380   uint64_t Len;
381   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
382     Len = LengthArg->getZExtValue();
383   else
384     return nullptr;
385 
386   if (Len == 0)
387     return Dst; // strncpy(x, y, 0) -> x
388 
389   // Let strncpy handle the zero padding
390   if (Len > SrcLen + 1)
391     return nullptr;
392 
393   Type *PT = Callee->getFunctionType()->getParamType(0);
394   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
395   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
396 
397   return Dst;
398 }
399 
400 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
401                                                unsigned CharSize) {
402   Value *Src = CI->getArgOperand(0);
403 
404   // Constant folding: strlen("xyz") -> 3
405   if (uint64_t Len = GetStringLength(Src, CharSize))
406     return ConstantInt::get(CI->getType(), Len - 1);
407 
408   // If s is a constant pointer pointing to a string literal, we can fold
409   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
410   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
411   // We only try to simplify strlen when the pointer s points to an array
412   // of i8. Otherwise, we would need to scale the offset x before doing the
413   // subtraction. This will make the optimization more complex, and it's not
414   // very useful because calling strlen for a pointer of other types is
415   // very uncommon.
416   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
417     if (!isGEPBasedOnPointerToString(GEP, CharSize))
418       return nullptr;
419 
420     ConstantDataArraySlice Slice;
421     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
422       uint64_t NullTermIdx;
423       if (Slice.Array == nullptr) {
424         NullTermIdx = 0;
425       } else {
426         NullTermIdx = ~((uint64_t)0);
427         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
428           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
429             NullTermIdx = I;
430             break;
431           }
432         }
433         // If the string does not have '\0', leave it to strlen to compute
434         // its length.
435         if (NullTermIdx == ~((uint64_t)0))
436           return nullptr;
437       }
438 
439       Value *Offset = GEP->getOperand(2);
440       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
441       Known.Zero.flipAllBits();
442       uint64_t ArrSize =
443              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
444 
445       // KnownZero's bits are flipped, so zeros in KnownZero now represent
446       // bits known to be zeros in Offset, and ones in KnowZero represent
447       // bits unknown in Offset. Therefore, Offset is known to be in range
448       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
449       // unsigned-less-than NullTermIdx.
450       //
451       // If Offset is not provably in the range [0, NullTermIdx], we can still
452       // optimize if we can prove that the program has undefined behavior when
453       // Offset is outside that range. That is the case when GEP->getOperand(0)
454       // is a pointer to an object whose memory extent is NullTermIdx+1.
455       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
456           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
457            NullTermIdx == ArrSize - 1)) {
458         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
459         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
460                            Offset);
461       }
462     }
463 
464     return nullptr;
465   }
466 
467   // strlen(x?"foo":"bars") --> x ? 3 : 4
468   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
469     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
470     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
471     if (LenTrue && LenFalse) {
472       ORE.emit([&]() {
473         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
474                << "folded strlen(select) to select of constants";
475       });
476       return B.CreateSelect(SI->getCondition(),
477                             ConstantInt::get(CI->getType(), LenTrue - 1),
478                             ConstantInt::get(CI->getType(), LenFalse - 1));
479     }
480   }
481 
482   // strlen(x) != 0 --> *x != 0
483   // strlen(x) == 0 --> *x == 0
484   if (isOnlyUsedInZeroEqualityComparison(CI))
485     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
486 
487   return nullptr;
488 }
489 
490 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
491   return optimizeStringLength(CI, B, 8);
492 }
493 
494 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
495   Module &M = *CI->getParent()->getParent()->getParent();
496   unsigned WCharSize = TLI->getWCharSize(M) * 8;
497   // We cannot perform this optimization without wchar_size metadata.
498   if (WCharSize == 0)
499     return nullptr;
500 
501   return optimizeStringLength(CI, B, WCharSize);
502 }
503 
504 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
505   StringRef S1, S2;
506   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
507   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
508 
509   // strpbrk(s, "") -> nullptr
510   // strpbrk("", s) -> nullptr
511   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
512     return Constant::getNullValue(CI->getType());
513 
514   // Constant folding.
515   if (HasS1 && HasS2) {
516     size_t I = S1.find_first_of(S2);
517     if (I == StringRef::npos) // No match.
518       return Constant::getNullValue(CI->getType());
519 
520     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
521                        "strpbrk");
522   }
523 
524   // strpbrk(s, "a") -> strchr(s, 'a')
525   if (HasS2 && S2.size() == 1)
526     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
527 
528   return nullptr;
529 }
530 
531 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
532   Value *EndPtr = CI->getArgOperand(1);
533   if (isa<ConstantPointerNull>(EndPtr)) {
534     // With a null EndPtr, this function won't capture the main argument.
535     // It would be readonly too, except that it still may write to errno.
536     CI->addParamAttr(0, Attribute::NoCapture);
537   }
538 
539   return nullptr;
540 }
541 
542 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
543   StringRef S1, S2;
544   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
545   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
546 
547   // strspn(s, "") -> 0
548   // strspn("", s) -> 0
549   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
550     return Constant::getNullValue(CI->getType());
551 
552   // Constant folding.
553   if (HasS1 && HasS2) {
554     size_t Pos = S1.find_first_not_of(S2);
555     if (Pos == StringRef::npos)
556       Pos = S1.size();
557     return ConstantInt::get(CI->getType(), Pos);
558   }
559 
560   return nullptr;
561 }
562 
563 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
564   StringRef S1, S2;
565   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
566   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
567 
568   // strcspn("", s) -> 0
569   if (HasS1 && S1.empty())
570     return Constant::getNullValue(CI->getType());
571 
572   // Constant folding.
573   if (HasS1 && HasS2) {
574     size_t Pos = S1.find_first_of(S2);
575     if (Pos == StringRef::npos)
576       Pos = S1.size();
577     return ConstantInt::get(CI->getType(), Pos);
578   }
579 
580   // strcspn(s, "") -> strlen(s)
581   if (HasS2 && S2.empty())
582     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
583 
584   return nullptr;
585 }
586 
587 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
588   // fold strstr(x, x) -> x.
589   if (CI->getArgOperand(0) == CI->getArgOperand(1))
590     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
591 
592   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
593   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
594     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
595     if (!StrLen)
596       return nullptr;
597     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
598                                  StrLen, B, DL, TLI);
599     if (!StrNCmp)
600       return nullptr;
601     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
602       ICmpInst *Old = cast<ICmpInst>(*UI++);
603       Value *Cmp =
604           B.CreateICmp(Old->getPredicate(), StrNCmp,
605                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
606       replaceAllUsesWith(Old, Cmp);
607     }
608     return CI;
609   }
610 
611   // See if either input string is a constant string.
612   StringRef SearchStr, ToFindStr;
613   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
614   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
615 
616   // fold strstr(x, "") -> x.
617   if (HasStr2 && ToFindStr.empty())
618     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
619 
620   // If both strings are known, constant fold it.
621   if (HasStr1 && HasStr2) {
622     size_t Offset = SearchStr.find(ToFindStr);
623 
624     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
625       return Constant::getNullValue(CI->getType());
626 
627     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
628     Value *Result = castToCStr(CI->getArgOperand(0), B);
629     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
630     return B.CreateBitCast(Result, CI->getType());
631   }
632 
633   // fold strstr(x, "y") -> strchr(x, 'y').
634   if (HasStr2 && ToFindStr.size() == 1) {
635     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
636     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
637   }
638   return nullptr;
639 }
640 
641 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
642   Value *SrcStr = CI->getArgOperand(0);
643   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
644   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
645 
646   // memchr(x, y, 0) -> null
647   if (LenC && LenC->isZero())
648     return Constant::getNullValue(CI->getType());
649 
650   // From now on we need at least constant length and string.
651   StringRef Str;
652   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
653     return nullptr;
654 
655   // Truncate the string to LenC. If Str is smaller than LenC we will still only
656   // scan the string, as reading past the end of it is undefined and we can just
657   // return null if we don't find the char.
658   Str = Str.substr(0, LenC->getZExtValue());
659 
660   // If the char is variable but the input str and length are not we can turn
661   // this memchr call into a simple bit field test. Of course this only works
662   // when the return value is only checked against null.
663   //
664   // It would be really nice to reuse switch lowering here but we can't change
665   // the CFG at this point.
666   //
667   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
668   //   after bounds check.
669   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
670     unsigned char Max =
671         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
672                           reinterpret_cast<const unsigned char *>(Str.end()));
673 
674     // Make sure the bit field we're about to create fits in a register on the
675     // target.
