1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 108 if (Base < 2 || Base > 36) 109 // handle special zero base 110 if (Base != 0) 111 return nullptr; 112 113 char *End; 114 std::string nptr = Str.str(); 115 errno = 0; 116 long long int Result = strtoll(nptr.c_str(), &End, Base); 117 if (errno) 118 return nullptr; 119 120 // if we assume all possible target locales are ASCII supersets, 121 // then if strtoll successfully parses a number on the host, 122 // it will also successfully parse the same way on the target 123 if (*End != '\0') 124 return nullptr; 125 126 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 127 return nullptr; 128 129 return ConstantInt::get(CI->getType(), Result); 130 } 131 132 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 133 const TargetLibraryInfo *TLI) { 134 CallInst *FOpen = dyn_cast<CallInst>(File); 135 if (!FOpen) 136 return false; 137 138 Function *InnerCallee = FOpen->getCalledFunction(); 139 if (!InnerCallee) 140 return false; 141 142 LibFunc Func; 143 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 144 Func != LibFunc_fopen) 145 return false; 146 147 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 148 if (PointerMayBeCaptured(File, true, true)) 149 return false; 150 151 return true; 152 } 153 154 static bool isOnlyUsedInComparisonWithZero(Value *V) { 155 for (User *U : V->users()) { 156 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 157 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 158 if (C->isNullValue()) 159 continue; 160 // Unknown instruction. 161 return false; 162 } 163 return true; 164 } 165 166 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 167 const DataLayout &DL) { 168 if (!isOnlyUsedInComparisonWithZero(CI)) 169 return false; 170 171 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 172 return false; 173 174 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 175 return false; 176 177 return true; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // String and Memory Library Call Optimizations 182 //===----------------------------------------------------------------------===// 183 184 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 185 // Extract some information from the instruction 186 Value *Dst = CI->getArgOperand(0); 187 Value *Src = CI->getArgOperand(1); 188 189 // See if we can get the length of the input string. 190 uint64_t Len = GetStringLength(Src); 191 if (Len == 0) 192 return nullptr; 193 --Len; // Unbias length. 194 195 // Handle the simple, do-nothing case: strcat(x, "") -> x 196 if (Len == 0) 197 return Dst; 198 199 return emitStrLenMemCpy(Src, Dst, Len, B); 200 } 201 202 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 203 IRBuilder<> &B) { 204 // We need to find the end of the destination string. That's where the 205 // memory is to be moved to. We just generate a call to strlen. 206 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 207 if (!DstLen) 208 return nullptr; 209 210 // Now that we have the destination's length, we must index into the 211 // destination's pointer to get the actual memcpy destination (end of 212 // the string .. we're concatenating). 213 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 214 215 // We have enough information to now generate the memcpy call to do the 216 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 217 B.CreateMemCpy(CpyDst, 1, Src, 1, 218 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 219 return Dst; 220 } 221 222 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 223 // Extract some information from the instruction. 224 Value *Dst = CI->getArgOperand(0); 225 Value *Src = CI->getArgOperand(1); 226 uint64_t Len; 227 228 // We don't do anything if length is not constant. 229 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 230 Len = LengthArg->getZExtValue(); 231 else 232 return nullptr; 233 234 // See if we can get the length of the input string. 235 uint64_t SrcLen = GetStringLength(Src); 236 if (SrcLen == 0) 237 return nullptr; 238 --SrcLen; // Unbias length. 239 240 // Handle the simple, do-nothing cases: 241 // strncat(x, "", c) -> x 242 // strncat(x, c, 0) -> x 243 if (SrcLen == 0 || Len == 0) 244 return Dst; 245 246 // We don't optimize this case. 247 if (Len < SrcLen) 248 return nullptr; 249 250 // strncat(x, s, c) -> strcat(x, s) 251 // s is constant so the strcat can be optimized further. 252 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 253 } 254 255 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 256 Function *Callee = CI->getCalledFunction(); 257 FunctionType *FT = Callee->getFunctionType(); 258 Value *SrcStr = CI->getArgOperand(0); 259 260 // If the second operand is non-constant, see if we can compute the length 261 // of the input string and turn this into memchr. 262 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 263 if (!CharC) { 264 uint64_t Len = GetStringLength(SrcStr); 265 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 266 return nullptr; 267 268 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 269 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 270 B, DL, TLI); 271 } 272 273 // Otherwise, the character is a constant, see if the first argument is 274 // a string literal. If so, we can constant fold. 275 StringRef Str; 276 if (!getConstantStringInfo(SrcStr, Str)) { 277 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 278 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 279 "strchr"); 280 return nullptr; 281 } 282 283 // Compute the offset, make sure to handle the case when we're searching for 284 // zero (a weird way to spell strlen). 285 size_t I = (0xFF & CharC->getSExtValue()) == 0 286 ? Str.size() 287 : Str.find(CharC->getSExtValue()); 288 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 289 return Constant::getNullValue(CI->getType()); 290 291 // strchr(s+n,c) -> gep(s+n+i,c) 292 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 293 } 294 295 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 296 Value *SrcStr = CI->getArgOperand(0); 297 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 298 299 // Cannot fold anything if we're not looking for a constant. 300 if (!CharC) 301 return nullptr; 302 303 StringRef Str; 304 if (!getConstantStringInfo(SrcStr, Str)) { 305 // strrchr(s, 0) -> strchr(s, 0) 306 if (CharC->isZero()) 307 return emitStrChr(SrcStr, '\0', B, TLI); 308 return nullptr; 309 } 310 311 // Compute the offset. 312 size_t I = (0xFF & CharC->getSExtValue()) == 0 313 ? Str.size() 314 : Str.rfind(CharC->getSExtValue()); 315 if (I == StringRef::npos) // Didn't find the char. Return null. 316 return Constant::getNullValue(CI->getType()); 317 318 // strrchr(s+n,c) -> gep(s+n+i,c) 319 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 320 } 321 322 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 323 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 324 if (Str1P == Str2P) // strcmp(x,x) -> 0 325 return ConstantInt::get(CI->getType(), 0); 326 327 StringRef Str1, Str2; 328 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 329 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 330 331 // strcmp(x, y) -> cnst (if both x and y are constant strings) 332 if (HasStr1 && HasStr2) 333 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 334 335 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 336 return B.CreateNeg( 337 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 338 339 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 340 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 341 342 // strcmp(P, "x") -> memcmp(P, "x", 2) 343 uint64_t Len1 = GetStringLength(Str1P); 344 uint64_t Len2 = GetStringLength(Str2P); 345 if (Len1 && Len2) { 346 return emitMemCmp(Str1P, Str2P, 347 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 348 std::min(Len1, Len2)), 349 B, DL, TLI); 350 } 351 352 // strcmp to memcmp 353 if (!HasStr1 && HasStr2) { 354 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 355 return emitMemCmp( 356 Str1P, Str2P, 357 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 358 TLI); 359 } else if (HasStr1 && !HasStr2) { 360 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 361 return emitMemCmp( 362 Str1P, Str2P, 363 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 364 TLI); 365 } 366 367 return nullptr; 368 } 369 370 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 371 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 372 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 373 return ConstantInt::get(CI->getType(), 0); 374 375 // Get the length argument if it is constant. 376 uint64_t Length; 377 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 378 Length = LengthArg->getZExtValue(); 379 else 380 return nullptr; 381 382 if (Length == 0) // strncmp(x,y,0) -> 0 383 return ConstantInt::get(CI->getType(), 0); 384 385 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 386 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 387 388 StringRef Str1, Str2; 389 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 390 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 391 392 // strncmp(x, y) -> cnst (if both x and y are constant strings) 393 if (HasStr1 && HasStr2) { 394 StringRef SubStr1 = Str1.substr(0, Length); 395 StringRef SubStr2 = Str2.substr(0, Length); 396 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 397 } 398 399 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 400 return B.CreateNeg( 401 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 402 403 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 404 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 405 406 uint64_t Len1 = GetStringLength(Str1P); 407 uint64_t Len2 = GetStringLength(Str2P); 408 409 // strncmp to memcmp 410 if (!HasStr1 && HasStr2) { 411 Len2 = std::min(Len2, Length); 412 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 413 return emitMemCmp( 414 Str1P, Str2P, 415 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 416 TLI); 417 } else if (HasStr1 && !HasStr2) { 418 Len1 = std::min(Len1, Length); 419 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 420 return emitMemCmp( 421 Str1P, Str2P, 422 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 423 TLI); 424 } 425 426 return nullptr; 427 } 428 429 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 430 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 431 if (Dst == Src) // strcpy(x,x) -> x 432 return Src; 433 434 // See if we can get the length of the input string. 435 uint64_t Len = GetStringLength(Src); 436 if (Len == 0) 437 return nullptr; 438 439 // We have enough information to now generate the memcpy call to do the 440 // copy for us. Make a memcpy to copy the nul byte with align = 1. 441 B.CreateMemCpy(Dst, 1, Src, 1, 442 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 443 return Dst; 444 } 445 446 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 447 Function *Callee = CI->getCalledFunction(); 448 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 449 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 450 Value *StrLen = emitStrLen(Src, B, DL, TLI); 451 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 452 } 453 454 // See if we can get the length of the input string. 455 uint64_t Len = GetStringLength(Src); 456 if (Len == 0) 457 return nullptr; 458 459 Type *PT = Callee->getFunctionType()->getParamType(0); 460 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 461 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 462 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 463 464 // We have enough information to now generate the memcpy call to do the 465 // copy for us. Make a memcpy to copy the nul byte with align = 1. 466 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 467 return DstEnd; 468 } 469 470 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 471 Function *Callee = CI->getCalledFunction(); 472 Value *Dst = CI->getArgOperand(0); 473 Value *Src = CI->getArgOperand(1); 474 Value *LenOp = CI->getArgOperand(2); 475 476 // See if we can get the length of the input string. 