1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, Value *EndPtr, 79 int64_t Base, IRBuilderBase &B) { 80 if (Base < 2 || Base > 36) 81 // handle special zero base 82 if (Base != 0) 83 return nullptr; 84 85 char *End; 86 std::string nptr = Str.str(); 87 errno = 0; 88 long long int Result = strtoll(nptr.c_str(), &End, Base); 89 if (errno) 90 return nullptr; 91 92 // if we assume all possible target locales are ASCII supersets, 93 // then if strtoll successfully parses a number on the host, 94 // it will also successfully parse the same way on the target 95 if (*End != '\0') 96 return nullptr; 97 98 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 99 return nullptr; 100 101 if (EndPtr) { 102 // Store the pointer to the end. 103 uint64_t ILen = End - nptr.c_str(); 104 Value *Off = B.getInt64(ILen); 105 Value *StrBeg = CI->getArgOperand(0); 106 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 107 B.CreateStore(StrEnd, EndPtr); 108 } 109 110 return ConstantInt::get(CI->getType(), Result); 111 } 112 113 static bool isOnlyUsedInComparisonWithZero(Value *V) { 114 for (User *U : V->users()) { 115 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 116 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 117 if (C->isNullValue()) 118 continue; 119 // Unknown instruction. 120 return false; 121 } 122 return true; 123 } 124 125 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 126 const DataLayout &DL) { 127 if (!isOnlyUsedInComparisonWithZero(CI)) 128 return false; 129 130 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 131 return false; 132 133 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 134 return false; 135 136 return true; 137 } 138 139 static void annotateDereferenceableBytes(CallInst *CI, 140 ArrayRef<unsigned> ArgNos, 141 uint64_t DereferenceableBytes) { 142 const Function *F = CI->getCaller(); 143 if (!F) 144 return; 145 for (unsigned ArgNo : ArgNos) { 146 uint64_t DerefBytes = DereferenceableBytes; 147 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 148 if (!llvm::NullPointerIsDefined(F, AS) || 149 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 150 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 151 DereferenceableBytes); 152 153 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 154 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 155 if (!llvm::NullPointerIsDefined(F, AS) || 156 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 157 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 158 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 159 CI->getContext(), DerefBytes)); 160 } 161 } 162 } 163 164 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 165 ArrayRef<unsigned> ArgNos) { 166 Function *F = CI->getCaller(); 167 if (!F) 168 return; 169 170 for (unsigned ArgNo : ArgNos) { 171 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 172 CI->addParamAttr(ArgNo, Attribute::NoUndef); 173 174 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 175 continue; 176 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 177 if (llvm::NullPointerIsDefined(F, AS)) 178 continue; 179 180 CI->addParamAttr(ArgNo, Attribute::NonNull); 181 annotateDereferenceableBytes(CI, ArgNo, 1); 182 } 183 } 184 185 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 186 Value *Size, const DataLayout &DL) { 187 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 190 } else if (isKnownNonZero(Size, DL)) { 191 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 192 const APInt *X, *Y; 193 uint64_t DerefMin = 1; 194 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 195 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 196 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 197 } 198 } 199 } 200 201 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 202 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 203 // in this function when New is created to replace Old. Callers should take 204 // care to check Old.isMustTailCall() if they aren't replacing Old directly 205 // with New. 206 static Value *copyFlags(const CallInst &Old, Value *New) { 207 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 208 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 209 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 210 NewCI->setTailCallKind(Old.getTailCallKind()); 211 return New; 212 } 213 214 // Helper to avoid truncating the length if size_t is 32-bits. 215 static StringRef substr(StringRef Str, uint64_t Len) { 216 return Len >= Str.size() ? Str : Str.substr(0, Len); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // String and Memory Library Call Optimizations 221 //===----------------------------------------------------------------------===// 222 223 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 224 // Extract some information from the instruction 225 Value *Dst = CI->getArgOperand(0); 226 Value *Src = CI->getArgOperand(1); 227 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 228 229 // See if we can get the length of the input string. 230 uint64_t Len = GetStringLength(Src); 231 if (Len) 232 annotateDereferenceableBytes(CI, 1, Len); 233 else 234 return nullptr; 235 --Len; // Unbias length. 236 237 // Handle the simple, do-nothing case: strcat(x, "") -> x 238 if (Len == 0) 239 return Dst; 240 241 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 242 } 243 244 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 245 IRBuilderBase &B) { 246 // We need to find the end of the destination string. That's where the 247 // memory is to be moved to. We just generate a call to strlen. 248 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 249 if (!DstLen) 250 return nullptr; 251 252 // Now that we have the destination's length, we must index into the 253 // destination's pointer to get the actual memcpy destination (end of 254 // the string .. we're concatenating). 255 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 256 257 // We have enough information to now generate the memcpy call to do the 258 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 259 B.CreateMemCpy( 260 CpyDst, Align(1), Src, Align(1), 261 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 262 return Dst; 263 } 264 265 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 266 // Extract some information from the instruction. 267 Value *Dst = CI->getArgOperand(0); 268 Value *Src = CI->getArgOperand(1); 269 Value *Size = CI->getArgOperand(2); 270 uint64_t Len; 271 annotateNonNullNoUndefBasedOnAccess(CI, 0); 272 if (isKnownNonZero(Size, DL)) 273 annotateNonNullNoUndefBasedOnAccess(CI, 1); 274 275 // We don't do anything if length is not constant. 276 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 277 if (LengthArg) { 278 Len = LengthArg->getZExtValue(); 279 // strncat(x, c, 0) -> x 280 if (!Len) 281 return Dst; 282 } else { 283 return nullptr; 284 } 285 286 // See if we can get the length of the input string. 287 uint64_t SrcLen = GetStringLength(Src); 288 if (SrcLen) { 289 annotateDereferenceableBytes(CI, 1, SrcLen); 290 --SrcLen; // Unbias length. 291 } else { 292 return nullptr; 293 } 294 295 // strncat(x, "", c) -> x 296 if (SrcLen == 0) 297 return Dst; 298 299 // We don't optimize this case. 300 if (Len < SrcLen) 301 return nullptr; 302 303 // strncat(x, s, c) -> strcat(x, s) 304 // s is constant so the strcat can be optimized further. 305 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 306 } 307 308 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 309 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 310 // is that either S is dereferenceable or the value of N is nonzero. 311 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 312 IRBuilderBase &B, const DataLayout &DL) 313 { 314 Value *Src = CI->getArgOperand(0); 315 Value *CharVal = CI->getArgOperand(1); 316 317 // Fold memchr(A, C, N) == A to N && *A == C. 318 Type *CharTy = B.getInt8Ty(); 319 Value *Char0 = B.CreateLoad(CharTy, Src); 320 CharVal = B.CreateTrunc(CharVal, CharTy); 321 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 322 323 if (NBytes) { 324 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 325 Value *And = B.CreateICmpNE(NBytes, Zero); 326 Cmp = B.CreateLogicalAnd(And, Cmp); 327 } 328 329 Value *NullPtr = Constant::getNullValue(CI->getType()); 330 return B.CreateSelect(Cmp, Src, NullPtr); 331 } 332 333 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 334 Value *SrcStr = CI->getArgOperand(0); 335 Value *CharVal = CI->getArgOperand(1); 336 annotateNonNullNoUndefBasedOnAccess(CI, 0); 337 338 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 339 return memChrToCharCompare(CI, nullptr, B, DL); 340 341 // If the second operand is non-constant, see if we can compute the length 342 // of the input string and turn this into memchr. 343 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 344 if (!CharC) { 345 uint64_t Len = GetStringLength(SrcStr); 346 if (Len) 347 annotateDereferenceableBytes(CI, 0, Len); 348 else 349 return nullptr; 350 351 Function *Callee = CI->getCalledFunction(); 352 FunctionType *FT = Callee->getFunctionType(); 353 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 354 return nullptr; 355 356 return copyFlags( 357 *CI, 358 emitMemChr(SrcStr, CharVal, // include nul. 359 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 360 DL, TLI)); 361 } 362 363 if (CharC->isZero()) { 364 Value *NullPtr = Constant::getNullValue(CI->getType()); 365 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 366 // Pre-empt the transformation to strlen below and fold 367 // strchr(A, '\0') == null to false. 368 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 369 } 370 371 // Otherwise, the character is a constant, see if the first argument is 372 // a string literal. If so, we can constant fold. 373 StringRef Str; 374 if (!getConstantStringInfo(SrcStr, Str)) { 375 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 376 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 377 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 378 return nullptr; 379 } 380 381 // Compute the offset, make sure to handle the case when we're searching for 382 // zero (a weird way to spell strlen). 383 size_t I = (0xFF & CharC->getSExtValue()) == 0 384 ? Str.size() 385 : Str.find(CharC->getSExtValue()); 386 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 387 return Constant::getNullValue(CI->getType()); 388 389 // strchr(s+n,c) -> gep(s+n+i,c) 390 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 391 } 392 393 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 394 Value *SrcStr = CI->getArgOperand(0); 395 Value *CharVal = CI->getArgOperand(1); 396 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 397 annotateNonNullNoUndefBasedOnAccess(CI, 0); 398 399 StringRef Str; 400 if (!getConstantStringInfo(SrcStr, Str)) { 401 // strrchr(s, 0) -> strchr(s, 0) 402 if (CharC && CharC->isZero()) 403 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 404 return nullptr; 405 } 406 407 // Try to expand strrchr to the memrchr nonstandard extension if it's 408 // available, or simply fail otherwise. 409 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 410 Type *IntPtrType = DL.getIntPtrType(CI->getContext()); 411 Value *Size = ConstantInt::get(IntPtrType, NBytes); 412 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 413 } 414 415 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 417 if (Str1P == Str2P) // strcmp(x,x) -> 0 418 return ConstantInt::get(CI->getType(), 0); 419 420 StringRef Str1, Str2; 421 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 422 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 423 424 // strcmp(x, y) -> cnst (if both x and y are constant strings) 425 if (HasStr1 && HasStr2) 426 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 427 428 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 429 return B.CreateNeg(B.CreateZExt( 430 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 431 432 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 433 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 434 CI->getType()); 435 436 // strcmp(P, "x") -> memcmp(P, "x", 2) 437 uint64_t Len1 = GetStringLength(Str1P); 438 if (Len1) 439 annotateDereferenceableBytes(CI, 0, Len1); 440 uint64_t Len2 = GetStringLength(Str2P); 441 if (Len2) 442 annotateDereferenceableBytes(CI, 1, Len2); 443 444 if (Len1 && Len2) { 445 return copyFlags( 446 *CI, emitMemCmp(Str1P, Str2P, 447 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 448 std::min(Len1, Len2)), 449 B, DL, TLI)); 450 } 451 452 // strcmp to memcmp 453 if (!HasStr1 && HasStr2) { 454 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 455 return copyFlags( 456 *CI, 457 emitMemCmp(Str1P, Str2P, 458 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 459 B, DL, TLI)); 460 } else if (HasStr1 && !HasStr2) { 461 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 462 return copyFlags( 463 *CI, 464 emitMemCmp(Str1P, Str2P, 465 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 466 B, DL, TLI)); 467 } 468 469 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 470 return nullptr; 471 } 472 473 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 474 // arrays LHS and RHS and nonconstant Size. 475 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 476 Value *Size, bool StrNCmp, 477 IRBuilderBase &B, const DataLayout &DL); 478 479 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 480 Value *Str1P = CI->getArgOperand(0); 481 Value *Str2P = CI->getArgOperand(1); 482 Value *Size = CI->getArgOperand(2); 483 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 484 return ConstantInt::get(CI->getType(), 0); 485 486 if (isKnownNonZero(Size, DL)) 487 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 488 // Get the length argument if it is constant. 489 uint64_t Length; 490 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 491 Length = LengthArg->getZExtValue(); 492 else 493 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 494 495 if (Length == 0) // strncmp(x,y,0) -> 0 496 return ConstantInt::get(CI->getType(), 0); 497 498 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 499 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 500 501 StringRef Str1, Str2; 502 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 503 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 504 505 // strncmp(x, y) -> cnst (if both x and y are constant strings) 506 if (HasStr1 && HasStr2) { 507 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 508 StringRef SubStr1 = substr(Str1, Length); 509 StringRef SubStr2 = substr(Str2, Length); 510 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 511 } 512 513 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 514 return B.CreateNeg(B.CreateZExt( 515 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 516 517 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 518 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 519 CI->getType()); 520 521 uint64_t Len1 = GetStringLength(Str1P); 522 if (Len1) 523 annotateDereferenceableBytes(CI, 0, Len1); 524 uint64_t Len2 = GetStringLength(Str2P); 525 if (Len2) 526 annotateDereferenceableBytes(CI, 1, Len2); 527 528 // strncmp to memcmp 529 if (!HasStr1 && HasStr2) { 530 Len2 = std::min(Len2, Length); 531 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 532 return copyFlags( 533 *CI, 534 emitMemCmp(Str1P, Str2P, 535 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 536 B, DL, TLI)); 537 } else if (HasStr1 && !HasStr2) { 538 Len1 = std::min(Len1, Length); 539 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 540 return copyFlags( 541 *CI, 542 emitMemCmp(Str1P, Str2P, 543 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 544 B, DL, TLI)); 545 } 546 547 return nullptr; 548 } 549 550 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 551 Value *Src = CI->getArgOperand(0); 552 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 553 uint64_t SrcLen = GetStringLength(Src); 554 if (SrcLen && Size) { 555 annotateDereferenceableBytes(CI, 0, SrcLen); 556 if (SrcLen <= Size->getZExtValue() + 1) 557 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 558 } 559 560 return nullptr; 561 } 562 563 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 564 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 565 if (Dst == Src) // strcpy(x,x) -> x 566 return Src; 567 568 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 569 // See if we can get the length of the input string. 