1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 //===----------------------------------------------------------------------===//
205 // String and Memory Library Call Optimizations
206 //===----------------------------------------------------------------------===//
207 
208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
209   // Extract some information from the instruction
210   Value *Dst = CI->getArgOperand(0);
211   Value *Src = CI->getArgOperand(1);
212   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
213 
214   // See if we can get the length of the input string.
215   uint64_t Len = GetStringLength(Src);
216   if (Len)
217     annotateDereferenceableBytes(CI, 1, Len);
218   else
219     return nullptr;
220   --Len; // Unbias length.
221 
222   // Handle the simple, do-nothing case: strcat(x, "") -> x
223   if (Len == 0)
224     return Dst;
225 
226   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
227 }
228 
229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
230                                            IRBuilderBase &B) {
231   // We need to find the end of the destination string.  That's where the
232   // memory is to be moved to. We just generate a call to strlen.
233   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
234   if (!DstLen)
235     return nullptr;
236 
237   // Now that we have the destination's length, we must index into the
238   // destination's pointer to get the actual memcpy destination (end of
239   // the string .. we're concatenating).
240   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
241 
242   // We have enough information to now generate the memcpy call to do the
243   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
244   B.CreateMemCpy(
245       CpyDst, Align(1), Src, Align(1),
246       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
247   return Dst;
248 }
249 
250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
251   // Extract some information from the instruction.
252   Value *Dst = CI->getArgOperand(0);
253   Value *Src = CI->getArgOperand(1);
254   Value *Size = CI->getArgOperand(2);
255   uint64_t Len;
256   annotateNonNullNoUndefBasedOnAccess(CI, 0);
257   if (isKnownNonZero(Size, DL))
258     annotateNonNullNoUndefBasedOnAccess(CI, 1);
259 
260   // We don't do anything if length is not constant.
261   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
262   if (LengthArg) {
263     Len = LengthArg->getZExtValue();
264     // strncat(x, c, 0) -> x
265     if (!Len)
266       return Dst;
267   } else {
268     return nullptr;
269   }
270 
271   // See if we can get the length of the input string.
272   uint64_t SrcLen = GetStringLength(Src);
273   if (SrcLen) {
274     annotateDereferenceableBytes(CI, 1, SrcLen);
275     --SrcLen; // Unbias length.
276   } else {
277     return nullptr;
278   }
279 
280   // strncat(x, "", c) -> x
281   if (SrcLen == 0)
282     return Dst;
283 
284   // We don't optimize this case.
285   if (Len < SrcLen)
286     return nullptr;
287 
288   // strncat(x, s, c) -> strcat(x, s)
289   // s is constant so the strcat can be optimized further.
290   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
291 }
292 
293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
294   Function *Callee = CI->getCalledFunction();
295   FunctionType *FT = Callee->getFunctionType();
296   Value *SrcStr = CI->getArgOperand(0);
297   annotateNonNullNoUndefBasedOnAccess(CI, 0);
298 
299   // If the second operand is non-constant, see if we can compute the length
300   // of the input string and turn this into memchr.
301   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
302   if (!CharC) {
303     uint64_t Len = GetStringLength(SrcStr);
304     if (Len)
305       annotateDereferenceableBytes(CI, 0, Len);
306     else
307       return nullptr;
308     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
309       return nullptr;
310 
311     return copyFlags(
312         *CI,
313         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
314                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
315                    DL, TLI));
316   }
317 
318   // Otherwise, the character is a constant, see if the first argument is
319   // a string literal.  If so, we can constant fold.
320   StringRef Str;
321   if (!getConstantStringInfo(SrcStr, Str)) {
322     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
323       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
324         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
325     return nullptr;
326   }
327 
328   // Compute the offset, make sure to handle the case when we're searching for
329   // zero (a weird way to spell strlen).
330   size_t I = (0xFF & CharC->getSExtValue()) == 0
331                  ? Str.size()
332                  : Str.find(CharC->getSExtValue());
333   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
334     return Constant::getNullValue(CI->getType());
335 
336   // strchr(s+n,c)  -> gep(s+n+i,c)
337   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
338 }
339 
340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
341   Value *SrcStr = CI->getArgOperand(0);
342   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
343   annotateNonNullNoUndefBasedOnAccess(CI, 0);
344 
345   // Cannot fold anything if we're not looking for a constant.
346   if (!CharC)
347     return nullptr;
348 
349   StringRef Str;
350   if (!getConstantStringInfo(SrcStr, Str)) {
351     // strrchr(s, 0) -> strchr(s, 0)
352     if (CharC->isZero())
353       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
354     return nullptr;
355   }
356 
357   // Compute the offset.
358   size_t I = (0xFF & CharC->getSExtValue()) == 0
359                  ? Str.size()
360                  : Str.rfind(CharC->getSExtValue());
361   if (I == StringRef::npos) // Didn't find the char. Return null.
362     return Constant::getNullValue(CI->getType());
363 
364   // strrchr(s+n,c) -> gep(s+n+i,c)
365   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
366 }
367 
368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
369   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
370   if (Str1P == Str2P) // strcmp(x,x)  -> 0
371     return ConstantInt::get(CI->getType(), 0);
372 
373   StringRef Str1, Str2;
374   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
375   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
376 
377   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
378   if (HasStr1 && HasStr2)
379     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
380 
381   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
382     return B.CreateNeg(B.CreateZExt(
383         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
384 
385   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
386     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
387                         CI->getType());
388 
389   // strcmp(P, "x") -> memcmp(P, "x", 2)
390   uint64_t Len1 = GetStringLength(Str1P);
391   if (Len1)
392     annotateDereferenceableBytes(CI, 0, Len1);
393   uint64_t Len2 = GetStringLength(Str2P);
394   if (Len2)
395     annotateDereferenceableBytes(CI, 1, Len2);
396 
397   if (Len1 && Len2) {
398     return copyFlags(
399         *CI, emitMemCmp(Str1P, Str2P,
400                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
401                                          std::min(Len1, Len2)),
402                         B, DL, TLI));
403   }
404 
405   // strcmp to memcmp
406   if (!HasStr1 && HasStr2) {
407     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
408       return copyFlags(
409           *CI,
410           emitMemCmp(Str1P, Str2P,
411                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
412                      B, DL, TLI));
413   } else if (HasStr1 && !HasStr2) {
414     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
415       return copyFlags(
416           *CI,
417           emitMemCmp(Str1P, Str2P,
418                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
419                      B, DL, TLI));
420   }
421 
422   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
423   return nullptr;
424 }
425 
426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
427   Value *Str1P = CI->getArgOperand(0);
428   Value *Str2P = CI->getArgOperand(1);
429   Value *Size = CI->getArgOperand(2);
430   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
431     return ConstantInt::get(CI->getType(), 0);
432 
433   if (isKnownNonZero(Size, DL))
434     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
435   // Get the length argument if it is constant.