477 uint64_t SrcLen = GetStringLength(Src); 478 if (SrcLen == 0) 479 return nullptr; 480 --SrcLen; 481 482 if (SrcLen == 0) { 483 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 484 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 485 return Dst; 486 } 487 488 uint64_t Len; 489 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 490 Len = LengthArg->getZExtValue(); 491 else 492 return nullptr; 493 494 if (Len == 0) 495 return Dst; // strncpy(x, y, 0) -> x 496 497 // Let strncpy handle the zero padding 498 if (Len > SrcLen + 1) 499 return nullptr; 500 501 Type *PT = Callee->getFunctionType()->getParamType(0); 502 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 503 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 504 505 return Dst; 506 } 507 508 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 509 unsigned CharSize) { 510 Value *Src = CI->getArgOperand(0); 511 512 // Constant folding: strlen("xyz") -> 3 513 if (uint64_t Len = GetStringLength(Src, CharSize)) 514 return ConstantInt::get(CI->getType(), Len - 1); 515 516 // If s is a constant pointer pointing to a string literal, we can fold 517 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 518 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 519 // We only try to simplify strlen when the pointer s points to an array 520 // of i8. Otherwise, we would need to scale the offset x before doing the 521 // subtraction. This will make the optimization more complex, and it's not 522 // very useful because calling strlen for a pointer of other types is 523 // very uncommon. 524 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 525 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 526 return nullptr; 527 528 ConstantDataArraySlice Slice; 529 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 530 uint64_t NullTermIdx; 531 if (Slice.Array == nullptr) { 532 NullTermIdx = 0; 533 } else { 534 NullTermIdx = ~((uint64_t)0); 535 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 536 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 537 NullTermIdx = I; 538 break; 539 } 540 } 541 // If the string does not have '\0', leave it to strlen to compute 542 // its length. 543 if (NullTermIdx == ~((uint64_t)0)) 544 return nullptr; 545 } 546 547 Value *Offset = GEP->getOperand(2); 548 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 549 Known.Zero.flipAllBits(); 550 uint64_t ArrSize = 551 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 552 553 // KnownZero's bits are flipped, so zeros in KnownZero now represent 554 // bits known to be zeros in Offset, and ones in KnowZero represent 555 // bits unknown in Offset. Therefore, Offset is known to be in range 556 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 557 // unsigned-less-than NullTermIdx. 558 // 559 // If Offset is not provably in the range [0, NullTermIdx], we can still 560 // optimize if we can prove that the program has undefined behavior when 561 // Offset is outside that range. That is the case when GEP->getOperand(0) 562 // is a pointer to an object whose memory extent is NullTermIdx+1. 563 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 564 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 565 NullTermIdx == ArrSize - 1)) { 566 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 567 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 568 Offset); 569 } 570 } 571 572 return nullptr; 573 } 574 575 // strlen(x?"foo":"bars") --> x ? 3 : 4 576 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 577 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 578 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 579 if (LenTrue && LenFalse) { 580 ORE.emit([&]() { 581 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 582 << "folded strlen(select) to select of constants"; 583 }); 584 return B.CreateSelect(SI->getCondition(), 585 ConstantInt::get(CI->getType(), LenTrue - 1), 586 ConstantInt::get(CI->getType(), LenFalse - 1)); 587 } 588 } 589 590 // strlen(x) != 0 --> *x != 0 591 // strlen(x) == 0 --> *x == 0 592 if (isOnlyUsedInZeroEqualityComparison(CI)) 593 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 594 595 return nullptr; 596 } 597 598 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 599 return optimizeStringLength(CI, B, 8); 600 } 601 602 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 603 Module &M = *CI->getModule(); 604 unsigned WCharSize = TLI->getWCharSize(M) * 8; 605 // We cannot perform this optimization without wchar_size metadata. 606 if (WCharSize == 0) 607 return nullptr; 608 609 return optimizeStringLength(CI, B, WCharSize); 610 } 611 612 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 613 StringRef S1, S2; 614 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 615 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 616 617 // strpbrk(s, "") -> nullptr 618 // strpbrk("", s) -> nullptr 619 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 620 return Constant::getNullValue(CI->getType()); 621 622 // Constant folding. 623 if (HasS1 && HasS2) { 624 size_t I = S1.find_first_of(S2); 625 if (I == StringRef::npos) // No match. 626 return Constant::getNullValue(CI->getType()); 627 628 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 629 "strpbrk"); 630 } 631 632 // strpbrk(s, "a") -> strchr(s, 'a') 633 if (HasS2 && S2.size() == 1) 634 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 635 636 return nullptr; 637 } 638 639 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 640 Value *EndPtr = CI->getArgOperand(1); 641 if (isa<ConstantPointerNull>(EndPtr)) { 642 // With a null EndPtr, this function won't capture the main argument. 643 // It would be readonly too, except that it still may write to errno. 644 CI->addParamAttr(0, Attribute::NoCapture); 645 } 646 647 return nullptr; 648 } 649 650 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 651 StringRef S1, S2; 652 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 653 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 654 655 // strspn(s, "") -> 0 656 // strspn("", s) -> 0 657 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 658 return Constant::getNullValue(CI->getType()); 659 660 // Constant folding. 661 if (HasS1 && HasS2) { 662 size_t Pos = S1.find_first_not_of(S2); 663 if (Pos == StringRef::npos) 664 Pos = S1.size(); 665 return ConstantInt::get(CI->getType(), Pos); 666 } 667 668 return nullptr; 669 } 670 671 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 672 StringRef S1, S2; 673 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 674 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 675 676 // strcspn("", s) -> 0 677 if (HasS1 && S1.empty()) 678 return Constant::getNullValue(CI->getType()); 679 680 // Constant folding. 681 if (HasS1 && HasS2) { 682 size_t Pos = S1.find_first_of(S2); 683 if (Pos == StringRef::npos) 684 Pos = S1.size(); 685 return ConstantInt::get(CI->getType(), Pos); 686 } 687 688 // strcspn(s, "") -> strlen(s) 689 if (HasS2 && S2.empty()) 690 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 691 692 return nullptr; 693 } 694 695 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 696 // fold strstr(x, x) -> x. 697 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 698 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 699 700 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 701 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 702 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 703 if (!StrLen) 704 return nullptr; 705 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 706 StrLen, B, DL, TLI); 707 if (!StrNCmp) 708 return nullptr; 709 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 710 ICmpInst *Old = cast<ICmpInst>(*UI++); 711 Value *Cmp = 712 B.CreateICmp(Old->getPredicate(), StrNCmp, 713 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 714 replaceAllUsesWith(Old, Cmp); 715 } 716 return CI; 717 } 718 719 // See if either input string is a constant string. 720 StringRef SearchStr, ToFindStr; 721 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 722 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 723 724 // fold strstr(x, "") -> x. 725 if (HasStr2 && ToFindStr.empty()) 726 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 727 728 // If both strings are known, constant fold it. 729 if (HasStr1 && HasStr2) { 730 size_t Offset = SearchStr.find(ToFindStr); 731 732 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 733 return Constant::getNullValue(CI->getType()); 734 735 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 736 Value *Result = castToCStr(CI->getArgOperand(0), B); 737 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 738 return B.CreateBitCast(Result, CI->getType()); 739 } 740 741 // fold strstr(x, "y") -> strchr(x, 'y'). 742 if (HasStr2 && ToFindStr.size() == 1) { 743 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 744 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 745 } 746 return nullptr; 747 } 748 749 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 750 Value *SrcStr = CI->getArgOperand(0); 751 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 752 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 753 754 // memchr(x, y, 0) -> null 755 if (LenC && LenC->isZero()) 756 return Constant::getNullValue(CI->getType()); 757 758 // From now on we need at least constant length and string. 759 StringRef Str; 760 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 761 return nullptr; 762 763 // Truncate the string to LenC. If Str is smaller than LenC we will still only 764 // scan the string, as reading past the end of it is undefined and we can just 765 // return null if we don't find the char. 766 Str = Str.substr(0, LenC->getZExtValue()); 767 768 // If the char is variable but the input str and length are not we can turn 769 // this memchr call into a simple bit field test. Of course this only works 770 // when the return value is only checked against null. 771 // 772 // It would be really nice to reuse switch lowering here but we can't change 773 // the CFG at this point. 774 // 775 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 776 // after bounds check. 777 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 778 unsigned char Max = 779 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 780 reinterpret_cast<const unsigned char *>(Str.end())); 781 782 // Make sure the bit field we're about to create fits in a register on the 783 // target. 784 // FIXME: On a 64 bit architecture this prevents us from using the 785 // interesting range of alpha ascii chars. We could do better by emitting 786 // two bitfields or shifting the range by 64 if no lower chars are used. 787 if (!DL.fitsInLegalInteger(Max + 1)) 788 return nullptr; 789 790 // For the bit field use a power-of-2 type with at least 8 bits to avoid 791 // creating unnecessary illegal types. 792 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 793 794 // Now build the bit field. 795 APInt Bitfield(Width, 0); 796 for (char C : Str) 797 Bitfield.setBit((unsigned char)C); 798 Value *BitfieldC = B.getInt(Bitfield); 799 800 // Adjust width of "C" to the bitfield width, then mask off the high bits. 801 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 802 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 803 804 // First check that the bit field access is within bounds. 805 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 806 "memchr.bounds"); 807 808 // Create code that checks if the given bit is set in the field. 809 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 810 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 811 812 // Finally merge both checks and cast to pointer type. The inttoptr 813 // implicitly zexts the i1 to intptr type. 814 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 815 } 816 817 // Check if all arguments are constants. If so, we can constant fold. 818 if (!CharC) 819 return nullptr; 820 821 // Compute the offset. 