570 uint64_t Len = GetStringLength(Src); 571 if (Len) 572 annotateDereferenceableBytes(CI, 1, Len); 573 else 574 return nullptr; 575 576 // We have enough information to now generate the memcpy call to do the 577 // copy for us. Make a memcpy to copy the nul byte with align = 1. 578 CallInst *NewCI = 579 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 580 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 581 NewCI->setAttributes(CI->getAttributes()); 582 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 583 copyFlags(*CI, NewCI); 584 return Dst; 585 } 586 587 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 588 Function *Callee = CI->getCalledFunction(); 589 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 590 591 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 592 if (CI->use_empty()) 593 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 594 595 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 596 Value *StrLen = emitStrLen(Src, B, DL, TLI); 597 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 598 } 599 600 // See if we can get the length of the input string. 601 uint64_t Len = GetStringLength(Src); 602 if (Len) 603 annotateDereferenceableBytes(CI, 1, Len); 604 else 605 return nullptr; 606 607 Type *PT = Callee->getFunctionType()->getParamType(0); 608 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 609 Value *DstEnd = B.CreateInBoundsGEP( 610 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 611 612 // We have enough information to now generate the memcpy call to do the 613 // copy for us. Make a memcpy to copy the nul byte with align = 1. 614 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 615 NewCI->setAttributes(CI->getAttributes()); 616 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 617 copyFlags(*CI, NewCI); 618 return DstEnd; 619 } 620 621 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 622 Function *Callee = CI->getCalledFunction(); 623 Value *Dst = CI->getArgOperand(0); 624 Value *Src = CI->getArgOperand(1); 625 Value *Size = CI->getArgOperand(2); 626 annotateNonNullNoUndefBasedOnAccess(CI, 0); 627 if (isKnownNonZero(Size, DL)) 628 annotateNonNullNoUndefBasedOnAccess(CI, 1); 629 630 uint64_t Len; 631 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 632 Len = LengthArg->getZExtValue(); 633 else 634 return nullptr; 635 636 // strncpy(x, y, 0) -> x 637 if (Len == 0) 638 return Dst; 639 640 // See if we can get the length of the input string. 641 uint64_t SrcLen = GetStringLength(Src); 642 if (SrcLen) { 643 annotateDereferenceableBytes(CI, 1, SrcLen); 644 --SrcLen; // Unbias length. 645 } else { 646 return nullptr; 647 } 648 649 if (SrcLen == 0) { 650 // strncpy(x, "", y) -> memset(x, '\0', y) 651 Align MemSetAlign = 652 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 653 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 654 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 655 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 656 CI->getContext(), 0, ArgAttrs)); 657 copyFlags(*CI, NewCI); 658 return Dst; 659 } 660 661 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 662 if (Len > SrcLen + 1) { 663 if (Len <= 128) { 664 StringRef Str; 665 if (!getConstantStringInfo(Src, Str)) 666 return nullptr; 667 std::string SrcStr = Str.str(); 668 SrcStr.resize(Len, '\0'); 669 Src = B.CreateGlobalString(SrcStr, "str"); 670 } else { 671 return nullptr; 672 } 673 } 674 675 Type *PT = Callee->getFunctionType()->getParamType(0); 676 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 677 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 678 ConstantInt::get(DL.getIntPtrType(PT), Len)); 679 NewCI->setAttributes(CI->getAttributes()); 680 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 681 copyFlags(*CI, NewCI); 682 return Dst; 683 } 684 685 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 686 unsigned CharSize, 687 Value *Bound) { 688 Value *Src = CI->getArgOperand(0); 689 Type *CharTy = B.getIntNTy(CharSize); 690 691 if (isOnlyUsedInZeroEqualityComparison(CI) && 692 (!Bound || isKnownNonZero(Bound, DL))) { 693 // Fold strlen: 694 // strlen(x) != 0 --> *x != 0 695 // strlen(x) == 0 --> *x == 0 696 // and likewise strnlen with constant N > 0: 697 // strnlen(x, N) != 0 --> *x != 0 698 // strnlen(x, N) == 0 --> *x == 0 699 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 700 CI->getType()); 701 } 702 703 if (Bound) { 704 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 705 if (BoundCst->isZero()) 706 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 707 return ConstantInt::get(CI->getType(), 0); 708 709 if (BoundCst->isOne()) { 710 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 711 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 712 Value *ZeroChar = ConstantInt::get(CharTy, 0); 713 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 714 return B.CreateZExt(Cmp, CI->getType()); 715 } 716 } 717 } 718 719 if (uint64_t Len = GetStringLength(Src, CharSize)) { 720 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 721 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 722 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 723 if (Bound) 724 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 725 return LenC; 726 } 727 728 if (Bound) 729 // Punt for strnlen for now. 730 return nullptr; 731 732 // If s is a constant pointer pointing to a string literal, we can fold 733 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 734 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 735 // We only try to simplify strlen when the pointer s points to an array 736 // of i8. Otherwise, we would need to scale the offset x before doing the 737 // subtraction. This will make the optimization more complex, and it's not 738 // very useful because calling strlen for a pointer of other types is 739 // very uncommon. 740 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 741 // TODO: Handle subobjects. 742 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 743 return nullptr; 744 745 ConstantDataArraySlice Slice; 746 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 747 uint64_t NullTermIdx; 748 if (Slice.Array == nullptr) { 749 NullTermIdx = 0; 750 } else { 751 NullTermIdx = ~((uint64_t)0); 752 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 753 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 754 NullTermIdx = I; 755 break; 756 } 757 } 758 // If the string does not have '\0', leave it to strlen to compute 759 // its length. 760 if (NullTermIdx == ~((uint64_t)0)) 761 return nullptr; 762 } 763 764 Value *Offset = GEP->getOperand(2); 765 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 766 uint64_t ArrSize = 767 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 768 769 // If Offset is not provably in the range [0, NullTermIdx], we can still 770 // optimize if we can prove that the program has undefined behavior when 771 // Offset is outside that range. That is the case when GEP->getOperand(0) 772 // is a pointer to an object whose memory extent is NullTermIdx+1. 773 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 774 (isa<GlobalVariable>(GEP->getOperand(0)) && 775 NullTermIdx == ArrSize - 1)) { 776 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 777 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 778 Offset); 779 } 780 } 781 } 782 783 // strlen(x?"foo":"bars") --> x ? 3 : 4 784 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 785 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 786 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 787 if (LenTrue && LenFalse) { 788 ORE.emit([&]() { 789 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 790 << "folded strlen(select) to select of constants"; 791 }); 792 return B.CreateSelect(SI->getCondition(), 793 ConstantInt::get(CI->getType(), LenTrue - 1), 794 ConstantInt::get(CI->getType(), LenFalse - 1)); 795 } 796 } 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 802 if (Value *V = optimizeStringLength(CI, B, 8)) 803 return V; 804 annotateNonNullNoUndefBasedOnAccess(CI, 0); 805 return nullptr; 806 } 807 808 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 809 Value *Bound = CI->getArgOperand(1); 810 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 811 return V; 812 813 if (isKnownNonZero(Bound, DL)) 814 annotateNonNullNoUndefBasedOnAccess(CI, 0); 815 return nullptr; 816 } 817 818 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 819 Module &M = *CI->getModule(); 820 unsigned WCharSize = TLI->getWCharSize(M) * 8; 821 // We cannot perform this optimization without wchar_size metadata. 822 if (WCharSize == 0) 823 return nullptr; 824 825 return optimizeStringLength(CI, B, WCharSize); 826 } 827 828 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 829 StringRef S1, S2; 830 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 831 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 832 833 // strpbrk(s, "") -> nullptr 834 // strpbrk("", s) -> nullptr 835 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 836 return Constant::getNullValue(CI->getType()); 837 838 // Constant folding. 839 if (HasS1 && HasS2) { 840 size_t I = S1.find_first_of(S2); 841 if (I == StringRef::npos) // No match. 842 return Constant::getNullValue(CI->getType()); 843 844 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 845 B.getInt64(I), "strpbrk"); 846 } 847 848 // strpbrk(s, "a") -> strchr(s, 'a') 849 if (HasS2 && S2.size() == 1) 850 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 851 852 return nullptr; 853 } 854 855 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 856 Value *EndPtr = CI->getArgOperand(1); 857 if (isa<ConstantPointerNull>(EndPtr)) { 858 // With a null EndPtr, this function won't capture the main argument. 859 // It would be readonly too, except that it still may write to errno. 860 CI->addParamAttr(0, Attribute::NoCapture); 861 } 862 863 return nullptr; 864 } 865 866 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 867 StringRef S1, S2; 868 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 869 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 870 871 // strspn(s, "") -> 0 872 // strspn("", s) -> 0 873 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 874 return Constant::getNullValue(CI->getType()); 875 876 // Constant folding. 877 if (HasS1 && HasS2) { 878 size_t Pos = S1.find_first_not_of(S2); 879 if (Pos == StringRef::npos) 880 Pos = S1.size(); 881 return ConstantInt::get(CI->getType(), Pos); 882 } 883 884 return nullptr; 885 } 886 887 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 888 StringRef S1, S2; 889 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 890 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 891 892 // strcspn("", s) -> 0 893 if (HasS1 && S1.empty()) 894 return Constant::getNullValue(CI->getType()); 895 896 // Constant folding. 897 if (HasS1 && HasS2) { 898 size_t Pos = S1.find_first_of(S2); 899 if (Pos == StringRef::npos) 900 Pos = S1.size(); 901 return ConstantInt::get(CI->getType(), Pos); 902 } 903 904 // strcspn(s, "") -> strlen(s) 905 if (HasS2 && S2.empty()) 906 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 907 908 return nullptr; 909 } 910 911 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 912 // fold strstr(x, x) -> x. 913 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 914 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 915 916 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 917 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 918 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 919 if (!StrLen) 920 return nullptr; 921 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 922 StrLen, B, DL, TLI); 923 if (!StrNCmp) 924 return nullptr; 925 for (User *U : llvm::make_early_inc_range(CI->users())) { 926 ICmpInst *Old = cast<ICmpInst>(U); 927 Value *Cmp = 928 B.CreateICmp(Old->getPredicate(), StrNCmp, 929 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 930 replaceAllUsesWith(Old, Cmp); 931 } 932 return CI; 933 } 934 935 // See if either input string is a constant string. 936 StringRef SearchStr, ToFindStr; 937 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 938 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 939 940 // fold strstr(x, "") -> x. 941 if (HasStr2 && ToFindStr.empty()) 942 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 943 944 // If both strings are known, constant fold it. 945 if (HasStr1 && HasStr2) { 946 size_t Offset = SearchStr.find(ToFindStr); 947 948 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 949 return Constant::getNullValue(CI->getType()); 950 951 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 952 Value *Result = castToCStr(CI->getArgOperand(0), B); 953 Result = 954 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 955 return B.CreateBitCast(Result, CI->getType()); 956 } 957 958 // fold strstr(x, "y") -> strchr(x, 'y'). 959 if (HasStr2 && ToFindStr.size() == 1) { 960 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 961 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 962 } 963 964 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 965 return nullptr; 966 } 967 968 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 969 Value *SrcStr = CI->getArgOperand(0); 970 Value *Size = CI->getArgOperand(2); 971 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 972 Value *CharVal = CI->getArgOperand(1); 973 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 974 Value *NullPtr = Constant::getNullValue(CI->getType()); 975 976 if (LenC) { 977 if (LenC->isZero()) 978 // Fold memrchr(x, y, 0) --> null. 979 return NullPtr; 980 981 if (LenC->isOne()) { 982 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 983 // constant or otherwise. 984 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 985 // Slice off the character's high end bits. 986 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 987 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 988 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 989 } 990 } 991 992 StringRef Str; 993 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 994 return nullptr; 995 996 if (Str.size() == 0) 997 // If the array is empty fold memrchr(A, C, N) to null for any value 998 // of C and N on the basis that the only valid value of N is zero 999 // (otherwise the call is undefined). 1000 return NullPtr; 1001 1002 uint64_t EndOff = UINT64_MAX; 1003 if (LenC) { 1004 EndOff = LenC->getZExtValue(); 1005 if (Str.size() < EndOff) 1006 // Punt out-of-bounds accesses to sanitizers and/or libc. 1007 return nullptr; 1008 } 1009 1010 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1011 // Fold memrchr(S, C, N) for a constant C. 1012 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1013 if (Pos == StringRef::npos) 1014 // When the character is not in the source array fold the result 1015 // to null regardless of Size. 1016 return NullPtr; 1017 1018 if (LenC) 1019 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1020 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1021 1022 if (Str.find(Str[Pos]) == Pos) { 1023 // When there is just a single occurrence of C in S, i.e., the one 1024 // in Str[Pos], fold 1025 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1026 // for nonconstant N. 1027 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1028 "memrchr.cmp"); 1029 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1030 B.getInt64(Pos), "memrchr.ptr_plus"); 1031 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1032 } 1033 } 1034 1035 // Truncate the string to search at most EndOff characters. 