1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142                                 const TargetLibraryInfo *TLI) {
143   CallInst *FOpen = dyn_cast<CallInst>(File);
144   if (!FOpen)
145     return false;
146 
147   Function *InnerCallee = FOpen->getCalledFunction();
148   if (!InnerCallee)
149     return false;
150 
151   LibFunc Func;
152   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153       Func != LibFunc_fopen)
154     return false;
155 
156   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157   if (PointerMayBeCaptured(File, true, true))
158     return false;
159 
160   return true;
161 }
162 
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164   for (User *U : V->users()) {
165     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167         if (C->isNullValue())
168           continue;
169     // Unknown instruction.
170     return false;
171   }
172   return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                  const DataLayout &DL) {
177   if (!isOnlyUsedInComparisonWithZero(CI))
178     return false;
179 
180   if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181                                           DL))
182     return false;
183 
184   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185     return false;
186 
187   return true;
188 }
189 
190 static void annotateDereferenceableBytes(CallInst *CI,
191                                          ArrayRef<unsigned> ArgNos,
192                                          uint64_t DereferenceableBytes) {
193   const Function *F = CI->getCaller();
194   if (!F)
195     return;
196   for (unsigned ArgNo : ArgNos) {
197     uint64_t DerefBytes = DereferenceableBytes;
198     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199     if (!llvm::NullPointerIsDefined(F, AS) ||
200         CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202                                 ArgNo + AttributeList::FirstArgIndex),
203                             DereferenceableBytes);
204 
205     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206         DerefBytes) {
207       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208       if (!llvm::NullPointerIsDefined(F, AS) ||
209           CI->paramHasAttr(ArgNo, Attribute::NonNull))
210         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212                                   CI->getContext(), DerefBytes));
213     }
214   }
215 }
216 
217 static void annotateNonNullBasedOnAccess(CallInst *CI,
218                                          ArrayRef<unsigned> ArgNos) {
219   Function *F = CI->getCaller();
220   if (!F)
221     return;
222 
223   for (unsigned ArgNo : ArgNos) {
224     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225       continue;
226     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227     if (llvm::NullPointerIsDefined(F, AS))
228       continue;
229 
230     CI->addParamAttr(ArgNo, Attribute::NonNull);
231     annotateDereferenceableBytes(CI, ArgNo, 1);
232   }
233 }
234 
235 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236                                Value *Size, const DataLayout &DL) {
237   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238     annotateNonNullBasedOnAccess(CI, ArgNos);
239     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240   } else if (isKnownNonZero(Size, DL)) {
241     annotateNonNullBasedOnAccess(CI, ArgNos);
242     const APInt *X, *Y;
243     uint64_t DerefMin = 1;
244     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
254 
255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256   // Extract some information from the instruction
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   annotateNonNullBasedOnAccess(CI, {0, 1});
260 
261   // See if we can get the length of the input string.
262   uint64_t Len = GetStringLength(Src);
263   if (Len)
264     annotateDereferenceableBytes(CI, 1, Len);
265   else
266     return nullptr;
267   --Len; // Unbias length.
268 
269   // Handle the simple, do-nothing case: strcat(x, "") -> x
270   if (Len == 0)
271     return Dst;
272 
273   return emitStrLenMemCpy(Src, Dst, Len, B);
274 }
275 
276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277                                            IRBuilder<> &B) {
278   // We need to find the end of the destination string.  That's where the
279   // memory is to be moved to. We just generate a call to strlen.
280   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281   if (!DstLen)
282     return nullptr;
283 
284   // Now that we have the destination's length, we must index into the
285   // destination's pointer to get the actual memcpy destination (end of
286   // the string .. we're concatenating).
287   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288 
289   // We have enough information to now generate the memcpy call to do the
290   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
291   B.CreateMemCpy(
292       CpyDst, Align::None(), Src, Align::None(),
293       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
294   return Dst;
295 }
296 
297 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
298   // Extract some information from the instruction.
299   Value *Dst = CI->getArgOperand(0);
300   Value *Src = CI->getArgOperand(1);
301   Value *Size = CI->getArgOperand(2);
302   uint64_t Len;
303   annotateNonNullBasedOnAccess(CI, 0);
304   if (isKnownNonZero(Size, DL))
305     annotateNonNullBasedOnAccess(CI, 1);
306 
307   // We don't do anything if length is not constant.
308   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
309   if (LengthArg) {
310     Len = LengthArg->getZExtValue();
311     // strncat(x, c, 0) -> x
312     if (!Len)
313       return Dst;
314   } else {
315     return nullptr;
316   }
317 
318   // See if we can get the length of the input string.
319   uint64_t SrcLen = GetStringLength(Src);
320   if (SrcLen) {
321     annotateDereferenceableBytes(CI, 1, SrcLen);
322     --SrcLen; // Unbias length.
323   } else {
324     return nullptr;
325   }
326 
327   // strncat(x, "", c) -> x
328   if (SrcLen == 0)
329     return Dst;
330 
331   // We don't optimize this case.
332   if (Len < SrcLen)
333     return nullptr;
334 
335   // strncat(x, s, c) -> strcat(x, s)
336   // s is constant so the strcat can be optimized further.
337   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
338 }
339 
340 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
341   Function *Callee = CI->getCalledFunction();
342   FunctionType *FT = Callee->getFunctionType();
343   Value *SrcStr = CI->getArgOperand(0);
344   annotateNonNullBasedOnAccess(CI, 0);
345 
346   // If the second operand is non-constant, see if we can compute the length
347   // of the input string and turn this into memchr.
348   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
349   if (!CharC) {
350     uint64_t Len = GetStringLength(SrcStr);
351     if (Len)
352       annotateDereferenceableBytes(CI, 0, Len);
353     else
354       return nullptr;
355     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
356       return nullptr;
357 
358     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
359                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
360                       B, DL, TLI);
361   }
362 
363   // Otherwise, the character is a constant, see if the first argument is
364   // a string literal.  If so, we can constant fold.
365   StringRef Str;
366   if (!getConstantStringInfo(SrcStr, Str)) {
367     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
368       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
369         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
370     return nullptr;
371   }
372 
373   // Compute the offset, make sure to handle the case when we're searching for
374   // zero (a weird way to spell strlen).
375   size_t I = (0xFF & CharC->getSExtValue()) == 0
376                  ? Str.size()
377                  : Str.find(CharC->getSExtValue());
378   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
379     return Constant::getNullValue(CI->getType());
380 
381   // strchr(s+n,c)  -> gep(s+n+i,c)
382   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
383 }
384 
385 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
386   Value *SrcStr = CI->getArgOperand(0);
387   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
388   annotateNonNullBasedOnAccess(CI, 0);
389 
390   // Cannot fold anything if we're not looking for a constant.
391   if (!CharC)
392     return nullptr;
393 
394   StringRef Str;
395   if (!getConstantStringInfo(SrcStr, Str)) {
396     // strrchr(s, 0) -> strchr(s, 0)
397     if (CharC->isZero())
398       return emitStrChr(SrcStr, '\0', B, TLI);
399     return nullptr;
400   }
401 
402   // Compute the offset.
403   size_t I = (0xFF & CharC->getSExtValue()) == 0
404                  ? Str.size()
405                  : Str.rfind(CharC->getSExtValue());
406   if (I == StringRef::npos) // Didn't find the char. Return null.
407     return Constant::getNullValue(CI->getType());
408 
409   // strrchr(s+n,c) -> gep(s+n+i,c)
410   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
411 }
412 
413 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
414   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
415   if (Str1P == Str2P) // strcmp(x,x)  -> 0
416     return ConstantInt::get(CI->getType(), 0);
417 
418   StringRef Str1, Str2;
419   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
420   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
421 
422   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
423   if (HasStr1 && HasStr2)
424     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
425 
426   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
427     return B.CreateNeg(B.CreateZExt(
428         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
429 
430   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
431     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
432                         CI->getType());
433 
434   // strcmp(P, "x") -> memcmp(P, "x", 2)
435   uint64_t Len1 = GetStringLength(Str1P);
436   if (Len1)
437     annotateDereferenceableBytes(CI, 0, Len1);
438   uint64_t Len2 = GetStringLength(Str2P);
439   if (Len2)
440     annotateDereferenceableBytes(CI, 1, Len2);
441 
442   if (Len1 && Len2) {
443     return emitMemCmp(Str1P, Str2P,
444                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
445                                        std::min(Len1, Len2)),
446                       B, DL, TLI);
447   }
448 
449   // strcmp to memcmp
450   if (!HasStr1 && HasStr2) {
451     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
452       return emitMemCmp(
453           Str1P, Str2P,
454           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
455           TLI);
456   } else if (HasStr1 && !HasStr2) {
457     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
458       return emitMemCmp(
459           Str1P, Str2P,
460           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
461           TLI);
462   }
463 
464   annotateNonNullBasedOnAccess(CI, {0, 1});
465   return nullptr;
466 }
467 
468 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
469   Value *Str1P = CI->getArgOperand(0);
470   Value *Str2P = CI->getArgOperand(1);
471   Value *Size = CI->getArgOperand(2);
472   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
473     return ConstantInt::get(CI->getType(), 0);
474 
475   if (isKnownNonZero(Size, DL))
476     annotateNonNullBasedOnAccess(CI, {0, 1});
477   // Get the length argument if it is constant.
478   uint64_t Length;
479   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
480     Length = LengthArg->getZExtValue();
481   else
482     return nullptr;
483 
484   if (Length == 0) // strncmp(x,y,0)   -> 0
485     return ConstantInt::get(CI->getType(), 0);
486 
487   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
488     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
489 
490   StringRef Str1, Str2;
491   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
492   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
493 
494   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
495   if (HasStr1 && HasStr2) {
496     StringRef SubStr1 = Str1.substr(0, Length);
497     StringRef SubStr2 = Str2.substr(0, Length);
498     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
499   }
500 
501   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
502     return B.CreateNeg(B.CreateZExt(
503         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
504 
505   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
506     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
507                         CI->getType());
508 
509   uint64_t Len1 = GetStringLength(Str1P);
510   if (Len1)
511     annotateDereferenceableBytes(CI, 0, Len1);
512   uint64_t Len2 = GetStringLength(Str2P);
513   if (Len2)
514     annotateDereferenceableBytes(CI, 1, Len2);
515 
516   // strncmp to memcmp
517   if (!HasStr1 && HasStr2) {
518     Len2 = std::min(Len2, Length);
519     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
520       return emitMemCmp(
521           Str1P, Str2P,
522           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
523           TLI);
524   } else if (HasStr1 && !HasStr2) {
525     Len1 = std::min(Len1, Length);
526     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
527       return emitMemCmp(
528           Str1P, Str2P,
529           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
530           TLI);
531   }
532 
533   return nullptr;
534 }
535 
536 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
537   Value *Src = CI->getArgOperand(0);
538   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
539   uint64_t SrcLen = GetStringLength(Src);
540   if (SrcLen && Size) {
541     annotateDereferenceableBytes(CI, 0, SrcLen);
542     if (SrcLen <= Size->getZExtValue() + 1)
543       return emitStrDup(Src, B, TLI);
544   }
545 
546   return nullptr;
547 }
548 
549 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
550   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
551   if (Dst == Src) // strcpy(x,x)  -> x
552     return Src;
553 
554   annotateNonNullBasedOnAccess(CI, {0, 1});
555   // See if we can get the length of the input string.
556   uint64_t Len = GetStringLength(Src);
557   if (Len)
558     annotateDereferenceableBytes(CI, 1, Len);
559   else
560     return nullptr;
561 
562   // We have enough information to now generate the memcpy call to do the
563   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
564   CallInst *NewCI =
565       B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
566                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
567   NewCI->setAttributes(CI->getAttributes());
568   return Dst;
569 }
570 
571 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
572   Function *Callee = CI->getCalledFunction();
573   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
574   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
575     Value *StrLen = emitStrLen(Src, B, DL, TLI);
576     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
577   }
578 
579   // See if we can get the length of the input string.
580   uint64_t Len = GetStringLength(Src);
581   if (Len)
582     annotateDereferenceableBytes(CI, 1, Len);
583   else
584     return nullptr;
585 
586   Type *PT = Callee->getFunctionType()->getParamType(0);
587   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
588   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
589                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
590 
591   // We have enough information to now generate the memcpy call to do the
592   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
593   CallInst *NewCI =
594       B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), LenV);
595   NewCI->setAttributes(CI->getAttributes());
596   return DstEnd;
597 }
598 
599 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
600   Function *Callee = CI->getCalledFunction();
601   Value *Dst = CI->getArgOperand(0);
602   Value *Src = CI->getArgOperand(1);
603   Value *Size = CI->getArgOperand(2);
604   annotateNonNullBasedOnAccess(CI, 0);
605   if (isKnownNonZero(Size, DL))
606     annotateNonNullBasedOnAccess(CI, 1);
607 
608   uint64_t Len;
609   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
610     Len = LengthArg->getZExtValue();
611   else
612     return nullptr;
613 
614   // strncpy(x, y, 0) -> x
615   if (Len == 0)
616     return Dst;
617 
618   // See if we can get the length of the input string.