822 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 823 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 824 return Constant::getNullValue(CI->getType()); 825 826 // memchr(s+n,c,l) -> gep(s+n+i,c) 827 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 828 } 829 830 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 831 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 832 833 if (LHS == RHS) // memcmp(s,s,x) -> 0 834 return Constant::getNullValue(CI->getType()); 835 836 // Make sure we have a constant length. 837 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 838 if (!LenC) 839 return nullptr; 840 841 uint64_t Len = LenC->getZExtValue(); 842 if (Len == 0) // memcmp(s1,s2,0) -> 0 843 return Constant::getNullValue(CI->getType()); 844 845 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 846 if (Len == 1) { 847 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 848 CI->getType(), "lhsv"); 849 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 850 CI->getType(), "rhsv"); 851 return B.CreateSub(LHSV, RHSV, "chardiff"); 852 } 853 854 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 855 // TODO: The case where both inputs are constants does not need to be limited 856 // to legal integers or equality comparison. See block below this. 857 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 858 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 859 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 860 861 // First, see if we can fold either argument to a constant. 862 Value *LHSV = nullptr; 863 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 864 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 865 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 866 } 867 Value *RHSV = nullptr; 868 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 869 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 870 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 871 } 872 873 // Don't generate unaligned loads. If either source is constant data, 874 // alignment doesn't matter for that source because there is no load. 875 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 876 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 877 if (!LHSV) { 878 Type *LHSPtrTy = 879 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 880 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 881 } 882 if (!RHSV) { 883 Type *RHSPtrTy = 884 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 885 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 886 } 887 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 888 } 889 } 890 891 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 892 // TODO: This is limited to i8 arrays. 893 StringRef LHSStr, RHSStr; 894 if (getConstantStringInfo(LHS, LHSStr) && 895 getConstantStringInfo(RHS, RHSStr)) { 896 // Make sure we're not reading out-of-bounds memory. 897 if (Len > LHSStr.size() || Len > RHSStr.size()) 898 return nullptr; 899 // Fold the memcmp and normalize the result. This way we get consistent 900 // results across multiple platforms. 901 uint64_t Ret = 0; 902 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 903 if (Cmp < 0) 904 Ret = -1; 905 else if (Cmp > 0) 906 Ret = 1; 907 return ConstantInt::get(CI->getType(), Ret); 908 } 909 910 return nullptr; 911 } 912 913 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 914 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 915 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 916 CI->getArgOperand(2)); 917 return CI->getArgOperand(0); 918 } 919 920 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 921 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 922 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 923 CI->getArgOperand(2)); 924 return CI->getArgOperand(0); 925 } 926 927 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 928 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 929 // This has to be a memset of zeros (bzero). 930 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 931 if (!FillValue || FillValue->getZExtValue() != 0) 932 return nullptr; 933 934 // TODO: We should handle the case where the malloc has more than one use. 935 // This is necessary to optimize common patterns such as when the result of 936 // the malloc is checked against null or when a memset intrinsic is used in 937 // place of a memset library call. 938 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 939 if (!Malloc || !Malloc->hasOneUse()) 940 return nullptr; 941 942 // Is the inner call really malloc()? 943 Function *InnerCallee = Malloc->getCalledFunction(); 944 if (!InnerCallee) 945 return nullptr; 946 947 LibFunc Func; 948 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 949 Func != LibFunc_malloc) 950 return nullptr; 951 952 // The memset must cover the same number of bytes that are malloc'd. 953 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 954 return nullptr; 955 956 // Replace the malloc with a calloc. We need the data layout to know what the 957 // actual size of a 'size_t' parameter is. 958 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 959 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 960 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 961 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 962 Malloc->getArgOperand(0), Malloc->getAttributes(), 963 B, *TLI); 964 if (!Calloc) 965 return nullptr; 966 967 Malloc->replaceAllUsesWith(Calloc); 968 eraseFromParent(Malloc); 969 970 return Calloc; 971 } 972 973 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 974 if (auto *Calloc = foldMallocMemset(CI, B)) 975 return Calloc; 976 977 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 978 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 979 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 980 return CI->getArgOperand(0); 981 } 982 983 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 984 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 985 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 986 987 return nullptr; 988 } 989 990 //===----------------------------------------------------------------------===// 991 // Math Library Optimizations 992 //===----------------------------------------------------------------------===// 993 994 // Replace a libcall \p CI with a call to intrinsic \p IID 995 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 996 // Propagate fast-math flags from the existing call to the new call. 997 IRBuilder<>::FastMathFlagGuard Guard(B); 998 B.setFastMathFlags(CI->getFastMathFlags()); 999 1000 Module *M = CI->getModule(); 1001 Value *V = CI->getArgOperand(0); 1002 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1003 CallInst *NewCall = B.CreateCall(F, V); 1004 NewCall->takeName(CI); 1005 return NewCall; 1006 } 1007 1008 /// Return a variant of Val with float type. 1009 /// Currently this works in two cases: If Val is an FPExtension of a float 1010 /// value to something bigger, simply return the operand. 1011 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1012 /// loss of precision do so. 1013 static Value *valueHasFloatPrecision(Value *Val) { 1014 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1015 Value *Op = Cast->getOperand(0); 1016 if (Op->getType()->isFloatTy()) 1017 return Op; 1018 } 1019 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1020 APFloat F = Const->getValueAPF(); 1021 bool losesInfo; 1022 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1023 &losesInfo); 1024 if (!losesInfo) 1025 return ConstantFP::get(Const->getContext(), F); 1026 } 1027 return nullptr; 1028 } 1029 1030 /// Shrink double -> float functions. 1031 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1032 bool isBinary, bool isPrecise = false) { 1033 if (!CI->getType()->isDoubleTy()) 1034 return nullptr; 1035 1036 // If not all the uses of the function are converted to float, then bail out. 1037 // This matters if the precision of the result is more important than the 1038 // precision of the arguments. 1039 if (isPrecise) 1040 for (User *U : CI->users()) { 1041 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1042 if (!Cast || !Cast->getType()->isFloatTy()) 1043 return nullptr; 1044 } 1045 1046 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1047 Value *V[2]; 1048 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1049 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1050 if (!V[0] || (isBinary && !V[1])) 1051 return nullptr; 1052 1053 // If call isn't an intrinsic, check that it isn't within a function with the 1054 // same name as the float version of this call, otherwise the result is an 1055 // infinite loop. For example, from MinGW-w64: 1056 // 1057 // float expf(float val) { return (float) exp((double) val); } 1058 Function *CalleeFn = CI->getCalledFunction(); 1059 StringRef CalleeNm = CalleeFn->getName(); 1060 AttributeList CalleeAt = CalleeFn->getAttributes(); 1061 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1062 const Function *Fn = CI->getFunction(); 1063 StringRef FnName = Fn->getName(); 1064 if (FnName.back() == 'f' && 1065 FnName.size() == (CalleeNm.size() + 1) && 1066 FnName.startswith(CalleeNm)) 1067 return nullptr; 1068 } 1069 1070 // Propagate the math semantics from the current function to the new function. 1071 IRBuilder<>::FastMathFlagGuard Guard(B); 1072 B.setFastMathFlags(CI->getFastMathFlags()); 1073 1074 // g((double) float) -> (double) gf(float) 1075 Value *R; 1076 if (CalleeFn->isIntrinsic()) { 1077 Module *M = CI->getModule(); 1078 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1079 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1080 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1081 } 1082 else 1083 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1084 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1085 1086 return B.CreateFPExt(R, B.getDoubleTy()); 1087 } 1088 1089 /// Shrink double -> float for unary functions. 1090 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1091 bool isPrecise = false) { 1092 return optimizeDoubleFP(CI, B, false, isPrecise); 1093 } 1094 1095 /// Shrink double -> float for binary functions. 1096 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1097 bool isPrecise = false) { 1098 return optimizeDoubleFP(CI, B, true, isPrecise); 1099 } 1100 1101 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1102 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1103 if (!CI->isFast()) 1104 return nullptr; 1105 1106 // Propagate fast-math flags from the existing call to new instructions. 1107 IRBuilder<>::FastMathFlagGuard Guard(B); 1108 B.setFastMathFlags(CI->getFastMathFlags()); 1109 1110 Value *Real, *Imag; 1111 if (CI->getNumArgOperands() == 1) { 1112 Value *Op = CI->getArgOperand(0); 1113 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1114 Real = B.CreateExtractValue(Op, 0, "real"); 1115 Imag = B.CreateExtractValue(Op, 1, "imag"); 1116 } else { 1117 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1118 Real = CI->getArgOperand(0); 1119 Imag = CI->getArgOperand(1); 1120 } 1121 1122 Value *RealReal = B.CreateFMul(Real, Real); 1123 Value *ImagImag = B.CreateFMul(Imag, Imag); 1124 1125 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1126 CI->getType()); 1127 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1128 } 1129 1130 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1131 IRBuilder<> &B) { 1132 if (!isa<FPMathOperator>(Call)) 1133 return nullptr; 1134 1135 IRBuilder<>::FastMathFlagGuard Guard(B); 1136 B.setFastMathFlags(Call->getFastMathFlags()); 1137 1138 // TODO: Can this be shared to also handle LLVM intrinsics? 1139 Value *X; 1140 switch (Func) { 1141 case LibFunc_sin: 1142 case LibFunc_sinf: 1143 case LibFunc_sinl: 1144 case LibFunc_tan: 1145 case LibFunc_tanf: 1146 case LibFunc_tanl: 1147 // sin(-X) --> -sin(X) 1148 // tan(-X) --> -tan(X) 1149 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1150 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1151 break; 1152 case LibFunc_cos: 1153 case LibFunc_cosf: 1154 case LibFunc_cosl: 1155 // cos(-X) --> cos(X) 1156 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1157 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1158 break; 1159 default: 1160 break; 1161 } 1162 return nullptr; 1163 } 1164 1165 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1166 // Multiplications calculated using Addition Chains. 