676     // FIXME: On a 64 bit architecture this prevents us from using the
677     // interesting range of alpha ascii chars. We could do better by emitting
678     // two bitfields or shifting the range by 64 if no lower chars are used.
679     if (!DL.fitsInLegalInteger(Max + 1))
680       return nullptr;
681 
682     // For the bit field use a power-of-2 type with at least 8 bits to avoid
683     // creating unnecessary illegal types.
684     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
685 
686     // Now build the bit field.
687     APInt Bitfield(Width, 0);
688     for (char C : Str)
689       Bitfield.setBit((unsigned char)C);
690     Value *BitfieldC = B.getInt(Bitfield);
691 
692     // First check that the bit field access is within bounds.
693     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
694     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
695                                  "memchr.bounds");
696 
697     // Create code that checks if the given bit is set in the field.
698     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
699     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
700 
701     // Finally merge both checks and cast to pointer type. The inttoptr
702     // implicitly zexts the i1 to intptr type.
703     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
704   }
705 
706   // Check if all arguments are constants.  If so, we can constant fold.
707   if (!CharC)
708     return nullptr;
709 
710   // Compute the offset.
711   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
712   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
713     return Constant::getNullValue(CI->getType());
714 
715   // memchr(s+n,c,l) -> gep(s+n+i,c)
716   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
717 }
718 
719 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
720   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
721 
722   if (LHS == RHS) // memcmp(s,s,x) -> 0
723     return Constant::getNullValue(CI->getType());
724 
725   // Make sure we have a constant length.
726   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
727   if (!LenC)
728     return nullptr;
729 
730   uint64_t Len = LenC->getZExtValue();
731   if (Len == 0) // memcmp(s1,s2,0) -> 0
732     return Constant::getNullValue(CI->getType());
733 
734   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
735   if (Len == 1) {
736     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
737                                CI->getType(), "lhsv");
738     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
739                                CI->getType(), "rhsv");
740     return B.CreateSub(LHSV, RHSV, "chardiff");
741   }
742 
743   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
744   // TODO: The case where both inputs are constants does not need to be limited
745   // to legal integers or equality comparison. See block below this.
746   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
747     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
748     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
749 
750     // First, see if we can fold either argument to a constant.
751     Value *LHSV = nullptr;
752     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
753       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
754       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
755     }
756     Value *RHSV = nullptr;
757     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
758       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
759       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
760     }
761 
762     // Don't generate unaligned loads. If either source is constant data,
763     // alignment doesn't matter for that source because there is no load.
764     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
765         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
766       if (!LHSV) {
767         Type *LHSPtrTy =
768             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
769         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
770       }
771       if (!RHSV) {
772         Type *RHSPtrTy =
773             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
774         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
775       }
776       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
777     }
778   }
779 
780   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
781   // TODO: This is limited to i8 arrays.
782   StringRef LHSStr, RHSStr;
783   if (getConstantStringInfo(LHS, LHSStr) &&
784       getConstantStringInfo(RHS, RHSStr)) {
785     // Make sure we're not reading out-of-bounds memory.
786     if (Len > LHSStr.size() || Len > RHSStr.size())
787       return nullptr;
788     // Fold the memcmp and normalize the result.  This way we get consistent
789     // results across multiple platforms.
790     uint64_t Ret = 0;
791     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
792     if (Cmp < 0)
793       Ret = -1;
794     else if (Cmp > 0)
795       Ret = 1;
796     return ConstantInt::get(CI->getType(), Ret);
797   }
798 
799   return nullptr;
800 }
801 
802 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
803   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
804   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
805                  CI->getArgOperand(2));
806   return CI->getArgOperand(0);
807 }
808 
809 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
810   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
811   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
812                   CI->getArgOperand(2));
813   return CI->getArgOperand(0);
814 }
815 
816 // TODO: Does this belong in BuildLibCalls or should all of those similar
817 // functions be moved here?
818 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
819                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
820   LibFunc Func;
821   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
822     return nullptr;
823 
824   Module *M = B.GetInsertBlock()->getModule();
825   const DataLayout &DL = M->getDataLayout();
826   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
827   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
828                                          PtrType, PtrType);
829   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
830 
831   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
832     CI->setCallingConv(F->getCallingConv());
833 
834   return CI;
835 }
836 
837 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
838 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
839                                const TargetLibraryInfo &TLI) {
840   // This has to be a memset of zeros (bzero).
841   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
842   if (!FillValue || FillValue->getZExtValue() != 0)
843     return nullptr;
844 
845   // TODO: We should handle the case where the malloc has more than one use.
846   // This is necessary to optimize common patterns such as when the result of
847   // the malloc is checked against null or when a memset intrinsic is used in
848   // place of a memset library call.
849   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
850   if (!Malloc || !Malloc->hasOneUse())
851     return nullptr;
852 
853   // Is the inner call really malloc()?
854   Function *InnerCallee = Malloc->getCalledFunction();
855   if (!InnerCallee)
856     return nullptr;
857 
858   LibFunc Func;
859   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
860       Func != LibFunc_malloc)
861     return nullptr;
862 
863   // The memset must cover the same number of bytes that are malloc'd.
864   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
865     return nullptr;
866 
867   // Replace the malloc with a calloc. We need the data layout to know what the
868   // actual size of a 'size_t' parameter is.
869   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
870   const DataLayout &DL = Malloc->getModule()->getDataLayout();
871   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
872   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
873                              Malloc->getArgOperand(0), Malloc->getAttributes(),
874                              B, TLI);
875   if (!Calloc)
876     return nullptr;
877 
878   Malloc->replaceAllUsesWith(Calloc);
879   Malloc->eraseFromParent();
880 
881   return Calloc;
882 }
883 
884 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
885   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
886     return Calloc;
887 
888   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
889   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
890   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
891   return CI->getArgOperand(0);
892 }
893 
894 //===----------------------------------------------------------------------===//
895 // Math Library Optimizations
896 //===----------------------------------------------------------------------===//
897 
898 /// Return a variant of Val with float type.
899 /// Currently this works in two cases: If Val is an FPExtension of a float
900 /// value to something bigger, simply return the operand.
901 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
902 /// loss of precision do so.
903 static Value *valueHasFloatPrecision(Value *Val) {
904   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
905     Value *Op = Cast->getOperand(0);
906     if (Op->getType()->isFloatTy())
907       return Op;
908   }
909   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
910     APFloat F = Const->getValueAPF();
911     bool losesInfo;
912     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
913                     &losesInfo);
914     if (!losesInfo)
915       return ConstantFP::get(Const->getContext(), F);
916   }
917   return nullptr;
918 }
919 
920 /// Shrink double -> float for unary functions like 'floor'.
921 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
922                                     bool CheckRetType) {
923   Function *Callee = CI->getCalledFunction();
924   // We know this libcall has a valid prototype, but we don't know which.
925   if (!CI->getType()->isDoubleTy())
926     return nullptr;
927 
928   if (CheckRetType) {
929     // Check if all the uses for function like 'sin' are converted to float.
930     for (User *U : CI->users()) {
931       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
932       if (!Cast || !Cast->getType()->isFloatTy())
933         return nullptr;
934     }
935   }
936 
937   // If this is something like 'floor((double)floatval)', convert to floorf.
938   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
939   if (V == nullptr)
940     return nullptr;
941 
942   // If call isn't an intrinsic, check that it isn't within a function with the
943   // same name as the float version of this call.
944   //
945   // e.g. inline float expf(float val) { return (float) exp((double) val); }
946   //
947   // A similar such definition exists in the MinGW-w64 math.h header file which
948   // when compiled with -O2 -ffast-math causes the generation of infinite loops
949   // where expf is called.
950   if (!Callee->isIntrinsic()) {
951     const Function *F = CI->getFunction();
952     StringRef FName = F->getName();
953     StringRef CalleeName = Callee->getName();
954     if ((FName.size() == (CalleeName.size() + 1)) &&
955         (FName.back() == 'f') &&
956         FName.startswith(CalleeName))
957       return nullptr;
958   }
959 
960   // Propagate fast-math flags from the existing call to the new call.
961   IRBuilder<>::FastMathFlagGuard Guard(B);
962   B.setFastMathFlags(CI->getFastMathFlags());
963 
964   // floor((double)floatval) -> (double)floorf(floatval)
965   if (Callee->isIntrinsic()) {
966     Module *M = CI->getModule();
967     Intrinsic::ID IID = Callee->getIntrinsicID();
968     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
969     V = B.CreateCall(F, V);
970   } else {
971     // The call is a library call rather than an intrinsic.