436   uint64_t Length;
437   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
438     Length = LengthArg->getZExtValue();
439   else
440     return nullptr;
441 
442   if (Length == 0) // strncmp(x,y,0)   -> 0
443     return ConstantInt::get(CI->getType(), 0);
444 
445   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
446     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
447 
448   StringRef Str1, Str2;
449   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
450   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
451 
452   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
453   if (HasStr1 && HasStr2) {
454     StringRef SubStr1 = Str1.substr(0, Length);
455     StringRef SubStr2 = Str2.substr(0, Length);
456     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
457   }
458 
459   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
460     return B.CreateNeg(B.CreateZExt(
461         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
462 
463   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
464     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
465                         CI->getType());
466 
467   uint64_t Len1 = GetStringLength(Str1P);
468   if (Len1)
469     annotateDereferenceableBytes(CI, 0, Len1);
470   uint64_t Len2 = GetStringLength(Str2P);
471   if (Len2)
472     annotateDereferenceableBytes(CI, 1, Len2);
473 
474   // strncmp to memcmp
475   if (!HasStr1 && HasStr2) {
476     Len2 = std::min(Len2, Length);
477     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
478       return copyFlags(
479           *CI,
480           emitMemCmp(Str1P, Str2P,
481                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
482                      B, DL, TLI));
483   } else if (HasStr1 && !HasStr2) {
484     Len1 = std::min(Len1, Length);
485     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
486       return copyFlags(
487           *CI,
488           emitMemCmp(Str1P, Str2P,
489                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
490                      B, DL, TLI));
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
497   Value *Src = CI->getArgOperand(0);
498   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
499   uint64_t SrcLen = GetStringLength(Src);
500   if (SrcLen && Size) {
501     annotateDereferenceableBytes(CI, 0, SrcLen);
502     if (SrcLen <= Size->getZExtValue() + 1)
503       return copyFlags(*CI, emitStrDup(Src, B, TLI));
504   }
505 
506   return nullptr;
507 }
508 
509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
510   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
511   if (Dst == Src) // strcpy(x,x)  -> x
512     return Src;
513 
514   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
515   // See if we can get the length of the input string.
516   uint64_t Len = GetStringLength(Src);
517   if (Len)
518     annotateDereferenceableBytes(CI, 1, Len);
519   else
520     return nullptr;
521 
522   // We have enough information to now generate the memcpy call to do the
523   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
524   CallInst *NewCI =
525       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
526                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
527   NewCI->setAttributes(CI->getAttributes());
528   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
529   copyFlags(*CI, NewCI);
530   return Dst;
531 }
532 
533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
534   Function *Callee = CI->getCalledFunction();
535   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
536 
537   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
538   if (CI->use_empty())
539     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
540 
541   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
542     Value *StrLen = emitStrLen(Src, B, DL, TLI);
543     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
544   }
545 
546   // See if we can get the length of the input string.
547   uint64_t Len = GetStringLength(Src);
548   if (Len)
549     annotateDereferenceableBytes(CI, 1, Len);
550   else
551     return nullptr;
552 
553   Type *PT = Callee->getFunctionType()->getParamType(0);
554   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
555   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
556                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
557 
558   // We have enough information to now generate the memcpy call to do the
559   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
560   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
561   NewCI->setAttributes(CI->getAttributes());
562   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
563   copyFlags(*CI, NewCI);
564   return DstEnd;
565 }
566 
567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
568   Function *Callee = CI->getCalledFunction();
569   Value *Dst = CI->getArgOperand(0);
570   Value *Src = CI->getArgOperand(1);
571   Value *Size = CI->getArgOperand(2);
572   annotateNonNullNoUndefBasedOnAccess(CI, 0);
573   if (isKnownNonZero(Size, DL))
574     annotateNonNullNoUndefBasedOnAccess(CI, 1);
575 
576   uint64_t Len;
577   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
578     Len = LengthArg->getZExtValue();
579   else
580     return nullptr;
581 
582   // strncpy(x, y, 0) -> x
583   if (Len == 0)
584     return Dst;
585 
586   // See if we can get the length of the input string.
587   uint64_t SrcLen = GetStringLength(Src);
588   if (SrcLen) {
589     annotateDereferenceableBytes(CI, 1, SrcLen);
590     --SrcLen; // Unbias length.