1036 Str = Str.substr(0, EndOff); 1037 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1038 return nullptr; 1039 1040 // If the source array consists of all equal characters, then for any 1041 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1042 // N != 0 && *S == C ? S + N - 1 : null 1043 Type *SizeTy = Size->getType(); 1044 Type *Int8Ty = B.getInt8Ty(); 1045 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1046 // Slice off the sought character's high end bits. 1047 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1048 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1049 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1050 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1051 Value *SrcPlus = 1052 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1053 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1054 } 1055 1056 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1057 Value *SrcStr = CI->getArgOperand(0); 1058 Value *Size = CI->getArgOperand(2); 1059 1060 if (isKnownNonZero(Size, DL)) { 1061 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1062 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1063 return memChrToCharCompare(CI, Size, B, DL); 1064 } 1065 1066 Value *CharVal = CI->getArgOperand(1); 1067 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1068 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1069 Value *NullPtr = Constant::getNullValue(CI->getType()); 1070 1071 // memchr(x, y, 0) -> null 1072 if (LenC) { 1073 if (LenC->isZero()) 1074 return NullPtr; 1075 1076 if (LenC->isOne()) { 1077 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1078 // constant or otherwise. 1079 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1080 // Slice off the character's high end bits. 1081 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1082 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1083 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1084 } 1085 } 1086 1087 StringRef Str; 1088 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1089 return nullptr; 1090 1091 if (CharC) { 1092 size_t Pos = Str.find(CharC->getZExtValue()); 1093 if (Pos == StringRef::npos) 1094 // When the character is not in the source array fold the result 1095 // to null regardless of Size. 1096 return NullPtr; 1097 1098 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1099 // When the constant Size is less than or equal to the character 1100 // position also fold the result to null. 1101 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1102 "memchr.cmp"); 1103 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1104 "memchr.ptr"); 1105 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1106 } 1107 1108 if (Str.size() == 0) 1109 // If the array is empty fold memchr(A, C, N) to null for any value 1110 // of C and N on the basis that the only valid value of N is zero 1111 // (otherwise the call is undefined). 1112 return NullPtr; 1113 1114 if (LenC) 1115 Str = substr(Str, LenC->getZExtValue()); 1116 1117 size_t Pos = Str.find_first_not_of(Str[0]); 1118 if (Pos == StringRef::npos 1119 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1120 // If the source array consists of at most two consecutive sequences 1121 // of the same characters, then for any C and N (whether in bounds or 1122 // not), fold memchr(S, C, N) to 1123 // N != 0 && *S == C ? S : null 1124 // or for the two sequences to: 1125 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1126 // ^Sel2 ^Sel1 are denoted above. 1127 // The latter makes it also possible to fold strchr() calls with strings 1128 // of the same characters. 1129 Type *SizeTy = Size->getType(); 1130 Type *Int8Ty = B.getInt8Ty(); 1131 1132 // Slice off the sought character's high end bits. 1133 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1134 1135 Value *Sel1 = NullPtr; 1136 if (Pos != StringRef::npos) { 1137 // Handle two consecutive sequences of the same characters. 1138 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1139 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1140 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1141 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1142 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1143 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1144 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1145 } 1146 1147 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1148 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1149 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1150 Value *And = B.CreateAnd(NNeZ, CEqS0); 1151 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1152 } 1153 1154 if (!LenC) { 1155 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1156 // S is dereferenceable so it's safe to load from it and fold 1157 // memchr(S, C, N) == S to N && *S == C for any C and N. 1158 // TODO: This is safe even even for nonconstant S. 1159 return memChrToCharCompare(CI, Size, B, DL); 1160 1161 // From now on we need a constant length and constant array. 1162 return nullptr; 1163 } 1164 1165 // If the char is variable but the input str and length are not we can turn 1166 // this memchr call into a simple bit field test. Of course this only works 1167 // when the return value is only checked against null. 1168 // 1169 // It would be really nice to reuse switch lowering here but we can't change 1170 // the CFG at this point. 1171 // 1172 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1173 // != 0 1174 // after bounds check. 1175 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1176 return nullptr; 1177 1178 unsigned char Max = 1179 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1180 reinterpret_cast<const unsigned char *>(Str.end())); 1181 1182 // Make sure the bit field we're about to create fits in a register on the 1183 // target. 1184 // FIXME: On a 64 bit architecture this prevents us from using the 1185 // interesting range of alpha ascii chars. We could do better by emitting 1186 // two bitfields or shifting the range by 64 if no lower chars are used. 1187 if (!DL.fitsInLegalInteger(Max + 1)) 1188 return nullptr; 1189 1190 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1191 // creating unnecessary illegal types. 1192 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1193 1194 // Now build the bit field. 1195 APInt Bitfield(Width, 0); 1196 for (char C : Str) 1197 Bitfield.setBit((unsigned char)C); 1198 Value *BitfieldC = B.getInt(Bitfield); 1199 1200 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1201 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1202 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1203 1204 // First check that the bit field access is within bounds. 1205 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1206 "memchr.bounds"); 1207 1208 // Create code that checks if the given bit is set in the field. 1209 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1210 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1211 1212 // Finally merge both checks and cast to pointer type. The inttoptr 1213 // implicitly zexts the i1 to intptr type. 1214 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1215 CI->getType()); 1216 } 1217 1218 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1219 // arrays LHS and RHS and nonconstant Size. 1220 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1221 Value *Size, bool StrNCmp, 1222 IRBuilderBase &B, const DataLayout &DL) { 1223 if (LHS == RHS) // memcmp(s,s,x) -> 0 1224 return Constant::getNullValue(CI->getType()); 1225 1226 StringRef LStr, RStr; 1227 if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) || 1228 !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false)) 1229 return nullptr; 1230 1231 // If the contents of both constant arrays are known, fold a call to 1232 // memcmp(A, B, N) to 1233 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1234 // where Pos is the first mismatch between A and B, determined below. 1235 1236 uint64_t Pos = 0; 1237 Value *Zero = ConstantInt::get(CI->getType(), 0); 1238 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1239 if (Pos == MinSize || 1240 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1241 // One array is a leading part of the other of equal or greater 1242 // size, or for strncmp, the arrays are equal strings. 1243 // Fold the result to zero. Size is assumed to be in bounds, since 1244 // otherwise the call would be undefined. 1245 return Zero; 1246 } 1247 1248 if (LStr[Pos] != RStr[Pos]) 1249 break; 1250 } 1251 1252 // Normalize the result. 1253 typedef unsigned char UChar; 1254 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1255 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1256 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1257 Value *Res = ConstantInt::get(CI->getType(), IRes); 1258 return B.CreateSelect(Cmp, Zero, Res); 1259 } 1260 1261 // Optimize a memcmp call CI with constant size Len. 1262 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1263 uint64_t Len, IRBuilderBase &B, 1264 const DataLayout &DL) { 1265 if (Len == 0) // memcmp(s1,s2,0) -> 0 1266 return Constant::getNullValue(CI->getType()); 1267 1268 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1269 if (Len == 1) { 1270 Value *LHSV = 1271 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1272 CI->getType(), "lhsv"); 1273 Value *RHSV = 1274 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1275 CI->getType(), "rhsv"); 1276 return B.CreateSub(LHSV, RHSV, "chardiff"); 1277 } 1278 1279 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1280 // TODO: The case where both inputs are constants does not need to be limited 1281 // to legal integers or equality comparison. See block below this. 1282 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1283 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1284 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1285 1286 // First, see if we can fold either argument to a constant. 1287 Value *LHSV = nullptr; 1288 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1289 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1290 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1291 } 1292 Value *RHSV = nullptr; 1293 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1294 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1295 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1296 } 1297 1298 // Don't generate unaligned loads. If either source is constant data, 1299 // alignment doesn't matter for that source because there is no load. 1300 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1301 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1302 if (!LHSV) { 1303 Type *LHSPtrTy = 1304 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1305 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1306 } 1307 if (!RHSV) { 1308 Type *RHSPtrTy = 1309 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1310 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1311 } 1312 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1313 } 1314 } 1315 1316 return nullptr; 1317 } 1318 1319 // Most simplifications for memcmp also apply to bcmp. 1320 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1321 IRBuilderBase &B) { 1322 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1323 Value *Size = CI->getArgOperand(2); 1324 1325 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1326 1327 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1328 return Res; 1329 1330 // Handle constant Size. 1331 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1332 if (!LenC) 1333 return nullptr; 1334 1335 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1336 } 1337 1338 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1339 Module *M = CI->getModule(); 1340 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1341 return V; 1342 1343 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1344 // bcmp can be more efficient than memcmp because it only has to know that 1345 // there is a difference, not how different one is to the other. 1346 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1347 isOnlyUsedInZeroEqualityComparison(CI)) { 1348 Value *LHS = CI->getArgOperand(0); 1349 Value *RHS = CI->getArgOperand(1); 1350 Value *Size = CI->getArgOperand(2); 1351 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1352 } 1353 1354 return nullptr; 1355 } 1356 1357 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1358 return optimizeMemCmpBCmpCommon(CI, B); 1359 } 1360 1361 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1362 Value *Size = CI->getArgOperand(2); 1363 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1364 if (isa<IntrinsicInst>(CI)) 1365 return nullptr; 1366 1367 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1368 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1369 CI->getArgOperand(1), Align(1), Size); 1370 NewCI->setAttributes(CI->getAttributes()); 1371 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1372 copyFlags(*CI, NewCI); 1373 return CI->getArgOperand(0); 1374 } 1375 1376 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1377 Value *Dst = CI->getArgOperand(0); 1378 Value *Src = CI->getArgOperand(1); 1379 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1380 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1381 StringRef SrcStr; 1382 if (CI->use_empty() && Dst == Src) 1383 return Dst; 1384 // memccpy(d, s, c, 0) -> nullptr 1385 if (N) { 1386 if (N->isNullValue()) 1387 return Constant::getNullValue(CI->getType()); 1388 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1389 /*TrimAtNul=*/false) || 1390 // TODO: Handle zeroinitializer. 1391 !StopChar) 1392 return nullptr; 1393 } else { 1394 return nullptr; 1395 } 1396 1397 // Wrap arg 'c' of type int to char 1398 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1399 if (Pos == StringRef::npos) { 1400 if (N->getZExtValue() <= SrcStr.size()) { 1401 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1402 CI->getArgOperand(3))); 1403 return Constant::getNullValue(CI->getType()); 1404 } 1405 return nullptr; 1406 } 1407 1408 Value *NewN = 1409 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1410 // memccpy -> llvm.memcpy 1411 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1412 return Pos + 1 <= N->getZExtValue() 1413 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1414 : Constant::getNullValue(CI->getType()); 1415 } 1416 1417 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1418 Value *Dst = CI->getArgOperand(0); 1419 Value *N = CI->getArgOperand(2); 1420 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1421 CallInst *NewCI = 1422 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1423 // Propagate attributes, but memcpy has no return value, so make sure that 1424 // any return attributes are compliant. 1425 // TODO: Attach return value attributes to the 1st operand to preserve them? 1426 NewCI->setAttributes(CI->getAttributes()); 1427 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1428 copyFlags(*CI, NewCI); 1429 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1430 } 1431 1432 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1433 Value *Size = CI->getArgOperand(2); 1434 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1435 if (isa<IntrinsicInst>(CI)) 1436 return nullptr; 1437 1438 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1439 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1440 CI->getArgOperand(1), Align(1), Size); 1441 NewCI->setAttributes(CI->getAttributes()); 1442 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1443 copyFlags(*CI, NewCI); 1444 return CI->getArgOperand(0); 1445 } 1446 1447 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1448 Value *Size = CI->getArgOperand(2); 1449 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1450 if (isa<IntrinsicInst>(CI)) 1451 return nullptr; 1452 1453 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1454 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1455 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1456 NewCI->setAttributes(CI->getAttributes()); 1457 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1458 copyFlags(*CI, NewCI); 1459 return CI->getArgOperand(0); 1460 } 1461 1462 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1463 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1464 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1465 1466 return nullptr; 1467 } 1468 1469 //===----------------------------------------------------------------------===// 1470 // Math Library Optimizations 1471 //===----------------------------------------------------------------------===// 1472 1473 // Replace a libcall \p CI with a call to intrinsic \p IID 1474 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1475 Intrinsic::ID IID) { 1476 // Propagate fast-math flags from the existing call to the new call. 1477 IRBuilderBase::FastMathFlagGuard Guard(B); 1478 B.setFastMathFlags(CI->getFastMathFlags()); 1479 1480 Module *M = CI->getModule(); 1481 Value *V = CI->getArgOperand(0); 1482 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1483 CallInst *NewCall = B.CreateCall(F, V); 1484 NewCall->takeName(CI); 1485 return copyFlags(*CI, NewCall); 1486 } 1487 1488 /// Return a variant of Val with float type. 1489 /// Currently this works in two cases: If Val is an FPExtension of a float 1490 /// value to something bigger, simply return the operand. 