1167 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1168 1169 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1170 1171 if (InnerChain[Exp]) 1172 return InnerChain[Exp]; 1173 1174 static const unsigned AddChain[33][2] = { 1175 {0, 0}, // Unused. 1176 {0, 0}, // Unused (base case = pow1). 1177 {1, 1}, // Unused (pre-computed). 1178 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1179 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1180 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1181 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1182 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1183 }; 1184 1185 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1186 getPow(InnerChain, AddChain[Exp][1], B)); 1187 return InnerChain[Exp]; 1188 } 1189 1190 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1191 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1192 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1193 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1194 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1195 Module *Mod = Pow->getModule(); 1196 Type *Ty = Pow->getType(); 1197 bool Ignored; 1198 1199 // Evaluate special cases related to a nested function as the base. 1200 1201 // pow(exp(x), y) -> exp(x * y) 1202 // pow(exp2(x), y) -> exp2(x * y) 1203 // If exp{,2}() is used only once, it is better to fold two transcendental 1204 // math functions into one. If used again, exp{,2}() would still have to be 1205 // called with the original argument, then keep both original transcendental 1206 // functions. However, this transformation is only safe with fully relaxed 1207 // math semantics, since, besides rounding differences, it changes overflow 1208 // and underflow behavior quite dramatically. For example: 1209 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1210 // Whereas: 1211 // exp(1000 * 0.001) = exp(1) 1212 // TODO: Loosen the requirement for fully relaxed math semantics. 1213 // TODO: Handle exp10() when more targets have it available. 1214 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1215 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1216 LibFunc LibFn; 1217 1218 Function *CalleeFn = BaseFn->getCalledFunction(); 1219 if (CalleeFn && 1220 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1221 StringRef ExpName; 1222 Intrinsic::ID ID; 1223 Value *ExpFn; 1224 LibFunc LibFnFloat; 1225 LibFunc LibFnDouble; 1226 LibFunc LibFnLongDouble; 1227 1228 switch (LibFn) { 1229 default: 1230 return nullptr; 1231 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1232 ExpName = TLI->getName(LibFunc_exp); 1233 ID = Intrinsic::exp; 1234 LibFnFloat = LibFunc_expf; 1235 LibFnDouble = LibFunc_exp; 1236 LibFnLongDouble = LibFunc_expl; 1237 break; 1238 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1239 ExpName = TLI->getName(LibFunc_exp2); 1240 ID = Intrinsic::exp2; 1241 LibFnFloat = LibFunc_exp2f; 1242 LibFnDouble = LibFunc_exp2; 1243 LibFnLongDouble = LibFunc_exp2l; 1244 break; 1245 } 1246 1247 // Create new exp{,2}() with the product as its argument. 1248 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1249 ExpFn = BaseFn->doesNotAccessMemory() 1250 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1251 FMul, ExpName) 1252 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1253 LibFnLongDouble, B, 1254 BaseFn->getAttributes()); 1255 1256 // Since the new exp{,2}() is different from the original one, dead code 1257 // elimination cannot be trusted to remove it, since it may have side 1258 // effects (e.g., errno). When the only consumer for the original 1259 // exp{,2}() is pow(), then it has to be explicitly erased. 1260 BaseFn->replaceAllUsesWith(ExpFn); 1261 eraseFromParent(BaseFn); 1262 1263 return ExpFn; 1264 } 1265 } 1266 1267 // Evaluate special cases related to a constant base. 1268 1269 const APFloat *BaseF; 1270 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1271 return nullptr; 1272 1273 // pow(2.0 ** n, x) -> exp2(n * x) 1274 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1275 APFloat BaseR = APFloat(1.0); 1276 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1277 BaseR = BaseR / *BaseF; 1278 bool IsInteger = BaseF->isInteger(), 1279 IsReciprocal = BaseR.isInteger(); 1280 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1281 APSInt NI(64, false); 1282 if ((IsInteger || IsReciprocal) && 1283 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1284 NI > 1 && NI.isPowerOf2()) { 1285 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1286 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1287 if (Pow->doesNotAccessMemory()) 1288 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1289 FMul, "exp2"); 1290 else 1291 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1292 LibFunc_exp2l, B, Attrs); 1293 } 1294 } 1295 1296 // pow(10.0, x) -> exp10(x) 1297 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1298 if (match(Base, m_SpecificFP(10.0)) && 1299 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1300 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1301 LibFunc_exp10l, B, Attrs); 1302 1303 return nullptr; 1304 } 1305 1306 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1307 Module *M, IRBuilder<> &B, 1308 const TargetLibraryInfo *TLI) { 1309 // If errno is never set, then use the intrinsic for sqrt(). 1310 if (NoErrno) { 1311 Function *SqrtFn = 1312 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1313 return B.CreateCall(SqrtFn, V, "sqrt"); 1314 } 1315 1316 // Otherwise, use the libcall for sqrt(). 1317 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1318 LibFunc_sqrtl)) 1319 // TODO: We also should check that the target can in fact lower the sqrt() 1320 // libcall. We currently have no way to ask this question, so we ask if 1321 // the target has a sqrt() libcall, which is not exactly the same. 1322 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1323 LibFunc_sqrtl, B, Attrs); 1324 1325 return nullptr; 1326 } 1327 1328 /// Use square root in place of pow(x, +/-0.5). 1329 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1330 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1331 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1332 Module *Mod = Pow->getModule(); 1333 Type *Ty = Pow->getType(); 1334 1335 const APFloat *ExpoF; 1336 if (!match(Expo, m_APFloat(ExpoF)) || 1337 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1338 return nullptr; 1339 1340 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1341 if (!Sqrt) 1342 return nullptr; 1343 1344 // Handle signed zero base by expanding to fabs(sqrt(x)). 1345 if (!Pow->hasNoSignedZeros()) { 1346 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1347 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1348 } 1349 1350 // Handle non finite base by expanding to 1351 // (x == -infinity ? +infinity : sqrt(x)). 1352 if (!Pow->hasNoInfs()) { 1353 Value *PosInf = ConstantFP::getInfinity(Ty), 1354 *NegInf = ConstantFP::getInfinity(Ty, true); 1355 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1356 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1357 } 1358 1359 // If the exponent is negative, then get the reciprocal. 1360 if (ExpoF->isNegative()) 1361 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1362 1363 return Sqrt; 1364 } 1365 1366 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1367 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1368 Function *Callee = Pow->getCalledFunction(); 1369 StringRef Name = Callee->getName(); 1370 Type *Ty = Pow->getType(); 1371 Value *Shrunk = nullptr; 1372 bool Ignored; 1373 1374 // Bail out if simplifying libcalls to pow() is disabled. 1375 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1376 return nullptr; 1377 1378 // Propagate the math semantics from the call to any created instructions. 1379 IRBuilder<>::FastMathFlagGuard Guard(B); 1380 B.setFastMathFlags(Pow->getFastMathFlags()); 1381 1382 // Shrink pow() to powf() if the arguments are single precision, 1383 // unless the result is expected to be double precision. 1384 if (UnsafeFPShrink && 1385 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1386 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1387 1388 // Evaluate special cases related to the base. 1389 1390 // pow(1.0, x) -> 1.0 1391 if (match(Base, m_FPOne())) 1392 return Base; 1393 1394 if (Value *Exp = replacePowWithExp(Pow, B)) 1395 return Exp; 1396 1397 // Evaluate special cases related to the exponent. 1398 1399 // pow(x, -1.0) -> 1.0 / x 1400 if (match(Expo, m_SpecificFP(-1.0))) 1401 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1402 1403 // pow(x, 0.0) -> 1.0 1404 if (match(Expo, m_SpecificFP(0.0))) 1405 return ConstantFP::get(Ty, 1.0); 1406 1407 // pow(x, 1.0) -> x 1408 if (match(Expo, m_FPOne())) 1409 return Base; 1410 1411 // pow(x, 2.0) -> x * x 1412 if (match(Expo, m_SpecificFP(2.0))) 1413 return B.CreateFMul(Base, Base, "square"); 1414 1415 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1416 return Sqrt; 1417 1418 // pow(x, n) -> x * x * x * ... 1419 const APFloat *ExpoF; 1420 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1421 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1422 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1423 // additional fmul. 1424 // TODO: This whole transformation should be backend specific (e.g. some 1425 // backends might prefer libcalls or the limit for the exponent might 1426 // be different) and it should also consider optimizing for size. 1427 APFloat LimF(ExpoF->getSemantics(), 33.0), 1428 ExpoA(abs(*ExpoF)); 1429 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1430 // This transformation applies to integer or integer+0.5 exponents only. 1431 // For integer+0.5, we create a sqrt(Base) call. 1432 Value *Sqrt = nullptr; 1433 if (!ExpoA.isInteger()) { 1434 APFloat Expo2 = ExpoA; 1435 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1436 // is no floating point exception and the result is an integer, then 1437 // ExpoA == integer + 0.5 1438 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1439 return nullptr; 1440 1441 if (!Expo2.isInteger()) 1442 return nullptr; 1443 1444 Sqrt = 1445 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1446 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1447 } 1448 1449 // We will memoize intermediate products of the Addition Chain. 1450 Value *InnerChain[33] = {nullptr}; 1451 InnerChain[1] = Base; 1452 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1453 1454 // We cannot readily convert a non-double type (like float) to a double. 1455 // So we first convert it to something which could be converted to double. 1456 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1457 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1458 1459 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1460 if (Sqrt) 1461 FMul = B.CreateFMul(FMul, Sqrt); 1462 1463 // If the exponent is negative, then get the reciprocal. 1464 if (ExpoF->isNegative()) 1465 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1466 1467 return FMul; 1468 } 1469 } 1470 1471 return Shrunk; 1472 } 1473 1474 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1475 Function *Callee = CI->getCalledFunction(); 1476 Value *Ret = nullptr; 1477 StringRef Name = Callee->getName(); 1478 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1479 Ret = optimizeUnaryDoubleFP(CI, B, true); 1480 1481 Value *Op = CI->getArgOperand(0); 1482 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1483 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1484 LibFunc LdExp = LibFunc_ldexpl; 1485 if (Op->getType()->isFloatTy()) 1486 LdExp = LibFunc_ldexpf; 1487 else if (Op->getType()->isDoubleTy()) 1488 LdExp = LibFunc_ldexp; 1489 1490 if (TLI->has(LdExp)) { 1491 Value *LdExpArg = nullptr; 1492 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1493 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1494 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1495 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1496 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1497 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1498 } 1499 1500 if (LdExpArg) { 1501 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1502 if (!Op->getType()->isFloatTy()) 1503 One = ConstantExpr::getFPExtend(One, Op->getType()); 1504 1505 Module *M = CI->getModule(); 1506 Value *NewCallee = 1507 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1508 Op->getType(), B.getInt32Ty()); 1509 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1510 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1511 CI->setCallingConv(F->getCallingConv()); 1512 1513 return CI; 1514 } 1515 } 1516 return Ret; 1517 } 1518 1519 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1520 Function *Callee = CI->getCalledFunction(); 1521 // If we can shrink the call to a float function rather than a double 1522 // function, do that first. 