972     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
973   }
974 
975   return B.CreateFPExt(V, B.getDoubleTy());
976 }
977 
978 // Replace a libcall \p CI with a call to intrinsic \p IID
979 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
980   // Propagate fast-math flags from the existing call to the new call.
981   IRBuilder<>::FastMathFlagGuard Guard(B);
982   B.setFastMathFlags(CI->getFastMathFlags());
983 
984   Module *M = CI->getModule();
985   Value *V = CI->getArgOperand(0);
986   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
987   CallInst *NewCall = B.CreateCall(F, V);
988   NewCall->takeName(CI);
989   return NewCall;
990 }
991 
992 /// Shrink double -> float for binary functions like 'fmin/fmax'.
993 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
994   Function *Callee = CI->getCalledFunction();
995   // We know this libcall has a valid prototype, but we don't know which.
996   if (!CI->getType()->isDoubleTy())
997     return nullptr;
998 
999   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1000   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1001   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1002   if (V1 == nullptr)
1003     return nullptr;
1004   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1005   if (V2 == nullptr)
1006     return nullptr;
1007 
1008   // Propagate fast-math flags from the existing call to the new call.
1009   IRBuilder<>::FastMathFlagGuard Guard(B);
1010   B.setFastMathFlags(CI->getFastMathFlags());
1011 
1012   // fmin((double)floatval1, (double)floatval2)
1013   //                      -> (double)fminf(floatval1, floatval2)
1014   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1015   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1016                                    Callee->getAttributes());
1017   return B.CreateFPExt(V, B.getDoubleTy());
1018 }
1019 
1020 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1021 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1022   if (!CI->isFast())
1023     return nullptr;
1024 
1025   // Propagate fast-math flags from the existing call to new instructions.
1026   IRBuilder<>::FastMathFlagGuard Guard(B);
1027   B.setFastMathFlags(CI->getFastMathFlags());
1028 
1029   Value *Real, *Imag;
1030   if (CI->getNumArgOperands() == 1) {
1031     Value *Op = CI->getArgOperand(0);
1032     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1033     Real = B.CreateExtractValue(Op, 0, "real");
1034     Imag = B.CreateExtractValue(Op, 1, "imag");
1035   } else {
1036     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1037     Real = CI->getArgOperand(0);
1038     Imag = CI->getArgOperand(1);
1039   }
1040 
1041   Value *RealReal = B.CreateFMul(Real, Real);
1042   Value *ImagImag = B.CreateFMul(Imag, Imag);
1043 
1044   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1045                                               CI->getType());
1046   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1047 }
1048 
1049 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1050   Function *Callee = CI->getCalledFunction();
1051   Value *Ret = nullptr;
1052   StringRef Name = Callee->getName();
1053   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1054     Ret = optimizeUnaryDoubleFP(CI, B, true);
1055 
1056   // cos(-x) -> cos(x)
1057   Value *Op1 = CI->getArgOperand(0);
1058   if (BinaryOperator::isFNeg(Op1)) {
1059     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1060     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1061   }
1062   return Ret;
1063 }
1064 
1065 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1066   // Multiplications calculated using Addition Chains.
1067   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1068 
1069   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1070 
1071   if (InnerChain[Exp])
1072     return InnerChain[Exp];
1073 
1074   static const unsigned AddChain[33][2] = {
1075       {0, 0}, // Unused.
1076       {0, 0}, // Unused (base case = pow1).
1077       {1, 1}, // Unused (pre-computed).
1078       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1079       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1080       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1081       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1082       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1083   };
1084 
1085   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1086                                  getPow(InnerChain, AddChain[Exp][1], B));
1087   return InnerChain[Exp];
1088 }
1089 
1090 /// Use square root in place of pow(x, +/-0.5).
1091 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1092   // TODO: There is some subset of 'fast' under which these transforms should
1093   // be allowed.
1094   if (!Pow->isFast())
1095     return nullptr;
1096 
1097   const APFloat *Arg1C;
1098   if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C)))
1099     return nullptr;
1100   if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5))
1101     return nullptr;
1102 
1103   // Fast-math flags from the pow() are propagated to all replacement ops.
1104   IRBuilder<>::FastMathFlagGuard Guard(B);
1105   B.setFastMathFlags(Pow->getFastMathFlags());
1106   Type *Ty = Pow->getType();
1107   Value *Sqrt;
1108   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1109     // We know that errno is never set, so replace with an intrinsic:
1110     // pow(x, 0.5) --> llvm.sqrt(x)
1111     // llvm.pow(x, 0.5) --> llvm.sqrt(x)
1112     auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty);
1113     Sqrt = B.CreateCall(F, Pow->getArgOperand(0));
1114   } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf,
1115                              LibFunc_sqrtl)) {
1116     // Errno could be set, so we must use a sqrt libcall.
1117     // TODO: We also should check that the target can in fact lower the sqrt
1118     // libcall. We currently have no way to ask this question, so we ask
1119     // whether the target has a sqrt libcall which is not exactly the same.
1120     Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0),
1121                                 TLI->getName(LibFunc_sqrt), B,
1122                                 Pow->getCalledFunction()->getAttributes());
1123   } else {
1124     // We can't replace with an intrinsic or a libcall.
1125     return nullptr;
1126   }
1127 
1128   // If this is pow(x, -0.5), get the reciprocal.
1129   if (Arg1C->isExactlyValue(-0.5))
1130     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt);
1131 
1132   return Sqrt;
1133 }
1134 
1135 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1136   Function *Callee = CI->getCalledFunction();
1137   Value *Ret = nullptr;
1138   StringRef Name = Callee->getName();
1139   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1140     Ret = optimizeUnaryDoubleFP(CI, B, true);
1141 
1142   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1143 
1144   // pow(1.0, x) -> 1.0
1145   if (match(Op1, m_SpecificFP(1.0)))
1146     return Op1;
1147   // pow(2.0, x) -> llvm.exp2(x)
1148   if (match(Op1, m_SpecificFP(2.0))) {
1149     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1150                                             CI->getType());
1151     return B.CreateCall(Exp2, Op2, "exp2");
1152   }
1153 
1154   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1155   // be one.
1156   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1157     // pow(10.0, x) -> exp10(x)
1158     if (Op1C->isExactlyValue(10.0) &&
1159         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1160                         LibFunc_exp10l))
1161       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1162                                   Callee->getAttributes());
1163   }
1164 
1165   // pow(exp(x), y) -> exp(x * y)
1166   // pow(exp2(x), y) -> exp2(x * y)
1167   // We enable these only with fast-math. Besides rounding differences, the
1168   // transformation changes overflow and underflow behavior quite dramatically.
1169   // Example: x = 1000, y = 0.001.
1170   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1171   auto *OpC = dyn_cast<CallInst>(Op1);
1172   if (OpC && OpC->isFast() && CI->isFast()) {
1173     LibFunc Func;
1174     Function *OpCCallee = OpC->getCalledFunction();
1175     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1176         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1177       IRBuilder<>::FastMathFlagGuard Guard(B);
1178       B.setFastMathFlags(CI->getFastMathFlags());
1179       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1180       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1181                                   OpCCallee->getAttributes());
1182     }
1183   }
1184 
1185   if (Value *Sqrt = replacePowWithSqrt(CI, B))
1186     return Sqrt;
1187 
1188   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1189   if (!Op2C)
1190     return Ret;
1191 
1192   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1193     return ConstantFP::get(CI->getType(), 1.0);
1194 
1195   // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1196   if (Op2C->isExactlyValue(0.5) &&
1197       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1198                       LibFunc_sqrtl)) {
1199     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1200     // This is faster than calling pow, and still handles negative zero
1201     // and negative infinity correctly.
1202     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1203     Value *Inf = ConstantFP::getInfinity(CI->getType());
1204     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1205 
1206     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1207     // intrinsic, to match errno semantics.
1208     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1209 
1210     Module *M = Callee->getParent();
1211     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1212                                                 CI->getType());
1213     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1214 
1215     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1216     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1217     return Sel;
1218   }
1219 
1220   // Propagate fast-math-flags from the call to any created instructions.