619   uint64_t SrcLen = GetStringLength(Src);
620   if (SrcLen) {
621     annotateDereferenceableBytes(CI, 1, SrcLen);
622     --SrcLen; // Unbias length.
623   } else {
624     return nullptr;
625   }
626 
627   if (SrcLen == 0) {
628     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
629     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align::None());
630     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
631     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
632         CI->getContext(), 0, ArgAttrs));
633     return Dst;
634   }
635 
636   // Let strncpy handle the zero padding
637   if (Len > SrcLen + 1)
638     return nullptr;
639 
640   Type *PT = Callee->getFunctionType()->getParamType(0);
641   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
642   CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
643                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
644   NewCI->setAttributes(CI->getAttributes());
645   return Dst;
646 }
647 
648 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
649                                                unsigned CharSize) {
650   Value *Src = CI->getArgOperand(0);
651 
652   // Constant folding: strlen("xyz") -> 3
653   if (uint64_t Len = GetStringLength(Src, CharSize))
654     return ConstantInt::get(CI->getType(), Len - 1);
655 
656   // If s is a constant pointer pointing to a string literal, we can fold
657   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
658   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
659   // We only try to simplify strlen when the pointer s points to an array
660   // of i8. Otherwise, we would need to scale the offset x before doing the
661   // subtraction. This will make the optimization more complex, and it's not
662   // very useful because calling strlen for a pointer of other types is
663   // very uncommon.
664   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
665     if (!isGEPBasedOnPointerToString(GEP, CharSize))
666       return nullptr;
667 
668     ConstantDataArraySlice Slice;
669     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
670       uint64_t NullTermIdx;
671       if (Slice.Array == nullptr) {
672         NullTermIdx = 0;
673       } else {
674         NullTermIdx = ~((uint64_t)0);
675         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
676           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
677             NullTermIdx = I;
678             break;
679           }
680         }
681         // If the string does not have '\0', leave it to strlen to compute
682         // its length.
683         if (NullTermIdx == ~((uint64_t)0))
684           return nullptr;
685       }
686 
687       Value *Offset = GEP->getOperand(2);
688       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
689       Known.Zero.flipAllBits();
690       uint64_t ArrSize =
691              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
692 
693       // KnownZero's bits are flipped, so zeros in KnownZero now represent
694       // bits known to be zeros in Offset, and ones in KnowZero represent
695       // bits unknown in Offset. Therefore, Offset is known to be in range
696       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
697       // unsigned-less-than NullTermIdx.
698       //
699       // If Offset is not provably in the range [0, NullTermIdx], we can still
700       // optimize if we can prove that the program has undefined behavior when
701       // Offset is outside that range. That is the case when GEP->getOperand(0)
702       // is a pointer to an object whose memory extent is NullTermIdx+1.
703       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
704           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
705            NullTermIdx == ArrSize - 1)) {
706         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
707         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
708                            Offset);
709       }
710     }
711 
712     return nullptr;
713   }
714 
715   // strlen(x?"foo":"bars") --> x ? 3 : 4
716   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
717     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
718     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
719     if (LenTrue && LenFalse) {
720       ORE.emit([&]() {
721         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
722                << "folded strlen(select) to select of constants";
723       });
724       return B.CreateSelect(SI->getCondition(),
725                             ConstantInt::get(CI->getType(), LenTrue - 1),
726                             ConstantInt::get(CI->getType(), LenFalse - 1));
727     }
728   }
729 
730   // strlen(x) != 0 --> *x != 0
731   // strlen(x) == 0 --> *x == 0
732   if (isOnlyUsedInZeroEqualityComparison(CI))
733     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
734                         CI->getType());
735 
736   return nullptr;
737 }
738 
739 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
740   if (Value *V = optimizeStringLength(CI, B, 8))
741     return V;
742   annotateNonNullBasedOnAccess(CI, 0);
743   return nullptr;
744 }
745 
746 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
747   Module &M = *CI->getModule();
748   unsigned WCharSize = TLI->getWCharSize(M) * 8;
749   // We cannot perform this optimization without wchar_size metadata.
750   if (WCharSize == 0)
751     return nullptr;
752 
753   return optimizeStringLength(CI, B, WCharSize);
754 }
755 
756 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
757   StringRef S1, S2;
758   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760 
761   // strpbrk(s, "") -> nullptr
762   // strpbrk("", s) -> nullptr
763   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764     return Constant::getNullValue(CI->getType());
765 
766   // Constant folding.
767   if (HasS1 && HasS2) {
768     size_t I = S1.find_first_of(S2);
769     if (I == StringRef::npos) // No match.
770       return Constant::getNullValue(CI->getType());
771 
772     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
773                        "strpbrk");
774   }
775 
776   // strpbrk(s, "a") -> strchr(s, 'a')
777   if (HasS2 && S2.size() == 1)
778     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
779 
780   return nullptr;
781 }
782 
783 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
784   Value *EndPtr = CI->getArgOperand(1);
785   if (isa<ConstantPointerNull>(EndPtr)) {
786     // With a null EndPtr, this function won't capture the main argument.
787     // It would be readonly too, except that it still may write to errno.
788     CI->addParamAttr(0, Attribute::NoCapture);
789   }
790 
791   return nullptr;
792 }
793 
794 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
795   StringRef S1, S2;
796   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
797   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
798 
799   // strspn(s, "") -> 0
800   // strspn("", s) -> 0
801   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
802     return Constant::getNullValue(CI->getType());
803 
804   // Constant folding.
805   if (HasS1 && HasS2) {
806     size_t Pos = S1.find_first_not_of(S2);
807     if (Pos == StringRef::npos)
808       Pos = S1.size();
809     return ConstantInt::get(CI->getType(), Pos);
810   }
811 
812   return nullptr;
813 }
814 
815 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
816   StringRef S1, S2;
817   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
818   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
819 
820   // strcspn("", s) -> 0
821   if (HasS1 && S1.empty())
822     return Constant::getNullValue(CI->getType());
823 
824   // Constant folding.
825   if (HasS1 && HasS2) {
826     size_t Pos = S1.find_first_of(S2);
827     if (Pos == StringRef::npos)
828       Pos = S1.size();
829     return ConstantInt::get(CI->getType(), Pos);
830   }
831 
832   // strcspn(s, "") -> strlen(s)
833   if (HasS2 && S2.empty())
834     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
835 
836   return nullptr;
837 }
838 
839 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
840   // fold strstr(x, x) -> x.
841   if (CI->getArgOperand(0) == CI->getArgOperand(1))
842     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
843 
844   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
845   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
846     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
847     if (!StrLen)
848       return nullptr;
849     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
850                                  StrLen, B, DL, TLI);
851     if (!StrNCmp)
852       return nullptr;
853     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
854       ICmpInst *Old = cast<ICmpInst>(*UI++);
855       Value *Cmp =
856           B.CreateICmp(Old->getPredicate(), StrNCmp,
857                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
858       replaceAllUsesWith(Old, Cmp);
859     }
860     return CI;
861   }
862 
863   // See if either input string is a constant string.
864   StringRef SearchStr, ToFindStr;
865   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
866   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
867 
868   // fold strstr(x, "") -> x.
869   if (HasStr2 && ToFindStr.empty())
870     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
871 
872   // If both strings are known, constant fold it.
873   if (HasStr1 && HasStr2) {
874     size_t Offset = SearchStr.find(ToFindStr);
875 
876     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
877       return Constant::getNullValue(CI->getType());
878 
879     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
880     Value *Result = castToCStr(CI->getArgOperand(0), B);
881     Result =
882         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
883     return B.CreateBitCast(Result, CI->getType());
884   }
885 
886   // fold strstr(x, "y") -> strchr(x, 'y').
887   if (HasStr2 && ToFindStr.size() == 1) {
888     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
889     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
890   }
891 
892   annotateNonNullBasedOnAccess(CI, {0, 1});
893   return nullptr;
894 }
895 
896 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
897   if (isKnownNonZero(CI->getOperand(2), DL))
898     annotateNonNullBasedOnAccess(CI, 0);
899   return nullptr;
900 }
901 
902 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
903   Value *SrcStr = CI->getArgOperand(0);
904   Value *Size = CI->getArgOperand(2);
905   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
906   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
907   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
908 
909   // memchr(x, y, 0) -> null
910   if (LenC) {
911     if (LenC->isZero())
912       return Constant::getNullValue(CI->getType());
913   } else {
914     // From now on we need at least constant length and string.
915     return nullptr;
916   }
917 
918   StringRef Str;
919   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
920     return nullptr;
921 
922   // Truncate the string to LenC. If Str is smaller than LenC we will still only
923   // scan the string, as reading past the end of it is undefined and we can just
924   // return null if we don't find the char.
925   Str = Str.substr(0, LenC->getZExtValue());
926 
927   // If the char is variable but the input str and length are not we can turn
928   // this memchr call into a simple bit field test. Of course this only works
929   // when the return value is only checked against null.
930   //
931   // It would be really nice to reuse switch lowering here but we can't change
932   // the CFG at this point.
933   //
934   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
935   // != 0
936   //   after bounds check.
937   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
938     unsigned char Max =
939         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
940                           reinterpret_cast<const unsigned char *>(Str.end()));
941 
942     // Make sure the bit field we're about to create fits in a register on the
943     // target.
944     // FIXME: On a 64 bit architecture this prevents us from using the
945     // interesting range of alpha ascii chars. We could do better by emitting
946     // two bitfields or shifting the range by 64 if no lower chars are used.
947     if (!DL.fitsInLegalInteger(Max + 1))
948       return nullptr;
949 
950     // For the bit field use a power-of-2 type with at least 8 bits to avoid
951     // creating unnecessary illegal types.
952     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
953 
954     // Now build the bit field.
955     APInt Bitfield(Width, 0);
956     for (char C : Str)
957       Bitfield.setBit((unsigned char)C);
958     Value *BitfieldC = B.getInt(Bitfield);
959 
960     // Adjust width of "C" to the bitfield width, then mask off the high bits.
961     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
962     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
963 
964     // First check that the bit field access is within bounds.
965     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
966                                  "memchr.bounds");
967 
968     // Create code that checks if the given bit is set in the field.
969     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
970     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
971 
972     // Finally merge both checks and cast to pointer type. The inttoptr
973     // implicitly zexts the i1 to intptr type.
974     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
975   }
976 
977   // Check if all arguments are constants.  If so, we can constant fold.
978   if (!CharC)
979     return nullptr;
980 
981   // Compute the offset.
982   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
983   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
984     return Constant::getNullValue(CI->getType());
985 
986   // memchr(s+n,c,l) -> gep(s+n+i,c)
987   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
988 }
989 
990 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
991                                          uint64_t Len, IRBuilder<> &B,
992                                          const DataLayout &DL) {
993   if (Len == 0) // memcmp(s1,s2,0) -> 0
994     return Constant::getNullValue(CI->getType());
995 
996   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
997   if (Len == 1) {
998     Value *LHSV =
999         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1000                      CI->getType(), "lhsv");
1001     Value *RHSV =
1002         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1003                      CI->getType(), "rhsv");
1004     return B.CreateSub(LHSV, RHSV, "chardiff");
1005   }
1006 
1007   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1008   // TODO: The case where both inputs are constants does not need to be limited
1009   // to legal integers or equality comparison. See block below this.
1010   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1011     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1012     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1013 
1014     // First, see if we can fold either argument to a constant.
1015     Value *LHSV = nullptr;
1016     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1017       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1018       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1019     }
1020     Value *RHSV = nullptr;
1021     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1022       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1023       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1024     }
1025 
1026     // Don't generate unaligned loads. If either source is constant data,
1027     // alignment doesn't matter for that source because there is no load.
1028     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1029         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1030       if (!LHSV) {
1031         Type *LHSPtrTy =
1032             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1033         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1034       }
1035       if (!RHSV) {
1036         Type *RHSPtrTy =
1037             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1038         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1039       }
1040       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1041     }
1042   }
1043 
1044   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1045   // TODO: This is limited to i8 arrays.
1046   StringRef LHSStr, RHSStr;
1047   if (getConstantStringInfo(LHS, LHSStr) &&
1048       getConstantStringInfo(RHS, RHSStr)) {
1049     // Make sure we're not reading out-of-bounds memory.
1050     if (Len > LHSStr.size() || Len > RHSStr.size())
1051       return nullptr;
1052     // Fold the memcmp and normalize the result.  This way we get consistent
1053     // results across multiple platforms.
1054     uint64_t Ret = 0;
1055     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1056     if (Cmp < 0)
1057       Ret = -1;
1058     else if (Cmp > 0)
1059       Ret = 1;
1060     return ConstantInt::get(CI->getType(), Ret);
1061   }
1062 
1063   return nullptr;
1064 }
1065 
1066 // Most simplifications for memcmp also apply to bcmp.