591   } else {
592     return nullptr;
593   }
594 
595   if (SrcLen == 0) {
596     // strncpy(x, "", y) -> memset(x, '\0', y)
597     Align MemSetAlign =
598         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
599     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
600     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
601     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
602         CI->getContext(), 0, ArgAttrs));
603     copyFlags(*CI, NewCI);
604     return Dst;
605   }
606 
607   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
608   if (Len > SrcLen + 1) {
609     if (Len <= 128) {
610       StringRef Str;
611       if (!getConstantStringInfo(Src, Str))
612         return nullptr;
613       std::string SrcStr = Str.str();
614       SrcStr.resize(Len, '\0');
615       Src = B.CreateGlobalString(SrcStr, "str");
616     } else {
617       return nullptr;
618     }
619   }
620 
621   Type *PT = Callee->getFunctionType()->getParamType(0);
622   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
623   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
624                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
625   NewCI->setAttributes(CI->getAttributes());
626   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
627   copyFlags(*CI, NewCI);
628   return Dst;
629 }
630 
631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
632                                                unsigned CharSize,
633                                                Value *Bound) {
634   Value *Src = CI->getArgOperand(0);
635 
636   if (Bound) {
637     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
638       if (BoundCst->isZero())
639         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
640         return ConstantInt::get(CI->getType(), 0);
641 
642       if (BoundCst->isOne()) {
643         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
644         Type *CharTy = B.getIntNTy(CharSize);
645         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
646         Value *ZeroChar = ConstantInt::get(CharTy, 0);
647         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
648         return B.CreateZExt(Cmp, CI->getType());
649       }
650     }
651     // Otherwise punt for strnlen for now.
652     return nullptr;
653   }
654 
655   // Constant folding: strlen("xyz") -> 3
656   if (uint64_t Len = GetStringLength(Src, CharSize))
657     return ConstantInt::get(CI->getType(), Len - 1);
658 
659   // If s is a constant pointer pointing to a string literal, we can fold
660   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
661   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
662   // We only try to simplify strlen when the pointer s points to an array
663   // of i8. Otherwise, we would need to scale the offset x before doing the
664   // subtraction. This will make the optimization more complex, and it's not
665   // very useful because calling strlen for a pointer of other types is
666   // very uncommon.
667   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
668     if (!isGEPBasedOnPointerToString(GEP, CharSize))
669       return nullptr;
670 
671     ConstantDataArraySlice Slice;
672     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
673       uint64_t NullTermIdx;
674       if (Slice.Array == nullptr) {
675         NullTermIdx = 0;
676       } else {
677         NullTermIdx = ~((uint64_t)0);
678         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
679           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
680             NullTermIdx = I;
681             break;
682           }
683         }
684         // If the string does not have '\0', leave it to strlen to compute
685         // its length.
686         if (NullTermIdx == ~((uint64_t)0))
687           return nullptr;
688       }
689 
690       Value *Offset = GEP->getOperand(2);
691       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
692       uint64_t ArrSize =
693              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
694 
695       // If Offset is not provably in the range [0, NullTermIdx], we can still
696       // optimize if we can prove that the program has undefined behavior when
697       // Offset is outside that range. That is the case when GEP->getOperand(0)
698       // is a pointer to an object whose memory extent is NullTermIdx+1.
699       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
700           (isa<GlobalVariable>(GEP->getOperand(0)) &&
701            NullTermIdx == ArrSize - 1)) {
702         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
703         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
704                            Offset);
705       }
706     }
707   }
708 
709   // strlen(x?"foo":"bars") --> x ? 3 : 4
710   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
711     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
712     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
713     if (LenTrue && LenFalse) {
714       ORE.emit([&]() {
715         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
716                << "folded strlen(select) to select of constants";
717       });
718       return B.CreateSelect(SI->getCondition(),
719                             ConstantInt::get(CI->getType(), LenTrue - 1),
720                             ConstantInt::get(CI->getType(), LenFalse - 1));
721     }
722   }
723 
724   // strlen(x) != 0 --> *x != 0
725   // strlen(x) == 0 --> *x == 0
726   if (isOnlyUsedInZeroEqualityComparison(CI))
727     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
728                         CI->getType());
729 
730   return nullptr;
731 }
732 
733 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
734   if (Value *V = optimizeStringLength(CI, B, 8))
735     return V;
736   annotateNonNullNoUndefBasedOnAccess(CI, 0);
737   return nullptr;
738 }
739 
740 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
741   Value *Bound = CI->getArgOperand(1);
742   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
743     return V;
744 
745   if (isKnownNonZero(Bound, DL))
746     annotateNonNullNoUndefBasedOnAccess(CI, 0);
747   return nullptr;
748 }
749 
750 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
751   Module &M = *CI->getModule();
752   unsigned WCharSize = TLI->getWCharSize(M) * 8;
753   // We cannot perform this optimization without wchar_size metadata.
754   if (WCharSize == 0)
755     return nullptr;
756 
757   return optimizeStringLength(CI, B, WCharSize);
758 }
759 
760 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
761   StringRef S1, S2;
762   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
763   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
764 
765   // strpbrk(s, "") -> nullptr
766   // strpbrk("", s) -> nullptr
767   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
768     return Constant::getNullValue(CI->getType());
769 
770   // Constant folding.
771   if (HasS1 && HasS2) {
772     size_t I = S1.find_first_of(S2);
773     if (I == StringRef::npos) // No match.
774       return Constant::getNullValue(CI->getType());
775 
776     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
777                        "strpbrk");
778   }
779 
780   // strpbrk(s, "a") -> strchr(s, 'a')
781   if (HasS2 && S2.size() == 1)
782     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
783 
784   return nullptr;
785 }
786 
787 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
788   Value *EndPtr = CI->getArgOperand(1);
789   if (isa<ConstantPointerNull>(EndPtr)) {
790     // With a null EndPtr, this function won't capture the main argument.
791     // It would be readonly too, except that it still may write to errno.
792     CI->addParamAttr(0, Attribute::NoCapture);
793   }
794 
795   return nullptr;
796 }
797 
798 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
799   StringRef S1, S2;
800   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
801   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
802 
803   // strspn(s, "") -> 0
804   // strspn("", s) -> 0
805   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
806     return Constant::getNullValue(CI->getType());
807 
808   // Constant folding.
809   if (HasS1 && HasS2) {
810     size_t Pos = S1.find_first_not_of(S2);
811     if (Pos == StringRef::npos)
812       Pos = S1.size();
813     return ConstantInt::get(CI->getType(), Pos);
814   }
815 
816   return nullptr;
817 }
818 
819 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
820   StringRef S1, S2;
821   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
822   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
823 
824   // strcspn("", s) -> 0
825   if (HasS1 && S1.empty())
826     return Constant::getNullValue(CI->getType());
827 
828   // Constant folding.