1221   IRBuilder<>::FastMathFlagGuard Guard(B);
1222   B.setFastMathFlags(CI->getFastMathFlags());
1223   // pow(x, 1.0) --> x
1224   if (Op2C->isExactlyValue(1.0))
1225     return Op1;
1226   // pow(x, 2.0) --> x * x
1227   if (Op2C->isExactlyValue(2.0))
1228     return B.CreateFMul(Op1, Op1, "pow2");
1229   // pow(x, -1.0) --> 1.0 / x
1230   if (Op2C->isExactlyValue(-1.0))
1231     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1232 
1233   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1234   if (CI->isFast()) {
1235     APFloat V = abs(Op2C->getValueAPF());
1236     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1237     // This transformation applies to integer exponents only.
1238     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1239         !V.isInteger())
1240       return nullptr;
1241 
1242     // We will memoize intermediate products of the Addition Chain.
1243     Value *InnerChain[33] = {nullptr};
1244     InnerChain[1] = Op1;
1245     InnerChain[2] = B.CreateFMul(Op1, Op1);
1246 
1247     // We cannot readily convert a non-double type (like float) to a double.
1248     // So we first convert V to something which could be converted to double.
1249     bool Ignored;
1250     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1251 
1252     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1253     // For negative exponents simply compute the reciprocal.
1254     if (Op2C->isNegative())
1255       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1256     return FMul;
1257   }
1258 
1259   return nullptr;
1260 }
1261 
1262 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1263   Function *Callee = CI->getCalledFunction();
1264   Value *Ret = nullptr;
1265   StringRef Name = Callee->getName();
1266   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1267     Ret = optimizeUnaryDoubleFP(CI, B, true);
1268 
1269   Value *Op = CI->getArgOperand(0);
1270   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1271   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1272   LibFunc LdExp = LibFunc_ldexpl;
1273   if (Op->getType()->isFloatTy())
1274     LdExp = LibFunc_ldexpf;
1275   else if (Op->getType()->isDoubleTy())
1276     LdExp = LibFunc_ldexp;
1277 
1278   if (TLI->has(LdExp)) {
1279     Value *LdExpArg = nullptr;
1280     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1281       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1282         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1283     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1284       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1285         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1286     }
1287 
1288     if (LdExpArg) {
1289       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1290       if (!Op->getType()->isFloatTy())
1291         One = ConstantExpr::getFPExtend(One, Op->getType());
1292 
1293       Module *M = CI->getModule();
1294       Value *NewCallee =
1295           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1296                                  Op->getType(), B.getInt32Ty());
1297       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1298       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1299         CI->setCallingConv(F->getCallingConv());
1300 
1301       return CI;
1302     }
1303   }
1304   return Ret;
1305 }
1306 
1307 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1308   Function *Callee = CI->getCalledFunction();
1309   // If we can shrink the call to a float function rather than a double
1310   // function, do that first.
1311   StringRef Name = Callee->getName();
1312   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1313     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1314       return Ret;
1315 
1316   IRBuilder<>::FastMathFlagGuard Guard(B);
1317   FastMathFlags FMF;
1318   if (CI->isFast()) {
1319     // If the call is 'fast', then anything we create here will also be 'fast'.
1320     FMF.setFast();
1321   } else {
1322     // At a minimum, no-nans-fp-math must be true.
1323     if (!CI->hasNoNaNs())
1324       return nullptr;
1325     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1326     // "Ideally, fmax would be sensitive to the sign of zero, for example
1327     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1328     // might be impractical."
1329     FMF.setNoSignedZeros();
1330     FMF.setNoNaNs();
1331   }
1332   B.setFastMathFlags(FMF);
1333 
1334   // We have a relaxed floating-point environment. We can ignore NaN-handling
1335   // and transform to a compare and select. We do not have to consider errno or
1336   // exceptions, because fmin/fmax do not have those.
1337   Value *Op0 = CI->getArgOperand(0);
1338   Value *Op1 = CI->getArgOperand(1);
1339   Value *Cmp = Callee->getName().startswith("fmin") ?
1340     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1341   return B.CreateSelect(Cmp, Op0, Op1);
1342 }
1343 
1344 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1345   Function *Callee = CI->getCalledFunction();
1346   Value *Ret = nullptr;
1347   StringRef Name = Callee->getName();
1348   if (UnsafeFPShrink && hasFloatVersion(Name))
1349     Ret = optimizeUnaryDoubleFP(CI, B, true);
1350 
1351   if (!CI->isFast())
1352     return Ret;
1353   Value *Op1 = CI->getArgOperand(0);
1354   auto *OpC = dyn_cast<CallInst>(Op1);
1355 
1356   // The earlier call must also be 'fast' in order to do these transforms.
1357   if (!OpC || !OpC->isFast())
1358     return Ret;
1359 
1360   // log(pow(x,y)) -> y*log(x)
1361   // This is only applicable to log, log2, log10.
1362   if (Name != "log" && Name != "log2" && Name != "log10")
1363     return Ret;
1364 
1365   IRBuilder<>::FastMathFlagGuard Guard(B);
1366   FastMathFlags FMF;
1367   FMF.setFast();
1368   B.setFastMathFlags(FMF);
1369 
1370   LibFunc Func;
1371   Function *F = OpC->getCalledFunction();
1372   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1373       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1374     return B.CreateFMul(OpC->getArgOperand(1),
1375       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1376                            Callee->getAttributes()), "mul");
1377 
1378   // log(exp2(y)) -> y*log(2)
1379   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1380       TLI->has(Func) && Func == LibFunc_exp2)
1381     return B.CreateFMul(
1382         OpC->getArgOperand(0),
1383         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1384                              Callee->getName(), B, Callee->getAttributes()),
1385         "logmul");
1386   return Ret;
1387 }
1388 
1389 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1390   Function *Callee = CI->getCalledFunction();
1391   Value *Ret = nullptr;
1392   // TODO: Once we have a way (other than checking for the existince of the
1393   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1394   // condition below.
1395   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1396                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1397     Ret = optimizeUnaryDoubleFP(CI, B, true);
1398 
1399   if (!CI->isFast())
1400     return Ret;
1401 
1402   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1403   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1404     return Ret;
1405 
1406   // We're looking for a repeated factor in a multiplication tree,
1407   // so we can do this fold: sqrt(x * x) -> fabs(x);
1408   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1409   Value *Op0 = I->getOperand(0);
1410   Value *Op1 = I->getOperand(1);
1411   Value *RepeatOp = nullptr;
1412   Value *OtherOp = nullptr;
1413   if (Op0 == Op1) {
1414     // Simple match: the operands of the multiply are identical.
1415     RepeatOp = Op0;
1416   } else {
1417     // Look for a more complicated pattern: one of the operands is itself
1418     // a multiply, so search for a common factor in that multiply.
1419     // Note: We don't bother looking any deeper than this first level or for
1420     // variations of this pattern because instcombine's visitFMUL and/or the
1421     // reassociation pass should give us this form.
1422     Value *OtherMul0, *OtherMul1;
1423     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1424       // Pattern: sqrt((x * y) * z)
1425       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1426         // Matched: sqrt((x * x) * z)
1427         RepeatOp = OtherMul0;
1428         OtherOp = Op1;
1429       }
1430     }
1431   }
1432   if (!RepeatOp)
1433     return Ret;
1434 
1435   // Fast math flags for any created instructions should match the sqrt
1436   // and multiply.
1437   IRBuilder<>::FastMathFlagGuard Guard(B);
1438   B.setFastMathFlags(I->getFastMathFlags());
1439 
1440   // If we found a repeated factor, hoist it out of the square root and
1441   // replace it with the fabs of that factor.
1442   Module *M = Callee->getParent();
1443   Type *ArgType = I->getType();
1444   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1445   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1446   if (OtherOp) {
1447     // If we found a non-repeated factor, we still need to get its square
1448     // root. We then multiply that by the value that was simplified out
1449     // of the square root calculation.
1450     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1451     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1452     return B.CreateFMul(FabsCall, SqrtCall);
1453   }
1454   return FabsCall;
1455 }
1456 
1457 // TODO: Generalize to handle any trig function and its inverse.
1458 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1459   Function *Callee = CI->getCalledFunction();
1460   Value *Ret = nullptr;
1461   StringRef Name = Callee->getName();
1462   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1463     Ret = optimizeUnaryDoubleFP(CI, B, true);
1464 
1465   Value *Op1 = CI->getArgOperand(0);
1466   auto *OpC = dyn_cast<CallInst>(Op1);
1467   if (!OpC)
1468     return Ret;
1469 
1470   // Both calls must be 'fast' in order to remove them.