1491 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1492 /// loss of precision do so. 1493 static Value *valueHasFloatPrecision(Value *Val) { 1494 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1495 Value *Op = Cast->getOperand(0); 1496 if (Op->getType()->isFloatTy()) 1497 return Op; 1498 } 1499 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1500 APFloat F = Const->getValueAPF(); 1501 bool losesInfo; 1502 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1503 &losesInfo); 1504 if (!losesInfo) 1505 return ConstantFP::get(Const->getContext(), F); 1506 } 1507 return nullptr; 1508 } 1509 1510 /// Shrink double -> float functions. 1511 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1512 bool isBinary, const TargetLibraryInfo *TLI, 1513 bool isPrecise = false) { 1514 Function *CalleeFn = CI->getCalledFunction(); 1515 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1516 return nullptr; 1517 1518 // If not all the uses of the function are converted to float, then bail out. 1519 // This matters if the precision of the result is more important than the 1520 // precision of the arguments. 1521 if (isPrecise) 1522 for (User *U : CI->users()) { 1523 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1524 if (!Cast || !Cast->getType()->isFloatTy()) 1525 return nullptr; 1526 } 1527 1528 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1529 Value *V[2]; 1530 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1531 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1532 if (!V[0] || (isBinary && !V[1])) 1533 return nullptr; 1534 1535 // If call isn't an intrinsic, check that it isn't within a function with the 1536 // same name as the float version of this call, otherwise the result is an 1537 // infinite loop. For example, from MinGW-w64: 1538 // 1539 // float expf(float val) { return (float) exp((double) val); } 1540 StringRef CalleeName = CalleeFn->getName(); 1541 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1542 if (!IsIntrinsic) { 1543 StringRef CallerName = CI->getFunction()->getName(); 1544 if (!CallerName.empty() && CallerName.back() == 'f' && 1545 CallerName.size() == (CalleeName.size() + 1) && 1546 CallerName.startswith(CalleeName)) 1547 return nullptr; 1548 } 1549 1550 // Propagate the math semantics from the current function to the new function. 1551 IRBuilderBase::FastMathFlagGuard Guard(B); 1552 B.setFastMathFlags(CI->getFastMathFlags()); 1553 1554 // g((double) float) -> (double) gf(float) 1555 Value *R; 1556 if (IsIntrinsic) { 1557 Module *M = CI->getModule(); 1558 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1559 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1560 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1561 } else { 1562 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1563 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1564 CalleeAttrs) 1565 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1566 } 1567 return B.CreateFPExt(R, B.getDoubleTy()); 1568 } 1569 1570 /// Shrink double -> float for unary functions. 1571 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1572 const TargetLibraryInfo *TLI, 1573 bool isPrecise = false) { 1574 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1575 } 1576 1577 /// Shrink double -> float for binary functions. 1578 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1579 const TargetLibraryInfo *TLI, 1580 bool isPrecise = false) { 1581 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1582 } 1583 1584 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1585 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1586 if (!CI->isFast()) 1587 return nullptr; 1588 1589 // Propagate fast-math flags from the existing call to new instructions. 1590 IRBuilderBase::FastMathFlagGuard Guard(B); 1591 B.setFastMathFlags(CI->getFastMathFlags()); 1592 1593 Value *Real, *Imag; 1594 if (CI->arg_size() == 1) { 1595 Value *Op = CI->getArgOperand(0); 1596 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1597 Real = B.CreateExtractValue(Op, 0, "real"); 1598 Imag = B.CreateExtractValue(Op, 1, "imag"); 1599 } else { 1600 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1601 Real = CI->getArgOperand(0); 1602 Imag = CI->getArgOperand(1); 1603 } 1604 1605 Value *RealReal = B.CreateFMul(Real, Real); 1606 Value *ImagImag = B.CreateFMul(Imag, Imag); 1607 1608 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1609 CI->getType()); 1610 return copyFlags( 1611 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1612 } 1613 1614 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1615 IRBuilderBase &B) { 1616 if (!isa<FPMathOperator>(Call)) 1617 return nullptr; 1618 1619 IRBuilderBase::FastMathFlagGuard Guard(B); 1620 B.setFastMathFlags(Call->getFastMathFlags()); 1621 1622 // TODO: Can this be shared to also handle LLVM intrinsics? 1623 Value *X; 1624 switch (Func) { 1625 case LibFunc_sin: 1626 case LibFunc_sinf: 1627 case LibFunc_sinl: 1628 case LibFunc_tan: 1629 case LibFunc_tanf: 1630 case LibFunc_tanl: 1631 // sin(-X) --> -sin(X) 1632 // tan(-X) --> -tan(X) 1633 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1634 return B.CreateFNeg( 1635 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1636 break; 1637 case LibFunc_cos: 1638 case LibFunc_cosf: 1639 case LibFunc_cosl: 1640 // cos(-X) --> cos(X) 1641 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1642 return copyFlags(*Call, 1643 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1644 break; 1645 default: 1646 break; 1647 } 1648 return nullptr; 1649 } 1650 1651 // Return a properly extended integer (DstWidth bits wide) if the operation is 1652 // an itofp. 1653 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1654 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1655 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1656 // Make sure that the exponent fits inside an "int" of size DstWidth, 1657 // thus avoiding any range issues that FP has not. 1658 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1659 if (BitWidth < DstWidth || 1660 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1661 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1662 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1663 } 1664 1665 return nullptr; 1666 } 1667 1668 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1669 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1670 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1671 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1672 Module *M = Pow->getModule(); 1673 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1674 AttributeList Attrs; // Attributes are only meaningful on the original call 1675 Module *Mod = Pow->getModule(); 1676 Type *Ty = Pow->getType(); 1677 bool Ignored; 1678 1679 // Evaluate special cases related to a nested function as the base. 1680 1681 // pow(exp(x), y) -> exp(x * y) 1682 // pow(exp2(x), y) -> exp2(x * y) 1683 // If exp{,2}() is used only once, it is better to fold two transcendental 1684 // math functions into one. If used again, exp{,2}() would still have to be 1685 // called with the original argument, then keep both original transcendental 1686 // functions. However, this transformation is only safe with fully relaxed 1687 // math semantics, since, besides rounding differences, it changes overflow 1688 // and underflow behavior quite dramatically. For example: 1689 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1690 // Whereas: 1691 // exp(1000 * 0.001) = exp(1) 1692 // TODO: Loosen the requirement for fully relaxed math semantics. 1693 // TODO: Handle exp10() when more targets have it available. 1694 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1695 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1696 LibFunc LibFn; 1697 1698 Function *CalleeFn = BaseFn->getCalledFunction(); 1699 if (CalleeFn && 1700 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1701 isLibFuncEmittable(M, TLI, LibFn)) { 1702 StringRef ExpName; 1703 Intrinsic::ID ID; 1704 Value *ExpFn; 1705 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1706 1707 switch (LibFn) { 1708 default: 1709 return nullptr; 1710 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1711 ExpName = TLI->getName(LibFunc_exp); 1712 ID = Intrinsic::exp; 1713 LibFnFloat = LibFunc_expf; 1714 LibFnDouble = LibFunc_exp; 1715 LibFnLongDouble = LibFunc_expl; 1716 break; 1717 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1718 ExpName = TLI->getName(LibFunc_exp2); 1719 ID = Intrinsic::exp2; 1720 LibFnFloat = LibFunc_exp2f; 1721 LibFnDouble = LibFunc_exp2; 1722 LibFnLongDouble = LibFunc_exp2l; 1723 break; 1724 } 1725 1726 // Create new exp{,2}() with the product as its argument. 1727 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1728 ExpFn = BaseFn->doesNotAccessMemory() 1729 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1730 FMul, ExpName) 1731 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1732 LibFnLongDouble, B, 1733 BaseFn->getAttributes()); 1734 1735 // Since the new exp{,2}() is different from the original one, dead code 1736 // elimination cannot be trusted to remove it, since it may have side 1737 // effects (e.g., errno). When the only consumer for the original 1738 // exp{,2}() is pow(), then it has to be explicitly erased. 1739 substituteInParent(BaseFn, ExpFn); 1740 return ExpFn; 1741 } 1742 } 1743 1744 // Evaluate special cases related to a constant base. 1745 1746 const APFloat *BaseF; 1747 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1748 return nullptr; 1749 1750 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1751 if (match(Base, m_SpecificFP(2.0)) && 1752 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1753 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1754 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1755 return copyFlags(*Pow, 1756 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1757 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1758 LibFunc_ldexpl, B, Attrs)); 1759 } 1760 1761 // pow(2.0 ** n, x) -> exp2(n * x) 1762 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1763 APFloat BaseR = APFloat(1.0); 1764 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1765 BaseR = BaseR / *BaseF; 1766 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1767 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1768 APSInt NI(64, false); 1769 if ((IsInteger || IsReciprocal) && 1770 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1771 APFloat::opOK && 1772 NI > 1 && NI.isPowerOf2()) { 1773 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1774 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1775 if (Pow->doesNotAccessMemory()) 1776 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1777 Mod, Intrinsic::exp2, Ty), 1778 FMul, "exp2")); 1779 else 1780 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1781 LibFunc_exp2f, 1782 LibFunc_exp2l, B, Attrs)); 1783 } 1784 } 1785 1786 // pow(10.0, x) -> exp10(x) 1787 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1788 if (match(Base, m_SpecificFP(10.0)) && 1789 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1790 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1791 LibFunc_exp10f, LibFunc_exp10l, 1792 B, Attrs)); 1793 1794 // pow(x, y) -> exp2(log2(x) * y) 1795 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1796 !BaseF->isNegative()) { 1797 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1798 // Luckily optimizePow has already handled the x == 1 case. 1799 assert(!match(Base, m_FPOne()) && 1800 "pow(1.0, y) should have been simplified earlier!"); 1801 1802 Value *Log = nullptr; 1803 if (Ty->isFloatTy()) 1804 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1805 else if (Ty->isDoubleTy()) 1806 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1807 1808 if (Log) { 1809 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1810 if (Pow->doesNotAccessMemory()) 1811 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1812 Mod, Intrinsic::exp2, Ty), 1813 FMul, "exp2")); 1814 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1815 LibFunc_exp2l)) 1816 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1817 LibFunc_exp2f, 1818 LibFunc_exp2l, B, Attrs)); 1819 } 1820 } 1821 1822 return nullptr; 1823 } 1824 1825 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1826 Module *M, IRBuilderBase &B, 1827 const TargetLibraryInfo *TLI) { 1828 // If errno is never set, then use the intrinsic for sqrt(). 1829 if (NoErrno) { 1830 Function *SqrtFn = 1831 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1832 return B.CreateCall(SqrtFn, V, "sqrt"); 1833 } 1834 1835 // Otherwise, use the libcall for sqrt(). 1836 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1837 LibFunc_sqrtl)) 1838 // TODO: We also should check that the target can in fact lower the sqrt() 1839 // libcall. We currently have no way to ask this question, so we ask if 1840 // the target has a sqrt() libcall, which is not exactly the same. 1841 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1842 LibFunc_sqrtl, B, Attrs); 1843 1844 return nullptr; 1845 } 1846 1847 /// Use square root in place of pow(x, +/-0.5). 1848 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1849 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1850 AttributeList Attrs; // Attributes are only meaningful on the original call 1851 Module *Mod = Pow->getModule(); 1852 Type *Ty = Pow->getType(); 1853 1854 const APFloat *ExpoF; 1855 if (!match(Expo, m_APFloat(ExpoF)) || 1856 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1857 return nullptr; 1858 1859 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1860 // so that requires fast-math-flags (afn or reassoc). 1861 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1862 return nullptr; 1863 1864 // If we have a pow() library call (accesses memory) and we can't guarantee 1865 // that the base is not an infinity, give up: 1866 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1867 // errno), but sqrt(-Inf) is required by various standards to set errno. 1868 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1869 !isKnownNeverInfinity(Base, TLI)) 1870 return nullptr; 1871 1872 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1873 if (!Sqrt) 1874 return nullptr; 1875 1876 // Handle signed zero base by expanding to fabs(sqrt(x)). 1877 if (!Pow->hasNoSignedZeros()) { 1878 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1879 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1880 } 1881 1882 Sqrt = copyFlags(*Pow, Sqrt); 1883 1884 // Handle non finite base by expanding to 1885 // (x == -infinity ? +infinity : sqrt(x)). 1886 if (!Pow->hasNoInfs()) { 1887 Value *PosInf = ConstantFP::getInfinity(Ty), 1888 *NegInf = ConstantFP::getInfinity(Ty, true); 1889 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1890 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1891 } 1892 1893 // If the exponent is negative, then get the reciprocal. 1894 if (ExpoF->isNegative()) 1895 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1896 1897 return Sqrt; 1898 } 1899 1900 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1901 IRBuilderBase &B) { 1902 Value *Args[] = {Base, Expo}; 1903 Type *Types[] = {Base->getType(), Expo->getType()}; 1904 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1905 return B.CreateCall(F, Args); 1906 } 1907 1908 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1909 Value *Base = Pow->getArgOperand(0); 1910 Value *Expo = Pow->getArgOperand(1); 1911 Function *Callee = Pow->getCalledFunction(); 1912 StringRef Name = Callee->getName(); 1913 Type *Ty = Pow->getType(); 1914 Module *M = Pow->getModule(); 1915 bool AllowApprox = Pow->hasApproxFunc(); 1916 bool Ignored; 1917 1918 // Propagate the math semantics from the call to any created instructions. 