1523 StringRef Name = Callee->getName(); 1524 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1525 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1526 return Ret; 1527 1528 IRBuilder<>::FastMathFlagGuard Guard(B); 1529 FastMathFlags FMF; 1530 if (CI->isFast()) { 1531 // If the call is 'fast', then anything we create here will also be 'fast'. 1532 FMF.setFast(); 1533 } else { 1534 // At a minimum, no-nans-fp-math must be true. 1535 if (!CI->hasNoNaNs()) 1536 return nullptr; 1537 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1538 // "Ideally, fmax would be sensitive to the sign of zero, for example 1539 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1540 // might be impractical." 1541 FMF.setNoSignedZeros(); 1542 FMF.setNoNaNs(); 1543 } 1544 B.setFastMathFlags(FMF); 1545 1546 // We have a relaxed floating-point environment. We can ignore NaN-handling 1547 // and transform to a compare and select. We do not have to consider errno or 1548 // exceptions, because fmin/fmax do not have those. 1549 Value *Op0 = CI->getArgOperand(0); 1550 Value *Op1 = CI->getArgOperand(1); 1551 Value *Cmp = Callee->getName().startswith("fmin") ? 1552 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1553 return B.CreateSelect(Cmp, Op0, Op1); 1554 } 1555 1556 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1557 Function *Callee = CI->getCalledFunction(); 1558 Value *Ret = nullptr; 1559 StringRef Name = Callee->getName(); 1560 if (UnsafeFPShrink && hasFloatVersion(Name)) 1561 Ret = optimizeUnaryDoubleFP(CI, B, true); 1562 1563 if (!CI->isFast()) 1564 return Ret; 1565 Value *Op1 = CI->getArgOperand(0); 1566 auto *OpC = dyn_cast<CallInst>(Op1); 1567 1568 // The earlier call must also be 'fast' in order to do these transforms. 1569 if (!OpC || !OpC->isFast()) 1570 return Ret; 1571 1572 // log(pow(x,y)) -> y*log(x) 1573 // This is only applicable to log, log2, log10. 1574 if (Name != "log" && Name != "log2" && Name != "log10") 1575 return Ret; 1576 1577 IRBuilder<>::FastMathFlagGuard Guard(B); 1578 FastMathFlags FMF; 1579 FMF.setFast(); 1580 B.setFastMathFlags(FMF); 1581 1582 LibFunc Func; 1583 Function *F = OpC->getCalledFunction(); 1584 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1585 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1586 return B.CreateFMul(OpC->getArgOperand(1), 1587 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1588 Callee->getAttributes()), "mul"); 1589 1590 // log(exp2(y)) -> y*log(2) 1591 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1592 TLI->has(Func) && Func == LibFunc_exp2) 1593 return B.CreateFMul( 1594 OpC->getArgOperand(0), 1595 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1596 Callee->getName(), B, Callee->getAttributes()), 1597 "logmul"); 1598 return Ret; 1599 } 1600 1601 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1602 Function *Callee = CI->getCalledFunction(); 1603 Value *Ret = nullptr; 1604 // TODO: Once we have a way (other than checking for the existince of the 1605 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1606 // condition below. 1607 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1608 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1609 Ret = optimizeUnaryDoubleFP(CI, B, true); 1610 1611 if (!CI->isFast()) 1612 return Ret; 1613 1614 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1615 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1616 return Ret; 1617 1618 // We're looking for a repeated factor in a multiplication tree, 1619 // so we can do this fold: sqrt(x * x) -> fabs(x); 1620 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1621 Value *Op0 = I->getOperand(0); 1622 Value *Op1 = I->getOperand(1); 1623 Value *RepeatOp = nullptr; 1624 Value *OtherOp = nullptr; 1625 if (Op0 == Op1) { 1626 // Simple match: the operands of the multiply are identical. 1627 RepeatOp = Op0; 1628 } else { 1629 // Look for a more complicated pattern: one of the operands is itself 1630 // a multiply, so search for a common factor in that multiply. 1631 // Note: We don't bother looking any deeper than this first level or for 1632 // variations of this pattern because instcombine's visitFMUL and/or the 1633 // reassociation pass should give us this form. 1634 Value *OtherMul0, *OtherMul1; 1635 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1636 // Pattern: sqrt((x * y) * z) 1637 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1638 // Matched: sqrt((x * x) * z) 1639 RepeatOp = OtherMul0; 1640 OtherOp = Op1; 1641 } 1642 } 1643 } 1644 if (!RepeatOp) 1645 return Ret; 1646 1647 // Fast math flags for any created instructions should match the sqrt 1648 // and multiply. 1649 IRBuilder<>::FastMathFlagGuard Guard(B); 1650 B.setFastMathFlags(I->getFastMathFlags()); 1651 1652 // If we found a repeated factor, hoist it out of the square root and 1653 // replace it with the fabs of that factor. 1654 Module *M = Callee->getParent(); 1655 Type *ArgType = I->getType(); 1656 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1657 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1658 if (OtherOp) { 1659 // If we found a non-repeated factor, we still need to get its square 1660 // root. We then multiply that by the value that was simplified out 1661 // of the square root calculation. 1662 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1663 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1664 return B.CreateFMul(FabsCall, SqrtCall); 1665 } 1666 return FabsCall; 1667 } 1668 1669 // TODO: Generalize to handle any trig function and its inverse. 1670 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1671 Function *Callee = CI->getCalledFunction(); 1672 Value *Ret = nullptr; 1673 StringRef Name = Callee->getName(); 1674 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1675 Ret = optimizeUnaryDoubleFP(CI, B, true); 1676 1677 Value *Op1 = CI->getArgOperand(0); 1678 auto *OpC = dyn_cast<CallInst>(Op1); 1679 if (!OpC) 1680 return Ret; 1681 1682 // Both calls must be 'fast' in order to remove them. 1683 if (!CI->isFast() || !OpC->isFast()) 1684 return Ret; 1685 1686 // tan(atan(x)) -> x 1687 // tanf(atanf(x)) -> x 1688 // tanl(atanl(x)) -> x 1689 LibFunc Func; 1690 Function *F = OpC->getCalledFunction(); 1691 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1692 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1693 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1694 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1695 Ret = OpC->getArgOperand(0); 1696 return Ret; 1697 } 1698 1699 static bool isTrigLibCall(CallInst *CI) { 1700 // We can only hope to do anything useful if we can ignore things like errno 1701 // and floating-point exceptions. 1702 // We already checked the prototype. 1703 return CI->hasFnAttr(Attribute::NoUnwind) && 1704 CI->hasFnAttr(Attribute::ReadNone); 1705 } 1706 1707 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1708 bool UseFloat, Value *&Sin, Value *&Cos, 1709 Value *&SinCos) { 1710 Type *ArgTy = Arg->getType(); 1711 Type *ResTy; 1712 StringRef Name; 1713 1714 Triple T(OrigCallee->getParent()->getTargetTriple()); 1715 if (UseFloat) { 1716 Name = "__sincospif_stret"; 1717 1718 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1719 // x86_64 can't use {float, float} since that would be returned in both 1720 // xmm0 and xmm1, which isn't what a real struct would do. 1721 ResTy = T.getArch() == Triple::x86_64 1722 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1723 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1724 } else { 1725 Name = "__sincospi_stret"; 1726 ResTy = StructType::get(ArgTy, ArgTy); 1727 } 1728 1729 Module *M = OrigCallee->getParent(); 1730 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1731 ResTy, ArgTy); 1732 1733 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1734 // If the argument is an instruction, it must dominate all uses so put our 1735 // sincos call there. 1736 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1737 } else { 1738 // Otherwise (e.g. for a constant) the beginning of the function is as 1739 // good a place as any. 1740 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1741 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1742 } 1743 1744 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1745 1746 if (SinCos->getType()->isStructTy()) { 1747 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1748 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1749 } else { 1750 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1751 "sinpi"); 1752 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1753 "cospi"); 1754 } 1755 } 1756 1757 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1758 // Make sure the prototype is as expected, otherwise the rest of the 1759 // function is probably invalid and likely to abort. 1760 if (!isTrigLibCall(CI)) 1761 return nullptr; 1762 1763 Value *Arg = CI->getArgOperand(0); 1764 SmallVector<CallInst *, 1> SinCalls; 1765 SmallVector<CallInst *, 1> CosCalls; 1766 SmallVector<CallInst *, 1> SinCosCalls; 1767 1768 bool IsFloat = Arg->getType()->isFloatTy(); 1769 1770 // Look for all compatible sinpi, cospi and sincospi calls with the same 1771 // argument. If there are enough (in some sense) we can make the 1772 // substitution. 1773 Function *F = CI->getFunction(); 1774 for (User *U : Arg->users()) 1775 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1776 1777 // It's only worthwhile if both sinpi and cospi are actually used. 1778 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1779 return nullptr; 1780 1781 Value *Sin, *Cos, *SinCos; 1782 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1783 1784 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1785 Value *Res) { 1786 for (CallInst *C : Calls) 1787 replaceAllUsesWith(C, Res); 1788 }; 1789 1790 replaceTrigInsts(SinCalls, Sin); 1791 replaceTrigInsts(CosCalls, Cos); 1792 replaceTrigInsts(SinCosCalls, SinCos); 1793 1794 return nullptr; 1795 } 1796 1797 void LibCallSimplifier::classifyArgUse( 1798 Value *Val, Function *F, bool IsFloat, 1799 SmallVectorImpl<CallInst *> &SinCalls, 1800 SmallVectorImpl<CallInst *> &CosCalls, 1801 SmallVectorImpl<CallInst *> &SinCosCalls) { 1802 CallInst *CI = dyn_cast<CallInst>(Val); 1803 1804 if (!CI) 1805 return; 1806 1807 // Don't consider calls in other functions. 