1471   if (!CI->isFast() || !OpC->isFast())
1472     return Ret;
1473 
1474   // tan(atan(x)) -> x
1475   // tanf(atanf(x)) -> x
1476   // tanl(atanl(x)) -> x
1477   LibFunc Func;
1478   Function *F = OpC->getCalledFunction();
1479   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1480       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1481        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1482        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1483     Ret = OpC->getArgOperand(0);
1484   return Ret;
1485 }
1486 
1487 static bool isTrigLibCall(CallInst *CI) {
1488   // We can only hope to do anything useful if we can ignore things like errno
1489   // and floating-point exceptions.
1490   // We already checked the prototype.
1491   return CI->hasFnAttr(Attribute::NoUnwind) &&
1492          CI->hasFnAttr(Attribute::ReadNone);
1493 }
1494 
1495 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1496                              bool UseFloat, Value *&Sin, Value *&Cos,
1497                              Value *&SinCos) {
1498   Type *ArgTy = Arg->getType();
1499   Type *ResTy;
1500   StringRef Name;
1501 
1502   Triple T(OrigCallee->getParent()->getTargetTriple());
1503   if (UseFloat) {
1504     Name = "__sincospif_stret";
1505 
1506     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1507     // x86_64 can't use {float, float} since that would be returned in both
1508     // xmm0 and xmm1, which isn't what a real struct would do.
1509     ResTy = T.getArch() == Triple::x86_64
1510                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1511                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1512   } else {
1513     Name = "__sincospi_stret";
1514     ResTy = StructType::get(ArgTy, ArgTy);
1515   }
1516 
1517   Module *M = OrigCallee->getParent();
1518   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1519                                          ResTy, ArgTy);
1520 
1521   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1522     // If the argument is an instruction, it must dominate all uses so put our
1523     // sincos call there.
1524     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1525   } else {
1526     // Otherwise (e.g. for a constant) the beginning of the function is as
1527     // good a place as any.
1528     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1529     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1530   }
1531 
1532   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1533 
1534   if (SinCos->getType()->isStructTy()) {
1535     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1536     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1537   } else {
1538     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1539                                  "sinpi");
1540     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1541                                  "cospi");
1542   }
1543 }
1544 
1545 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1546   // Make sure the prototype is as expected, otherwise the rest of the
1547   // function is probably invalid and likely to abort.
1548   if (!isTrigLibCall(CI))
1549     return nullptr;
1550 
1551   Value *Arg = CI->getArgOperand(0);
1552   SmallVector<CallInst *, 1> SinCalls;
1553   SmallVector<CallInst *, 1> CosCalls;
1554   SmallVector<CallInst *, 1> SinCosCalls;
1555 
1556   bool IsFloat = Arg->getType()->isFloatTy();
1557 
1558   // Look for all compatible sinpi, cospi and sincospi calls with the same
1559   // argument. If there are enough (in some sense) we can make the
1560   // substitution.
1561   Function *F = CI->getFunction();
1562   for (User *U : Arg->users())
1563     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1564 
1565   // It's only worthwhile if both sinpi and cospi are actually used.
1566   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1567     return nullptr;
1568 
1569   Value *Sin, *Cos, *SinCos;
1570   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1571 
1572   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1573                                  Value *Res) {
1574     for (CallInst *C : Calls)
1575       replaceAllUsesWith(C, Res);
1576   };
1577 
1578   replaceTrigInsts(SinCalls, Sin);
1579   replaceTrigInsts(CosCalls, Cos);
1580   replaceTrigInsts(SinCosCalls, SinCos);
1581 
1582   return nullptr;
1583 }
1584 
1585 void LibCallSimplifier::classifyArgUse(
1586     Value *Val, Function *F, bool IsFloat,
1587     SmallVectorImpl<CallInst *> &SinCalls,
1588     SmallVectorImpl<CallInst *> &CosCalls,
1589     SmallVectorImpl<CallInst *> &SinCosCalls) {
1590   CallInst *CI = dyn_cast<CallInst>(Val);
1591 
1592   if (!CI)
1593     return;
1594 
1595   // Don't consider calls in other functions.
1596   if (CI->getFunction() != F)
1597     return;
1598 
1599   Function *Callee = CI->getCalledFunction();
1600   LibFunc Func;
1601   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1602       !isTrigLibCall(CI))
1603     return;
1604 
1605   if (IsFloat) {
1606     if (Func == LibFunc_sinpif)
1607       SinCalls.push_back(CI);
1608     else if (Func == LibFunc_cospif)
1609       CosCalls.push_back(CI);
1610     else if (Func == LibFunc_sincospif_stret)
1611       SinCosCalls.push_back(CI);
1612   } else {
1613     if (Func == LibFunc_sinpi)
1614       SinCalls.push_back(CI);
1615     else if (Func == LibFunc_cospi)
1616       CosCalls.push_back(CI);
1617     else if (Func == LibFunc_sincospi_stret)
1618       SinCosCalls.push_back(CI);
1619   }
1620 }
1621 
1622 //===----------------------------------------------------------------------===//
1623 // Integer Library Call Optimizations
1624 //===----------------------------------------------------------------------===//
1625 
1626 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1627   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1628   Value *Op = CI->getArgOperand(0);
1629   Type *ArgType = Op->getType();
1630   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1631                                        Intrinsic::cttz, ArgType);
1632   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1633   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1634   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1635 
1636   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1637   return B.CreateSelect(Cond, V, B.getInt32(0));
1638 }
1639 
1640 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1641   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1642   Value *Op = CI->getArgOperand(0);
1643   Type *ArgType = Op->getType();
1644   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1645                                        Intrinsic::ctlz, ArgType);
1646   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1647   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1648                   V);
1649   return B.CreateIntCast(V, CI->getType(), false);
1650 }
1651 
1652 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1653   // abs(x) -> x >s -1 ? x : -x
1654   Value *Op = CI->getArgOperand(0);
1655   Value *Pos =
1656       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1657   Value *Neg = B.CreateNeg(Op, "neg");
1658   return B.CreateSelect(Pos, Op, Neg);
1659 }
1660 
1661 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1662   // isdigit(c) -> (c-'0') <u 10
1663   Value *Op = CI->getArgOperand(0);
1664   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1665   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1666   return B.CreateZExt(Op, CI->getType());
1667 }
1668 
1669 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1670   // isascii(c) -> c <u 128
1671   Value *Op = CI->getArgOperand(0);
1672   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1673   return B.CreateZExt(Op, CI->getType());
1674 }
1675 
1676 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1677   // toascii(c) -> c & 0x7f
1678   return B.CreateAnd(CI->getArgOperand(0),
1679                      ConstantInt::get(CI->getType(), 0x7F));
1680 }
1681 
1682 //===----------------------------------------------------------------------===//
1683 // Formatting and IO Library Call Optimizations
1684 //===----------------------------------------------------------------------===//
1685 
1686 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1687 
1688 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1689                                                  int StreamArg) {
1690   Function *Callee = CI->getCalledFunction();
1691   // Error reporting calls should be cold, mark them as such.
1692   // This applies even to non-builtin calls: it is only a hint and applies to
1693   // functions that the frontend might not understand as builtins.
1694 
1695   // This heuristic was suggested in:
1696   // Improving Static Branch Prediction in a Compiler
1697   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1698   // Proceedings of PACT'98, Oct. 1998, IEEE
1699   if (!CI->hasFnAttr(Attribute::Cold) &&
1700       isReportingError(Callee, CI, StreamArg)) {
1701     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1702   }
1703 
1704   return nullptr;
1705 }
1706 
1707 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1708   if (!Callee || !Callee->isDeclaration())
1709     return false;
1710 
1711   if (StreamArg < 0)
1712     return true;
1713 
1714   // These functions might be considered cold, but only if their stream
1715   // argument is stderr.
1716 
1717   if (StreamArg >= (int)CI->getNumArgOperands())
1718     return false;
1719   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1720   if (!LI)
1721     return false;
1722   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1723   if (!GV || !GV->isDeclaration())
1724     return false;
1725   return GV->getName() == "stderr";
1726 }
1727 
1728 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1729   // Check for a fixed format string.
1730   StringRef FormatStr;
1731   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1732     return nullptr;
1733 
1734   // Empty format string -> noop.
1735   if (FormatStr.empty()) // Tolerate printf's declared void.