1919 IRBuilderBase::FastMathFlagGuard Guard(B); 1920 B.setFastMathFlags(Pow->getFastMathFlags()); 1921 // Evaluate special cases related to the base. 1922 1923 // pow(1.0, x) -> 1.0 1924 if (match(Base, m_FPOne())) 1925 return Base; 1926 1927 if (Value *Exp = replacePowWithExp(Pow, B)) 1928 return Exp; 1929 1930 // Evaluate special cases related to the exponent. 1931 1932 // pow(x, -1.0) -> 1.0 / x 1933 if (match(Expo, m_SpecificFP(-1.0))) 1934 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1935 1936 // pow(x, +/-0.0) -> 1.0 1937 if (match(Expo, m_AnyZeroFP())) 1938 return ConstantFP::get(Ty, 1.0); 1939 1940 // pow(x, 1.0) -> x 1941 if (match(Expo, m_FPOne())) 1942 return Base; 1943 1944 // pow(x, 2.0) -> x * x 1945 if (match(Expo, m_SpecificFP(2.0))) 1946 return B.CreateFMul(Base, Base, "square"); 1947 1948 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1949 return Sqrt; 1950 1951 // If we can approximate pow: 1952 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 1953 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 1954 const APFloat *ExpoF; 1955 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1956 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1957 APFloat ExpoA(abs(*ExpoF)); 1958 APFloat ExpoI(*ExpoF); 1959 Value *Sqrt = nullptr; 1960 if (!ExpoA.isInteger()) { 1961 APFloat Expo2 = ExpoA; 1962 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1963 // is no floating point exception and the result is an integer, then 1964 // ExpoA == integer + 0.5 1965 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1966 return nullptr; 1967 1968 if (!Expo2.isInteger()) 1969 return nullptr; 1970 1971 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 1972 APFloat::opInexact) 1973 return nullptr; 1974 if (!ExpoI.isInteger()) 1975 return nullptr; 1976 ExpoF = &ExpoI; 1977 1978 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1979 Pow->doesNotAccessMemory(), M, B, TLI); 1980 if (!Sqrt) 1981 return nullptr; 1982 } 1983 1984 // 0.5 fraction is now optionally handled. 1985 // Do pow -> powi for remaining integer exponent 1986 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1987 if (ExpoF->isInteger() && 1988 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1989 APFloat::opOK) { 1990 Value *PowI = copyFlags( 1991 *Pow, 1992 createPowWithIntegerExponent( 1993 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1994 M, B)); 1995 1996 if (PowI && Sqrt) 1997 return B.CreateFMul(PowI, Sqrt); 1998 1999 return PowI; 2000 } 2001 } 2002 2003 // powf(x, itofp(y)) -> powi(x, y) 2004 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2005 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2006 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2007 } 2008 2009 // Shrink pow() to powf() if the arguments are single precision, 2010 // unless the result is expected to be double precision. 2011 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2012 hasFloatVersion(M, Name)) { 2013 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2014 return Shrunk; 2015 } 2016 2017 return nullptr; 2018 } 2019 2020 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2021 Module *M = CI->getModule(); 2022 Function *Callee = CI->getCalledFunction(); 2023 AttributeList Attrs; // Attributes are only meaningful on the original call 2024 StringRef Name = Callee->getName(); 2025 Value *Ret = nullptr; 2026 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2027 hasFloatVersion(M, Name)) 2028 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2029 2030 Type *Ty = CI->getType(); 2031 Value *Op = CI->getArgOperand(0); 2032 2033 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2034 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2035 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2036 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2037 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 2038 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 2039 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 2040 B, Attrs); 2041 } 2042 2043 return Ret; 2044 } 2045 2046 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2047 Module *M = CI->getModule(); 2048 2049 // If we can shrink the call to a float function rather than a double 2050 // function, do that first. 2051 Function *Callee = CI->getCalledFunction(); 2052 StringRef Name = Callee->getName(); 2053 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2054 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2055 return Ret; 2056 2057 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2058 // the intrinsics for improved optimization (for example, vectorization). 2059 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2060 // From the C standard draft WG14/N1256: 2061 // "Ideally, fmax would be sensitive to the sign of zero, for example 2062 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2063 // might be impractical." 2064 IRBuilderBase::FastMathFlagGuard Guard(B); 2065 FastMathFlags FMF = CI->getFastMathFlags(); 2066 FMF.setNoSignedZeros(); 2067 B.setFastMathFlags(FMF); 2068 2069 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 2070 : Intrinsic::maxnum; 2071 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2072 return copyFlags( 2073 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2074 } 2075 2076 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2077 Function *LogFn = Log->getCalledFunction(); 2078 AttributeList Attrs; // Attributes are only meaningful on the original call 2079 StringRef LogNm = LogFn->getName(); 2080 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2081 Module *Mod = Log->getModule(); 2082 Type *Ty = Log->getType(); 2083 Value *Ret = nullptr; 2084 2085 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2086 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2087 2088 // The earlier call must also be 'fast' in order to do these transforms. 2089 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2090 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2091 return Ret; 2092 2093 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2094 2095 // This is only applicable to log(), log2(), log10(). 2096 if (TLI->getLibFunc(LogNm, LogLb)) 2097 switch (LogLb) { 2098 case LibFunc_logf: 2099 LogID = Intrinsic::log; 2100 ExpLb = LibFunc_expf; 2101 Exp2Lb = LibFunc_exp2f; 2102 Exp10Lb = LibFunc_exp10f; 2103 PowLb = LibFunc_powf; 2104 break; 2105 case LibFunc_log: 2106 LogID = Intrinsic::log; 2107 ExpLb = LibFunc_exp; 2108 Exp2Lb = LibFunc_exp2; 2109 Exp10Lb = LibFunc_exp10; 2110 PowLb = LibFunc_pow; 2111 break; 2112 case LibFunc_logl: 2113 LogID = Intrinsic::log; 2114 ExpLb = LibFunc_expl; 2115 Exp2Lb = LibFunc_exp2l; 2116 Exp10Lb = LibFunc_exp10l; 2117 PowLb = LibFunc_powl; 2118 break; 2119 case LibFunc_log2f: 2120 LogID = Intrinsic::log2; 2121 ExpLb = LibFunc_expf; 2122 Exp2Lb = LibFunc_exp2f; 2123 Exp10Lb = LibFunc_exp10f; 2124 PowLb = LibFunc_powf; 2125 break; 2126 case LibFunc_log2: 2127 LogID = Intrinsic::log2; 2128 ExpLb = LibFunc_exp; 2129 Exp2Lb = LibFunc_exp2; 2130 Exp10Lb = LibFunc_exp10; 2131 PowLb = LibFunc_pow; 2132 break; 2133 case LibFunc_log2l: 2134 LogID = Intrinsic::log2; 2135 ExpLb = LibFunc_expl; 2136 Exp2Lb = LibFunc_exp2l; 2137 Exp10Lb = LibFunc_exp10l; 2138 PowLb = LibFunc_powl; 2139 break; 2140 case LibFunc_log10f: 2141 LogID = Intrinsic::log10; 2142 ExpLb = LibFunc_expf; 2143 Exp2Lb = LibFunc_exp2f; 2144 Exp10Lb = LibFunc_exp10f; 2145 PowLb = LibFunc_powf; 2146 break; 2147 case LibFunc_log10: 2148 LogID = Intrinsic::log10; 2149 ExpLb = LibFunc_exp; 2150 Exp2Lb = LibFunc_exp2; 2151 Exp10Lb = LibFunc_exp10; 2152 PowLb = LibFunc_pow; 2153 break; 2154 case LibFunc_log10l: 2155 LogID = Intrinsic::log10; 2156 ExpLb = LibFunc_expl; 2157 Exp2Lb = LibFunc_exp2l; 2158 Exp10Lb = LibFunc_exp10l; 2159 PowLb = LibFunc_powl; 2160 break; 2161 default: 2162 return Ret; 2163 } 2164 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2165 LogID == Intrinsic::log10) { 2166 if (Ty->getScalarType()->isFloatTy()) { 2167 ExpLb = LibFunc_expf; 2168 Exp2Lb = LibFunc_exp2f; 2169 Exp10Lb = LibFunc_exp10f; 2170 PowLb = LibFunc_powf; 2171 } else if (Ty->getScalarType()->isDoubleTy()) { 2172 ExpLb = LibFunc_exp; 2173 Exp2Lb = LibFunc_exp2; 2174 Exp10Lb = LibFunc_exp10; 2175 PowLb = LibFunc_pow; 2176 } else 2177 return Ret; 2178 } else 2179 return Ret; 2180 2181 IRBuilderBase::FastMathFlagGuard Guard(B); 2182 B.setFastMathFlags(FastMathFlags::getFast()); 2183 2184 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2185 LibFunc ArgLb = NotLibFunc; 2186 TLI->getLibFunc(*Arg, ArgLb); 2187 2188 // log(pow(x,y)) -> y*log(x) 2189 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2190 Value *LogX = 2191 Log->doesNotAccessMemory() 2192 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2193 Arg->getOperand(0), "log") 2194 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2195 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2196 // Since pow() may have side effects, e.g. errno, 2197 // dead code elimination may not be trusted to remove it. 2198 substituteInParent(Arg, MulY); 2199 return MulY; 2200 } 2201 2202 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2203 // TODO: There is no exp10() intrinsic yet. 2204 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2205 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2206 Constant *Eul; 2207 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2208 // FIXME: Add more precise value of e for long double. 2209 Eul = ConstantFP::get(Log->getType(), numbers::e); 2210 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2211 Eul = ConstantFP::get(Log->getType(), 2.0); 2212 else 2213 Eul = ConstantFP::get(Log->getType(), 10.0); 2214 Value *LogE = Log->doesNotAccessMemory() 2215 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2216 Eul, "log") 2217 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2218 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2219 // Since exp() may have side effects, e.g. errno, 2220 // dead code elimination may not be trusted to remove it. 2221 substituteInParent(Arg, MulY); 2222 return MulY; 2223 } 2224 2225 return Ret; 2226 } 2227 2228 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2229 Module *M = CI->getModule(); 2230 Function *Callee = CI->getCalledFunction(); 2231 Value *Ret = nullptr; 2232 // TODO: Once we have a way (other than checking for the existince of the 2233 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2234 // condition below. 2235 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2236 (Callee->getName() == "sqrt" || 2237 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2238 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2239 2240 if (!CI->isFast()) 2241 return Ret; 2242 2243 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2244 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2245 return Ret; 2246 2247 // We're looking for a repeated factor in a multiplication tree, 2248 // so we can do this fold: sqrt(x * x) -> fabs(x); 2249 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2250 Value *Op0 = I->getOperand(0); 2251 Value *Op1 = I->getOperand(1); 2252 Value *RepeatOp = nullptr; 2253 Value *OtherOp = nullptr; 2254 if (Op0 == Op1) { 2255 // Simple match: the operands of the multiply are identical. 2256 RepeatOp = Op0; 2257 } else { 2258 // Look for a more complicated pattern: one of the operands is itself 2259 // a multiply, so search for a common factor in that multiply. 2260 // Note: We don't bother looking any deeper than this first level or for 2261 // variations of this pattern because instcombine's visitFMUL and/or the 2262 // reassociation pass should give us this form. 2263 Value *OtherMul0, *OtherMul1; 2264 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2265 // Pattern: sqrt((x * y) * z) 2266 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2267 // Matched: sqrt((x * x) * z) 2268 RepeatOp = OtherMul0; 2269 OtherOp = Op1; 2270 } 2271 } 2272 } 2273 if (!RepeatOp) 2274 return Ret; 2275 2276 // Fast math flags for any created instructions should match the sqrt 2277 // and multiply. 2278 IRBuilderBase::FastMathFlagGuard Guard(B); 2279 B.setFastMathFlags(I->getFastMathFlags()); 2280 2281 // If we found a repeated factor, hoist it out of the square root and 2282 // replace it with the fabs of that factor. 2283 Type *ArgType = I->getType(); 2284 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2285 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2286 if (OtherOp) { 2287 // If we found a non-repeated factor, we still need to get its square 2288 // root. We then multiply that by the value that was simplified out 2289 // of the square root calculation. 2290 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2291 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2292 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2293 } 2294 return copyFlags(*CI, FabsCall); 2295 } 2296 2297 // TODO: Generalize to handle any trig function and its inverse. 2298 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2299 Module *M = CI->getModule(); 2300 Function *Callee = CI->getCalledFunction(); 2301 Value *Ret = nullptr; 2302 StringRef Name = Callee->getName(); 2303 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2304 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2305 2306 Value *Op1 = CI->getArgOperand(0); 2307 auto *OpC = dyn_cast<CallInst>(Op1); 2308 if (!OpC) 2309 return Ret; 2310 2311 // Both calls must be 'fast' in order to remove them. 2312 if (!CI->isFast() || !OpC->isFast()) 2313 return Ret; 2314 2315 // tan(atan(x)) -> x 2316 // tanf(atanf(x)) -> x 2317 // tanl(atanl(x)) -> x 2318 LibFunc Func; 2319 Function *F = OpC->getCalledFunction(); 2320 if (F && TLI->getLibFunc(F->getName(), Func) && 2321 isLibFuncEmittable(M, TLI, Func) && 2322 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2323 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2324 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2325 Ret = OpC->getArgOperand(0); 2326 return Ret; 2327 } 2328 2329 static bool isTrigLibCall(CallInst *CI) { 2330 // We can only hope to do anything useful if we can ignore things like errno 2331 // and floating-point exceptions. 2332 // We already checked the prototype. 2333 return CI->hasFnAttr(Attribute::NoUnwind) && 2334 CI->hasFnAttr(Attribute::ReadNone); 2335 } 2336 2337 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2338 bool UseFloat, Value *&Sin, Value *&Cos, 2339 Value *&SinCos, const TargetLibraryInfo *TLI) { 2340 Module *M = OrigCallee->getParent(); 2341 Type *ArgTy = Arg->getType(); 2342 Type *ResTy; 2343 StringRef Name; 2344 2345 Triple T(OrigCallee->getParent()->getTargetTriple()); 2346 if (UseFloat) { 2347 Name = "__sincospif_stret"; 2348 2349 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2350 // x86_64 can't use {float, float} since that would be returned in both 2351 // xmm0 and xmm1, which isn't what a real struct would do. 2352 ResTy = T.getArch() == Triple::x86_64 2353 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2354 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2355 } else { 2356 Name = "__sincospi_stret"; 2357 ResTy = StructType::get(ArgTy, ArgTy); 2358 } 2359 2360 if (!isLibFuncEmittable(M, TLI, Name)) 2361 return false; 2362 LibFunc TheLibFunc; 2363 TLI->getLibFunc(Name, TheLibFunc); 2364 FunctionCallee Callee = getOrInsertLibFunc( 2365 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2366 2367 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2368 // If the argument is an instruction, it must dominate all uses so put our 2369 // sincos call there. 