1067 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1068                                                    IRBuilder<> &B) {
1069   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1070   Value *Size = CI->getArgOperand(2);
1071 
1072   if (LHS == RHS) // memcmp(s,s,x) -> 0
1073     return Constant::getNullValue(CI->getType());
1074 
1075   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1076   // Handle constant lengths.
1077   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1078   if (!LenC)
1079     return nullptr;
1080 
1081   // memcmp(d,s,0) -> 0
1082   if (LenC->getZExtValue() == 0)
1083     return Constant::getNullValue(CI->getType());
1084 
1085   if (Value *Res =
1086           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1087     return Res;
1088   return nullptr;
1089 }
1090 
1091 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1092   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1093     return V;
1094 
1095   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1096   // bcmp can be more efficient than memcmp because it only has to know that
1097   // there is a difference, not how different one is to the other.
1098   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1099     Value *LHS = CI->getArgOperand(0);
1100     Value *RHS = CI->getArgOperand(1);
1101     Value *Size = CI->getArgOperand(2);
1102     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1103   }
1104 
1105   return nullptr;
1106 }
1107 
1108 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1109   return optimizeMemCmpBCmpCommon(CI, B);
1110 }
1111 
1112 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1113   Value *Size = CI->getArgOperand(2);
1114   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1115   if (isa<IntrinsicInst>(CI))
1116     return nullptr;
1117 
1118   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1119   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
1120                                    CI->getArgOperand(1), Align::None(), Size);
1121   NewCI->setAttributes(CI->getAttributes());
1122   return CI->getArgOperand(0);
1123 }
1124 
1125 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilder<> &B) {
1126   Value *Dst = CI->getArgOperand(0);
1127   Value *Src = CI->getArgOperand(1);
1128   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1129   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1130   StringRef SrcStr;
1131   if (CI->use_empty() && Dst == Src)
1132     return Dst;
1133   // memccpy(d, s, c, 0) -> nullptr
1134   if (N) {
1135     if (N->isNullValue())
1136       return Constant::getNullValue(CI->getType());
1137     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1138                                /*TrimAtNul=*/false) ||
1139         !StopChar)
1140       return nullptr;
1141   } else {
1142     return nullptr;
1143   }
1144 
1145   // Wrap arg 'c' of type int to char
1146   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1147   if (Pos == StringRef::npos) {
1148     if (N->getZExtValue() <= SrcStr.size()) {
1149       B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
1150                      CI->getArgOperand(3));
1151       return Constant::getNullValue(CI->getType());
1152     }
1153     return nullptr;
1154   }
1155 
1156   Value *NewN =
1157       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1158   // memccpy -> llvm.memcpy
1159   B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), NewN);
1160   return Pos + 1 <= N->getZExtValue()
1161              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1162              : Constant::getNullValue(CI->getType());
1163 }
1164 
1165 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1166   Value *Dst = CI->getArgOperand(0);
1167   Value *N = CI->getArgOperand(2);
1168   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1169   CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), CI->getArgOperand(1),
1170                                    Align::None(), N);
1171   NewCI->setAttributes(CI->getAttributes());
1172   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1173 }
1174 
1175 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1176   Value *Size = CI->getArgOperand(2);
1177   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1178   if (isa<IntrinsicInst>(CI))
1179     return nullptr;
1180 
1181   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1182   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
1183                                     CI->getArgOperand(1), Align::None(), Size);
1184   NewCI->setAttributes(CI->getAttributes());
1185   return CI->getArgOperand(0);
1186 }
1187 
1188 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1189 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1190   // This has to be a memset of zeros (bzero).
1191   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1192   if (!FillValue || FillValue->getZExtValue() != 0)
1193     return nullptr;
1194 
1195   // TODO: We should handle the case where the malloc has more than one use.
1196   // This is necessary to optimize common patterns such as when the result of
1197   // the malloc is checked against null or when a memset intrinsic is used in
1198   // place of a memset library call.
1199   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1200   if (!Malloc || !Malloc->hasOneUse())
1201     return nullptr;
1202 
1203   // Is the inner call really malloc()?
1204   Function *InnerCallee = Malloc->getCalledFunction();
1205   if (!InnerCallee)
1206     return nullptr;
1207 
1208   LibFunc Func;
1209   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1210       Func != LibFunc_malloc)
1211     return nullptr;
1212 
1213   // The memset must cover the same number of bytes that are malloc'd.
1214   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1215     return nullptr;
1216 
1217   // Replace the malloc with a calloc. We need the data layout to know what the
1218   // actual size of a 'size_t' parameter is.
1219   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1220   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1221   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1222   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1223                                  Malloc->getArgOperand(0),
1224                                  Malloc->getAttributes(), B, *TLI)) {
1225     substituteInParent(Malloc, Calloc);
1226     return Calloc;
1227   }
1228 
1229   return nullptr;
1230 }
1231 
1232 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1233   Value *Size = CI->getArgOperand(2);
1234   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1235   if (isa<IntrinsicInst>(CI))
1236     return nullptr;
1237 
1238   if (auto *Calloc = foldMallocMemset(CI, B))
1239     return Calloc;
1240 
1241   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1242   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1243   CallInst *NewCI =
1244       B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align::None());
1245   NewCI->setAttributes(CI->getAttributes());
1246   return CI->getArgOperand(0);
1247 }
1248 
1249 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1250   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1251     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1252 
1253   return nullptr;
1254 }
1255 
1256 //===----------------------------------------------------------------------===//
1257 // Math Library Optimizations
1258 //===----------------------------------------------------------------------===//
1259 
1260 // Replace a libcall \p CI with a call to intrinsic \p IID
1261 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1262   // Propagate fast-math flags from the existing call to the new call.
1263   IRBuilder<>::FastMathFlagGuard Guard(B);
1264   B.setFastMathFlags(CI->getFastMathFlags());
1265 
1266   Module *M = CI->getModule();
1267   Value *V = CI->getArgOperand(0);
1268   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1269   CallInst *NewCall = B.CreateCall(F, V);
1270   NewCall->takeName(CI);
1271   return NewCall;
1272 }
1273 
1274 /// Return a variant of Val with float type.
1275 /// Currently this works in two cases: If Val is an FPExtension of a float
1276 /// value to something bigger, simply return the operand.
1277 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1278 /// loss of precision do so.
1279 static Value *valueHasFloatPrecision(Value *Val) {
1280   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1281     Value *Op = Cast->getOperand(0);
1282     if (Op->getType()->isFloatTy())
1283       return Op;
1284   }
1285   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1286     APFloat F = Const->getValueAPF();
1287     bool losesInfo;
1288     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1289                     &losesInfo);
1290     if (!losesInfo)
1291       return ConstantFP::get(Const->getContext(), F);
1292   }
1293   return nullptr;
1294 }
1295 
1296 /// Shrink double -> float functions.
1297 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1298                                bool isBinary, bool isPrecise = false) {
1299   Function *CalleeFn = CI->getCalledFunction();
1300   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1301     return nullptr;
1302 
1303   // If not all the uses of the function are converted to float, then bail out.
1304   // This matters if the precision of the result is more important than the
1305   // precision of the arguments.
1306   if (isPrecise)
1307     for (User *U : CI->users()) {
1308       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1309       if (!Cast || !Cast->getType()->isFloatTy())
1310         return nullptr;
1311     }
1312 
1313   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1314   Value *V[2];
1315   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1316   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1317   if (!V[0] || (isBinary && !V[1]))
1318     return nullptr;
1319 
1320   // If call isn't an intrinsic, check that it isn't within a function with the
1321   // same name as the float version of this call, otherwise the result is an
1322   // infinite loop.  For example, from MinGW-w64:
1323   //
1324   // float expf(float val) { return (float) exp((double) val); }
1325   StringRef CalleeName = CalleeFn->getName();
1326   bool IsIntrinsic = CalleeFn->isIntrinsic();
1327   if (!IsIntrinsic) {
1328     StringRef CallerName = CI->getFunction()->getName();
1329     if (!CallerName.empty() && CallerName.back() == 'f' &&
1330         CallerName.size() == (CalleeName.size() + 1) &&
1331         CallerName.startswith(CalleeName))
1332       return nullptr;
1333   }
1334 
1335   // Propagate the math semantics from the current function to the new function.
1336   IRBuilder<>::FastMathFlagGuard Guard(B);
1337   B.setFastMathFlags(CI->getFastMathFlags());
1338 
1339   // g((double) float) -> (double) gf(float)
1340   Value *R;
1341   if (IsIntrinsic) {
1342     Module *M = CI->getModule();
1343     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1344     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1345     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1346   } else {
1347     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1348     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1349                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1350   }
1351   return B.CreateFPExt(R, B.getDoubleTy());
1352 }
1353 
1354 /// Shrink double -> float for unary functions.
1355 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1356                                     bool isPrecise = false) {
1357   return optimizeDoubleFP(CI, B, false, isPrecise);
1358 }
1359 
1360 /// Shrink double -> float for binary functions.
1361 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1362                                      bool isPrecise = false) {
1363   return optimizeDoubleFP(CI, B, true, isPrecise);
1364 }
1365 
1366 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1367 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1368   if (!CI->isFast())
1369     return nullptr;
1370 
1371   // Propagate fast-math flags from the existing call to new instructions.
1372   IRBuilder<>::FastMathFlagGuard Guard(B);
1373   B.setFastMathFlags(CI->getFastMathFlags());
1374 
1375   Value *Real, *Imag;
1376   if (CI->getNumArgOperands() == 1) {
1377     Value *Op = CI->getArgOperand(0);
1378     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1379     Real = B.CreateExtractValue(Op, 0, "real");
1380     Imag = B.CreateExtractValue(Op, 1, "imag");
1381   } else {
1382     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1383     Real = CI->getArgOperand(0);
1384     Imag = CI->getArgOperand(1);
1385   }
1386 
1387   Value *RealReal = B.CreateFMul(Real, Real);
1388   Value *ImagImag = B.CreateFMul(Imag, Imag);
1389 
1390   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1391                                               CI->getType());
1392   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1393 }
1394 
1395 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1396                                       IRBuilder<> &B) {
1397   if (!isa<FPMathOperator>(Call))
1398     return nullptr;
1399 
1400   IRBuilder<>::FastMathFlagGuard Guard(B);
1401   B.setFastMathFlags(Call->getFastMathFlags());
1402 
1403   // TODO: Can this be shared to also handle LLVM intrinsics?
1404   Value *X;
1405   switch (Func) {
1406   case LibFunc_sin:
1407   case LibFunc_sinf:
1408   case LibFunc_sinl:
1409   case LibFunc_tan:
1410   case LibFunc_tanf:
1411   case LibFunc_tanl:
1412     // sin(-X) --> -sin(X)
1413     // tan(-X) --> -tan(X)
1414     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1415       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1416     break;
1417   case LibFunc_cos:
1418   case LibFunc_cosf:
1419   case LibFunc_cosl:
1420     // cos(-X) --> cos(X)
1421     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1422       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1423     break;
1424   default:
1425     break;
1426   }
1427   return nullptr;
1428 }
1429 
1430 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1431   // Multiplications calculated using Addition Chains.
1432   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1433 
1434   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1435 
1436   if (InnerChain[Exp])
1437     return InnerChain[Exp];
1438 
1439   static const unsigned AddChain[33][2] = {
1440       {0, 0}, // Unused.
1441       {0, 0}, // Unused (base case = pow1).
1442       {1, 1}, // Unused (pre-computed).
1443       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1444       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1445       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1446       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1447       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1448   };
1449 
1450   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1451                                  getPow(InnerChain, AddChain[Exp][1], B));
1452   return InnerChain[Exp];
1453 }
1454 
1455 // Return a properly extended 32-bit integer if the operation is an itofp.
1456 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1457   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1458     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1459     // Make sure that the exponent fits inside an int32_t,
1460     // thus avoiding any range issues that FP has not.
1461     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1462     if (BitWidth < 32 ||
1463         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1464       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1465                                   : B.CreateZExt(Op, B.getInt32Ty());
1466   }
1467 
1468   return nullptr;
1469 }
1470 
1471 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1472 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1473 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1474 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1475   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1476   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1477   Module *Mod = Pow->getModule();
1478   Type *Ty = Pow->getType();
1479   bool Ignored;
1480 
1481   // Evaluate special cases related to a nested function as the base.
1482 
1483   // pow(exp(x), y) -> exp(x * y)
1484   // pow(exp2(x), y) -> exp2(x * y)
1485   // If exp{,2}() is used only once, it is better to fold two transcendental
1486   // math functions into one.  If used again, exp{,2}() would still have to be
1487   // called with the original argument, then keep both original transcendental
1488   // functions.  However, this transformation is only safe with fully relaxed
1489   // math semantics, since, besides rounding differences, it changes overflow
1490   // and underflow behavior quite dramatically.  For example:
1491   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1492   // Whereas:
1493   //   exp(1000 * 0.001) = exp(1)
1494   // TODO: Loosen the requirement for fully relaxed math semantics.