829   if (HasS1 && HasS2) {
830     size_t Pos = S1.find_first_of(S2);
831     if (Pos == StringRef::npos)
832       Pos = S1.size();
833     return ConstantInt::get(CI->getType(), Pos);
834   }
835 
836   // strcspn(s, "") -> strlen(s)
837   if (HasS2 && S2.empty())
838     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
839 
840   return nullptr;
841 }
842 
843 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
844   // fold strstr(x, x) -> x.
845   if (CI->getArgOperand(0) == CI->getArgOperand(1))
846     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
847 
848   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
849   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
850     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
851     if (!StrLen)
852       return nullptr;
853     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
854                                  StrLen, B, DL, TLI);
855     if (!StrNCmp)
856       return nullptr;
857     for (User *U : llvm::make_early_inc_range(CI->users())) {
858       ICmpInst *Old = cast<ICmpInst>(U);
859       Value *Cmp =
860           B.CreateICmp(Old->getPredicate(), StrNCmp,
861                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
862       replaceAllUsesWith(Old, Cmp);
863     }
864     return CI;
865   }
866 
867   // See if either input string is a constant string.
868   StringRef SearchStr, ToFindStr;
869   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
870   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
871 
872   // fold strstr(x, "") -> x.
873   if (HasStr2 && ToFindStr.empty())
874     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
875 
876   // If both strings are known, constant fold it.
877   if (HasStr1 && HasStr2) {
878     size_t Offset = SearchStr.find(ToFindStr);
879 
880     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
881       return Constant::getNullValue(CI->getType());
882 
883     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
884     Value *Result = castToCStr(CI->getArgOperand(0), B);
885     Result =
886         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
887     return B.CreateBitCast(Result, CI->getType());
888   }
889 
890   // fold strstr(x, "y") -> strchr(x, 'y').
891   if (HasStr2 && ToFindStr.size() == 1) {
892     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
893     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
894   }
895 
896   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
897   return nullptr;
898 }
899 
900 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
901   if (isKnownNonZero(CI->getOperand(2), DL))
902     annotateNonNullNoUndefBasedOnAccess(CI, 0);
903   return nullptr;
904 }
905 
906 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
907   Value *SrcStr = CI->getArgOperand(0);
908   Value *Size = CI->getArgOperand(2);
909   if (isKnownNonZero(Size, DL))
910     annotateNonNullNoUndefBasedOnAccess(CI, 0);
911 
912   Value *CharVal = CI->getArgOperand(1);
913   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
914   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
915 
916   // memchr(x, y, 0) -> null
917   if (LenC) {
918     if (LenC->isZero())
919       return Constant::getNullValue(CI->getType());
920 
921     if (LenC->isOne()) {
922       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
923       // constant or otherwise.
924       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
925       // Slice off the character's high end bits.
926       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
927       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
928       Value *NullPtr = Constant::getNullValue(CI->getType());
929       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
930     }
931   }
932 
933   StringRef Str;
934   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
935     return nullptr;
936 
937   if (CharC) {
938     size_t Pos = Str.find(CharC->getZExtValue());
939     if (Pos == StringRef::npos)
940       // When the character is not in the source array fold the result
941       // to null regardless of Size.
942       return Constant::getNullValue(CI->getType());
943 
944     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
945     // When the constant Size is less than or equal to the character
946     // position also fold the result to null.
947     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
948                                  "memchr.cmp");
949     Value *NullPtr = Constant::getNullValue(CI->getType());
950     Value *SrcPlus =
951         B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr");
952     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
953   }
954 
955   if (!LenC)
956     // From now on we need a constant length and constant array.
957     return nullptr;
958 
959   // Truncate the string to LenC.
960   Str = Str.substr(0, LenC->getZExtValue());
961 
962   // If the char is variable but the input str and length are not we can turn
963   // this memchr call into a simple bit field test. Of course this only works
964   // when the return value is only checked against null.
965   //
966   // It would be really nice to reuse switch lowering here but we can't change
967   // the CFG at this point.
968   //
969   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
970   // != 0
971   //   after bounds check.
972   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
973     return nullptr;
974 
975   unsigned char Max =
976       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
977                         reinterpret_cast<const unsigned char *>(Str.end()));
978 
979   // Make sure the bit field we're about to create fits in a register on the
980   // target.
981   // FIXME: On a 64 bit architecture this prevents us from using the
982   // interesting range of alpha ascii chars. We could do better by emitting
983   // two bitfields or shifting the range by 64 if no lower chars are used.
984   if (!DL.fitsInLegalInteger(Max + 1))
985     return nullptr;
986 
987   // For the bit field use a power-of-2 type with at least 8 bits to avoid
988   // creating unnecessary illegal types.
989   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
990 
991   // Now build the bit field.
992   APInt Bitfield(Width, 0);
993   for (char C : Str)
994     Bitfield.setBit((unsigned char)C);
995   Value *BitfieldC = B.getInt(Bitfield);
996 
997   // Adjust width of "C" to the bitfield width, then mask off the high bits.
998   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
999   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1000 
1001   // First check that the bit field access is within bounds.
1002   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1003                                "memchr.bounds");
1004 
1005   // Create code that checks if the given bit is set in the field.
1006   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1007   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1008 
1009   // Finally merge both checks and cast to pointer type. The inttoptr
1010   // implicitly zexts the i1 to intptr type.
1011   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1012                           CI->getType());
1013 }
1014 
1015 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1016                                          uint64_t Len, IRBuilderBase &B,
1017                                          const DataLayout &DL) {
1018   if (Len == 0) // memcmp(s1,s2,0) -> 0
1019     return Constant::getNullValue(CI->getType());
1020 
1021   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1022   if (Len == 1) {
1023     Value *LHSV =
1024         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1025                      CI->getType(), "lhsv");
1026     Value *RHSV =
1027         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1028                      CI->getType(), "rhsv");
1029     return B.CreateSub(LHSV, RHSV, "chardiff");
1030   }
1031 
1032   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1033   // TODO: The case where both inputs are constants does not need to be limited
1034   // to legal integers or equality comparison. See block below this.