1808 if (CI->getFunction() != F) 1809 return; 1810 1811 Function *Callee = CI->getCalledFunction(); 1812 LibFunc Func; 1813 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1814 !isTrigLibCall(CI)) 1815 return; 1816 1817 if (IsFloat) { 1818 if (Func == LibFunc_sinpif) 1819 SinCalls.push_back(CI); 1820 else if (Func == LibFunc_cospif) 1821 CosCalls.push_back(CI); 1822 else if (Func == LibFunc_sincospif_stret) 1823 SinCosCalls.push_back(CI); 1824 } else { 1825 if (Func == LibFunc_sinpi) 1826 SinCalls.push_back(CI); 1827 else if (Func == LibFunc_cospi) 1828 CosCalls.push_back(CI); 1829 else if (Func == LibFunc_sincospi_stret) 1830 SinCosCalls.push_back(CI); 1831 } 1832 } 1833 1834 //===----------------------------------------------------------------------===// 1835 // Integer Library Call Optimizations 1836 //===----------------------------------------------------------------------===// 1837 1838 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1839 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1840 Value *Op = CI->getArgOperand(0); 1841 Type *ArgType = Op->getType(); 1842 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1843 Intrinsic::cttz, ArgType); 1844 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1845 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1846 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1847 1848 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1849 return B.CreateSelect(Cond, V, B.getInt32(0)); 1850 } 1851 1852 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1853 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1854 Value *Op = CI->getArgOperand(0); 1855 Type *ArgType = Op->getType(); 1856 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1857 Intrinsic::ctlz, ArgType); 1858 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1859 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1860 V); 1861 return B.CreateIntCast(V, CI->getType(), false); 1862 } 1863 1864 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1865 // abs(x) -> x <s 0 ? -x : x 1866 // The negation has 'nsw' because abs of INT_MIN is undefined. 1867 Value *X = CI->getArgOperand(0); 1868 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1869 Value *NegX = B.CreateNSWNeg(X, "neg"); 1870 return B.CreateSelect(IsNeg, NegX, X); 1871 } 1872 1873 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1874 // isdigit(c) -> (c-'0') <u 10 1875 Value *Op = CI->getArgOperand(0); 1876 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1877 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1878 return B.CreateZExt(Op, CI->getType()); 1879 } 1880 1881 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1882 // isascii(c) -> c <u 128 1883 Value *Op = CI->getArgOperand(0); 1884 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1885 return B.CreateZExt(Op, CI->getType()); 1886 } 1887 1888 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1889 // toascii(c) -> c & 0x7f 1890 return B.CreateAnd(CI->getArgOperand(0), 1891 ConstantInt::get(CI->getType(), 0x7F)); 1892 } 1893 1894 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1895 StringRef Str; 1896 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1897 return nullptr; 1898 1899 return convertStrToNumber(CI, Str, 10); 1900 } 1901 1902 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1903 StringRef Str; 1904 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1905 return nullptr; 1906 1907 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1908 return nullptr; 1909 1910 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1911 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 //===----------------------------------------------------------------------===// 1918 // Formatting and IO Library Call Optimizations 1919 //===----------------------------------------------------------------------===// 1920 1921 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1922 1923 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1924 int StreamArg) { 1925 Function *Callee = CI->getCalledFunction(); 1926 // Error reporting calls should be cold, mark them as such. 1927 // This applies even to non-builtin calls: it is only a hint and applies to 1928 // functions that the frontend might not understand as builtins. 1929 1930 // This heuristic was suggested in: 1931 // Improving Static Branch Prediction in a Compiler 1932 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1933 // Proceedings of PACT'98, Oct. 1998, IEEE 1934 if (!CI->hasFnAttr(Attribute::Cold) && 1935 isReportingError(Callee, CI, StreamArg)) { 1936 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1937 } 1938 1939 return nullptr; 1940 } 1941 1942 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1943 if (!Callee || !Callee->isDeclaration()) 1944 return false; 1945 1946 if (StreamArg < 0) 1947 return true; 1948 1949 // These functions might be considered cold, but only if their stream 1950 // argument is stderr. 1951 1952 if (StreamArg >= (int)CI->getNumArgOperands()) 1953 return false; 1954 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1955 if (!LI) 1956 return false; 1957 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1958 if (!GV || !GV->isDeclaration()) 1959 return false; 1960 return GV->getName() == "stderr"; 1961 } 1962 1963 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1964 // Check for a fixed format string. 1965 StringRef FormatStr; 1966 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1967 return nullptr; 1968 1969 // Empty format string -> noop. 1970 if (FormatStr.empty()) // Tolerate printf's declared void. 1971 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1972 1973 // Do not do any of the following transformations if the printf return value 1974 // is used, in general the printf return value is not compatible with either 1975 // putchar() or puts(). 1976 if (!CI->use_empty()) 1977 return nullptr; 1978 1979 // printf("x") -> putchar('x'), even for "%" and "%%". 1980 if (FormatStr.size() == 1 || FormatStr == "%%") 1981 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1982 1983 // printf("%s", "a") --> putchar('a') 1984 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1985 StringRef ChrStr; 1986 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1987 return nullptr; 1988 if (ChrStr.size() != 1) 1989 return nullptr; 1990 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1991 } 1992 1993 // printf("foo\n") --> puts("foo") 1994 if (FormatStr[FormatStr.size() - 1] == '\n' && 1995 FormatStr.find('%') == StringRef::npos) { // No format characters. 1996 // Create a string literal with no \n on it. We expect the constant merge 1997 // pass to be run after this pass, to merge duplicate strings. 1998 FormatStr = FormatStr.drop_back(); 1999 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2000 return emitPutS(GV, B, TLI); 2001 } 2002 2003 // Optimize specific format strings. 2004 // printf("%c", chr) --> putchar(chr) 2005 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2006 CI->getArgOperand(1)->getType()->isIntegerTy()) 2007 return emitPutChar(CI->getArgOperand(1), B, TLI); 2008 2009 // printf("%s\n", str) --> puts(str) 2010 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2011 CI->getArgOperand(1)->getType()->isPointerTy()) 2012 return emitPutS(CI->getArgOperand(1), B, TLI); 2013 return nullptr; 2014 } 2015 2016 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2017 2018 Function *Callee = CI->getCalledFunction(); 2019 FunctionType *FT = Callee->getFunctionType(); 2020 if (Value *V = optimizePrintFString(CI, B)) { 2021 return V; 2022 } 2023 2024 // printf(format, ...) -> iprintf(format, ...) if no floating point 2025 // arguments. 2026 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2027 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2028 Constant *IPrintFFn = 2029 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2030 CallInst *New = cast<CallInst>(CI->clone()); 2031 New->setCalledFunction(IPrintFFn); 2032 B.Insert(New); 2033 return New; 2034 } 2035 return nullptr; 2036 } 2037 2038 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2039 // Check for a fixed format string. 2040 StringRef FormatStr; 2041 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2042 return nullptr; 2043 2044 // If we just have a format string (nothing else crazy) transform it. 2045 if (CI->getNumArgOperands() == 2) { 2046 // Make sure there's no % in the constant array. We could try to handle 2047 // %% -> % in the future if we cared. 2048 if (FormatStr.find('%') != StringRef::npos) 2049 return nullptr; // we found a format specifier, bail out. 2050 2051 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2052 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2053 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2054 FormatStr.size() + 1)); // Copy the null byte. 2055 return ConstantInt::get(CI->getType(), FormatStr.size()); 2056 } 2057 2058 // The remaining optimizations require the format string to be "%s" or "%c" 2059 // and have an extra operand. 2060 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2061 CI->getNumArgOperands() < 3) 2062 return nullptr; 2063 2064 // Decode the second character of the format string. 2065 if (FormatStr[1] == 'c') { 2066 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2067 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2068 return nullptr; 2069 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2070 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2071 B.CreateStore(V, Ptr); 2072 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2073 B.CreateStore(B.getInt8(0), Ptr); 2074 2075 return ConstantInt::get(CI->getType(), 1); 2076 } 2077 2078 if (FormatStr[1] == 's') { 2079 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 2080 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2081 return nullptr; 2082 2083 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2084 if (!Len) 2085 return nullptr; 2086 Value *IncLen = 2087 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2088 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2089 2090 // The sprintf result is the unincremented number of bytes in the string. 2091 return B.CreateIntCast(Len, CI->getType(), false); 2092 } 2093 return nullptr; 2094 } 2095 2096 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2097 Function *Callee = CI->getCalledFunction(); 2098 FunctionType *FT = Callee->getFunctionType(); 2099 if (Value *V = optimizeSPrintFString(CI, B)) { 2100 return V; 2101 } 2102 2103 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2104 // point arguments. 2105 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2106 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2107 Constant *SIPrintFFn = 2108 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2109 CallInst *New = cast<CallInst>(CI->clone()); 2110 New->setCalledFunction(SIPrintFFn); 2111 B.Insert(New); 2112 return New; 2113 } 2114 return nullptr; 2115 } 2116 2117 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2118 // Check for a fixed format string. 2119 StringRef FormatStr; 2120 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2121 return nullptr; 2122 2123 // Check for size 2124 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2125 if (!Size) 2126 return nullptr; 2127 2128 uint64_t N = Size->getZExtValue(); 2129 2130 // If we just have a format string (nothing else crazy) transform it. 2131 if (CI->getNumArgOperands() == 3) { 2132 // Make sure there's no % in the constant array. We could try to handle 2133 // %% -> % in the future if we cared. 2134 if (FormatStr.find('%') != StringRef::npos) 2135 return nullptr; // we found a format specifier, bail out. 2136 2137 if (N == 0) 2138 return ConstantInt::get(CI->getType(), FormatStr.size()); 2139 else if (N < FormatStr.size() + 1) 2140 return nullptr; 2141 2142 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 2143 // strlen(fmt)+1) 2144 B.CreateMemCpy( 2145 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2146 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2147 FormatStr.size() + 1)); // Copy the null byte. 2148 return ConstantInt::get(CI->getType(), FormatStr.size()); 2149 } 2150 2151 // The remaining optimizations require the format string to be "%s" or "%c" 2152 // and have an extra operand. 2153 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2154 CI->getNumArgOperands() == 4) { 2155 2156 // Decode the second character of the format string. 