1736     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1737 
1738   // Do not do any of the following transformations if the printf return value
1739   // is used, in general the printf return value is not compatible with either
1740   // putchar() or puts().
1741   if (!CI->use_empty())
1742     return nullptr;
1743 
1744   // printf("x") -> putchar('x'), even for "%" and "%%".
1745   if (FormatStr.size() == 1 || FormatStr == "%%")
1746     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1747 
1748   // printf("%s", "a") --> putchar('a')
1749   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1750     StringRef ChrStr;
1751     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1752       return nullptr;
1753     if (ChrStr.size() != 1)
1754       return nullptr;
1755     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1756   }
1757 
1758   // printf("foo\n") --> puts("foo")
1759   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1760       FormatStr.find('%') == StringRef::npos) { // No format characters.
1761     // Create a string literal with no \n on it.  We expect the constant merge
1762     // pass to be run after this pass, to merge duplicate strings.
1763     FormatStr = FormatStr.drop_back();
1764     Value *GV = B.CreateGlobalString(FormatStr, "str");
1765     return emitPutS(GV, B, TLI);
1766   }
1767 
1768   // Optimize specific format strings.
1769   // printf("%c", chr) --> putchar(chr)
1770   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1771       CI->getArgOperand(1)->getType()->isIntegerTy())
1772     return emitPutChar(CI->getArgOperand(1), B, TLI);
1773 
1774   // printf("%s\n", str) --> puts(str)
1775   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1776       CI->getArgOperand(1)->getType()->isPointerTy())
1777     return emitPutS(CI->getArgOperand(1), B, TLI);
1778   return nullptr;
1779 }
1780 
1781 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1782 
1783   Function *Callee = CI->getCalledFunction();
1784   FunctionType *FT = Callee->getFunctionType();
1785   if (Value *V = optimizePrintFString(CI, B)) {
1786     return V;
1787   }
1788 
1789   // printf(format, ...) -> iprintf(format, ...) if no floating point
1790   // arguments.
1791   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1792     Module *M = B.GetInsertBlock()->getParent()->getParent();
1793     Constant *IPrintFFn =
1794         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1795     CallInst *New = cast<CallInst>(CI->clone());
1796     New->setCalledFunction(IPrintFFn);
1797     B.Insert(New);
1798     return New;
1799   }
1800   return nullptr;
1801 }
1802 
1803 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1804   // Check for a fixed format string.
1805   StringRef FormatStr;
1806   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1807     return nullptr;
1808 
1809   // If we just have a format string (nothing else crazy) transform it.
1810   if (CI->getNumArgOperands() == 2) {
1811     // Make sure there's no % in the constant array.  We could try to handle
1812     // %% -> % in the future if we cared.
1813     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1814       if (FormatStr[i] == '%')
1815         return nullptr; // we found a format specifier, bail out.
1816 
1817     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1818     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1819                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1820                                     FormatStr.size() + 1)); // Copy the null byte.
1821     return ConstantInt::get(CI->getType(), FormatStr.size());
1822   }
1823 
1824   // The remaining optimizations require the format string to be "%s" or "%c"
1825   // and have an extra operand.
1826   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1827       CI->getNumArgOperands() < 3)
1828     return nullptr;
1829 
1830   // Decode the second character of the format string.
1831   if (FormatStr[1] == 'c') {
1832     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1833     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1834       return nullptr;
1835     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1836     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1837     B.CreateStore(V, Ptr);
1838     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1839     B.CreateStore(B.getInt8(0), Ptr);
1840 
1841     return ConstantInt::get(CI->getType(), 1);
1842   }
1843 
1844   if (FormatStr[1] == 's') {
1845     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1846     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1847       return nullptr;
1848 
1849     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1850     if (!Len)
1851       return nullptr;
1852     Value *IncLen =
1853         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1854     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
1855 
1856     // The sprintf result is the unincremented number of bytes in the string.
1857     return B.CreateIntCast(Len, CI->getType(), false);
1858   }
1859   return nullptr;
1860 }
1861 
1862 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1863   Function *Callee = CI->getCalledFunction();
1864   FunctionType *FT = Callee->getFunctionType();
1865   if (Value *V = optimizeSPrintFString(CI, B)) {
1866     return V;
1867   }
1868 
1869   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1870   // point arguments.
1871   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1872     Module *M = B.GetInsertBlock()->getParent()->getParent();
1873     Constant *SIPrintFFn =
1874         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1875     CallInst *New = cast<CallInst>(CI->clone());
1876     New->setCalledFunction(SIPrintFFn);
1877     B.Insert(New);
1878     return New;
1879   }
1880   return nullptr;
1881 }
1882 
1883 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1884   optimizeErrorReporting(CI, B, 0);
1885 
1886   // All the optimizations depend on the format string.
1887   StringRef FormatStr;
1888   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1889     return nullptr;
1890 
1891   // Do not do any of the following transformations if the fprintf return
1892   // value is used, in general the fprintf return value is not compatible
1893   // with fwrite(), fputc() or fputs().
1894   if (!CI->use_empty())
1895     return nullptr;
1896 
1897   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1898   if (CI->getNumArgOperands() == 2) {
1899     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1900       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1901         return nullptr;        // We found a format specifier.
1902 
1903     return emitFWrite(
1904         CI->getArgOperand(1),
1905         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1906         CI->getArgOperand(0), B, DL, TLI);
1907   }
1908 
1909   // The remaining optimizations require the format string to be "%s" or "%c"
1910   // and have an extra operand.
1911   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1912       CI->getNumArgOperands() < 3)
1913     return nullptr;
1914 
1915   // Decode the second character of the format string.
1916   if (FormatStr[1] == 'c') {
1917     // fprintf(F, "%c", chr) --> fputc(chr, F)
1918     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1919       return nullptr;
1920     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1921   }
1922 
1923   if (FormatStr[1] == 's') {
1924     // fprintf(F, "%s", str) --> fputs(str, F)
1925     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1926       return nullptr;
1927     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1928   }
1929   return nullptr;
1930 }
1931 
1932 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1933   Function *Callee = CI->getCalledFunction();
1934   FunctionType *FT = Callee->getFunctionType();
1935   if (Value *V = optimizeFPrintFString(CI, B)) {
1936     return V;
1937   }
1938 
1939   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1940   // floating point arguments.
1941   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1942     Module *M = B.GetInsertBlock()->getParent()->getParent();
1943     Constant *FIPrintFFn =
1944         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1945     CallInst *New = cast<CallInst>(CI->clone());
1946     New->setCalledFunction(FIPrintFFn);
1947     B.Insert(New);
1948     return New;
1949   }
1950   return nullptr;
1951 }
1952 
1953 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1954   optimizeErrorReporting(CI, B, 3);
1955 
1956   // Get the element size and count.
1957   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1958   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1959   if (!SizeC || !CountC)
1960     return nullptr;
1961   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1962 
1963   // If this is writing zero records, remove the call (it's a noop).
1964   if (Bytes == 0)
1965     return ConstantInt::get(CI->getType(), 0);
1966 
1967   // If this is writing one byte, turn it into fputc.
1968   // This optimisation is only valid, if the return value is unused.
1969   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1970     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1971     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1972     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1973   }
1974 
1975   return nullptr;
1976 }
1977 
1978 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1979   optimizeErrorReporting(CI, B, 1);
1980 
1981   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1982   // requires more arguments and thus extra MOVs are required.
1983   if (CI->getParent()->getParent()->optForSize())
1984     return nullptr;
1985 
1986   // We can't optimize if return value is used.
1987   if (!CI->use_empty())
1988     return nullptr;
1989 
1990   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1991   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1992   if (!Len)
1993     return nullptr;
1994 
1995   // Known to have no uses (see above).
1996   return emitFWrite(
1997       CI->getArgOperand(0),
1998       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1999       CI->getArgOperand(1), B, DL, TLI);
2000 }
2001 
2002 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2003   // Check for a constant string.
2004   StringRef Str;
2005   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2006     return nullptr;
2007 
2008   if (Str.empty() && CI->use_empty()) {
2009     // puts("") -> putchar('\n')
2010     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2011     if (CI->use_empty() || !Res)
2012       return Res;
2013     return B.CreateIntCast(Res, CI->getType(), true);
2014   }
2015 
2016   return nullptr;
2017 }
2018 
2019 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2020   LibFunc Func;
2021   SmallString<20> FloatFuncName = FuncName;
2022   FloatFuncName += 'f';
2023   if (TLI->getLibFunc(FloatFuncName, Func))
2024     return TLI->has(Func);
2025   return false;
2026 }
2027 
2028 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2029                                                       IRBuilder<> &Builder) {
2030   LibFunc Func;
2031   Function *Callee = CI->getCalledFunction();
2032   // Check for string/memory library functions.