2370 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2371 } else { 2372 // Otherwise (e.g. for a constant) the beginning of the function is as 2373 // good a place as any. 2374 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2375 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2376 } 2377 2378 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2379 2380 if (SinCos->getType()->isStructTy()) { 2381 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2382 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2383 } else { 2384 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2385 "sinpi"); 2386 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2387 "cospi"); 2388 } 2389 2390 return true; 2391 } 2392 2393 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2394 // Make sure the prototype is as expected, otherwise the rest of the 2395 // function is probably invalid and likely to abort. 2396 if (!isTrigLibCall(CI)) 2397 return nullptr; 2398 2399 Value *Arg = CI->getArgOperand(0); 2400 SmallVector<CallInst *, 1> SinCalls; 2401 SmallVector<CallInst *, 1> CosCalls; 2402 SmallVector<CallInst *, 1> SinCosCalls; 2403 2404 bool IsFloat = Arg->getType()->isFloatTy(); 2405 2406 // Look for all compatible sinpi, cospi and sincospi calls with the same 2407 // argument. If there are enough (in some sense) we can make the 2408 // substitution. 2409 Function *F = CI->getFunction(); 2410 for (User *U : Arg->users()) 2411 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2412 2413 // It's only worthwhile if both sinpi and cospi are actually used. 2414 if (SinCalls.empty() || CosCalls.empty()) 2415 return nullptr; 2416 2417 Value *Sin, *Cos, *SinCos; 2418 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2419 SinCos, TLI)) 2420 return nullptr; 2421 2422 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2423 Value *Res) { 2424 for (CallInst *C : Calls) 2425 replaceAllUsesWith(C, Res); 2426 }; 2427 2428 replaceTrigInsts(SinCalls, Sin); 2429 replaceTrigInsts(CosCalls, Cos); 2430 replaceTrigInsts(SinCosCalls, SinCos); 2431 2432 return nullptr; 2433 } 2434 2435 void LibCallSimplifier::classifyArgUse( 2436 Value *Val, Function *F, bool IsFloat, 2437 SmallVectorImpl<CallInst *> &SinCalls, 2438 SmallVectorImpl<CallInst *> &CosCalls, 2439 SmallVectorImpl<CallInst *> &SinCosCalls) { 2440 CallInst *CI = dyn_cast<CallInst>(Val); 2441 Module *M = CI->getModule(); 2442 2443 if (!CI || CI->use_empty()) 2444 return; 2445 2446 // Don't consider calls in other functions. 2447 if (CI->getFunction() != F) 2448 return; 2449 2450 Function *Callee = CI->getCalledFunction(); 2451 LibFunc Func; 2452 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2453 !isLibFuncEmittable(M, TLI, Func) || 2454 !isTrigLibCall(CI)) 2455 return; 2456 2457 if (IsFloat) { 2458 if (Func == LibFunc_sinpif) 2459 SinCalls.push_back(CI); 2460 else if (Func == LibFunc_cospif) 2461 CosCalls.push_back(CI); 2462 else if (Func == LibFunc_sincospif_stret) 2463 SinCosCalls.push_back(CI); 2464 } else { 2465 if (Func == LibFunc_sinpi) 2466 SinCalls.push_back(CI); 2467 else if (Func == LibFunc_cospi) 2468 CosCalls.push_back(CI); 2469 else if (Func == LibFunc_sincospi_stret) 2470 SinCosCalls.push_back(CI); 2471 } 2472 } 2473 2474 //===----------------------------------------------------------------------===// 2475 // Integer Library Call Optimizations 2476 //===----------------------------------------------------------------------===// 2477 2478 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2479 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2480 Value *Op = CI->getArgOperand(0); 2481 Type *ArgType = Op->getType(); 2482 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2483 Intrinsic::cttz, ArgType); 2484 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2485 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2486 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2487 2488 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2489 return B.CreateSelect(Cond, V, B.getInt32(0)); 2490 } 2491 2492 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2493 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2494 Value *Op = CI->getArgOperand(0); 2495 Type *ArgType = Op->getType(); 2496 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2497 Intrinsic::ctlz, ArgType); 2498 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2499 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2500 V); 2501 return B.CreateIntCast(V, CI->getType(), false); 2502 } 2503 2504 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2505 // abs(x) -> x <s 0 ? -x : x 2506 // The negation has 'nsw' because abs of INT_MIN is undefined. 2507 Value *X = CI->getArgOperand(0); 2508 Value *IsNeg = B.CreateIsNeg(X); 2509 Value *NegX = B.CreateNSWNeg(X, "neg"); 2510 return B.CreateSelect(IsNeg, NegX, X); 2511 } 2512 2513 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2514 // isdigit(c) -> (c-'0') <u 10 2515 Value *Op = CI->getArgOperand(0); 2516 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2517 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2518 return B.CreateZExt(Op, CI->getType()); 2519 } 2520 2521 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2522 // isascii(c) -> c <u 128 2523 Value *Op = CI->getArgOperand(0); 2524 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2525 return B.CreateZExt(Op, CI->getType()); 2526 } 2527 2528 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2529 // toascii(c) -> c & 0x7f 2530 return B.CreateAnd(CI->getArgOperand(0), 2531 ConstantInt::get(CI->getType(), 0x7F)); 2532 } 2533 2534 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2535 StringRef Str; 2536 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2537 return nullptr; 2538 2539 return convertStrToNumber(CI, Str, nullptr, 10, B); 2540 } 2541 2542 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2543 StringRef Str; 2544 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2545 return nullptr; 2546 2547 Value *EndPtr = CI->getArgOperand(1); 2548 if (isa<ConstantPointerNull>(EndPtr)) 2549 EndPtr = nullptr; 2550 else if (!isKnownNonZero(EndPtr, DL)) 2551 return nullptr; 2552 2553 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2554 return convertStrToNumber(CI, Str, EndPtr, CInt->getSExtValue(), B); 2555 } 2556 2557 return nullptr; 2558 } 2559 2560 //===----------------------------------------------------------------------===// 2561 // Formatting and IO Library Call Optimizations 2562 //===----------------------------------------------------------------------===// 2563 2564 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2565 2566 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2567 int StreamArg) { 2568 Function *Callee = CI->getCalledFunction(); 2569 // Error reporting calls should be cold, mark them as such. 2570 // This applies even to non-builtin calls: it is only a hint and applies to 2571 // functions that the frontend might not understand as builtins. 2572 2573 // This heuristic was suggested in: 2574 // Improving Static Branch Prediction in a Compiler 2575 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2576 // Proceedings of PACT'98, Oct. 1998, IEEE 2577 if (!CI->hasFnAttr(Attribute::Cold) && 2578 isReportingError(Callee, CI, StreamArg)) { 2579 CI->addFnAttr(Attribute::Cold); 2580 } 2581 2582 return nullptr; 2583 } 2584 2585 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2586 if (!Callee || !Callee->isDeclaration()) 2587 return false; 2588 2589 if (StreamArg < 0) 2590 return true; 2591 2592 // These functions might be considered cold, but only if their stream 2593 // argument is stderr. 2594 2595 if (StreamArg >= (int)CI->arg_size()) 2596 return false; 2597 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2598 if (!LI) 2599 return false; 2600 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2601 if (!GV || !GV->isDeclaration()) 2602 return false; 2603 return GV->getName() == "stderr"; 2604 } 2605 2606 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2607 // Check for a fixed format string. 2608 StringRef FormatStr; 2609 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2610 return nullptr; 2611 2612 // Empty format string -> noop. 2613 if (FormatStr.empty()) // Tolerate printf's declared void. 2614 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2615 2616 // Do not do any of the following transformations if the printf return value 2617 // is used, in general the printf return value is not compatible with either 2618 // putchar() or puts(). 2619 if (!CI->use_empty()) 2620 return nullptr; 2621 2622 // printf("x") -> putchar('x'), even for "%" and "%%". 2623 if (FormatStr.size() == 1 || FormatStr == "%%") 2624 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2625 2626 // Try to remove call or emit putchar/puts. 2627 if (FormatStr == "%s" && CI->arg_size() > 1) { 2628 StringRef OperandStr; 2629 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2630 return nullptr; 2631 // printf("%s", "") --> NOP 2632 if (OperandStr.empty()) 2633 return (Value *)CI; 2634 // printf("%s", "a") --> putchar('a') 2635 if (OperandStr.size() == 1) 2636 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2637 // printf("%s", str"\n") --> puts(str) 2638 if (OperandStr.back() == '\n') { 2639 OperandStr = OperandStr.drop_back(); 2640 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2641 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2642 } 2643 return nullptr; 2644 } 2645 2646 // printf("foo\n") --> puts("foo") 2647 if (FormatStr.back() == '\n' && 2648 !FormatStr.contains('%')) { // No format characters. 2649 // Create a string literal with no \n on it. We expect the constant merge 2650 // pass to be run after this pass, to merge duplicate strings. 2651 FormatStr = FormatStr.drop_back(); 2652 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2653 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2654 } 2655 2656 // Optimize specific format strings. 2657 // printf("%c", chr) --> putchar(chr) 2658 if (FormatStr == "%c" && CI->arg_size() > 1 && 2659 CI->getArgOperand(1)->getType()->isIntegerTy()) 2660 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2661 2662 // printf("%s\n", str) --> puts(str) 2663 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2664 CI->getArgOperand(1)->getType()->isPointerTy()) 2665 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2666 return nullptr; 2667 } 2668 2669 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2670 2671 Module *M = CI->getModule(); 2672 Function *Callee = CI->getCalledFunction(); 2673 FunctionType *FT = Callee->getFunctionType(); 2674 if (Value *V = optimizePrintFString(CI, B)) { 2675 return V; 2676 } 2677 2678 // printf(format, ...) -> iprintf(format, ...) if no floating point 2679 // arguments. 2680 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2681 !callHasFloatingPointArgument(CI)) { 2682 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2683 Callee->getAttributes()); 2684 CallInst *New = cast<CallInst>(CI->clone()); 2685 New->setCalledFunction(IPrintFFn); 2686 B.Insert(New); 2687 return New; 2688 } 2689 2690 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2691 // arguments. 2692 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2693 !callHasFP128Argument(CI)) { 2694 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2695 Callee->getAttributes()); 2696 CallInst *New = cast<CallInst>(CI->clone()); 2697 New->setCalledFunction(SmallPrintFFn); 2698 B.Insert(New); 2699 return New; 2700 } 2701 2702 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2703 return nullptr; 2704 } 2705 2706 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2707 IRBuilderBase &B) { 2708 // Check for a fixed format string. 2709 StringRef FormatStr; 2710 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2711 return nullptr; 2712 2713 // If we just have a format string (nothing else crazy) transform it. 2714 Value *Dest = CI->getArgOperand(0); 2715 if (CI->arg_size() == 2) { 2716 // Make sure there's no % in the constant array. We could try to handle 2717 // %% -> % in the future if we cared. 2718 if (FormatStr.contains('%')) 2719 return nullptr; // we found a format specifier, bail out. 2720 2721 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2722 B.CreateMemCpy( 2723 Dest, Align(1), CI->getArgOperand(1), Align(1), 2724 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2725 FormatStr.size() + 1)); // Copy the null byte. 2726 return ConstantInt::get(CI->getType(), FormatStr.size()); 2727 } 2728 2729 // The remaining optimizations require the format string to be "%s" or "%c" 2730 // and have an extra operand. 2731 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2732 return nullptr; 2733 2734 // Decode the second character of the format string. 2735 if (FormatStr[1] == 'c') { 2736 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2737 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2738 return nullptr; 2739 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2740 Value *Ptr = castToCStr(Dest, B); 2741 B.CreateStore(V, Ptr); 2742 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2743 B.CreateStore(B.getInt8(0), Ptr); 2744 2745 return ConstantInt::get(CI->getType(), 1); 2746 } 2747 2748 if (FormatStr[1] == 's') { 2749 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2750 // strlen(str)+1) 2751 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2752 return nullptr; 2753 2754 if (CI->use_empty()) 2755 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2756 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2757 2758 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2759 if (SrcLen) { 2760 B.CreateMemCpy( 2761 Dest, Align(1), CI->getArgOperand(2), Align(1), 2762 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2763 // Returns total number of characters written without null-character. 2764 return ConstantInt::get(CI->getType(), SrcLen - 1); 2765 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2766 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2767 // Handle mismatched pointer types (goes away with typeless pointers?). 2768 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2769 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2770 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2771 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2772 } 2773 2774 bool OptForSize = CI->getFunction()->hasOptSize() || 2775 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2776 PGSOQueryType::IRPass); 2777 if (OptForSize) 2778 return nullptr; 2779 2780 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2781 if (!Len) 2782 return nullptr; 2783 Value *IncLen = 2784 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2785 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2786 2787 // The sprintf result is the unincremented number of bytes in the string. 2788 return B.CreateIntCast(Len, CI->getType(), false); 2789 } 2790 return nullptr; 2791 } 2792 2793 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2794 Module *M = CI->getModule(); 2795 Function *Callee = CI->getCalledFunction(); 2796 FunctionType *FT = Callee->getFunctionType(); 2797 if (Value *V = optimizeSPrintFString(CI, B)) { 2798 return V; 2799 } 2800 2801 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2802 // point arguments. 2803 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2804 !callHasFloatingPointArgument(CI)) { 2805 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2806 FT, Callee->getAttributes()); 2807 CallInst *New = cast<CallInst>(CI->clone()); 2808 New->setCalledFunction(SIPrintFFn); 2809 B.Insert(New); 2810 return New; 2811 } 2812 2813 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2814 // floating point arguments. 2815 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2816 !callHasFP128Argument(CI)) { 2817 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2818 Callee->getAttributes()); 2819 CallInst *New = cast<CallInst>(CI->clone()); 2820 New->setCalledFunction(SmallSPrintFFn); 2821 B.Insert(New); 2822 return New; 2823 } 2824 2825 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2826 return nullptr; 2827 } 2828 2829 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2830 IRBuilderBase &B) { 2831 // Check for size 2832 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2833 if (!Size) 2834 return nullptr; 2835 2836 uint64_t N = Size->getZExtValue(); 2837 // Check for a fixed format string. 