2157 if (FormatStr[1] == 'c') { 2158 if (N == 0) 2159 return ConstantInt::get(CI->getType(), 1); 2160 else if (N == 1) 2161 return nullptr; 2162 2163 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2164 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2165 return nullptr; 2166 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2167 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2168 B.CreateStore(V, Ptr); 2169 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2170 B.CreateStore(B.getInt8(0), Ptr); 2171 2172 return ConstantInt::get(CI->getType(), 1); 2173 } 2174 2175 if (FormatStr[1] == 's') { 2176 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2177 StringRef Str; 2178 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2179 return nullptr; 2180 2181 if (N == 0) 2182 return ConstantInt::get(CI->getType(), Str.size()); 2183 else if (N < Str.size() + 1) 2184 return nullptr; 2185 2186 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2187 ConstantInt::get(CI->getType(), Str.size() + 1)); 2188 2189 // The snprintf result is the unincremented number of bytes in the string. 2190 return ConstantInt::get(CI->getType(), Str.size()); 2191 } 2192 } 2193 return nullptr; 2194 } 2195 2196 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2197 if (Value *V = optimizeSnPrintFString(CI, B)) { 2198 return V; 2199 } 2200 2201 return nullptr; 2202 } 2203 2204 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2205 optimizeErrorReporting(CI, B, 0); 2206 2207 // All the optimizations depend on the format string. 2208 StringRef FormatStr; 2209 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2210 return nullptr; 2211 2212 // Do not do any of the following transformations if the fprintf return 2213 // value is used, in general the fprintf return value is not compatible 2214 // with fwrite(), fputc() or fputs(). 2215 if (!CI->use_empty()) 2216 return nullptr; 2217 2218 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2219 if (CI->getNumArgOperands() == 2) { 2220 // Could handle %% -> % if we cared. 2221 if (FormatStr.find('%') != StringRef::npos) 2222 return nullptr; // We found a format specifier. 2223 2224 return emitFWrite( 2225 CI->getArgOperand(1), 2226 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2227 CI->getArgOperand(0), B, DL, TLI); 2228 } 2229 2230 // The remaining optimizations require the format string to be "%s" or "%c" 2231 // and have an extra operand. 2232 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2233 CI->getNumArgOperands() < 3) 2234 return nullptr; 2235 2236 // Decode the second character of the format string. 2237 if (FormatStr[1] == 'c') { 2238 // fprintf(F, "%c", chr) --> fputc(chr, F) 2239 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2240 return nullptr; 2241 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2242 } 2243 2244 if (FormatStr[1] == 's') { 2245 // fprintf(F, "%s", str) --> fputs(str, F) 2246 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2247 return nullptr; 2248 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2249 } 2250 return nullptr; 2251 } 2252 2253 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2254 Function *Callee = CI->getCalledFunction(); 2255 FunctionType *FT = Callee->getFunctionType(); 2256 if (Value *V = optimizeFPrintFString(CI, B)) { 2257 return V; 2258 } 2259 2260 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2261 // floating point arguments. 2262 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2263 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2264 Constant *FIPrintFFn = 2265 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2266 CallInst *New = cast<CallInst>(CI->clone()); 2267 New->setCalledFunction(FIPrintFFn); 2268 B.Insert(New); 2269 return New; 2270 } 2271 return nullptr; 2272 } 2273 2274 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2275 optimizeErrorReporting(CI, B, 3); 2276 2277 // Get the element size and count. 2278 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2279 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2280 if (SizeC && CountC) { 2281 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2282 2283 // If this is writing zero records, remove the call (it's a noop). 2284 if (Bytes == 0) 2285 return ConstantInt::get(CI->getType(), 0); 2286 2287 // If this is writing one byte, turn it into fputc. 2288 // This optimisation is only valid, if the return value is unused. 2289 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2290 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2291 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2292 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2293 } 2294 } 2295 2296 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2297 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2298 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2299 TLI); 2300 2301 return nullptr; 2302 } 2303 2304 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2305 optimizeErrorReporting(CI, B, 1); 2306 2307 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2308 // requires more arguments and thus extra MOVs are required. 2309 if (CI->getFunction()->optForSize()) 2310 return nullptr; 2311 2312 // Check if has any use 2313 if (!CI->use_empty()) { 2314 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2315 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2316 TLI); 2317 else 2318 // We can't optimize if return value is used. 2319 return nullptr; 2320 } 2321 2322 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2323 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2324 if (!Len) 2325 return nullptr; 2326 2327 // Known to have no uses (see above). 2328 return emitFWrite( 2329 CI->getArgOperand(0), 2330 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2331 CI->getArgOperand(1), B, DL, TLI); 2332 } 2333 2334 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2335 optimizeErrorReporting(CI, B, 1); 2336 2337 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2338 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2339 TLI); 2340 2341 return nullptr; 2342 } 2343 2344 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2345 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2346 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2347 2348 return nullptr; 2349 } 2350 2351 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2352 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2353 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2354 CI->getArgOperand(2), B, TLI); 2355 2356 return nullptr; 2357 } 2358 2359 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2360 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2361 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2362 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2363 TLI); 2364 2365 return nullptr; 2366 } 2367 2368 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2369 // Check for a constant string. 2370 StringRef Str; 2371 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2372 return nullptr; 2373 2374 if (Str.empty() && CI->use_empty()) { 2375 // puts("") -> putchar('\n') 2376 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2377 if (CI->use_empty() || !Res) 2378 return Res; 2379 return B.CreateIntCast(Res, CI->getType(), true); 2380 } 2381 2382 return nullptr; 2383 } 2384 2385 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2386 LibFunc Func; 2387 SmallString<20> FloatFuncName = FuncName; 2388 FloatFuncName += 'f'; 2389 if (TLI->getLibFunc(FloatFuncName, Func)) 2390 return TLI->has(Func); 2391 return false; 2392 } 2393 2394 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2395 IRBuilder<> &Builder) { 2396 LibFunc Func; 2397 Function *Callee = CI->getCalledFunction(); 2398 // Check for string/memory library functions. 2399 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2400 // Make sure we never change the calling convention. 2401 assert((ignoreCallingConv(Func) || 2402 isCallingConvCCompatible(CI)) && 2403 "Optimizing string/memory libcall would change the calling convention"); 2404 switch (Func) { 2405 case LibFunc_strcat: 2406 return optimizeStrCat(CI, Builder); 2407 case LibFunc_strncat: 2408 return optimizeStrNCat(CI, Builder); 2409 case LibFunc_strchr: 2410 return optimizeStrChr(CI, Builder); 2411 case LibFunc_strrchr: 2412 return optimizeStrRChr(CI, Builder); 2413 case LibFunc_strcmp: 2414 return optimizeStrCmp(CI, Builder); 2415 case LibFunc_strncmp: 2416 return optimizeStrNCmp(CI, Builder); 2417 case LibFunc_strcpy: 2418 return optimizeStrCpy(CI, Builder); 2419 case LibFunc_stpcpy: 2420 return optimizeStpCpy(CI, Builder); 2421 case LibFunc_strncpy: 2422 return optimizeStrNCpy(CI, Builder); 2423 case LibFunc_strlen: 2424 return optimizeStrLen(CI, Builder); 2425 case LibFunc_strpbrk: 2426 return optimizeStrPBrk(CI, Builder); 2427 case LibFunc_strtol: 2428 case LibFunc_strtod: 2429 case LibFunc_strtof: 2430 case LibFunc_strtoul: 2431 case LibFunc_strtoll: 2432 case LibFunc_strtold: 2433 case LibFunc_strtoull: 2434 return optimizeStrTo(CI, Builder); 2435 case LibFunc_strspn: 2436 return optimizeStrSpn(CI, Builder); 2437 case LibFunc_strcspn: 2438 return optimizeStrCSpn(CI, Builder); 2439 case LibFunc_strstr: 2440 return optimizeStrStr(CI, Builder); 2441 case LibFunc_memchr: 2442 return optimizeMemChr(CI, Builder); 2443 case LibFunc_memcmp: 2444 return optimizeMemCmp(CI, Builder); 2445 case LibFunc_memcpy: 2446 return optimizeMemCpy(CI, Builder); 2447 case LibFunc_memmove: 2448 return optimizeMemMove(CI, Builder); 2449 case LibFunc_memset: 2450 return optimizeMemSet(CI, Builder); 2451 case LibFunc_realloc: 2452 return optimizeRealloc(CI, Builder); 2453 case LibFunc_wcslen: 2454 return optimizeWcslen(CI, Builder); 2455 default: 2456 break; 2457 } 2458 } 2459 return nullptr; 2460 } 2461 2462 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2463 LibFunc Func, 2464 IRBuilder<> &Builder) { 2465 // Don't optimize calls that require strict floating point semantics. 2466 if (CI->isStrictFP()) 2467 return nullptr; 2468 2469 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2470 return V; 2471 2472 switch (Func) { 2473 case LibFunc_sinpif: 2474 case LibFunc_sinpi: 2475 case LibFunc_cospif: 2476 case LibFunc_cospi: 2477 return optimizeSinCosPi(CI, Builder); 2478 case LibFunc_powf: 2479 case LibFunc_pow: 2480 case LibFunc_powl: 2481 return optimizePow(CI, Builder); 2482 case LibFunc_exp2l: 2483 case LibFunc_exp2: 2484 case LibFunc_exp2f: 2485 return optimizeExp2(CI, Builder); 2486 case LibFunc_fabsf: 2487 case LibFunc_fabs: 2488 case LibFunc_fabsl: 2489 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2490 case LibFunc_sqrtf: 2491 case LibFunc_sqrt: 2492 case LibFunc_sqrtl: 2493 return optimizeSqrt(CI, Builder); 2494 case LibFunc_log: 2495 case LibFunc_log10: 2496 case LibFunc_log1p: 2497 case LibFunc_log2: 2498 case LibFunc_logb: 2499 return optimizeLog(CI, Builder); 2500 case LibFunc_tan: 2501 case LibFunc_tanf: 2502 case LibFunc_tanl: 2503 return optimizeTan(CI, Builder); 2504 case LibFunc_ceil: 2505 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2506 case LibFunc_floor: 2507 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2508 case LibFunc_round: 2509 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2510 case LibFunc_nearbyint: 2511 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2512 case LibFunc_rint: 2513 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2514 case LibFunc_trunc: 2515 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2516 case LibFunc_acos: 2517 case LibFunc_acosh: 2518 case LibFunc_asin: 2519 case LibFunc_asinh: 2520 case LibFunc_atan: 2521 case LibFunc_atanh: 2522 case LibFunc_cbrt: 2523 case LibFunc_cosh: 2524 case LibFunc_exp: 2525 case LibFunc_exp10: 2526 case LibFunc_expm1: 2527 case LibFunc_cos: 2528 case LibFunc_sin: 2529 case LibFunc_sinh: 2530 case LibFunc_tanh: 2531 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2532 return optimizeUnaryDoubleFP(CI, Builder, true); 2533 return nullptr; 2534 case LibFunc_copysign: 2535 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2536 return optimizeBinaryDoubleFP(CI, Builder); 2537 return nullptr; 2538 case LibFunc_fminf: 2539 case LibFunc_fmin: 2540 case LibFunc_fminl: 2541 case LibFunc_fmaxf: 2542 case LibFunc_fmax: 2543 case LibFunc_fmaxl: 2544 return optimizeFMinFMax(CI, Builder); 2545 case LibFunc_cabs: 2546 case LibFunc_cabsf: 2547 case LibFunc_cabsl: 2548 return optimizeCAbs(CI, Builder); 2549 default: 2550 return nullptr; 2551 } 2552 } 2553 2554 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2555 // TODO: Split out the code below that operates on FP calls so that 2556 // we can all non-FP calls with the StrictFP attribute to be 2557 // optimized. 