1035   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1036     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1037     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1038 
1039     // First, see if we can fold either argument to a constant.
1040     Value *LHSV = nullptr;
1041     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1042       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1043       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1044     }
1045     Value *RHSV = nullptr;
1046     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1047       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1048       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1049     }
1050 
1051     // Don't generate unaligned loads. If either source is constant data,
1052     // alignment doesn't matter for that source because there is no load.
1053     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1054         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1055       if (!LHSV) {
1056         Type *LHSPtrTy =
1057             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1058         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1059       }
1060       if (!RHSV) {
1061         Type *RHSPtrTy =
1062             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1063         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1064       }
1065       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1066     }
1067   }
1068 
1069   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1070   // TODO: This is limited to i8 arrays.
1071   StringRef LHSStr, RHSStr;
1072   if (getConstantStringInfo(LHS, LHSStr) &&
1073       getConstantStringInfo(RHS, RHSStr)) {
1074     // Make sure we're not reading out-of-bounds memory.
1075     if (Len > LHSStr.size() || Len > RHSStr.size())
1076       return nullptr;
1077     // Fold the memcmp and normalize the result.  This way we get consistent
1078     // results across multiple platforms.
1079     uint64_t Ret = 0;
1080     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1081     if (Cmp < 0)
1082       Ret = -1;
1083     else if (Cmp > 0)
1084       Ret = 1;
1085     return ConstantInt::get(CI->getType(), Ret);
1086   }
1087 
1088   return nullptr;
1089 }
1090 
1091 // Most simplifications for memcmp also apply to bcmp.
1092 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1093                                                    IRBuilderBase &B) {
1094   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1095   Value *Size = CI->getArgOperand(2);
1096 
1097   if (LHS == RHS) // memcmp(s,s,x) -> 0
1098     return Constant::getNullValue(CI->getType());
1099 
1100   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1101   // Handle constant lengths.
1102   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1103   if (!LenC)
1104     return nullptr;
1105 
1106   // memcmp(d,s,0) -> 0
1107   if (LenC->getZExtValue() == 0)
1108     return Constant::getNullValue(CI->getType());
1109 
1110   if (Value *Res =
1111           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1112     return Res;
1113   return nullptr;
1114 }
1115 
1116 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1117   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1118     return V;
1119 
1120   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1121   // bcmp can be more efficient than memcmp because it only has to know that
1122   // there is a difference, not how different one is to the other.
1123   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1124     Value *LHS = CI->getArgOperand(0);
1125     Value *RHS = CI->getArgOperand(1);
1126     Value *Size = CI->getArgOperand(2);
1127     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1128   }
1129 
1130   return nullptr;
1131 }
1132 
1133 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1134   return optimizeMemCmpBCmpCommon(CI, B);
1135 }
1136 
1137 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1138   Value *Size = CI->getArgOperand(2);
1139   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1140   if (isa<IntrinsicInst>(CI))
1141     return nullptr;
1142 
1143   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1144   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1145                                    CI->getArgOperand(1), Align(1), Size);
1146   NewCI->setAttributes(CI->getAttributes());
1147   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1148   copyFlags(*CI, NewCI);
1149   return CI->getArgOperand(0);
1150 }
1151 
1152 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1153   Value *Dst = CI->getArgOperand(0);
1154   Value *Src = CI->getArgOperand(1);
1155   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1156   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1157   StringRef SrcStr;
1158   if (CI->use_empty() && Dst == Src)
1159     return Dst;
1160   // memccpy(d, s, c, 0) -> nullptr
1161   if (N) {
1162     if (N->isNullValue())
1163       return Constant::getNullValue(CI->getType());
1164     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1165                                /*TrimAtNul=*/false) ||
1166         !StopChar)
1167       return nullptr;
1168   } else {
1169     return nullptr;
1170   }
1171 
1172   // Wrap arg 'c' of type int to char
1173   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1174   if (Pos == StringRef::npos) {
1175     if (N->getZExtValue() <= SrcStr.size()) {
1176       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1177                                     CI->getArgOperand(3)));
1178       return Constant::getNullValue(CI->getType());
1179     }
1180     return nullptr;
1181   }
1182 
1183   Value *NewN =
1184       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1185   // memccpy -> llvm.memcpy
1186   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1187   return Pos + 1 <= N->getZExtValue()
1188              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1189              : Constant::getNullValue(CI->getType());
1190 }
1191 
1192 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1193   Value *Dst = CI->getArgOperand(0);
1194   Value *N = CI->getArgOperand(2);
1195   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1196   CallInst *NewCI =
1197       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1198   // Propagate attributes, but memcpy has no return value, so make sure that
1199   // any return attributes are compliant.
1200   // TODO: Attach return value attributes to the 1st operand to preserve them?
1201   NewCI->setAttributes(CI->getAttributes());
1202   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1203   copyFlags(*CI, NewCI);
1204   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1205 }
1206 
1207 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1208   Value *Size = CI->getArgOperand(2);
1209   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1210   if (isa<IntrinsicInst>(CI))
1211     return nullptr;
1212 
1213   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1214   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1215                                     CI->getArgOperand(1), Align(1), Size);
1216   NewCI->setAttributes(CI->getAttributes());
1217   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1218   copyFlags(*CI, NewCI);
1219   return CI->getArgOperand(0);
1220 }
1221 
1222 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1223   Value *Size = CI->getArgOperand(2);
1224   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1225   if (isa<IntrinsicInst>(CI))
1226     return nullptr;
1227 
1228   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1229   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1230   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1231   NewCI->setAttributes(CI->getAttributes());
1232   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1233   copyFlags(*CI, NewCI);
1234   return CI->getArgOperand(0);
1235 }
1236 
1237 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1238   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1239     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1240 
1241   return nullptr;
1242 }
1243 
1244 //===----------------------------------------------------------------------===//
1245 // Math Library Optimizations
1246 //===----------------------------------------------------------------------===//
1247 
1248 // Replace a libcall \p CI with a call to intrinsic \p IID
1249 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1250                                Intrinsic::ID IID) {
1251   // Propagate fast-math flags from the existing call to the new call.