2838 StringRef FormatStr; 2839 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2840 return nullptr; 2841 2842 // If we just have a format string (nothing else crazy) transform it. 2843 if (CI->arg_size() == 3) { 2844 // Make sure there's no % in the constant array. We could try to handle 2845 // %% -> % in the future if we cared. 2846 if (FormatStr.contains('%')) 2847 return nullptr; // we found a format specifier, bail out. 2848 2849 if (N == 0) 2850 return ConstantInt::get(CI->getType(), FormatStr.size()); 2851 else if (N < FormatStr.size() + 1) 2852 return nullptr; 2853 2854 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2855 // strlen(fmt)+1) 2856 copyFlags( 2857 *CI, 2858 B.CreateMemCpy( 2859 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2860 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2861 FormatStr.size() + 1))); // Copy the null byte. 2862 return ConstantInt::get(CI->getType(), FormatStr.size()); 2863 } 2864 2865 // The remaining optimizations require the format string to be "%s" or "%c" 2866 // and have an extra operand. 2867 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2868 2869 // Decode the second character of the format string. 2870 if (FormatStr[1] == 'c') { 2871 if (N == 0) 2872 return ConstantInt::get(CI->getType(), 1); 2873 else if (N == 1) 2874 return nullptr; 2875 2876 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2877 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2878 return nullptr; 2879 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2880 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2881 B.CreateStore(V, Ptr); 2882 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2883 B.CreateStore(B.getInt8(0), Ptr); 2884 2885 return ConstantInt::get(CI->getType(), 1); 2886 } 2887 2888 if (FormatStr[1] == 's') { 2889 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2890 StringRef Str; 2891 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2892 return nullptr; 2893 2894 if (N == 0) 2895 return ConstantInt::get(CI->getType(), Str.size()); 2896 else if (N < Str.size() + 1) 2897 return nullptr; 2898 2899 copyFlags( 2900 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2901 CI->getArgOperand(3), Align(1), 2902 ConstantInt::get(CI->getType(), Str.size() + 1))); 2903 2904 // The snprintf result is the unincremented number of bytes in the string. 2905 return ConstantInt::get(CI->getType(), Str.size()); 2906 } 2907 } 2908 return nullptr; 2909 } 2910 2911 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2912 if (Value *V = optimizeSnPrintFString(CI, B)) { 2913 return V; 2914 } 2915 2916 if (isKnownNonZero(CI->getOperand(1), DL)) 2917 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2918 return nullptr; 2919 } 2920 2921 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2922 IRBuilderBase &B) { 2923 optimizeErrorReporting(CI, B, 0); 2924 2925 // All the optimizations depend on the format string. 2926 StringRef FormatStr; 2927 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2928 return nullptr; 2929 2930 // Do not do any of the following transformations if the fprintf return 2931 // value is used, in general the fprintf return value is not compatible 2932 // with fwrite(), fputc() or fputs(). 2933 if (!CI->use_empty()) 2934 return nullptr; 2935 2936 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2937 if (CI->arg_size() == 2) { 2938 // Could handle %% -> % if we cared. 2939 if (FormatStr.contains('%')) 2940 return nullptr; // We found a format specifier. 2941 2942 return copyFlags( 2943 *CI, emitFWrite(CI->getArgOperand(1), 2944 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2945 FormatStr.size()), 2946 CI->getArgOperand(0), B, DL, TLI)); 2947 } 2948 2949 // The remaining optimizations require the format string to be "%s" or "%c" 2950 // and have an extra operand. 2951 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2952 return nullptr; 2953 2954 // Decode the second character of the format string. 2955 if (FormatStr[1] == 'c') { 2956 // fprintf(F, "%c", chr) --> fputc(chr, F) 2957 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2958 return nullptr; 2959 return copyFlags( 2960 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2961 } 2962 2963 if (FormatStr[1] == 's') { 2964 // fprintf(F, "%s", str) --> fputs(str, F) 2965 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2966 return nullptr; 2967 return copyFlags( 2968 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2969 } 2970 return nullptr; 2971 } 2972 2973 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2974 Module *M = CI->getModule(); 2975 Function *Callee = CI->getCalledFunction(); 2976 FunctionType *FT = Callee->getFunctionType(); 2977 if (Value *V = optimizeFPrintFString(CI, B)) { 2978 return V; 2979 } 2980 2981 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2982 // floating point arguments. 2983 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 2984 !callHasFloatingPointArgument(CI)) { 2985 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 2986 FT, Callee->getAttributes()); 2987 CallInst *New = cast<CallInst>(CI->clone()); 2988 New->setCalledFunction(FIPrintFFn); 2989 B.Insert(New); 2990 return New; 2991 } 2992 2993 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2994 // 128-bit floating point arguments. 2995 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 2996 !callHasFP128Argument(CI)) { 2997 auto SmallFPrintFFn = 2998 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 2999 Callee->getAttributes()); 3000 CallInst *New = cast<CallInst>(CI->clone()); 3001 New->setCalledFunction(SmallFPrintFFn); 3002 B.Insert(New); 3003 return New; 3004 } 3005 3006 return nullptr; 3007 } 3008 3009 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3010 optimizeErrorReporting(CI, B, 3); 3011 3012 // Get the element size and count. 3013 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3014 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3015 if (SizeC && CountC) { 3016 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3017 3018 // If this is writing zero records, remove the call (it's a noop). 3019 if (Bytes == 0) 3020 return ConstantInt::get(CI->getType(), 0); 3021 3022 // If this is writing one byte, turn it into fputc. 3023 // This optimisation is only valid, if the return value is unused. 3024 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3025 Value *Char = B.CreateLoad(B.getInt8Ty(), 3026 castToCStr(CI->getArgOperand(0), B), "char"); 3027 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 3028 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3029 } 3030 } 3031 3032 return nullptr; 3033 } 3034 3035 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3036 optimizeErrorReporting(CI, B, 1); 3037 3038 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3039 // requires more arguments and thus extra MOVs are required. 3040 bool OptForSize = CI->getFunction()->hasOptSize() || 3041 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3042 PGSOQueryType::IRPass); 3043 if (OptForSize) 3044 return nullptr; 3045 3046 // We can't optimize if return value is used. 3047 if (!CI->use_empty()) 3048 return nullptr; 3049 3050 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3051 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3052 if (!Len) 3053 return nullptr; 3054 3055 // Known to have no uses (see above). 3056 return copyFlags( 3057 *CI, 3058 emitFWrite(CI->getArgOperand(0), 3059 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 3060 CI->getArgOperand(1), B, DL, TLI)); 3061 } 3062 3063 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3064 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3065 if (!CI->use_empty()) 3066 return nullptr; 3067 3068 // Check for a constant string. 3069 // puts("") -> putchar('\n') 3070 StringRef Str; 3071 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 3072 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 3073 3074 return nullptr; 3075 } 3076 3077 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3078 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3079 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3080 CI->getArgOperand(0), Align(1), 3081 CI->getArgOperand(2))); 3082 } 3083 3084 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3085 SmallString<20> FloatFuncName = FuncName; 3086 FloatFuncName += 'f'; 3087 return isLibFuncEmittable(M, TLI, FloatFuncName); 3088 } 3089 3090 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3091 IRBuilderBase &Builder) { 3092 Module *M = CI->getModule(); 3093 LibFunc Func; 3094 Function *Callee = CI->getCalledFunction(); 3095 // Check for string/memory library functions. 3096 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3097 // Make sure we never change the calling convention. 3098 assert( 3099 (ignoreCallingConv(Func) || 3100 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3101 "Optimizing string/memory libcall would change the calling convention"); 3102 switch (Func) { 3103 case LibFunc_strcat: 3104 return optimizeStrCat(CI, Builder); 3105 case LibFunc_strncat: 3106 return optimizeStrNCat(CI, Builder); 3107 case LibFunc_strchr: 3108 return optimizeStrChr(CI, Builder); 3109 case LibFunc_strrchr: 3110 return optimizeStrRChr(CI, Builder); 3111 case LibFunc_strcmp: 3112 return optimizeStrCmp(CI, Builder); 3113 case LibFunc_strncmp: 3114 return optimizeStrNCmp(CI, Builder); 3115 case LibFunc_strcpy: 3116 return optimizeStrCpy(CI, Builder); 3117 case LibFunc_stpcpy: 3118 return optimizeStpCpy(CI, Builder); 3119 case LibFunc_strncpy: 3120 return optimizeStrNCpy(CI, Builder); 3121 case LibFunc_strlen: 3122 return optimizeStrLen(CI, Builder); 3123 case LibFunc_strnlen: 3124 return optimizeStrNLen(CI, Builder); 3125 case LibFunc_strpbrk: 3126 return optimizeStrPBrk(CI, Builder); 3127 case LibFunc_strndup: 3128 return optimizeStrNDup(CI, Builder); 3129 case LibFunc_strtol: 3130 case LibFunc_strtod: 3131 case LibFunc_strtof: 3132 case LibFunc_strtoul: 3133 case LibFunc_strtoll: 3134 case LibFunc_strtold: 3135 case LibFunc_strtoull: 3136 return optimizeStrTo(CI, Builder); 3137 case LibFunc_strspn: 3138 return optimizeStrSpn(CI, Builder); 3139 case LibFunc_strcspn: 3140 return optimizeStrCSpn(CI, Builder); 3141 case LibFunc_strstr: 3142 return optimizeStrStr(CI, Builder); 3143 case LibFunc_memchr: 3144 return optimizeMemChr(CI, Builder); 3145 case LibFunc_memrchr: 3146 return optimizeMemRChr(CI, Builder); 3147 case LibFunc_bcmp: 3148 return optimizeBCmp(CI, Builder); 3149 case LibFunc_memcmp: 3150 return optimizeMemCmp(CI, Builder); 3151 case LibFunc_memcpy: 3152 return optimizeMemCpy(CI, Builder); 3153 case LibFunc_memccpy: 3154 return optimizeMemCCpy(CI, Builder); 3155 case LibFunc_mempcpy: 3156 return optimizeMemPCpy(CI, Builder); 3157 case LibFunc_memmove: 3158 return optimizeMemMove(CI, Builder); 3159 case LibFunc_memset: 3160 return optimizeMemSet(CI, Builder); 3161 case LibFunc_realloc: 3162 return optimizeRealloc(CI, Builder); 3163 case LibFunc_wcslen: 3164 return optimizeWcslen(CI, Builder); 3165 case LibFunc_bcopy: 3166 return optimizeBCopy(CI, Builder); 3167 default: 3168 break; 3169 } 3170 } 3171 return nullptr; 3172 } 3173 3174 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3175 LibFunc Func, 3176 IRBuilderBase &Builder) { 3177 const Module *M = CI->getModule(); 3178 3179 // Don't optimize calls that require strict floating point semantics. 3180 if (CI->isStrictFP()) 3181 return nullptr; 3182 3183 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3184 return V; 3185 3186 switch (Func) { 3187 case LibFunc_sinpif: 3188 case LibFunc_sinpi: 3189 case LibFunc_cospif: 3190 case LibFunc_cospi: 3191 return optimizeSinCosPi(CI, Builder); 3192 case LibFunc_powf: 3193 case LibFunc_pow: 3194 case LibFunc_powl: 3195 return optimizePow(CI, Builder); 3196 case LibFunc_exp2l: 3197 case LibFunc_exp2: 3198 case LibFunc_exp2f: 3199 return optimizeExp2(CI, Builder); 3200 case LibFunc_fabsf: 3201 case LibFunc_fabs: 3202 case LibFunc_fabsl: 3203 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3204 case LibFunc_sqrtf: 3205 case LibFunc_sqrt: 3206 case LibFunc_sqrtl: 3207 return optimizeSqrt(CI, Builder); 3208 case LibFunc_logf: 3209 case LibFunc_log: 3210 case LibFunc_logl: 3211 case LibFunc_log10f: 3212 case LibFunc_log10: 3213 case LibFunc_log10l: 3214 case LibFunc_log1pf: 3215 case LibFunc_log1p: 3216 case LibFunc_log1pl: 3217 case LibFunc_log2f: 3218 case LibFunc_log2: 3219 case LibFunc_log2l: 3220 case LibFunc_logbf: 3221 case LibFunc_logb: 3222 case LibFunc_logbl: 3223 return optimizeLog(CI, Builder); 3224 case LibFunc_tan: 3225 case LibFunc_tanf: 3226 case LibFunc_tanl: 3227 return optimizeTan(CI, Builder); 3228 case LibFunc_ceil: 3229 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3230 case LibFunc_floor: 3231 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3232 case LibFunc_round: 3233 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3234 case LibFunc_roundeven: 3235 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3236 case LibFunc_nearbyint: 3237 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3238 case LibFunc_rint: 3239 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3240 case LibFunc_trunc: 3241 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3242 case LibFunc_acos: 3243 case LibFunc_acosh: 3244 case LibFunc_asin: 3245 case LibFunc_asinh: 3246 case LibFunc_atan: 3247 case LibFunc_atanh: 3248 case LibFunc_cbrt: 3249 case LibFunc_cosh: 3250 case LibFunc_exp: 3251 case LibFunc_exp10: 3252 case LibFunc_expm1: 3253 case LibFunc_cos: 3254 case LibFunc_sin: 3255 case LibFunc_sinh: 3256 case LibFunc_tanh: 3257 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3258 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3259 return nullptr; 3260 case LibFunc_copysign: 3261 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3262 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3263 return nullptr; 3264 case LibFunc_fminf: 3265 case LibFunc_fmin: 3266 case LibFunc_fminl: 3267 case LibFunc_fmaxf: 3268 case LibFunc_fmax: 3269 case LibFunc_fmaxl: 3270 return optimizeFMinFMax(CI, Builder); 3271 case LibFunc_cabs: 3272 case LibFunc_cabsf: 3273 case LibFunc_cabsl: 3274 return optimizeCAbs(CI, Builder); 3275 default: 3276 return nullptr; 3277 } 3278 } 3279 3280 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3281 Module *M = CI->getModule(); 3282 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3283 3284 // TODO: Split out the code below that operates on FP calls so that 3285 // we can all non-FP calls with the StrictFP attribute to be 3286 // optimized. 3287 if (CI->isNoBuiltin()) 3288 return nullptr; 3289 3290 LibFunc Func; 3291 Function *Callee = CI->getCalledFunction(); 3292 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3293 3294 SmallVector<OperandBundleDef, 2> OpBundles; 3295 CI->getOperandBundlesAsDefs(OpBundles); 3296 3297 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3298 Builder.setDefaultOperandBundles(OpBundles); 3299 3300 // Command-line parameter overrides instruction attribute. 3301 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3302 // used by the intrinsic optimizations. 3303 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3304 UnsafeFPShrink = EnableUnsafeFPShrink; 3305 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3306 UnsafeFPShrink = true; 3307 3308 // First, check for intrinsics. 3309 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3310 if (!IsCallingConvC) 3311 return nullptr; 3312 // The FP intrinsics have corresponding constrained versions so we don't 3313 // need to check for the StrictFP attribute here. 3314 switch (II->getIntrinsicID()) { 3315 case Intrinsic::pow: 3316 return optimizePow(CI, Builder); 3317 case Intrinsic::exp2: 3318 return optimizeExp2(CI, Builder); 3319 case Intrinsic::log: 3320 case Intrinsic::log2: 3321 case Intrinsic::log10: 3322 return optimizeLog(CI, Builder); 3323 case Intrinsic::sqrt: 3324 return optimizeSqrt(CI, Builder); 3325 case Intrinsic::memset: 3326 return optimizeMemSet(CI, Builder); 3327 case Intrinsic::memcpy: 3328 return optimizeMemCpy(CI, Builder); 3329 case Intrinsic::memmove: 3330 return optimizeMemMove(CI, Builder); 3331 default: 3332 return nullptr; 3333 } 3334 } 3335 3336 // Also try to simplify calls to fortified library functions. 