1495   // TODO: Handle exp10() when more targets have it available.
1496   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1497   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1498     LibFunc LibFn;
1499 
1500     Function *CalleeFn = BaseFn->getCalledFunction();
1501     if (CalleeFn &&
1502         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1503       StringRef ExpName;
1504       Intrinsic::ID ID;
1505       Value *ExpFn;
1506       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1507 
1508       switch (LibFn) {
1509       default:
1510         return nullptr;
1511       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1512         ExpName = TLI->getName(LibFunc_exp);
1513         ID = Intrinsic::exp;
1514         LibFnFloat = LibFunc_expf;
1515         LibFnDouble = LibFunc_exp;
1516         LibFnLongDouble = LibFunc_expl;
1517         break;
1518       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1519         ExpName = TLI->getName(LibFunc_exp2);
1520         ID = Intrinsic::exp2;
1521         LibFnFloat = LibFunc_exp2f;
1522         LibFnDouble = LibFunc_exp2;
1523         LibFnLongDouble = LibFunc_exp2l;
1524         break;
1525       }
1526 
1527       // Create new exp{,2}() with the product as its argument.
1528       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1529       ExpFn = BaseFn->doesNotAccessMemory()
1530               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1531                              FMul, ExpName)
1532               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1533                                      LibFnLongDouble, B,
1534                                      BaseFn->getAttributes());
1535 
1536       // Since the new exp{,2}() is different from the original one, dead code
1537       // elimination cannot be trusted to remove it, since it may have side
1538       // effects (e.g., errno).  When the only consumer for the original
1539       // exp{,2}() is pow(), then it has to be explicitly erased.
1540       substituteInParent(BaseFn, ExpFn);
1541       return ExpFn;
1542     }
1543   }
1544 
1545   // Evaluate special cases related to a constant base.
1546 
1547   const APFloat *BaseF;
1548   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1549     return nullptr;
1550 
1551   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1552   if (match(Base, m_SpecificFP(2.0)) &&
1553       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1554       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1555     if (Value *ExpoI = getIntToFPVal(Expo, B))
1556       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1557                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1558                                    B, Attrs);
1559   }
1560 
1561   // pow(2.0 ** n, x) -> exp2(n * x)
1562   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1563     APFloat BaseR = APFloat(1.0);
1564     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1565     BaseR = BaseR / *BaseF;
1566     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1567     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1568     APSInt NI(64, false);
1569     if ((IsInteger || IsReciprocal) &&
1570         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1571             APFloat::opOK &&
1572         NI > 1 && NI.isPowerOf2()) {
1573       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1574       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1575       if (Pow->doesNotAccessMemory())
1576         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1577                             FMul, "exp2");
1578       else
1579         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1580                                     LibFunc_exp2l, B, Attrs);
1581     }
1582   }
1583 
1584   // pow(10.0, x) -> exp10(x)
1585   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1586   if (match(Base, m_SpecificFP(10.0)) &&
1587       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1588     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1589                                 LibFunc_exp10l, B, Attrs);
1590 
1591   // pow(n, x) -> exp2(log2(n) * x)
1592   if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1593       Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1594     Value *Log = nullptr;
1595     if (Ty->isFloatTy())
1596       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1597     else if (Ty->isDoubleTy())
1598       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1599 
1600     if (Log) {
1601       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1602       if (Pow->doesNotAccessMemory())
1603         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1604                             FMul, "exp2");
1605       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1606         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1607                                     LibFunc_exp2l, B, Attrs);
1608     }
1609   }
1610 
1611   return nullptr;
1612 }
1613 
1614 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1615                           Module *M, IRBuilder<> &B,
1616                           const TargetLibraryInfo *TLI) {
1617   // If errno is never set, then use the intrinsic for sqrt().
1618   if (NoErrno) {
1619     Function *SqrtFn =
1620         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1621     return B.CreateCall(SqrtFn, V, "sqrt");
1622   }
1623 
1624   // Otherwise, use the libcall for sqrt().
1625   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1626     // TODO: We also should check that the target can in fact lower the sqrt()
1627     // libcall. We currently have no way to ask this question, so we ask if
1628     // the target has a sqrt() libcall, which is not exactly the same.
1629     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1630                                 LibFunc_sqrtl, B, Attrs);
1631 
1632   return nullptr;
1633 }
1634 
1635 /// Use square root in place of pow(x, +/-0.5).
1636 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1637   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1638   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1639   Module *Mod = Pow->getModule();
1640   Type *Ty = Pow->getType();
1641 
1642   const APFloat *ExpoF;
1643   if (!match(Expo, m_APFloat(ExpoF)) ||
1644       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1645     return nullptr;
1646 
1647   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1648   if (!Sqrt)
1649     return nullptr;
1650 
1651   // Handle signed zero base by expanding to fabs(sqrt(x)).
1652   if (!Pow->hasNoSignedZeros()) {
1653     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1654     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1655   }
1656 
1657   // Handle non finite base by expanding to
1658   // (x == -infinity ? +infinity : sqrt(x)).
1659   if (!Pow->hasNoInfs()) {
1660     Value *PosInf = ConstantFP::getInfinity(Ty),
1661           *NegInf = ConstantFP::getInfinity(Ty, true);
1662     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1663     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1664   }
1665 
1666   // If the exponent is negative, then get the reciprocal.
1667   if (ExpoF->isNegative())
1668     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1669 
1670   return Sqrt;
1671 }
1672 
1673 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1674                                            IRBuilder<> &B) {
1675   Value *Args[] = {Base, Expo};
1676   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1677   return B.CreateCall(F, Args);
1678 }
1679 
1680 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1681   Value *Base = Pow->getArgOperand(0);
1682   Value *Expo = Pow->getArgOperand(1);
1683   Function *Callee = Pow->getCalledFunction();
1684   StringRef Name = Callee->getName();
1685   Type *Ty = Pow->getType();
1686   Module *M = Pow->getModule();
1687   Value *Shrunk = nullptr;
1688   bool AllowApprox = Pow->hasApproxFunc();
1689   bool Ignored;
1690 
1691   // Bail out if simplifying libcalls to pow() is disabled.
1692   if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1693     return nullptr;
1694 
1695   // Propagate the math semantics from the call to any created instructions.
1696   IRBuilder<>::FastMathFlagGuard Guard(B);
1697   B.setFastMathFlags(Pow->getFastMathFlags());
1698 
1699   // Shrink pow() to powf() if the arguments are single precision,
1700   // unless the result is expected to be double precision.
1701   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1702       hasFloatVersion(Name))
1703     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1704 
1705   // Evaluate special cases related to the base.
1706 
1707   // pow(1.0, x) -> 1.0
1708   if (match(Base, m_FPOne()))
1709     return Base;
1710 
1711   if (Value *Exp = replacePowWithExp(Pow, B))
1712     return Exp;
1713 
1714   // Evaluate special cases related to the exponent.
1715 
1716   // pow(x, -1.0) -> 1.0 / x
1717   if (match(Expo, m_SpecificFP(-1.0)))
1718     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1719 
1720   // pow(x, +/-0.0) -> 1.0
1721   if (match(Expo, m_AnyZeroFP()))
1722     return ConstantFP::get(Ty, 1.0);
1723 
1724   // pow(x, 1.0) -> x
1725   if (match(Expo, m_FPOne()))
1726     return Base;
1727 
1728   // pow(x, 2.0) -> x * x
1729   if (match(Expo, m_SpecificFP(2.0)))
1730     return B.CreateFMul(Base, Base, "square");
1731 
1732   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1733     return Sqrt;
1734 
1735   // pow(x, n) -> x * x * x * ...
1736   const APFloat *ExpoF;
1737   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1738     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1739     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1740     // additional fmul.
1741     // TODO: This whole transformation should be backend specific (e.g. some
1742     //       backends might prefer libcalls or the limit for the exponent might
1743     //       be different) and it should also consider optimizing for size.
1744     APFloat LimF(ExpoF->getSemantics(), 33),
1745             ExpoA(abs(*ExpoF));
1746     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1747       // This transformation applies to integer or integer+0.5 exponents only.
1748       // For integer+0.5, we create a sqrt(Base) call.
1749       Value *Sqrt = nullptr;
1750       if (!ExpoA.isInteger()) {
1751         APFloat Expo2 = ExpoA;
1752         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1753         // is no floating point exception and the result is an integer, then
1754         // ExpoA == integer + 0.5
1755         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1756           return nullptr;
1757 
1758         if (!Expo2.isInteger())
1759           return nullptr;
1760 
1761         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1762                            Pow->doesNotAccessMemory(), M, B, TLI);
1763       }
1764 
1765       // We will memoize intermediate products of the Addition Chain.
1766       Value *InnerChain[33] = {nullptr};
1767       InnerChain[1] = Base;
1768       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1769 
1770       // We cannot readily convert a non-double type (like float) to a double.
1771       // So we first convert it to something which could be converted to double.
1772       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1773       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1774 
1775       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1776       if (Sqrt)
1777         FMul = B.CreateFMul(FMul, Sqrt);
1778 
1779       // If the exponent is negative, then get the reciprocal.
1780       if (ExpoF->isNegative())
1781         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1782 
1783       return FMul;
1784     }
1785 
1786     APSInt IntExpo(32, /*isUnsigned=*/false);
1787     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1788     if (ExpoF->isInteger() &&
1789         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1790             APFloat::opOK) {
1791       return createPowWithIntegerExponent(
1792           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1793     }
1794   }
1795 
1796   // powf(x, itofp(y)) -> powi(x, y)
1797   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1798     if (Value *ExpoI = getIntToFPVal(Expo, B))
1799       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1800   }
1801 
1802   return Shrunk;
1803 }
1804 
1805 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1806   Function *Callee = CI->getCalledFunction();
1807   StringRef Name = Callee->getName();
1808   Value *Ret = nullptr;
1809   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1810       hasFloatVersion(Name))
1811     Ret = optimizeUnaryDoubleFP(CI, B, true);
1812 
1813   Type *Ty = CI->getType();
1814   Value *Op = CI->getArgOperand(0);
1815 
1816   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1817   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1818   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1819       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1820     if (Value *Exp = getIntToFPVal(Op, B))
1821       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1822                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1823                                    B, CI->getCalledFunction()->getAttributes());
1824   }
1825 
1826   return Ret;
1827 }
1828 
1829 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1830   // If we can shrink the call to a float function rather than a double
1831   // function, do that first.
1832   Function *Callee = CI->getCalledFunction();
1833   StringRef Name = Callee->getName();
1834   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1835     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1836       return Ret;
1837 
1838   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1839   // the intrinsics for improved optimization (for example, vectorization).
1840   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1841   // From the C standard draft WG14/N1256:
1842   // "Ideally, fmax would be sensitive to the sign of zero, for example
1843   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1844   // might be impractical."
1845   IRBuilder<>::FastMathFlagGuard Guard(B);
1846   FastMathFlags FMF = CI->getFastMathFlags();
1847   FMF.setNoSignedZeros();
1848   B.setFastMathFlags(FMF);
1849 
1850   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1851                                                            : Intrinsic::maxnum;
1852   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1853   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1854 }
1855 
1856 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1857   Function *LogFn = Log->getCalledFunction();
1858   AttributeList Attrs = LogFn->getAttributes();
1859   StringRef LogNm = LogFn->getName();
1860   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1861   Module *Mod = Log->getModule();
1862   Type *Ty = Log->getType();
1863   Value *Ret = nullptr;
1864 
1865   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1866     Ret = optimizeUnaryDoubleFP(Log, B, true);
1867 
1868   // The earlier call must also be 'fast' in order to do these transforms.
1869   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1870   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1871     return Ret;
1872 
1873   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1874 
1875   // This is only applicable to log(), log2(), log10().