1252   IRBuilderBase::FastMathFlagGuard Guard(B);
1253   B.setFastMathFlags(CI->getFastMathFlags());
1254 
1255   Module *M = CI->getModule();
1256   Value *V = CI->getArgOperand(0);
1257   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1258   CallInst *NewCall = B.CreateCall(F, V);
1259   NewCall->takeName(CI);
1260   return copyFlags(*CI, NewCall);
1261 }
1262 
1263 /// Return a variant of Val with float type.
1264 /// Currently this works in two cases: If Val is an FPExtension of a float
1265 /// value to something bigger, simply return the operand.
1266 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1267 /// loss of precision do so.
1268 static Value *valueHasFloatPrecision(Value *Val) {
1269   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1270     Value *Op = Cast->getOperand(0);
1271     if (Op->getType()->isFloatTy())
1272       return Op;
1273   }
1274   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1275     APFloat F = Const->getValueAPF();
1276     bool losesInfo;
1277     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1278                     &losesInfo);
1279     if (!losesInfo)
1280       return ConstantFP::get(Const->getContext(), F);
1281   }
1282   return nullptr;
1283 }
1284 
1285 /// Shrink double -> float functions.
1286 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1287                                bool isBinary, bool isPrecise = false) {
1288   Function *CalleeFn = CI->getCalledFunction();
1289   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1290     return nullptr;
1291 
1292   // If not all the uses of the function are converted to float, then bail out.
1293   // This matters if the precision of the result is more important than the
1294   // precision of the arguments.
1295   if (isPrecise)
1296     for (User *U : CI->users()) {
1297       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1298       if (!Cast || !Cast->getType()->isFloatTy())
1299         return nullptr;
1300     }
1301 
1302   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1303   Value *V[2];
1304   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1305   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1306   if (!V[0] || (isBinary && !V[1]))
1307     return nullptr;
1308 
1309   // If call isn't an intrinsic, check that it isn't within a function with the
1310   // same name as the float version of this call, otherwise the result is an
1311   // infinite loop.  For example, from MinGW-w64:
1312   //
1313   // float expf(float val) { return (float) exp((double) val); }
1314   StringRef CalleeName = CalleeFn->getName();
1315   bool IsIntrinsic = CalleeFn->isIntrinsic();
1316   if (!IsIntrinsic) {
1317     StringRef CallerName = CI->getFunction()->getName();
1318     if (!CallerName.empty() && CallerName.back() == 'f' &&
1319         CallerName.size() == (CalleeName.size() + 1) &&
1320         CallerName.startswith(CalleeName))
1321       return nullptr;
1322   }
1323 
1324   // Propagate the math semantics from the current function to the new function.
1325   IRBuilderBase::FastMathFlagGuard Guard(B);
1326   B.setFastMathFlags(CI->getFastMathFlags());
1327 
1328   // g((double) float) -> (double) gf(float)
1329   Value *R;
1330   if (IsIntrinsic) {
1331     Module *M = CI->getModule();
1332     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1333     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1334     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1335   } else {
1336     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1337     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1338                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1339   }
1340   return B.CreateFPExt(R, B.getDoubleTy());
1341 }
1342 
1343 /// Shrink double -> float for unary functions.
1344 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1345                                     bool isPrecise = false) {
1346   return optimizeDoubleFP(CI, B, false, isPrecise);
1347 }
1348 
1349 /// Shrink double -> float for binary functions.
1350 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1351                                      bool isPrecise = false) {
1352   return optimizeDoubleFP(CI, B, true, isPrecise);
1353 }
1354 
1355 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1356 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1357   if (!CI->isFast())
1358     return nullptr;
1359 
1360   // Propagate fast-math flags from the existing call to new instructions.
1361   IRBuilderBase::FastMathFlagGuard Guard(B);
1362   B.setFastMathFlags(CI->getFastMathFlags());
1363 
1364   Value *Real, *Imag;
1365   if (CI->arg_size() == 1) {
1366     Value *Op = CI->getArgOperand(0);
1367     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1368     Real = B.CreateExtractValue(Op, 0, "real");
1369     Imag = B.CreateExtractValue(Op, 1, "imag");
1370   } else {
1371     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1372     Real = CI->getArgOperand(0);
1373     Imag = CI->getArgOperand(1);
1374   }
1375 
1376   Value *RealReal = B.CreateFMul(Real, Real);
1377   Value *ImagImag = B.CreateFMul(Imag, Imag);
1378 
1379   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1380                                               CI->getType());
1381   return copyFlags(
1382       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1383 }
1384 
1385 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1386                                       IRBuilderBase &B) {
1387   if (!isa<FPMathOperator>(Call))
1388     return nullptr;
1389 
1390   IRBuilderBase::FastMathFlagGuard Guard(B);
1391   B.setFastMathFlags(Call->getFastMathFlags());
1392 
1393   // TODO: Can this be shared to also handle LLVM intrinsics?
1394   Value *X;
1395   switch (Func) {
1396   case LibFunc_sin:
1397   case LibFunc_sinf:
1398   case LibFunc_sinl:
1399   case LibFunc_tan:
1400   case LibFunc_tanf:
1401   case LibFunc_tanl:
1402     // sin(-X) --> -sin(X)
1403     // tan(-X) --> -tan(X)
1404     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1405       return B.CreateFNeg(
1406           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1407     break;
1408   case LibFunc_cos:
1409   case LibFunc_cosf:
1410   case LibFunc_cosl:
1411     // cos(-X) --> cos(X)
1412     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1413       return copyFlags(*Call,
1414                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1415     break;
1416   default:
1417     break;
1418   }
1419   return nullptr;
1420 }
1421 
1422 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1423   // Multiplications calculated using Addition Chains.