2033   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2034     // Make sure we never change the calling convention.
2035     assert((ignoreCallingConv(Func) ||
2036             isCallingConvCCompatible(CI)) &&
2037       "Optimizing string/memory libcall would change the calling convention");
2038     switch (Func) {
2039     case LibFunc_strcat:
2040       return optimizeStrCat(CI, Builder);
2041     case LibFunc_strncat:
2042       return optimizeStrNCat(CI, Builder);
2043     case LibFunc_strchr:
2044       return optimizeStrChr(CI, Builder);
2045     case LibFunc_strrchr:
2046       return optimizeStrRChr(CI, Builder);
2047     case LibFunc_strcmp:
2048       return optimizeStrCmp(CI, Builder);
2049     case LibFunc_strncmp:
2050       return optimizeStrNCmp(CI, Builder);
2051     case LibFunc_strcpy:
2052       return optimizeStrCpy(CI, Builder);
2053     case LibFunc_stpcpy:
2054       return optimizeStpCpy(CI, Builder);
2055     case LibFunc_strncpy:
2056       return optimizeStrNCpy(CI, Builder);
2057     case LibFunc_strlen:
2058       return optimizeStrLen(CI, Builder);
2059     case LibFunc_strpbrk:
2060       return optimizeStrPBrk(CI, Builder);
2061     case LibFunc_strtol:
2062     case LibFunc_strtod:
2063     case LibFunc_strtof:
2064     case LibFunc_strtoul:
2065     case LibFunc_strtoll:
2066     case LibFunc_strtold:
2067     case LibFunc_strtoull:
2068       return optimizeStrTo(CI, Builder);
2069     case LibFunc_strspn:
2070       return optimizeStrSpn(CI, Builder);
2071     case LibFunc_strcspn:
2072       return optimizeStrCSpn(CI, Builder);
2073     case LibFunc_strstr:
2074       return optimizeStrStr(CI, Builder);
2075     case LibFunc_memchr:
2076       return optimizeMemChr(CI, Builder);
2077     case LibFunc_memcmp:
2078       return optimizeMemCmp(CI, Builder);
2079     case LibFunc_memcpy:
2080       return optimizeMemCpy(CI, Builder);
2081     case LibFunc_memmove:
2082       return optimizeMemMove(CI, Builder);
2083     case LibFunc_memset:
2084       return optimizeMemSet(CI, Builder);
2085     case LibFunc_wcslen:
2086       return optimizeWcslen(CI, Builder);
2087     default:
2088       break;
2089     }
2090   }
2091   return nullptr;
2092 }
2093 
2094 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2095                                                        LibFunc Func,
2096                                                        IRBuilder<> &Builder) {
2097   // Don't optimize calls that require strict floating point semantics.
2098   if (CI->isStrictFP())
2099     return nullptr;
2100 
2101   switch (Func) {
2102   case LibFunc_cosf:
2103   case LibFunc_cos:
2104   case LibFunc_cosl:
2105     return optimizeCos(CI, Builder);
2106   case LibFunc_sinpif:
2107   case LibFunc_sinpi:
2108   case LibFunc_cospif:
2109   case LibFunc_cospi:
2110     return optimizeSinCosPi(CI, Builder);
2111   case LibFunc_powf:
2112   case LibFunc_pow:
2113   case LibFunc_powl:
2114     return optimizePow(CI, Builder);
2115   case LibFunc_exp2l:
2116   case LibFunc_exp2:
2117   case LibFunc_exp2f:
2118     return optimizeExp2(CI, Builder);
2119   case LibFunc_fabsf:
2120   case LibFunc_fabs:
2121   case LibFunc_fabsl:
2122     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2123   case LibFunc_sqrtf:
2124   case LibFunc_sqrt:
2125   case LibFunc_sqrtl:
2126     return optimizeSqrt(CI, Builder);
2127   case LibFunc_log:
2128   case LibFunc_log10:
2129   case LibFunc_log1p:
2130   case LibFunc_log2:
2131   case LibFunc_logb:
2132     return optimizeLog(CI, Builder);
2133   case LibFunc_tan:
2134   case LibFunc_tanf:
2135   case LibFunc_tanl:
2136     return optimizeTan(CI, Builder);
2137   case LibFunc_ceil:
2138     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2139   case LibFunc_floor:
2140     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2141   case LibFunc_round:
2142     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2143   case LibFunc_nearbyint:
2144     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2145   case LibFunc_rint:
2146     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2147   case LibFunc_trunc:
2148     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2149   case LibFunc_acos:
2150   case LibFunc_acosh:
2151   case LibFunc_asin:
2152   case LibFunc_asinh:
2153   case LibFunc_atan:
2154   case LibFunc_atanh:
2155   case LibFunc_cbrt:
2156   case LibFunc_cosh:
2157   case LibFunc_exp:
2158   case LibFunc_exp10:
2159   case LibFunc_expm1:
2160   case LibFunc_sin:
2161   case LibFunc_sinh:
2162   case LibFunc_tanh:
2163     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2164       return optimizeUnaryDoubleFP(CI, Builder, true);
2165     return nullptr;
2166   case LibFunc_copysign:
2167     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2168       return optimizeBinaryDoubleFP(CI, Builder);
2169     return nullptr;
2170   case LibFunc_fminf:
2171   case LibFunc_fmin:
2172   case LibFunc_fminl:
2173   case LibFunc_fmaxf:
2174   case LibFunc_fmax:
2175   case LibFunc_fmaxl:
2176     return optimizeFMinFMax(CI, Builder);
2177   case LibFunc_cabs:
2178   case LibFunc_cabsf:
2179   case LibFunc_cabsl:
2180     return optimizeCAbs(CI, Builder);
2181   default:
2182     return nullptr;
2183   }
2184 }
2185 
2186 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2187   // TODO: Split out the code below that operates on FP calls so that
2188   //       we can all non-FP calls with the StrictFP attribute to be
2189   //       optimized.
2190   if (CI->isNoBuiltin())
2191     return nullptr;
2192 
2193   LibFunc Func;
2194   Function *Callee = CI->getCalledFunction();
2195 
2196   SmallVector<OperandBundleDef, 2> OpBundles;
2197   CI->getOperandBundlesAsDefs(OpBundles);
2198   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2199   bool isCallingConvC = isCallingConvCCompatible(CI);
2200 
2201   // Command-line parameter overrides instruction attribute.
2202   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2203   // used by the intrinsic optimizations.
2204   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2205     UnsafeFPShrink = EnableUnsafeFPShrink;
2206   else if (isa<FPMathOperator>(CI) && CI->isFast())
2207     UnsafeFPShrink = true;
2208 
2209   // First, check for intrinsics.
2210   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2211     if (!isCallingConvC)
2212       return nullptr;
2213     // The FP intrinsics have corresponding constrained versions so we don't
2214     // need to check for the StrictFP attribute here.
2215     switch (II->getIntrinsicID()) {
2216     case Intrinsic::pow:
2217       return optimizePow(CI, Builder);
2218     case Intrinsic::exp2:
2219       return optimizeExp2(CI, Builder);
2220     case Intrinsic::log:
2221       return optimizeLog(CI, Builder);
2222     case Intrinsic::sqrt:
2223       return optimizeSqrt(CI, Builder);
2224     // TODO: Use foldMallocMemset() with memset intrinsic.
2225     default:
2226       return nullptr;
2227     }
2228   }
2229 
2230   // Also try to simplify calls to fortified library functions.
2231   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2232     // Try to further simplify the result.
2233     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2234     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2235       // Use an IR Builder from SimplifiedCI if available instead of CI
2236       // to guarantee we reach all uses we might replace later on.
2237       IRBuilder<> TmpBuilder(SimplifiedCI);
2238       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2239         // If we were able to further simplify, remove the now redundant call.
2240         SimplifiedCI->replaceAllUsesWith(V);
2241         SimplifiedCI->eraseFromParent();
2242         return V;
2243       }
2244     }
2245     return SimplifiedFortifiedCI;
2246   }
2247 
2248   // Then check for known library functions.
2249   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2250     // We never change the calling convention.