1876   if (TLI->getLibFunc(LogNm, LogLb))
1877     switch (LogLb) {
1878     case LibFunc_logf:
1879       LogID = Intrinsic::log;
1880       ExpLb = LibFunc_expf;
1881       Exp2Lb = LibFunc_exp2f;
1882       Exp10Lb = LibFunc_exp10f;
1883       PowLb = LibFunc_powf;
1884       break;
1885     case LibFunc_log:
1886       LogID = Intrinsic::log;
1887       ExpLb = LibFunc_exp;
1888       Exp2Lb = LibFunc_exp2;
1889       Exp10Lb = LibFunc_exp10;
1890       PowLb = LibFunc_pow;
1891       break;
1892     case LibFunc_logl:
1893       LogID = Intrinsic::log;
1894       ExpLb = LibFunc_expl;
1895       Exp2Lb = LibFunc_exp2l;
1896       Exp10Lb = LibFunc_exp10l;
1897       PowLb = LibFunc_powl;
1898       break;
1899     case LibFunc_log2f:
1900       LogID = Intrinsic::log2;
1901       ExpLb = LibFunc_expf;
1902       Exp2Lb = LibFunc_exp2f;
1903       Exp10Lb = LibFunc_exp10f;
1904       PowLb = LibFunc_powf;
1905       break;
1906     case LibFunc_log2:
1907       LogID = Intrinsic::log2;
1908       ExpLb = LibFunc_exp;
1909       Exp2Lb = LibFunc_exp2;
1910       Exp10Lb = LibFunc_exp10;
1911       PowLb = LibFunc_pow;
1912       break;
1913     case LibFunc_log2l:
1914       LogID = Intrinsic::log2;
1915       ExpLb = LibFunc_expl;
1916       Exp2Lb = LibFunc_exp2l;
1917       Exp10Lb = LibFunc_exp10l;
1918       PowLb = LibFunc_powl;
1919       break;
1920     case LibFunc_log10f:
1921       LogID = Intrinsic::log10;
1922       ExpLb = LibFunc_expf;
1923       Exp2Lb = LibFunc_exp2f;
1924       Exp10Lb = LibFunc_exp10f;
1925       PowLb = LibFunc_powf;
1926       break;
1927     case LibFunc_log10:
1928       LogID = Intrinsic::log10;
1929       ExpLb = LibFunc_exp;
1930       Exp2Lb = LibFunc_exp2;
1931       Exp10Lb = LibFunc_exp10;
1932       PowLb = LibFunc_pow;
1933       break;
1934     case LibFunc_log10l:
1935       LogID = Intrinsic::log10;
1936       ExpLb = LibFunc_expl;
1937       Exp2Lb = LibFunc_exp2l;
1938       Exp10Lb = LibFunc_exp10l;
1939       PowLb = LibFunc_powl;
1940       break;
1941     default:
1942       return Ret;
1943     }
1944   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1945            LogID == Intrinsic::log10) {
1946     if (Ty->getScalarType()->isFloatTy()) {
1947       ExpLb = LibFunc_expf;
1948       Exp2Lb = LibFunc_exp2f;
1949       Exp10Lb = LibFunc_exp10f;
1950       PowLb = LibFunc_powf;
1951     } else if (Ty->getScalarType()->isDoubleTy()) {
1952       ExpLb = LibFunc_exp;
1953       Exp2Lb = LibFunc_exp2;
1954       Exp10Lb = LibFunc_exp10;
1955       PowLb = LibFunc_pow;
1956     } else
1957       return Ret;
1958   } else
1959     return Ret;
1960 
1961   IRBuilder<>::FastMathFlagGuard Guard(B);
1962   B.setFastMathFlags(FastMathFlags::getFast());
1963 
1964   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1965   LibFunc ArgLb = NotLibFunc;
1966   TLI->getLibFunc(Arg, ArgLb);
1967 
1968   // log(pow(x,y)) -> y*log(x)
1969   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1970     Value *LogX =
1971         Log->doesNotAccessMemory()
1972             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1973                            Arg->getOperand(0), "log")
1974             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1975     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1976     // Since pow() may have side effects, e.g. errno,
1977     // dead code elimination may not be trusted to remove it.
1978     substituteInParent(Arg, MulY);
1979     return MulY;
1980   }
1981 
1982   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1983   // TODO: There is no exp10() intrinsic yet.
1984   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1985            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1986     Constant *Eul;
1987     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1988       // FIXME: Add more precise value of e for long double.
1989       Eul = ConstantFP::get(Log->getType(), numbers::e);
1990     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1991       Eul = ConstantFP::get(Log->getType(), 2.0);
1992     else
1993       Eul = ConstantFP::get(Log->getType(), 10.0);
1994     Value *LogE = Log->doesNotAccessMemory()
1995                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1996                                      Eul, "log")
1997                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1998     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1999     // Since exp() may have side effects, e.g. errno,
2000     // dead code elimination may not be trusted to remove it.
2001     substituteInParent(Arg, MulY);
2002     return MulY;
2003   }
2004 
2005   return Ret;
2006 }
2007 
2008 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
2009   Function *Callee = CI->getCalledFunction();
2010   Value *Ret = nullptr;
2011   // TODO: Once we have a way (other than checking for the existince of the
2012   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2013   // condition below.
2014   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2015                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2016     Ret = optimizeUnaryDoubleFP(CI, B, true);
2017 
2018   if (!CI->isFast())
2019     return Ret;
2020 
2021   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2022   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2023     return Ret;
2024 
2025   // We're looking for a repeated factor in a multiplication tree,
2026   // so we can do this fold: sqrt(x * x) -> fabs(x);
2027   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2028   Value *Op0 = I->getOperand(0);
2029   Value *Op1 = I->getOperand(1);
2030   Value *RepeatOp = nullptr;
2031   Value *OtherOp = nullptr;
2032   if (Op0 == Op1) {
2033     // Simple match: the operands of the multiply are identical.
2034     RepeatOp = Op0;
2035   } else {
2036     // Look for a more complicated pattern: one of the operands is itself
2037     // a multiply, so search for a common factor in that multiply.
2038     // Note: We don't bother looking any deeper than this first level or for
2039     // variations of this pattern because instcombine's visitFMUL and/or the
2040     // reassociation pass should give us this form.
2041     Value *OtherMul0, *OtherMul1;
2042     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2043       // Pattern: sqrt((x * y) * z)
2044       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2045         // Matched: sqrt((x * x) * z)
2046         RepeatOp = OtherMul0;
2047         OtherOp = Op1;
2048       }
2049     }
2050   }
2051   if (!RepeatOp)
2052     return Ret;
2053 
2054   // Fast math flags for any created instructions should match the sqrt
2055   // and multiply.
2056   IRBuilder<>::FastMathFlagGuard Guard(B);
2057   B.setFastMathFlags(I->getFastMathFlags());
2058 
2059   // If we found a repeated factor, hoist it out of the square root and
2060   // replace it with the fabs of that factor.
2061   Module *M = Callee->getParent();
2062   Type *ArgType = I->getType();
2063   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2064   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2065   if (OtherOp) {
2066     // If we found a non-repeated factor, we still need to get its square
2067     // root. We then multiply that by the value that was simplified out
2068     // of the square root calculation.
2069     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2070     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2071     return B.CreateFMul(FabsCall, SqrtCall);
2072   }
2073   return FabsCall;
2074 }
2075 
2076 // TODO: Generalize to handle any trig function and its inverse.
2077 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2078   Function *Callee = CI->getCalledFunction();
2079   Value *Ret = nullptr;
2080   StringRef Name = Callee->getName();
2081   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2082     Ret = optimizeUnaryDoubleFP(CI, B, true);
2083 
2084   Value *Op1 = CI->getArgOperand(0);
2085   auto *OpC = dyn_cast<CallInst>(Op1);
2086   if (!OpC)
2087     return Ret;
2088 
2089   // Both calls must be 'fast' in order to remove them.
2090   if (!CI->isFast() || !OpC->isFast())
2091     return Ret;
2092 
2093   // tan(atan(x)) -> x
2094   // tanf(atanf(x)) -> x
2095   // tanl(atanl(x)) -> x
2096   LibFunc Func;
2097   Function *F = OpC->getCalledFunction();
2098   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2099       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2100        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2101        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2102     Ret = OpC->getArgOperand(0);
2103   return Ret;
2104 }
2105 
2106 static bool isTrigLibCall(CallInst *CI) {
2107   // We can only hope to do anything useful if we can ignore things like errno
2108   // and floating-point exceptions.
2109   // We already checked the prototype.
2110   return CI->hasFnAttr(Attribute::NoUnwind) &&
2111          CI->hasFnAttr(Attribute::ReadNone);
2112 }
2113 
2114 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2115                              bool UseFloat, Value *&Sin, Value *&Cos,
2116                              Value *&SinCos) {
2117   Type *ArgTy = Arg->getType();
2118   Type *ResTy;
2119   StringRef Name;
2120 
2121   Triple T(OrigCallee->getParent()->getTargetTriple());
2122   if (UseFloat) {
2123     Name = "__sincospif_stret";
2124 
2125     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2126     // x86_64 can't use {float, float} since that would be returned in both
2127     // xmm0 and xmm1, which isn't what a real struct would do.
2128     ResTy = T.getArch() == Triple::x86_64
2129                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2130                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2131   } else {
2132     Name = "__sincospi_stret";
2133     ResTy = StructType::get(ArgTy, ArgTy);
2134   }
2135 
2136   Module *M = OrigCallee->getParent();
2137   FunctionCallee Callee =
2138       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2139 
2140   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2141     // If the argument is an instruction, it must dominate all uses so put our
2142     // sincos call there.
2143     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2144   } else {
2145     // Otherwise (e.g. for a constant) the beginning of the function is as
2146     // good a place as any.
2147     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2148     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2149   }
2150 
2151   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2152 
2153   if (SinCos->getType()->isStructTy()) {
2154     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2155     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2156   } else {
2157     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2158                                  "sinpi");
2159     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2160                                  "cospi");
2161   }
2162 }
2163 
2164 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2165   // Make sure the prototype is as expected, otherwise the rest of the
2166   // function is probably invalid and likely to abort.
2167   if (!isTrigLibCall(CI))
2168     return nullptr;
2169 
2170   Value *Arg = CI->getArgOperand(0);
2171   SmallVector<CallInst *, 1> SinCalls;
2172   SmallVector<CallInst *, 1> CosCalls;
2173   SmallVector<CallInst *, 1> SinCosCalls;
2174 
2175   bool IsFloat = Arg->getType()->isFloatTy();
2176 
2177   // Look for all compatible sinpi, cospi and sincospi calls with the same
2178   // argument. If there are enough (in some sense) we can make the
2179   // substitution.
2180   Function *F = CI->getFunction();
2181   for (User *U : Arg->users())
2182     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2183 
2184   // It's only worthwhile if both sinpi and cospi are actually used.
2185   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2186     return nullptr;
2187 
2188   Value *Sin, *Cos, *SinCos;
2189   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2190 
2191   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2192                                  Value *Res) {
2193     for (CallInst *C : Calls)
2194       replaceAllUsesWith(C, Res);
2195   };
2196 
2197   replaceTrigInsts(SinCalls, Sin);
2198   replaceTrigInsts(CosCalls, Cos);
2199   replaceTrigInsts(SinCosCalls, SinCos);
2200 
2201   return nullptr;
2202 }
2203 
2204 void LibCallSimplifier::classifyArgUse(
2205     Value *Val, Function *F, bool IsFloat,
2206     SmallVectorImpl<CallInst *> &SinCalls,
2207     SmallVectorImpl<CallInst *> &CosCalls,
2208     SmallVectorImpl<CallInst *> &SinCosCalls) {
2209   CallInst *CI = dyn_cast<CallInst>(Val);
2210 
2211   if (!CI)
2212     return;
2213 
2214   // Don't consider calls in other functions.
2215   if (CI->getFunction() != F)
2216     return;
2217 
2218   Function *Callee = CI->getCalledFunction();
2219   LibFunc Func;
2220   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2221       !isTrigLibCall(CI))
2222     return;
2223 
2224   if (IsFloat) {
2225     if (Func == LibFunc_sinpif)
2226       SinCalls.push_back(CI);
2227     else if (Func == LibFunc_cospif)
2228       CosCalls.push_back(CI);
2229     else if (Func == LibFunc_sincospif_stret)
2230       SinCosCalls.push_back(CI);
2231   } else {
2232     if (Func == LibFunc_sinpi)
2233       SinCalls.push_back(CI);
2234     else if (Func == LibFunc_cospi)
2235       CosCalls.push_back(CI);
2236     else if (Func == LibFunc_sincospi_stret)
2237       SinCosCalls.push_back(CI);
2238   }
2239 }
2240 
2241 //===----------------------------------------------------------------------===//
2242 // Integer Library Call Optimizations
2243 //===----------------------------------------------------------------------===//
2244 
2245 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2246   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2247   Value *Op = CI->getArgOperand(0);
2248   Type *ArgType = Op->getType();
2249   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2250                                           Intrinsic::cttz, ArgType);
2251   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2252   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2253   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2254 
2255   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2256   return B.CreateSelect(Cond, V, B.getInt32(0));
2257 }
2258 
2259 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2260   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2261   Value *Op = CI->getArgOperand(0);
2262   Type *ArgType = Op->getType();
2263   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2264                                           Intrinsic::ctlz, ArgType);
2265   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2266   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2267                   V);
2268   return B.CreateIntCast(V, CI->getType(), false);
2269 }
2270 
2271 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2272   // abs(x) -> x <s 0 ? -x : x
2273   // The negation has 'nsw' because abs of INT_MIN is undefined.