1424   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1425 
1426   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1427 
1428   if (InnerChain[Exp])
1429     return InnerChain[Exp];
1430 
1431   static const unsigned AddChain[33][2] = {
1432       {0, 0}, // Unused.
1433       {0, 0}, // Unused (base case = pow1).
1434       {1, 1}, // Unused (pre-computed).
1435       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1436       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1437       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1438       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1439       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1440   };
1441 
1442   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1443                                  getPow(InnerChain, AddChain[Exp][1], B));
1444   return InnerChain[Exp];
1445 }
1446 
1447 // Return a properly extended integer (DstWidth bits wide) if the operation is
1448 // an itofp.
1449 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1450   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1451     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1452     // Make sure that the exponent fits inside an "int" of size DstWidth,
1453     // thus avoiding any range issues that FP has not.
1454     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1455     if (BitWidth < DstWidth ||
1456         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1457       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1458                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1459   }
1460 
1461   return nullptr;
1462 }
1463 
1464 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1465 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1466 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1467 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1468   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1469   AttributeList Attrs; // Attributes are only meaningful on the original call
1470   Module *Mod = Pow->getModule();
1471   Type *Ty = Pow->getType();
1472   bool Ignored;
1473 
1474   // Evaluate special cases related to a nested function as the base.
1475 
1476   // pow(exp(x), y) -> exp(x * y)
1477   // pow(exp2(x), y) -> exp2(x * y)
1478   // If exp{,2}() is used only once, it is better to fold two transcendental
1479   // math functions into one.  If used again, exp{,2}() would still have to be
1480   // called with the original argument, then keep both original transcendental
1481   // functions.  However, this transformation is only safe with fully relaxed
1482   // math semantics, since, besides rounding differences, it changes overflow
1483   // and underflow behavior quite dramatically.  For example:
1484   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1485   // Whereas:
1486   //   exp(1000 * 0.001) = exp(1)
1487   // TODO: Loosen the requirement for fully relaxed math semantics.
1488   // TODO: Handle exp10() when more targets have it available.
1489   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1490   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1491     LibFunc LibFn;
1492 
1493     Function *CalleeFn = BaseFn->getCalledFunction();
1494     if (CalleeFn &&
1495         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1496       StringRef ExpName;
1497       Intrinsic::ID ID;
1498       Value *ExpFn;
1499       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1500 
1501       switch (LibFn) {
1502       default:
1503         return nullptr;
1504       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1505         ExpName = TLI->getName(LibFunc_exp);
1506         ID = Intrinsic::exp;
1507         LibFnFloat = LibFunc_expf;
1508         LibFnDouble = LibFunc_exp;
1509         LibFnLongDouble = LibFunc_expl;
1510         break;
1511       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1512         ExpName = TLI->getName(LibFunc_exp2);
1513         ID = Intrinsic::exp2;
1514         LibFnFloat = LibFunc_exp2f;
1515         LibFnDouble = LibFunc_exp2;
1516         LibFnLongDouble = LibFunc_exp2l;
1517         break;
1518       }
1519 
1520       // Create new exp{,2}() with the product as its argument.
1521       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1522       ExpFn = BaseFn->doesNotAccessMemory()
1523               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1524                              FMul, ExpName)
1525               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1526                                      LibFnLongDouble, B,
1527                                      BaseFn->getAttributes());
1528 
1529       // Since the new exp{,2}() is different from the original one, dead code
1530       // elimination cannot be trusted to remove it, since it may have side
1531       // effects (e.g., errno).  When the only consumer for the original
1532       // exp{,2}() is pow(), then it has to be explicitly erased.
1533       substituteInParent(BaseFn, ExpFn);
1534       return ExpFn;
1535     }
1536   }
1537 
1538   // Evaluate special cases related to a constant base.
1539 
1540   const APFloat *BaseF;
1541   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1542     return nullptr;
1543 
1544   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1545   if (match(Base, m_SpecificFP(2.0)) &&
1546       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1547       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1548     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1549       return copyFlags(*Pow,
1550                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1551                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1552                                              LibFunc_ldexpl, B, Attrs));
1553   }
1554 
1555   // pow(2.0 ** n, x) -> exp2(n * x)
1556   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1557     APFloat BaseR = APFloat(1.0);
1558     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1559     BaseR = BaseR / *BaseF;
1560     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1561     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1562     APSInt NI(64, false);
1563     if ((IsInteger || IsReciprocal) &&
1564         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1565             APFloat::opOK &&
1566         NI > 1 && NI.isPowerOf2()) {
1567       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1568       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1569       if (Pow->doesNotAccessMemory())
1570         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1571                                                 Mod, Intrinsic::exp2, Ty),
1572                                             FMul, "exp2"));
1573       else
1574         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1575                                                     LibFunc_exp2f,
1576                                                     LibFunc_exp2l, B, Attrs));
1577     }
1578   }
1579 
1580   // pow(10.0, x) -> exp10(x)
1581   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1582   if (match(Base, m_SpecificFP(10.0)) &&
1583       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1584     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1585                                                 LibFunc_exp10f, LibFunc_exp10l,
1586                                                 B, Attrs));
1587 
1588   // pow(x, y) -> exp2(log2(x) * y)
1589   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1590       !BaseF->isNegative()) {
1591     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1592     // Luckily optimizePow has already handled the x == 1 case.