2251     if (!ignoreCallingConv(Func) && !isCallingConvC)
2252       return nullptr;
2253     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2254       return V;
2255     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2256       return V;
2257     switch (Func) {
2258     case LibFunc_ffs:
2259     case LibFunc_ffsl:
2260     case LibFunc_ffsll:
2261       return optimizeFFS(CI, Builder);
2262     case LibFunc_fls:
2263     case LibFunc_flsl:
2264     case LibFunc_flsll:
2265       return optimizeFls(CI, Builder);
2266     case LibFunc_abs:
2267     case LibFunc_labs:
2268     case LibFunc_llabs:
2269       return optimizeAbs(CI, Builder);
2270     case LibFunc_isdigit:
2271       return optimizeIsDigit(CI, Builder);
2272     case LibFunc_isascii:
2273       return optimizeIsAscii(CI, Builder);
2274     case LibFunc_toascii:
2275       return optimizeToAscii(CI, Builder);
2276     case LibFunc_printf:
2277       return optimizePrintF(CI, Builder);
2278     case LibFunc_sprintf:
2279       return optimizeSPrintF(CI, Builder);
2280     case LibFunc_fprintf:
2281       return optimizeFPrintF(CI, Builder);
2282     case LibFunc_fwrite:
2283       return optimizeFWrite(CI, Builder);
2284     case LibFunc_fputs:
2285       return optimizeFPuts(CI, Builder);
2286     case LibFunc_puts:
2287       return optimizePuts(CI, Builder);
2288     case LibFunc_perror:
2289       return optimizeErrorReporting(CI, Builder);
2290     case LibFunc_vfprintf:
2291     case LibFunc_fiprintf:
2292       return optimizeErrorReporting(CI, Builder, 0);
2293     case LibFunc_fputc:
2294       return optimizeErrorReporting(CI, Builder, 1);
2295     default:
2296       return nullptr;
2297     }
2298   }
2299   return nullptr;
2300 }
2301 
2302 LibCallSimplifier::LibCallSimplifier(
2303     const DataLayout &DL, const TargetLibraryInfo *TLI,
2304     OptimizationRemarkEmitter &ORE,
2305     function_ref<void(Instruction *, Value *)> Replacer)
2306     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2307       UnsafeFPShrink(false), Replacer(Replacer) {}
2308 
2309 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2310   // Indirect through the replacer used in this instance.
2311   Replacer(I, With);
2312 }
2313 
2314 // TODO:
2315 //   Additional cases that we need to add to this file:
2316 //
2317 // cbrt:
2318 //   * cbrt(expN(X))  -> expN(x/3)
2319 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2320 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2321 //
2322 // exp, expf, expl:
2323 //   * exp(log(x))  -> x
2324 //
2325 // log, logf, logl:
2326 //   * log(exp(x))   -> x
2327 //   * log(exp(y))   -> y*log(e)
2328 //   * log(exp10(y)) -> y*log(10)
2329 //   * log(sqrt(x))  -> 0.5*log(x)
2330 //
2331 // pow, powf, powl:
2332 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2333 //   * pow(pow(x,y),z)-> pow(x,y*z)
2334 //
2335 // signbit:
2336 //   * signbit(cnst) -> cnst'
2337 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2338 //
2339 // sqrt, sqrtf, sqrtl:
2340 //   * sqrt(expN(x))  -> expN(x*0.5)
2341 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2342 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2343 //
2344 
2345 //===----------------------------------------------------------------------===//
2346 // Fortified Library Call Optimizations
2347 //===----------------------------------------------------------------------===//
2348 
2349 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2350                                                          unsigned ObjSizeOp,
2351                                                          unsigned SizeOp,
2352                                                          bool isString) {
2353   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2354     return true;
2355   if (ConstantInt *ObjSizeCI =
2356           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2357     if (ObjSizeCI->isMinusOne())
2358       return true;
2359     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2360     if (OnlyLowerUnknownSize)
2361       return false;
2362     if (isString) {
2363       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2364       // If the length is 0 we don't know how long it is and so we can't
2365       // remove the check.
2366       if (Len == 0)
2367         return false;
2368       return ObjSizeCI->getZExtValue() >= Len;
2369     }
2370     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2371       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2372   }
2373   return false;
2374 }
2375 
2376 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2377                                                      IRBuilder<> &B) {
2378   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2379     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2380                    CI->getArgOperand(2));
2381     return CI->getArgOperand(0);
2382   }
2383   return nullptr;
2384 }
2385 
2386 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2387                                                       IRBuilder<> &B) {
2388   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2389     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2390                     CI->getArgOperand(2));
2391     return CI->getArgOperand(0);
2392   }
2393   return nullptr;
2394 }
2395 
2396 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2397                                                      IRBuilder<> &B) {
2398   // TODO: Try foldMallocMemset() here.
2399 
2400   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2401     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2402     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2403     return CI->getArgOperand(0);
2404   }
2405   return nullptr;
2406 }
2407 
2408 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2409                                                       IRBuilder<> &B,
2410                                                       LibFunc Func) {
2411   Function *Callee = CI->getCalledFunction();
2412   StringRef Name = Callee->getName();
2413   const DataLayout &DL = CI->getModule()->getDataLayout();
2414   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2415         *ObjSize = CI->getArgOperand(2);
2416 
2417   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2418   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2419     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2420     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2421   }
2422 
2423   // If a) we don't have any length information, or b) we know this will
2424   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2425   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2426   // TODO: It might be nice to get a maximum length out of the possible
2427   // string lengths for varying.
2428   if (isFortifiedCallFoldable(CI, 2, 1, true))
2429     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2430 
2431   if (OnlyLowerUnknownSize)
2432     return nullptr;
2433 
2434   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2435   uint64_t Len = GetStringLength(Src);
2436   if (Len == 0)
2437     return nullptr;
2438 
2439   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2440   Value *LenV = ConstantInt::get(SizeTTy, Len);
2441   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2442   // If the function was an __stpcpy_chk, and we were able to fold it into
2443   // a __memcpy_chk, we still need to return the correct end pointer.
2444   if (Ret && Func == LibFunc_stpcpy_chk)
2445     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2446   return Ret;
2447 }
2448 
2449 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2450                                                        IRBuilder<> &B,
2451                                                        LibFunc Func) {
2452   Function *Callee = CI->getCalledFunction();
2453   StringRef Name = Callee->getName();
2454   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2455     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2456                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2457     return Ret;
2458   }
2459   return nullptr;
2460 }
2461 
2462 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2463   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2464   // Some clang users checked for _chk libcall availability using:
2465   //   __has_builtin(__builtin___memcpy_chk)
2466   // When compiling with -fno-builtin, this is always true.
2467   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2468   // end up with fortified libcalls, which isn't acceptable in a freestanding
2469   // environment which only provides their non-fortified counterparts.
2470   //
2471   // Until we change clang and/or teach external users to check for availability
2472   // differently, disregard the "nobuiltin" attribute and TLI::has.
2473   //
2474   // PR23093.
2475 
2476   LibFunc Func;
2477   Function *Callee = CI->getCalledFunction();
2478 
2479   SmallVector<OperandBundleDef, 2> OpBundles;
2480   CI->getOperandBundlesAsDefs(OpBundles);
2481   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2482   bool isCallingConvC = isCallingConvCCompatible(CI);
2483 
2484   // First, check that this is a known library functions and that the prototype
2485   // is correct.
2486   if (!TLI->getLibFunc(*Callee, Func))
2487     return nullptr;
2488 
2489   // We never change the calling convention.
2490   if (!ignoreCallingConv(Func) && !isCallingConvC)
2491     return nullptr;
2492 
2493   switch (Func) {
2494   case LibFunc_memcpy_chk:
2495     return optimizeMemCpyChk(CI, Builder);
2496   case LibFunc_memmove_chk:
2497     return optimizeMemMoveChk(CI, Builder);
2498   case LibFunc_memset_chk:
2499     return optimizeMemSetChk(CI, Builder);
2500   case LibFunc_stpcpy_chk:
2501   case LibFunc_strcpy_chk:
2502     return optimizeStrpCpyChk(CI, Builder, Func);
2503   case LibFunc_stpncpy_chk:
2504   case LibFunc_strncpy_chk:
2505     return optimizeStrpNCpyChk(CI, Builder, Func);
2506   default:
2507     break;
2508   }
2509   return nullptr;
2510 }
2511 
2512 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2513     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2514     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2515