2274   Value *X = CI->getArgOperand(0);
2275   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2276   Value *NegX = B.CreateNSWNeg(X, "neg");
2277   return B.CreateSelect(IsNeg, NegX, X);
2278 }
2279 
2280 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2281   // isdigit(c) -> (c-'0') <u 10
2282   Value *Op = CI->getArgOperand(0);
2283   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2284   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2285   return B.CreateZExt(Op, CI->getType());
2286 }
2287 
2288 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2289   // isascii(c) -> c <u 128
2290   Value *Op = CI->getArgOperand(0);
2291   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2292   return B.CreateZExt(Op, CI->getType());
2293 }
2294 
2295 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2296   // toascii(c) -> c & 0x7f
2297   return B.CreateAnd(CI->getArgOperand(0),
2298                      ConstantInt::get(CI->getType(), 0x7F));
2299 }
2300 
2301 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2302   StringRef Str;
2303   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2304     return nullptr;
2305 
2306   return convertStrToNumber(CI, Str, 10);
2307 }
2308 
2309 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2310   StringRef Str;
2311   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2312     return nullptr;
2313 
2314   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2315     return nullptr;
2316 
2317   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2318     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2319   }
2320 
2321   return nullptr;
2322 }
2323 
2324 //===----------------------------------------------------------------------===//
2325 // Formatting and IO Library Call Optimizations
2326 //===----------------------------------------------------------------------===//
2327 
2328 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2329 
2330 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2331                                                  int StreamArg) {
2332   Function *Callee = CI->getCalledFunction();
2333   // Error reporting calls should be cold, mark them as such.
2334   // This applies even to non-builtin calls: it is only a hint and applies to
2335   // functions that the frontend might not understand as builtins.
2336 
2337   // This heuristic was suggested in:
2338   // Improving Static Branch Prediction in a Compiler
2339   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2340   // Proceedings of PACT'98, Oct. 1998, IEEE
2341   if (!CI->hasFnAttr(Attribute::Cold) &&
2342       isReportingError(Callee, CI, StreamArg)) {
2343     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2344   }
2345 
2346   return nullptr;
2347 }
2348 
2349 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2350   if (!Callee || !Callee->isDeclaration())
2351     return false;
2352 
2353   if (StreamArg < 0)
2354     return true;
2355 
2356   // These functions might be considered cold, but only if their stream
2357   // argument is stderr.
2358 
2359   if (StreamArg >= (int)CI->getNumArgOperands())
2360     return false;
2361   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2362   if (!LI)
2363     return false;
2364   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2365   if (!GV || !GV->isDeclaration())
2366     return false;
2367   return GV->getName() == "stderr";
2368 }
2369 
2370 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2371   // Check for a fixed format string.
2372   StringRef FormatStr;
2373   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2374     return nullptr;
2375 
2376   // Empty format string -> noop.
2377   if (FormatStr.empty()) // Tolerate printf's declared void.
2378     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2379 
2380   // Do not do any of the following transformations if the printf return value
2381   // is used, in general the printf return value is not compatible with either
2382   // putchar() or puts().
2383   if (!CI->use_empty())
2384     return nullptr;
2385 
2386   // printf("x") -> putchar('x'), even for "%" and "%%".
2387   if (FormatStr.size() == 1 || FormatStr == "%%")
2388     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2389 
2390   // printf("%s", "a") --> putchar('a')
2391   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2392     StringRef ChrStr;
2393     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2394       return nullptr;
2395     if (ChrStr.size() != 1)
2396       return nullptr;
2397     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2398   }
2399 
2400   // printf("foo\n") --> puts("foo")
2401   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2402       FormatStr.find('%') == StringRef::npos) { // No format characters.
2403     // Create a string literal with no \n on it.  We expect the constant merge
2404     // pass to be run after this pass, to merge duplicate strings.
2405     FormatStr = FormatStr.drop_back();
2406     Value *GV = B.CreateGlobalString(FormatStr, "str");
2407     return emitPutS(GV, B, TLI);
2408   }
2409 
2410   // Optimize specific format strings.
2411   // printf("%c", chr) --> putchar(chr)
2412   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2413       CI->getArgOperand(1)->getType()->isIntegerTy())
2414     return emitPutChar(CI->getArgOperand(1), B, TLI);
2415 
2416   // printf("%s\n", str) --> puts(str)
2417   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2418       CI->getArgOperand(1)->getType()->isPointerTy())
2419     return emitPutS(CI->getArgOperand(1), B, TLI);
2420   return nullptr;
2421 }
2422 
2423 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2424 
2425   Function *Callee = CI->getCalledFunction();
2426   FunctionType *FT = Callee->getFunctionType();
2427   if (Value *V = optimizePrintFString(CI, B)) {
2428     return V;
2429   }
2430 
2431   // printf(format, ...) -> iprintf(format, ...) if no floating point
2432   // arguments.
2433   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2434     Module *M = B.GetInsertBlock()->getParent()->getParent();
2435     FunctionCallee IPrintFFn =
2436         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2437     CallInst *New = cast<CallInst>(CI->clone());
2438     New->setCalledFunction(IPrintFFn);
2439     B.Insert(New);
2440     return New;
2441   }
2442 
2443   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2444   // arguments.
2445   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2446     Module *M = B.GetInsertBlock()->getParent()->getParent();
2447     auto SmallPrintFFn =
2448         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2449                                FT, Callee->getAttributes());
2450     CallInst *New = cast<CallInst>(CI->clone());
2451     New->setCalledFunction(SmallPrintFFn);
2452     B.Insert(New);
2453     return New;
2454   }
2455 
2456   annotateNonNullBasedOnAccess(CI, 0);
2457   return nullptr;
2458 }
2459 
2460 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2461   // Check for a fixed format string.
2462   StringRef FormatStr;
2463   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2464     return nullptr;
2465 
2466   // If we just have a format string (nothing else crazy) transform it.
2467   if (CI->getNumArgOperands() == 2) {
2468     // Make sure there's no % in the constant array.  We could try to handle
2469     // %% -> % in the future if we cared.
2470     if (FormatStr.find('%') != StringRef::npos)
2471       return nullptr; // we found a format specifier, bail out.
2472 
2473     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2474     B.CreateMemCpy(
2475         CI->getArgOperand(0), Align::None(), CI->getArgOperand(1),
2476         Align::None(),
2477         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2478                          FormatStr.size() + 1)); // Copy the null byte.
2479     return ConstantInt::get(CI->getType(), FormatStr.size());
2480   }
2481 
2482   // The remaining optimizations require the format string to be "%s" or "%c"
2483   // and have an extra operand.
2484   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2485       CI->getNumArgOperands() < 3)
2486     return nullptr;
2487 
2488   // Decode the second character of the format string.
2489   if (FormatStr[1] == 'c') {
2490     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2491     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2492       return nullptr;
2493     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2494     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2495     B.CreateStore(V, Ptr);
2496     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2497     B.CreateStore(B.getInt8(0), Ptr);
2498 
2499     return ConstantInt::get(CI->getType(), 1);
2500   }
2501 
2502   if (FormatStr[1] == 's') {
2503     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2504     // strlen(str)+1)
2505     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2506       return nullptr;
2507 
2508     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2509     if (!Len)
2510       return nullptr;
2511     Value *IncLen =
2512         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2513     B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2514                    Align::None(), IncLen);
2515 
2516     // The sprintf result is the unincremented number of bytes in the string.
2517     return B.CreateIntCast(Len, CI->getType(), false);
2518   }
2519   return nullptr;
2520 }
2521 
2522 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2523   Function *Callee = CI->getCalledFunction();
2524   FunctionType *FT = Callee->getFunctionType();
2525   if (Value *V = optimizeSPrintFString(CI, B)) {
2526     return V;
2527   }
2528 
2529   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2530   // point arguments.
2531   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2532     Module *M = B.GetInsertBlock()->getParent()->getParent();
2533     FunctionCallee SIPrintFFn =
2534         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2535     CallInst *New = cast<CallInst>(CI->clone());
2536     New->setCalledFunction(SIPrintFFn);
2537     B.Insert(New);
2538     return New;
2539   }
2540 
2541   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2542   // floating point arguments.
2543   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2544     Module *M = B.GetInsertBlock()->getParent()->getParent();
2545     auto SmallSPrintFFn =
2546         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2547                                FT, Callee->getAttributes());
2548     CallInst *New = cast<CallInst>(CI->clone());
2549     New->setCalledFunction(SmallSPrintFFn);
2550     B.Insert(New);
2551     return New;
2552   }
2553 
2554   annotateNonNullBasedOnAccess(CI, {0, 1});
2555   return nullptr;
2556 }
2557 
2558 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2559   // Check for size
2560   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2561   if (!Size)
2562     return nullptr;
2563 
2564   uint64_t N = Size->getZExtValue();
2565   // Check for a fixed format string.
2566   StringRef FormatStr;
2567   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2568     return nullptr;
2569 
2570   // If we just have a format string (nothing else crazy) transform it.
2571   if (CI->getNumArgOperands() == 3) {
2572     // Make sure there's no % in the constant array.  We could try to handle
2573     // %% -> % in the future if we cared.
2574     if (FormatStr.find('%') != StringRef::npos)
2575       return nullptr; // we found a format specifier, bail out.
2576 
2577     if (N == 0)
2578       return ConstantInt::get(CI->getType(), FormatStr.size());
2579     else if (N < FormatStr.size() + 1)
2580       return nullptr;
2581 
2582     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2583     // strlen(fmt)+1)
2584     B.CreateMemCpy(
2585         CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2586         Align::None(),
2587         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2588                          FormatStr.size() + 1)); // Copy the null byte.
2589     return ConstantInt::get(CI->getType(), FormatStr.size());
2590   }
2591 
2592   // The remaining optimizations require the format string to be "%s" or "%c"
2593   // and have an extra operand.
2594   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2595       CI->getNumArgOperands() == 4) {
2596 
2597     // Decode the second character of the format string.
2598     if (FormatStr[1] == 'c') {
2599       if (N == 0)
2600         return ConstantInt::get(CI->getType(), 1);
2601       else if (N == 1)
2602         return nullptr;
2603 
2604       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2605       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2606         return nullptr;
2607       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2608       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2609       B.CreateStore(V, Ptr);
2610       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2611       B.CreateStore(B.getInt8(0), Ptr);
2612 
2613       return ConstantInt::get(CI->getType(), 1);
2614     }
2615 
2616     if (FormatStr[1] == 's') {
2617       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2618       StringRef Str;
2619       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2620         return nullptr;
2621 
2622       if (N == 0)
2623         return ConstantInt::get(CI->getType(), Str.size());
2624       else if (N < Str.size() + 1)
2625         return nullptr;
2626 
2627       B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(3),
2628                      Align::None(),
2629                      ConstantInt::get(CI->getType(), Str.size() + 1));
2630 
2631       // The snprintf result is the unincremented number of bytes in the string.
2632       return ConstantInt::get(CI->getType(), Str.size());
2633     }
2634   }
2635   return nullptr;
2636 }
2637 
2638 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2639   if (Value *V = optimizeSnPrintFString(CI, B)) {
2640     return V;
2641   }
2642 
2643   if (isKnownNonZero(CI->getOperand(1), DL))
2644     annotateNonNullBasedOnAccess(CI, 0);
2645   return nullptr;
2646 }
2647 
2648 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2649   optimizeErrorReporting(CI, B, 0);
2650 
2651   // All the optimizations depend on the format string.
2652   StringRef FormatStr;
2653   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2654     return nullptr;
2655 
2656   // Do not do any of the following transformations if the fprintf return
2657   // value is used, in general the fprintf return value is not compatible
2658   // with fwrite(), fputc() or fputs().
2659   if (!CI->use_empty())
2660     return nullptr;
2661 
2662   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2663   if (CI->getNumArgOperands() == 2) {
2664     // Could handle %% -> % if we cared.
2665     if (FormatStr.find('%') != StringRef::npos)
2666       return nullptr; // We found a format specifier.
2667 
2668     return emitFWrite(
2669         CI->getArgOperand(1),
2670         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2671         CI->getArgOperand(0), B, DL, TLI);
2672   }
2673 
2674   // The remaining optimizations require the format string to be "%s" or "%c"
2675   // and have an extra operand.
2676   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2677       CI->getNumArgOperands() < 3)
2678     return nullptr;
2679 
2680   // Decode the second character of the format string.
2681   if (FormatStr[1] == 'c') {
2682     // fprintf(F, "%c", chr) --> fputc(chr, F)
2683     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2684       return nullptr;
2685     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2686   }
2687 
2688   if (FormatStr[1] == 's') {
2689     // fprintf(F, "%s", str) --> fputs(str, F)
2690     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2691       return nullptr;
2692     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2693   }
2694   return nullptr;
2695 }
2696 
2697 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2698   Function *Callee = CI->getCalledFunction();
2699   FunctionType *FT = Callee->getFunctionType();
2700   if (Value *V = optimizeFPrintFString(CI, B)) {
2701     return V;
2702   }
2703 
2704   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2705   // floating point arguments.
2706   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2707     Module *M = B.GetInsertBlock()->getParent()->getParent();
2708     FunctionCallee FIPrintFFn =
2709         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2710     CallInst *New = cast<CallInst>(CI->clone());
2711     New->setCalledFunction(FIPrintFFn);
2712     B.Insert(New);
2713     return New;
2714   }
2715 
2716   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2717   // 128-bit floating point arguments.