3337 if (Value *SimplifiedFortifiedCI = 3338 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3339 // Try to further simplify the result. 3340 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3341 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3342 // Ensure that SimplifiedCI's uses are complete, since some calls have 3343 // their uses analyzed. 3344 replaceAllUsesWith(CI, SimplifiedCI); 3345 3346 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3347 // we might replace later on. 3348 IRBuilderBase::InsertPointGuard Guard(Builder); 3349 Builder.SetInsertPoint(SimplifiedCI); 3350 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3351 // If we were able to further simplify, remove the now redundant call. 3352 substituteInParent(SimplifiedCI, V); 3353 return V; 3354 } 3355 } 3356 return SimplifiedFortifiedCI; 3357 } 3358 3359 // Then check for known library functions. 3360 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3361 // We never change the calling convention. 3362 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3363 return nullptr; 3364 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3365 return V; 3366 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3367 return V; 3368 switch (Func) { 3369 case LibFunc_ffs: 3370 case LibFunc_ffsl: 3371 case LibFunc_ffsll: 3372 return optimizeFFS(CI, Builder); 3373 case LibFunc_fls: 3374 case LibFunc_flsl: 3375 case LibFunc_flsll: 3376 return optimizeFls(CI, Builder); 3377 case LibFunc_abs: 3378 case LibFunc_labs: 3379 case LibFunc_llabs: 3380 return optimizeAbs(CI, Builder); 3381 case LibFunc_isdigit: 3382 return optimizeIsDigit(CI, Builder); 3383 case LibFunc_isascii: 3384 return optimizeIsAscii(CI, Builder); 3385 case LibFunc_toascii: 3386 return optimizeToAscii(CI, Builder); 3387 case LibFunc_atoi: 3388 case LibFunc_atol: 3389 case LibFunc_atoll: 3390 return optimizeAtoi(CI, Builder); 3391 case LibFunc_strtol: 3392 case LibFunc_strtoll: 3393 return optimizeStrtol(CI, Builder); 3394 case LibFunc_printf: 3395 return optimizePrintF(CI, Builder); 3396 case LibFunc_sprintf: 3397 return optimizeSPrintF(CI, Builder); 3398 case LibFunc_snprintf: 3399 return optimizeSnPrintF(CI, Builder); 3400 case LibFunc_fprintf: 3401 return optimizeFPrintF(CI, Builder); 3402 case LibFunc_fwrite: 3403 return optimizeFWrite(CI, Builder); 3404 case LibFunc_fputs: 3405 return optimizeFPuts(CI, Builder); 3406 case LibFunc_puts: 3407 return optimizePuts(CI, Builder); 3408 case LibFunc_perror: 3409 return optimizeErrorReporting(CI, Builder); 3410 case LibFunc_vfprintf: 3411 case LibFunc_fiprintf: 3412 return optimizeErrorReporting(CI, Builder, 0); 3413 default: 3414 return nullptr; 3415 } 3416 } 3417 return nullptr; 3418 } 3419 3420 LibCallSimplifier::LibCallSimplifier( 3421 const DataLayout &DL, const TargetLibraryInfo *TLI, 3422 OptimizationRemarkEmitter &ORE, 3423 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3424 function_ref<void(Instruction *, Value *)> Replacer, 3425 function_ref<void(Instruction *)> Eraser) 3426 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3427 Replacer(Replacer), Eraser(Eraser) {} 3428 3429 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3430 // Indirect through the replacer used in this instance. 3431 Replacer(I, With); 3432 } 3433 3434 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3435 Eraser(I); 3436 } 3437 3438 // TODO: 3439 // Additional cases that we need to add to this file: 3440 // 3441 // cbrt: 3442 // * cbrt(expN(X)) -> expN(x/3) 3443 // * cbrt(sqrt(x)) -> pow(x,1/6) 3444 // * cbrt(cbrt(x)) -> pow(x,1/9) 3445 // 3446 // exp, expf, expl: 3447 // * exp(log(x)) -> x 3448 // 3449 // log, logf, logl: 3450 // * log(exp(x)) -> x 3451 // * log(exp(y)) -> y*log(e) 3452 // * log(exp10(y)) -> y*log(10) 3453 // * log(sqrt(x)) -> 0.5*log(x) 3454 // 3455 // pow, powf, powl: 3456 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3457 // * pow(pow(x,y),z)-> pow(x,y*z) 3458 // 3459 // signbit: 3460 // * signbit(cnst) -> cnst' 3461 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3462 // 3463 // sqrt, sqrtf, sqrtl: 3464 // * sqrt(expN(x)) -> expN(x*0.5) 3465 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3466 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3467 // 3468 3469 //===----------------------------------------------------------------------===// 3470 // Fortified Library Call Optimizations 3471 //===----------------------------------------------------------------------===// 3472 3473 bool 3474 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3475 unsigned ObjSizeOp, 3476 Optional<unsigned> SizeOp, 3477 Optional<unsigned> StrOp, 3478 Optional<unsigned> FlagOp) { 3479 // If this function takes a flag argument, the implementation may use it to 3480 // perform extra checks. Don't fold into the non-checking variant. 3481 if (FlagOp) { 3482 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3483 if (!Flag || !Flag->isZero()) 3484 return false; 3485 } 3486 3487 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3488 return true; 3489 3490 if (ConstantInt *ObjSizeCI = 3491 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3492 if (ObjSizeCI->isMinusOne()) 3493 return true; 3494 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3495 if (OnlyLowerUnknownSize) 3496 return false; 3497 if (StrOp) { 3498 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3499 // If the length is 0 we don't know how long it is and so we can't 3500 // remove the check. 3501 if (Len) 3502 annotateDereferenceableBytes(CI, *StrOp, Len); 3503 else 3504 return false; 3505 return ObjSizeCI->getZExtValue() >= Len; 3506 } 3507 3508 if (SizeOp) { 3509 if (ConstantInt *SizeCI = 3510 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3511 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3512 } 3513 } 3514 return false; 3515 } 3516 3517 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3518 IRBuilderBase &B) { 3519 if (isFortifiedCallFoldable(CI, 3, 2)) { 3520 CallInst *NewCI = 3521 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3522 Align(1), CI->getArgOperand(2)); 3523 NewCI->setAttributes(CI->getAttributes()); 3524 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3525 copyFlags(*CI, NewCI); 3526 return CI->getArgOperand(0); 3527 } 3528 return nullptr; 3529 } 3530 3531 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3532 IRBuilderBase &B) { 3533 if (isFortifiedCallFoldable(CI, 3, 2)) { 3534 CallInst *NewCI = 3535 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3536 Align(1), CI->getArgOperand(2)); 3537 NewCI->setAttributes(CI->getAttributes()); 3538 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3539 copyFlags(*CI, NewCI); 3540 return CI->getArgOperand(0); 3541 } 3542 return nullptr; 3543 } 3544 3545 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3546 IRBuilderBase &B) { 3547 if (isFortifiedCallFoldable(CI, 3, 2)) { 3548 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3549 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3550 CI->getArgOperand(2), Align(1)); 3551 NewCI->setAttributes(CI->getAttributes()); 3552 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3553 copyFlags(*CI, NewCI); 3554 return CI->getArgOperand(0); 3555 } 3556 return nullptr; 3557 } 3558 3559 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3560 IRBuilderBase &B) { 3561 const DataLayout &DL = CI->getModule()->getDataLayout(); 3562 if (isFortifiedCallFoldable(CI, 3, 2)) 3563 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3564 CI->getArgOperand(2), B, DL, TLI)) { 3565 CallInst *NewCI = cast<CallInst>(Call); 3566 NewCI->setAttributes(CI->getAttributes()); 3567 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3568 return copyFlags(*CI, NewCI); 3569 } 3570 return nullptr; 3571 } 3572 3573 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3574 IRBuilderBase &B, 3575 LibFunc Func) { 3576 const DataLayout &DL = CI->getModule()->getDataLayout(); 3577 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3578 *ObjSize = CI->getArgOperand(2); 3579 3580 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3581 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3582 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3583 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3584 } 3585 3586 // If a) we don't have any length information, or b) we know this will 3587 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3588 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3589 // TODO: It might be nice to get a maximum length out of the possible 3590 // string lengths for varying. 3591 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3592 if (Func == LibFunc_strcpy_chk) 3593 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3594 else 3595 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3596 } 3597 3598 if (OnlyLowerUnknownSize) 3599 return nullptr; 3600 3601 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3602 uint64_t Len = GetStringLength(Src); 3603 if (Len) 3604 annotateDereferenceableBytes(CI, 1, Len); 3605 else 3606 return nullptr; 3607 3608 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3609 // sizeof(int*) for every target. So the assumption used here to derive the 3610 // SizeTBits based on the size of an integer pointer in address space zero 3611 // isn't always valid. 3612 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3613 Value *LenV = ConstantInt::get(SizeTTy, Len); 3614 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3615 // If the function was an __stpcpy_chk, and we were able to fold it into 3616 // a __memcpy_chk, we still need to return the correct end pointer. 3617 if (Ret && Func == LibFunc_stpcpy_chk) 3618 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 3619 ConstantInt::get(SizeTTy, Len - 1)); 3620 return copyFlags(*CI, cast<CallInst>(Ret)); 3621 } 3622 3623 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3624 IRBuilderBase &B) { 3625 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3626 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3627 CI->getModule()->getDataLayout(), TLI)); 3628 return nullptr; 3629 } 3630 3631 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3632 IRBuilderBase &B, 3633 LibFunc Func) { 3634 if (isFortifiedCallFoldable(CI, 3, 2)) { 3635 if (Func == LibFunc_strncpy_chk) 3636 return copyFlags(*CI, 3637 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3638 CI->getArgOperand(2), B, TLI)); 3639 else 3640 return copyFlags(*CI, 3641 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3642 CI->getArgOperand(2), B, TLI)); 3643 } 3644 3645 return nullptr; 3646 } 3647 3648 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3649 IRBuilderBase &B) { 3650 if (isFortifiedCallFoldable(CI, 4, 3)) 3651 return copyFlags( 3652 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3653 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3654 3655 return nullptr; 3656 } 3657 3658 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3659 IRBuilderBase &B) { 3660 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3661 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3662 return copyFlags(*CI, 3663 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3664 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3665 } 3666 3667 return nullptr; 3668 } 3669 3670 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3671 IRBuilderBase &B) { 3672 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3673 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3674 return copyFlags(*CI, 3675 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3676 VariadicArgs, B, TLI)); 3677 } 3678 3679 return nullptr; 3680 } 3681 3682 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3683 IRBuilderBase &B) { 3684 if (isFortifiedCallFoldable(CI, 2)) 3685 return copyFlags( 3686 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3687 3688 return nullptr; 3689 } 3690 3691 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3692 IRBuilderBase &B) { 3693 if (isFortifiedCallFoldable(CI, 3)) 3694 return copyFlags(*CI, 3695 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3696 CI->getArgOperand(2), B, TLI)); 3697 3698 return nullptr; 3699 } 3700 3701 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3702 IRBuilderBase &B) { 3703 if (isFortifiedCallFoldable(CI, 3)) 3704 return copyFlags(*CI, 3705 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3706 CI->getArgOperand(2), B, TLI)); 3707 3708 return nullptr; 3709 } 3710 3711 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3712 IRBuilderBase &B) { 3713 if (isFortifiedCallFoldable(CI, 3)) 3714 return copyFlags(*CI, 3715 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3716 CI->getArgOperand(2), B, TLI)); 3717 3718 return nullptr; 3719 } 3720 3721 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3722 IRBuilderBase &B) { 3723 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3724 return copyFlags( 3725 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3726 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3727 3728 return nullptr; 3729 } 3730 3731 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3732 IRBuilderBase &B) { 3733 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3734 return copyFlags(*CI, 3735 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3736 CI->getArgOperand(4), B, TLI)); 3737 3738 return nullptr; 3739 } 3740 3741 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3742 IRBuilderBase &Builder) { 3743 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3744 // Some clang users checked for _chk libcall availability using: 3745 // __has_builtin(__builtin___memcpy_chk) 3746 // When compiling with -fno-builtin, this is always true. 3747 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3748 // end up with fortified libcalls, which isn't acceptable in a freestanding 3749 // environment which only provides their non-fortified counterparts. 3750 // 3751 // Until we change clang and/or teach external users to check for availability 3752 // differently, disregard the "nobuiltin" attribute and TLI::has. 3753 // 3754 // PR23093. 3755 3756 LibFunc Func; 3757 Function *Callee = CI->getCalledFunction(); 3758 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3759 3760 SmallVector<OperandBundleDef, 2> OpBundles; 3761 CI->getOperandBundlesAsDefs(OpBundles); 3762 3763 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3764 Builder.setDefaultOperandBundles(OpBundles); 3765 3766 // First, check that this is a known library functions and that the prototype 3767 // is correct. 3768 if (!TLI->getLibFunc(*Callee, Func)) 3769 return nullptr; 3770 3771 // We never change the calling convention. 3772 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3773 return nullptr; 3774 3775 switch (Func) { 3776 case LibFunc_memcpy_chk: 3777 return optimizeMemCpyChk(CI, Builder); 3778 case LibFunc_mempcpy_chk: 3779 return optimizeMemPCpyChk(CI, Builder); 3780 case LibFunc_memmove_chk: 3781 return optimizeMemMoveChk(CI, Builder); 3782 case LibFunc_memset_chk: 3783 return optimizeMemSetChk(CI, Builder); 3784 case LibFunc_stpcpy_chk: 3785 case LibFunc_strcpy_chk: 3786 return optimizeStrpCpyChk(CI, Builder, Func); 3787 case LibFunc_strlen_chk: 3788 return optimizeStrLenChk(CI, Builder); 3789 case LibFunc_stpncpy_chk: 3790 case LibFunc_strncpy_chk: 3791 return optimizeStrpNCpyChk(CI, Builder, Func); 3792 case LibFunc_memccpy_chk: 3793 return optimizeMemCCpyChk(CI, Builder); 3794 case LibFunc_snprintf_chk: 3795 return optimizeSNPrintfChk(CI, Builder); 3796 case LibFunc_sprintf_chk: 3797 return optimizeSPrintfChk(CI, Builder); 3798 case LibFunc_strcat_chk: 3799 return optimizeStrCatChk(CI, Builder); 3800 case LibFunc_strlcat_chk: 3801 return optimizeStrLCat(CI, Builder); 3802 case LibFunc_strncat_chk: 3803 return optimizeStrNCatChk(CI, Builder); 3804 case LibFunc_strlcpy_chk: 3805 return optimizeStrLCpyChk(CI, Builder); 3806 case LibFunc_vsnprintf_chk: 3807 return optimizeVSNPrintfChk(CI, Builder); 3808 case LibFunc_vsprintf_chk: 3809 return optimizeVSPrintfChk(CI, Builder); 3810 default: 3811 break; 3812 } 3813 return nullptr; 3814 } 3815 3816 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3817 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3818 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3819