2558 if (CI->isNoBuiltin()) 2559 return nullptr; 2560 2561 LibFunc Func; 2562 Function *Callee = CI->getCalledFunction(); 2563 2564 SmallVector<OperandBundleDef, 2> OpBundles; 2565 CI->getOperandBundlesAsDefs(OpBundles); 2566 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2567 bool isCallingConvC = isCallingConvCCompatible(CI); 2568 2569 // Command-line parameter overrides instruction attribute. 2570 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2571 // used by the intrinsic optimizations. 2572 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2573 UnsafeFPShrink = EnableUnsafeFPShrink; 2574 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2575 UnsafeFPShrink = true; 2576 2577 // First, check for intrinsics. 2578 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2579 if (!isCallingConvC) 2580 return nullptr; 2581 // The FP intrinsics have corresponding constrained versions so we don't 2582 // need to check for the StrictFP attribute here. 2583 switch (II->getIntrinsicID()) { 2584 case Intrinsic::pow: 2585 return optimizePow(CI, Builder); 2586 case Intrinsic::exp2: 2587 return optimizeExp2(CI, Builder); 2588 case Intrinsic::log: 2589 return optimizeLog(CI, Builder); 2590 case Intrinsic::sqrt: 2591 return optimizeSqrt(CI, Builder); 2592 // TODO: Use foldMallocMemset() with memset intrinsic. 2593 default: 2594 return nullptr; 2595 } 2596 } 2597 2598 // Also try to simplify calls to fortified library functions. 2599 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2600 // Try to further simplify the result. 2601 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2602 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2603 // Use an IR Builder from SimplifiedCI if available instead of CI 2604 // to guarantee we reach all uses we might replace later on. 2605 IRBuilder<> TmpBuilder(SimplifiedCI); 2606 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2607 // If we were able to further simplify, remove the now redundant call. 2608 SimplifiedCI->replaceAllUsesWith(V); 2609 eraseFromParent(SimplifiedCI); 2610 return V; 2611 } 2612 } 2613 return SimplifiedFortifiedCI; 2614 } 2615 2616 // Then check for known library functions. 2617 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2618 // We never change the calling convention. 2619 if (!ignoreCallingConv(Func) && !isCallingConvC) 2620 return nullptr; 2621 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2622 return V; 2623 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2624 return V; 2625 switch (Func) { 2626 case LibFunc_ffs: 2627 case LibFunc_ffsl: 2628 case LibFunc_ffsll: 2629 return optimizeFFS(CI, Builder); 2630 case LibFunc_fls: 2631 case LibFunc_flsl: 2632 case LibFunc_flsll: 2633 return optimizeFls(CI, Builder); 2634 case LibFunc_abs: 2635 case LibFunc_labs: 2636 case LibFunc_llabs: 2637 return optimizeAbs(CI, Builder); 2638 case LibFunc_isdigit: 2639 return optimizeIsDigit(CI, Builder); 2640 case LibFunc_isascii: 2641 return optimizeIsAscii(CI, Builder); 2642 case LibFunc_toascii: 2643 return optimizeToAscii(CI, Builder); 2644 case LibFunc_atoi: 2645 case LibFunc_atol: 2646 case LibFunc_atoll: 2647 return optimizeAtoi(CI, Builder); 2648 case LibFunc_strtol: 2649 case LibFunc_strtoll: 2650 return optimizeStrtol(CI, Builder); 2651 case LibFunc_printf: 2652 return optimizePrintF(CI, Builder); 2653 case LibFunc_sprintf: 2654 return optimizeSPrintF(CI, Builder); 2655 case LibFunc_snprintf: 2656 return optimizeSnPrintF(CI, Builder); 2657 case LibFunc_fprintf: 2658 return optimizeFPrintF(CI, Builder); 2659 case LibFunc_fwrite: 2660 return optimizeFWrite(CI, Builder); 2661 case LibFunc_fread: 2662 return optimizeFRead(CI, Builder); 2663 case LibFunc_fputs: 2664 return optimizeFPuts(CI, Builder); 2665 case LibFunc_fgets: 2666 return optimizeFGets(CI, Builder); 2667 case LibFunc_fputc: 2668 return optimizeFPutc(CI, Builder); 2669 case LibFunc_fgetc: 2670 return optimizeFGetc(CI, Builder); 2671 case LibFunc_puts: 2672 return optimizePuts(CI, Builder); 2673 case LibFunc_perror: 2674 return optimizeErrorReporting(CI, Builder); 2675 case LibFunc_vfprintf: 2676 case LibFunc_fiprintf: 2677 return optimizeErrorReporting(CI, Builder, 0); 2678 default: 2679 return nullptr; 2680 } 2681 } 2682 return nullptr; 2683 } 2684 2685 LibCallSimplifier::LibCallSimplifier( 2686 const DataLayout &DL, const TargetLibraryInfo *TLI, 2687 OptimizationRemarkEmitter &ORE, 2688 function_ref<void(Instruction *, Value *)> Replacer, 2689 function_ref<void(Instruction *)> Eraser) 2690 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2691 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2692 2693 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2694 // Indirect through the replacer used in this instance. 2695 Replacer(I, With); 2696 } 2697 2698 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2699 Eraser(I); 2700 } 2701 2702 // TODO: 2703 // Additional cases that we need to add to this file: 2704 // 2705 // cbrt: 2706 // * cbrt(expN(X)) -> expN(x/3) 2707 // * cbrt(sqrt(x)) -> pow(x,1/6) 2708 // * cbrt(cbrt(x)) -> pow(x,1/9) 2709 // 2710 // exp, expf, expl: 2711 // * exp(log(x)) -> x 2712 // 2713 // log, logf, logl: 2714 // * log(exp(x)) -> x 2715 // * log(exp(y)) -> y*log(e) 2716 // * log(exp10(y)) -> y*log(10) 2717 // * log(sqrt(x)) -> 0.5*log(x) 2718 // 2719 // pow, powf, powl: 2720 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2721 // * pow(pow(x,y),z)-> pow(x,y*z) 2722 // 2723 // signbit: 2724 // * signbit(cnst) -> cnst' 2725 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2726 // 2727 // sqrt, sqrtf, sqrtl: 2728 // * sqrt(expN(x)) -> expN(x*0.5) 2729 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2730 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2731 // 2732 2733 //===----------------------------------------------------------------------===// 2734 // Fortified Library Call Optimizations 2735 //===----------------------------------------------------------------------===// 2736 2737 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2738 unsigned ObjSizeOp, 2739 unsigned SizeOp, 2740 bool isString) { 2741 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2742 return true; 2743 if (ConstantInt *ObjSizeCI = 2744 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2745 if (ObjSizeCI->isMinusOne()) 2746 return true; 2747 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2748 if (OnlyLowerUnknownSize) 2749 return false; 2750 if (isString) { 2751 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2752 // If the length is 0 we don't know how long it is and so we can't 2753 // remove the check. 2754 if (Len == 0) 2755 return false; 2756 return ObjSizeCI->getZExtValue() >= Len; 2757 } 2758 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2759 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2760 } 2761 return false; 2762 } 2763 2764 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2765 IRBuilder<> &B) { 2766 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2767 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2768 CI->getArgOperand(2)); 2769 return CI->getArgOperand(0); 2770 } 2771 return nullptr; 2772 } 2773 2774 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2775 IRBuilder<> &B) { 2776 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2777 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2778 CI->getArgOperand(2)); 2779 return CI->getArgOperand(0); 2780 } 2781 return nullptr; 2782 } 2783 2784 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2785 IRBuilder<> &B) { 2786 // TODO: Try foldMallocMemset() here. 2787 2788 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2789 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2790 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2791 return CI->getArgOperand(0); 2792 } 2793 return nullptr; 2794 } 2795 2796 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2797 IRBuilder<> &B, 2798 LibFunc Func) { 2799 Function *Callee = CI->getCalledFunction(); 2800 StringRef Name = Callee->getName(); 2801 const DataLayout &DL = CI->getModule()->getDataLayout(); 2802 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2803 *ObjSize = CI->getArgOperand(2); 2804 2805 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2806 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2807 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2808 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2809 } 2810 2811 // If a) we don't have any length information, or b) we know this will 2812 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2813 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2814 // TODO: It might be nice to get a maximum length out of the possible 2815 // string lengths for varying. 2816 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2817 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2818 2819 if (OnlyLowerUnknownSize) 2820 return nullptr; 2821 2822 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2823 uint64_t Len = GetStringLength(Src); 2824 if (Len == 0) 2825 return nullptr; 2826 2827 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2828 Value *LenV = ConstantInt::get(SizeTTy, Len); 2829 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2830 // If the function was an __stpcpy_chk, and we were able to fold it into 2831 // a __memcpy_chk, we still need to return the correct end pointer. 2832 if (Ret && Func == LibFunc_stpcpy_chk) 2833 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2834 return Ret; 2835 } 2836 2837 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2838 IRBuilder<> &B, 2839 LibFunc Func) { 2840 Function *Callee = CI->getCalledFunction(); 2841 StringRef Name = Callee->getName(); 2842 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2843 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2844 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2845 return Ret; 2846 } 2847 return nullptr; 2848 } 2849 2850 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2851 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2852 // Some clang users checked for _chk libcall availability using: 2853 // __has_builtin(__builtin___memcpy_chk) 2854 // When compiling with -fno-builtin, this is always true. 2855 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2856 // end up with fortified libcalls, which isn't acceptable in a freestanding 2857 // environment which only provides their non-fortified counterparts. 2858 // 2859 // Until we change clang and/or teach external users to check for availability 2860 // differently, disregard the "nobuiltin" attribute and TLI::has. 2861 // 2862 // PR23093. 2863 2864 LibFunc Func; 2865 Function *Callee = CI->getCalledFunction(); 2866 2867 SmallVector<OperandBundleDef, 2> OpBundles; 2868 CI->getOperandBundlesAsDefs(OpBundles); 2869 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2870 bool isCallingConvC = isCallingConvCCompatible(CI); 2871 2872 // First, check that this is a known library functions and that the prototype 2873 // is correct. 2874 if (!TLI->getLibFunc(*Callee, Func)) 2875 return nullptr; 2876 2877 // We never change the calling convention. 2878 if (!ignoreCallingConv(Func) && !isCallingConvC) 2879 return nullptr; 2880 2881 switch (Func) { 2882 case LibFunc_memcpy_chk: 2883 return optimizeMemCpyChk(CI, Builder); 2884 case LibFunc_memmove_chk: 2885 return optimizeMemMoveChk(CI, Builder); 2886 case LibFunc_memset_chk: 2887 return optimizeMemSetChk(CI, Builder); 2888 case LibFunc_stpcpy_chk: 2889 case LibFunc_strcpy_chk: 2890 return optimizeStrpCpyChk(CI, Builder, Func); 2891 case LibFunc_stpncpy_chk: 2892 case LibFunc_strncpy_chk: 2893 return optimizeStrpNCpyChk(CI, Builder, Func); 2894 default: 2895 break; 2896 } 2897 return nullptr; 2898 } 2899 2900 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2901 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2902 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2903