2718   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2719     Module *M = B.GetInsertBlock()->getParent()->getParent();
2720     auto SmallFPrintFFn =
2721         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2722                                FT, Callee->getAttributes());
2723     CallInst *New = cast<CallInst>(CI->clone());
2724     New->setCalledFunction(SmallFPrintFFn);
2725     B.Insert(New);
2726     return New;
2727   }
2728 
2729   return nullptr;
2730 }
2731 
2732 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2733   optimizeErrorReporting(CI, B, 3);
2734 
2735   // Get the element size and count.
2736   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2737   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2738   if (SizeC && CountC) {
2739     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2740 
2741     // If this is writing zero records, remove the call (it's a noop).
2742     if (Bytes == 0)
2743       return ConstantInt::get(CI->getType(), 0);
2744 
2745     // If this is writing one byte, turn it into fputc.
2746     // This optimisation is only valid, if the return value is unused.
2747     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2748       Value *Char = B.CreateLoad(B.getInt8Ty(),
2749                                  castToCStr(CI->getArgOperand(0), B), "char");
2750       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2751       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2752     }
2753   }
2754 
2755   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2756     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2757                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2758                               TLI);
2759 
2760   return nullptr;
2761 }
2762 
2763 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2764   optimizeErrorReporting(CI, B, 1);
2765 
2766   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2767   // requires more arguments and thus extra MOVs are required.
2768   bool OptForSize = CI->getFunction()->hasOptSize() ||
2769                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2770                                                 PGSOQueryType::IRPass);
2771   if (OptForSize)
2772     return nullptr;
2773 
2774   // Check if has any use
2775   if (!CI->use_empty()) {
2776     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2777       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2778                                TLI);
2779     else
2780       // We can't optimize if return value is used.
2781       return nullptr;
2782   }
2783 
2784   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2785   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2786   if (!Len)
2787     return nullptr;
2788 
2789   // Known to have no uses (see above).
2790   return emitFWrite(
2791       CI->getArgOperand(0),
2792       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2793       CI->getArgOperand(1), B, DL, TLI);
2794 }
2795 
2796 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2797   optimizeErrorReporting(CI, B, 1);
2798 
2799   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2800     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2801                              TLI);
2802 
2803   return nullptr;
2804 }
2805 
2806 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2807   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2808     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2809 
2810   return nullptr;
2811 }
2812 
2813 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2814   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2815     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2816                              CI->getArgOperand(2), B, TLI);
2817 
2818   return nullptr;
2819 }
2820 
2821 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2822   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2823     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2824                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2825                              TLI);
2826 
2827   return nullptr;
2828 }
2829 
2830 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2831   annotateNonNullBasedOnAccess(CI, 0);
2832   if (!CI->use_empty())
2833     return nullptr;
2834 
2835   // Check for a constant string.
2836   // puts("") -> putchar('\n')
2837   StringRef Str;
2838   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2839     return emitPutChar(B.getInt32('\n'), B, TLI);
2840 
2841   return nullptr;
2842 }
2843 
2844 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2845   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2846   return B.CreateMemMove(CI->getArgOperand(1), Align::None(),
2847                          CI->getArgOperand(0), Align::None(),
2848                          CI->getArgOperand(2));
2849 }
2850 
2851 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2852   LibFunc Func;
2853   SmallString<20> FloatFuncName = FuncName;
2854   FloatFuncName += 'f';
2855   if (TLI->getLibFunc(FloatFuncName, Func))
2856     return TLI->has(Func);
2857   return false;
2858 }
2859 
2860 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2861                                                       IRBuilder<> &Builder) {
2862   LibFunc Func;
2863   Function *Callee = CI->getCalledFunction();
2864   // Check for string/memory library functions.
2865   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2866     // Make sure we never change the calling convention.
2867     assert((ignoreCallingConv(Func) ||
2868             isCallingConvCCompatible(CI)) &&
2869       "Optimizing string/memory libcall would change the calling convention");
2870     switch (Func) {
2871     case LibFunc_strcat:
2872       return optimizeStrCat(CI, Builder);
2873     case LibFunc_strncat:
2874       return optimizeStrNCat(CI, Builder);
2875     case LibFunc_strchr:
2876       return optimizeStrChr(CI, Builder);
2877     case LibFunc_strrchr:
2878       return optimizeStrRChr(CI, Builder);
2879     case LibFunc_strcmp:
2880       return optimizeStrCmp(CI, Builder);
2881     case LibFunc_strncmp:
2882       return optimizeStrNCmp(CI, Builder);
2883     case LibFunc_strcpy:
2884       return optimizeStrCpy(CI, Builder);
2885     case LibFunc_stpcpy:
2886       return optimizeStpCpy(CI, Builder);
2887     case LibFunc_strncpy:
2888       return optimizeStrNCpy(CI, Builder);
2889     case LibFunc_strlen:
2890       return optimizeStrLen(CI, Builder);
2891     case LibFunc_strpbrk:
2892       return optimizeStrPBrk(CI, Builder);
2893     case LibFunc_strndup:
2894       return optimizeStrNDup(CI, Builder);
2895     case LibFunc_strtol:
2896     case LibFunc_strtod:
2897     case LibFunc_strtof:
2898     case LibFunc_strtoul:
2899     case LibFunc_strtoll:
2900     case LibFunc_strtold:
2901     case LibFunc_strtoull:
2902       return optimizeStrTo(CI, Builder);
2903     case LibFunc_strspn:
2904       return optimizeStrSpn(CI, Builder);
2905     case LibFunc_strcspn:
2906       return optimizeStrCSpn(CI, Builder);
2907     case LibFunc_strstr:
2908       return optimizeStrStr(CI, Builder);
2909     case LibFunc_memchr:
2910       return optimizeMemChr(CI, Builder);
2911     case LibFunc_memrchr:
2912       return optimizeMemRChr(CI, Builder);
2913     case LibFunc_bcmp:
2914       return optimizeBCmp(CI, Builder);
2915     case LibFunc_memcmp:
2916       return optimizeMemCmp(CI, Builder);
2917     case LibFunc_memcpy:
2918       return optimizeMemCpy(CI, Builder);
2919     case LibFunc_memccpy:
2920       return optimizeMemCCpy(CI, Builder);
2921     case LibFunc_mempcpy:
2922       return optimizeMemPCpy(CI, Builder);
2923     case LibFunc_memmove:
2924       return optimizeMemMove(CI, Builder);
2925     case LibFunc_memset:
2926       return optimizeMemSet(CI, Builder);
2927     case LibFunc_realloc:
2928       return optimizeRealloc(CI, Builder);
2929     case LibFunc_wcslen:
2930       return optimizeWcslen(CI, Builder);
2931     case LibFunc_bcopy:
2932       return optimizeBCopy(CI, Builder);
2933     default:
2934       break;
2935     }
2936   }
2937   return nullptr;
2938 }
2939 
2940 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2941                                                        LibFunc Func,
2942                                                        IRBuilder<> &Builder) {
2943   // Don't optimize calls that require strict floating point semantics.
2944   if (CI->isStrictFP())
2945     return nullptr;
2946 
2947   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2948     return V;
2949 
2950   switch (Func) {
2951   case LibFunc_sinpif:
2952   case LibFunc_sinpi:
2953   case LibFunc_cospif:
2954   case LibFunc_cospi:
2955     return optimizeSinCosPi(CI, Builder);
2956   case LibFunc_powf:
2957   case LibFunc_pow:
2958   case LibFunc_powl:
2959     return optimizePow(CI, Builder);
2960   case LibFunc_exp2l:
2961   case LibFunc_exp2:
2962   case LibFunc_exp2f:
2963     return optimizeExp2(CI, Builder);
2964   case LibFunc_fabsf:
2965   case LibFunc_fabs:
2966   case LibFunc_fabsl:
2967     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2968   case LibFunc_sqrtf:
2969   case LibFunc_sqrt:
2970   case LibFunc_sqrtl:
2971     return optimizeSqrt(CI, Builder);
2972   case LibFunc_logf:
2973   case LibFunc_log:
2974   case LibFunc_logl:
2975   case LibFunc_log10f:
2976   case LibFunc_log10:
2977   case LibFunc_log10l:
2978   case LibFunc_log1pf:
2979   case LibFunc_log1p:
2980   case LibFunc_log1pl:
2981   case LibFunc_log2f:
2982   case LibFunc_log2:
2983   case LibFunc_log2l:
2984   case LibFunc_logbf:
2985   case LibFunc_logb:
2986   case LibFunc_logbl:
2987     return optimizeLog(CI, Builder);
2988   case LibFunc_tan:
2989   case LibFunc_tanf:
2990   case LibFunc_tanl:
2991     return optimizeTan(CI, Builder);
2992   case LibFunc_ceil:
2993     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2994   case LibFunc_floor:
2995     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2996   case LibFunc_round:
2997     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2998   case LibFunc_nearbyint:
2999     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3000   case LibFunc_rint:
3001     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3002   case LibFunc_trunc:
3003     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3004   case LibFunc_acos:
3005   case LibFunc_acosh:
3006   case LibFunc_asin:
3007   case LibFunc_asinh:
3008   case LibFunc_atan:
3009   case LibFunc_atanh:
3010   case LibFunc_cbrt:
3011   case LibFunc_cosh:
3012   case LibFunc_exp:
3013   case LibFunc_exp10:
3014   case LibFunc_expm1:
3015   case LibFunc_cos:
3016   case LibFunc_sin:
3017   case LibFunc_sinh:
3018   case LibFunc_tanh:
3019     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3020       return optimizeUnaryDoubleFP(CI, Builder, true);
3021     return nullptr;
3022   case LibFunc_copysign:
3023     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3024       return optimizeBinaryDoubleFP(CI, Builder);
3025     return nullptr;
3026   case LibFunc_fminf:
3027   case LibFunc_fmin:
3028   case LibFunc_fminl:
3029   case LibFunc_fmaxf:
3030   case LibFunc_fmax:
3031   case LibFunc_fmaxl:
3032     return optimizeFMinFMax(CI, Builder);
3033   case LibFunc_cabs:
3034   case LibFunc_cabsf:
3035   case LibFunc_cabsl:
3036     return optimizeCAbs(CI, Builder);
3037   default:
3038     return nullptr;
3039   }
3040 }
3041 
3042 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
3043   // TODO: Split out the code below that operates on FP calls so that
3044   //       we can all non-FP calls with the StrictFP attribute to be
3045   //       optimized.
3046   if (CI->isNoBuiltin())
3047     return nullptr;
3048 
3049   LibFunc Func;
3050   Function *Callee = CI->getCalledFunction();
3051 
3052   SmallVector<OperandBundleDef, 2> OpBundles;
3053   CI->getOperandBundlesAsDefs(OpBundles);
3054   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3055   bool isCallingConvC = isCallingConvCCompatible(CI);
3056 
3057   // Command-line parameter overrides instruction attribute.
3058   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3059   // used by the intrinsic optimizations.
3060   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3061     UnsafeFPShrink = EnableUnsafeFPShrink;
3062   else if (isa<FPMathOperator>(CI) && CI->isFast())
3063     UnsafeFPShrink = true;
3064 
3065   // First, check for intrinsics.
3066   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3067     if (!isCallingConvC)
3068       return nullptr;
3069     // The FP intrinsics have corresponding constrained versions so we don't
3070     // need to check for the StrictFP attribute here.
3071     switch (II->getIntrinsicID()) {
3072     case Intrinsic::pow:
3073       return optimizePow(CI, Builder);
3074     case Intrinsic::exp2:
3075       return optimizeExp2(CI, Builder);
3076     case Intrinsic::log:
3077     case Intrinsic::log2:
3078     case Intrinsic::log10:
3079       return optimizeLog(CI, Builder);
3080     case Intrinsic::sqrt:
3081       return optimizeSqrt(CI, Builder);
3082     // TODO: Use foldMallocMemset() with memset intrinsic.
3083     case Intrinsic::memset:
3084       return optimizeMemSet(CI, Builder);
3085     case Intrinsic::memcpy:
3086       return optimizeMemCpy(CI, Builder);
3087     case Intrinsic::memmove:
3088       return optimizeMemMove(CI, Builder);
3089     default:
3090       return nullptr;
3091     }
3092   }
3093 
3094   // Also try to simplify calls to fortified library functions.
3095   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3096     // Try to further simplify the result.
3097     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3098     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3099       // Use an IR Builder from SimplifiedCI if available instead of CI
3100       // to guarantee we reach all uses we might replace later on.
3101       IRBuilder<> TmpBuilder(SimplifiedCI);
3102       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3103         // If we were able to further simplify, remove the now redundant call.
3104         substituteInParent(SimplifiedCI, V);
3105         return V;
3106       }
3107     }
3108     return SimplifiedFortifiedCI;
3109   }
3110 
3111   // Then check for known library functions.
3112   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3113     // We never change the calling convention.
3114     if (!ignoreCallingConv(Func) && !isCallingConvC)
3115       return nullptr;
3116     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3117       return V;
3118     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3119       return V;
3120     switch (Func) {
3121     case LibFunc_ffs:
3122     case LibFunc_ffsl:
3123     case LibFunc_ffsll:
3124       return optimizeFFS(CI, Builder);
3125     case LibFunc_fls:
3126     case LibFunc_flsl:
3127     case LibFunc_flsll:
3128       return optimizeFls(CI, Builder);
3129     case LibFunc_abs:
3130     case LibFunc_labs:
3131     case LibFunc_llabs:
3132       return optimizeAbs(CI, Builder);
3133     case LibFunc_isdigit:
3134       return optimizeIsDigit(CI, Builder);
3135     case LibFunc_isascii:
3136       return optimizeIsAscii(CI, Builder);
3137     case LibFunc_toascii:
3138       return optimizeToAscii(CI, Builder);
3139     case LibFunc_atoi:
3140     case LibFunc_atol:
3141     case LibFunc_atoll:
3142       return optimizeAtoi(CI, Builder);
3143     case LibFunc_strtol:
3144     case LibFunc_strtoll:
3145       return optimizeStrtol(CI, Builder);
3146     case LibFunc_printf:
3147       return optimizePrintF(CI, Builder);
3148     case LibFunc_sprintf:
3149       return optimizeSPrintF(CI, Builder);
3150     case LibFunc_snprintf:
3151       return optimizeSnPrintF(CI, Builder);
3152     case LibFunc_fprintf:
3153       return optimizeFPrintF(CI, Builder);
3154     case LibFunc_fwrite:
3155       return optimizeFWrite(CI, Builder);
3156     case LibFunc_fread:
3157       return optimizeFRead(CI, Builder);
3158     case LibFunc_fputs:
3159       return optimizeFPuts(CI, Builder);
3160     case LibFunc_fgets:
3161       return optimizeFGets(CI, Builder);
3162     case LibFunc_fputc:
3163       return optimizeFPutc(CI, Builder);
3164     case LibFunc_fgetc:
3165       return optimizeFGetc(CI, Builder);
3166     case LibFunc_puts:
3167       return optimizePuts(CI, Builder);
3168     case LibFunc_perror:
3169       return optimizeErrorReporting(CI, Builder);
3170     case LibFunc_vfprintf:
3171     case LibFunc_fiprintf:
3172       return optimizeErrorReporting(CI, Builder, 0);
3173     default:
3174       return nullptr;
3175     }
3176   }
3177   return nullptr;
3178 }
3179 
3180 LibCallSimplifier::LibCallSimplifier(
3181     const DataLayout &DL, const TargetLibraryInfo *TLI,
3182     OptimizationRemarkEmitter &ORE,
3183     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3184     function_ref<void(Instruction *, Value *)> Replacer,
3185     function_ref<void(Instruction *)> Eraser)
3186     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3187       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3188 
3189 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3190   // Indirect through the replacer used in this instance.
3191   Replacer(I, With);
3192 }
3193 
3194 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3195   Eraser(I);
3196 }
3197 
3198 // TODO:
3199 //   Additional cases that we need to add to this file:
3200 //
3201 // cbrt:
3202 //   * cbrt(expN(X))  -> expN(x/3)
3203 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3204 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3205 //
3206 // exp, expf, expl:
3207 //   * exp(log(x))  -> x
3208 //
3209 // log, logf, logl:
3210 //   * log(exp(x))   -> x
3211 //   * log(exp(y))   -> y*log(e)
3212 //   * log(exp10(y)) -> y*log(10)
3213 //   * log(sqrt(x))  -> 0.5*log(x)
3214 //
3215 // pow, powf, powl:
3216 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3217 //   * pow(pow(x,y),z)-> pow(x,y*z)
3218 //
3219 // signbit:
3220 //   * signbit(cnst) -> cnst'
3221 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3222 //
3223 // sqrt, sqrtf, sqrtl:
3224 //   * sqrt(expN(x))  -> expN(x*0.5)
3225 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3226 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3227 //
3228 
3229 //===----------------------------------------------------------------------===//
3230 // Fortified Library Call Optimizations
3231 //===----------------------------------------------------------------------===//
3232 
3233 bool
3234 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3235                                                     unsigned ObjSizeOp,
3236                                                     Optional<unsigned> SizeOp,
3237                                                     Optional<unsigned> StrOp,
3238                                                     Optional<unsigned> FlagOp) {
3239   // If this function takes a flag argument, the implementation may use it to
3240   // perform extra checks. Don't fold into the non-checking variant.
3241   if (FlagOp) {
3242     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3243     if (!Flag || !Flag->isZero())
3244       return false;
3245   }
3246 
3247   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3248     return true;
3249 
3250   if (ConstantInt *ObjSizeCI =
3251           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3252     if (ObjSizeCI->isMinusOne())
3253       return true;
3254     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3255     if (OnlyLowerUnknownSize)
3256       return false;
3257     if (StrOp) {
3258       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3259       // If the length is 0 we don't know how long it is and so we can't
3260       // remove the check.
3261       if (Len)
3262         annotateDereferenceableBytes(CI, *StrOp, Len);
3263       else
3264         return false;
3265       return ObjSizeCI->getZExtValue() >= Len;
3266     }
3267 
3268     if (SizeOp) {
3269       if (ConstantInt *SizeCI =
3270               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3271         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3272     }
3273   }
3274   return false;
3275 }
3276 
3277 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3278                                                      IRBuilder<> &B) {
3279   if (isFortifiedCallFoldable(CI, 3, 2)) {
3280     CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
3281                                      CI->getArgOperand(1), Align::None(),
3282                                      CI->getArgOperand(2));
3283     NewCI->setAttributes(CI->getAttributes());
3284     return CI->getArgOperand(0);
3285   }
3286   return nullptr;
3287 }
3288 
3289 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3290                                                       IRBuilder<> &B) {
3291   if (isFortifiedCallFoldable(CI, 3, 2)) {
3292     CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
3293                                       CI->getArgOperand(1), Align::None(),
3294                                       CI->getArgOperand(2));
3295     NewCI->setAttributes(CI->getAttributes());
3296     return CI->getArgOperand(0);
3297   }
3298   return nullptr;
3299 }
3300 
3301 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3302                                                      IRBuilder<> &B) {
3303   // TODO: Try foldMallocMemset() here.
3304 
3305   if (isFortifiedCallFoldable(CI, 3, 2)) {
3306     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3307     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3308                                      CI->getArgOperand(2), Align::None());
3309     NewCI->setAttributes(CI->getAttributes());
3310     return CI->getArgOperand(0);
3311   }
3312   return nullptr;
3313 }
3314 
3315 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3316                                                       IRBuilder<> &B,
3317                                                       LibFunc Func) {
3318   const DataLayout &DL = CI->getModule()->getDataLayout();
3319   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3320         *ObjSize = CI->getArgOperand(2);
3321 
3322   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3323   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3324     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3325     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3326   }
3327 
3328   // If a) we don't have any length information, or b) we know this will
3329   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3330   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3331   // TODO: It might be nice to get a maximum length out of the possible
3332   // string lengths for varying.
3333   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3334     if (Func == LibFunc_strcpy_chk)
3335       return emitStrCpy(Dst, Src, B, TLI);
3336     else
3337       return emitStpCpy(Dst, Src, B, TLI);
3338   }
3339 
3340   if (OnlyLowerUnknownSize)
3341     return nullptr;
3342 
3343   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3344   uint64_t Len = GetStringLength(Src);
3345   if (Len)
3346     annotateDereferenceableBytes(CI, 1, Len);
3347   else
3348     return nullptr;
3349 
3350   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3351   Value *LenV = ConstantInt::get(SizeTTy, Len);
3352   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3353   // If the function was an __stpcpy_chk, and we were able to fold it into
3354   // a __memcpy_chk, we still need to return the correct end pointer.
3355   if (Ret && Func == LibFunc_stpcpy_chk)
3356     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3357   return Ret;
3358 }
3359 
3360 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3361                                                        IRBuilder<> &B,
3362                                                        LibFunc Func) {
3363   if (isFortifiedCallFoldable(CI, 3, 2)) {
3364     if (Func == LibFunc_strncpy_chk)
3365       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3366                                CI->getArgOperand(2), B, TLI);
3367     else
3368       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3369                          CI->getArgOperand(2), B, TLI);
3370   }
3371 
3372   return nullptr;
3373 }
3374 
3375 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3376                                                       IRBuilder<> &B) {
3377   if (isFortifiedCallFoldable(CI, 4, 3))
3378     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3379                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3380 
3381   return nullptr;
3382 }
3383 
3384 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3385                                                        IRBuilder<> &B) {
3386   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3387     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3388     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3389                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3390   }
3391 
3392   return nullptr;
3393 }
3394 
3395 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3396                                                       IRBuilder<> &B) {
3397   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3398     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3399     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3400                        B, TLI);
3401   }
3402 
3403   return nullptr;
3404 }
3405 
3406 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3407                                                      IRBuilder<> &B) {
3408   if (isFortifiedCallFoldable(CI, 2))
3409     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3410 
3411   return nullptr;
3412 }
3413 
3414 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3415                                                    IRBuilder<> &B) {
3416   if (isFortifiedCallFoldable(CI, 3))
3417     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3418                        CI->getArgOperand(2), B, TLI);
3419 
3420   return nullptr;
3421 }
3422 
3423 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3424                                                       IRBuilder<> &B) {
3425   if (isFortifiedCallFoldable(CI, 3))
3426     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3427                        CI->getArgOperand(2), B, TLI);
3428 
3429   return nullptr;
3430 }
3431 
3432 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3433                                                       IRBuilder<> &B) {
3434   if (isFortifiedCallFoldable(CI, 3))
3435     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3436                        CI->getArgOperand(2), B, TLI);
3437 
3438   return nullptr;
3439 }
3440 
3441 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3442                                                         IRBuilder<> &B) {
3443   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3444     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3445                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3446 
3447   return nullptr;
3448 }
3449 
3450 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3451                                                        IRBuilder<> &B) {
3452   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3453     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3454                         CI->getArgOperand(4), B, TLI);
3455 
3456   return nullptr;
3457 }
3458 
3459 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3460   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3461   // Some clang users checked for _chk libcall availability using:
3462   //   __has_builtin(__builtin___memcpy_chk)
3463   // When compiling with -fno-builtin, this is always true.
3464   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3465   // end up with fortified libcalls, which isn't acceptable in a freestanding
3466   // environment which only provides their non-fortified counterparts.
3467   //
3468   // Until we change clang and/or teach external users to check for availability
3469   // differently, disregard the "nobuiltin" attribute and TLI::has.
3470   //
3471   // PR23093.
3472 
3473   LibFunc Func;
3474   Function *Callee = CI->getCalledFunction();
3475 
3476   SmallVector<OperandBundleDef, 2> OpBundles;
3477   CI->getOperandBundlesAsDefs(OpBundles);
3478   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3479   bool isCallingConvC = isCallingConvCCompatible(CI);
3480 
3481   // First, check that this is a known library functions and that the prototype
3482   // is correct.
3483   if (!TLI->getLibFunc(*Callee, Func))
3484     return nullptr;
3485 
3486   // We never change the calling convention.
3487   if (!ignoreCallingConv(Func) && !isCallingConvC)
3488     return nullptr;
3489 
3490   switch (Func) {
3491   case LibFunc_memcpy_chk:
3492     return optimizeMemCpyChk(CI, Builder);
3493   case LibFunc_memmove_chk:
3494     return optimizeMemMoveChk(CI, Builder);
3495   case LibFunc_memset_chk:
3496     return optimizeMemSetChk(CI, Builder);
3497   case LibFunc_stpcpy_chk:
3498   case LibFunc_strcpy_chk:
3499     return optimizeStrpCpyChk(CI, Builder, Func);
3500   case LibFunc_stpncpy_chk:
3501   case LibFunc_strncpy_chk:
3502     return optimizeStrpNCpyChk(CI, Builder, Func);
3503   case LibFunc_memccpy_chk:
3504     return optimizeMemCCpyChk(CI, Builder);
3505   case LibFunc_snprintf_chk:
3506     return optimizeSNPrintfChk(CI, Builder);
3507   case LibFunc_sprintf_chk:
3508     return optimizeSPrintfChk(CI, Builder);
3509   case LibFunc_strcat_chk:
3510     return optimizeStrCatChk(CI, Builder);
3511   case LibFunc_strlcat_chk:
3512     return optimizeStrLCat(CI, Builder);
3513   case LibFunc_strncat_chk:
3514     return optimizeStrNCatChk(CI, Builder);
3515   case LibFunc_strlcpy_chk:
3516     return optimizeStrLCpyChk(CI, Builder);
3517   case LibFunc_vsnprintf_chk:
3518     return optimizeVSNPrintfChk(CI, Builder);
3519   case LibFunc_vsprintf_chk:
3520     return optimizeVSPrintfChk(CI, Builder);
3521   default:
3522     break;
3523   }
3524   return nullptr;
3525 }
3526 
3527 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3528     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3529     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3530