1593     assert(!match(Base, m_FPOne()) &&
1594            "pow(1.0, y) should have been simplified earlier!");
1595 
1596     Value *Log = nullptr;
1597     if (Ty->isFloatTy())
1598       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1599     else if (Ty->isDoubleTy())
1600       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1601 
1602     if (Log) {
1603       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1604       if (Pow->doesNotAccessMemory())
1605         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1606                                                 Mod, Intrinsic::exp2, Ty),
1607                                             FMul, "exp2"));
1608       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1609         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1610                                                     LibFunc_exp2f,
1611                                                     LibFunc_exp2l, B, Attrs));
1612     }
1613   }
1614 
1615   return nullptr;
1616 }
1617 
1618 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1619                           Module *M, IRBuilderBase &B,
1620                           const TargetLibraryInfo *TLI) {
1621   // If errno is never set, then use the intrinsic for sqrt().
1622   if (NoErrno) {
1623     Function *SqrtFn =
1624         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1625     return B.CreateCall(SqrtFn, V, "sqrt");
1626   }
1627 
1628   // Otherwise, use the libcall for sqrt().
1629   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1630     // TODO: We also should check that the target can in fact lower the sqrt()
1631     // libcall. We currently have no way to ask this question, so we ask if
1632     // the target has a sqrt() libcall, which is not exactly the same.
1633     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1634                                 LibFunc_sqrtl, B, Attrs);
1635 
1636   return nullptr;
1637 }
1638 
1639 /// Use square root in place of pow(x, +/-0.5).
1640 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1641   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1642   AttributeList Attrs; // Attributes are only meaningful on the original call
1643   Module *Mod = Pow->getModule();
1644   Type *Ty = Pow->getType();
1645 
1646   const APFloat *ExpoF;
1647   if (!match(Expo, m_APFloat(ExpoF)) ||
1648       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1649     return nullptr;
1650 
1651   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1652   // so that requires fast-math-flags (afn or reassoc).
1653   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1654     return nullptr;
1655 
1656   // If we have a pow() library call (accesses memory) and we can't guarantee
1657   // that the base is not an infinity, give up:
1658   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1659   // errno), but sqrt(-Inf) is required by various standards to set errno.
1660   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1661       !isKnownNeverInfinity(Base, TLI))
1662     return nullptr;
1663 
1664   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1665   if (!Sqrt)
1666     return nullptr;
1667 
1668   // Handle signed zero base by expanding to fabs(sqrt(x)).
1669   if (!Pow->hasNoSignedZeros()) {
1670     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1671     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1672   }
1673 
1674   Sqrt = copyFlags(*Pow, Sqrt);
1675 
1676   // Handle non finite base by expanding to
1677   // (x == -infinity ? +infinity : sqrt(x)).
1678   if (!Pow->hasNoInfs()) {
1679     Value *PosInf = ConstantFP::getInfinity(Ty),
1680           *NegInf = ConstantFP::getInfinity(Ty, true);
1681     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1682     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1683   }
1684 
1685   // If the exponent is negative, then get the reciprocal.
1686   if (ExpoF->isNegative())
1687     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1688 
1689   return Sqrt;
1690 }
1691 
1692 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1693                                            IRBuilderBase &B) {
1694   Value *Args[] = {Base, Expo};
1695   Type *Types[] = {Base->getType(), Expo->getType()};
1696   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1697   return B.CreateCall(F, Args);
1698 }
1699 
1700 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1701   Value *Base = Pow->getArgOperand(0);
1702   Value *Expo = Pow->getArgOperand(1);
1703   Function *Callee = Pow->getCalledFunction();
1704   StringRef Name = Callee->getName();
1705   Type *Ty = Pow->getType();
1706   Module *M = Pow->getModule();
1707   bool AllowApprox = Pow->hasApproxFunc();
1708   bool Ignored;
1709 
1710   // Propagate the math semantics from the call to any created instructions.
1711   IRBuilderBase::FastMathFlagGuard Guard(B);
1712   B.setFastMathFlags(Pow->getFastMathFlags());
1713   // Evaluate special cases related to the base.
1714 
1715   // pow(1.0, x) -> 1.0
1716   if (match(Base, m_FPOne()))
1717     return Base;
1718 
1719   if (Value *Exp = replacePowWithExp(Pow, B))
1720     return Exp;
1721 
1722   // Evaluate special cases related to the exponent.
1723 
1724   // pow(x, -1.0) -> 1.0 / x
1725   if (match(Expo, m_SpecificFP(-1.0)))
1726     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1727 
1728   // pow(x, +/-0.0) -> 1.0
1729   if (match(Expo, m_AnyZeroFP()))
1730     return ConstantFP::get(Ty, 1.0);
1731 
1732   // pow(x, 1.0) -> x
1733   if (match(Expo, m_FPOne()))
1734     return Base;
1735 
1736   // pow(x, 2.0) -> x * x
1737   if (match(Expo, m_SpecificFP(2.0)))
1738     return B.CreateFMul(Base, Base, "square");
1739 
1740   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1741     return Sqrt;
1742 
1743   // pow(x, n) -> x * x * x * ...
1744   const APFloat *ExpoF;
1745   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1746       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1747     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1748     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1749     // additional fmul.
1750     // TODO: This whole transformation should be backend specific (e.g. some
1751     //       backends might prefer libcalls or the limit for the exponent might
1752     //       be different) and it should also consider optimizing for size.
1753     APFloat LimF(ExpoF->getSemantics(), 33),
1754             ExpoA(abs(*ExpoF));
1755     if (ExpoA < LimF) {
1756       // This transformation applies to integer or integer+0.5 exponents only.
1757       // For integer+0.5, we create a sqrt(Base) call.
1758       Value *Sqrt = nullptr;
1759       if (!ExpoA.isInteger()) {
1760         APFloat Expo2 = ExpoA;
1761         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1762         // is no floating point exception and the result is an integer, then
1763         // ExpoA == integer + 0.5
1764         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1765           return nullptr;
1766 
1767         if (!Expo2.isInteger())
1768           return nullptr;
1769 
1770         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1771                            Pow->doesNotAccessMemory(), M, B, TLI);
1772         if (!Sqrt)
1773           return nullptr;
1774       }
1775 
1776       // We will memoize intermediate products of the Addition Chain.
1777       Value *InnerChain[33] = {nullptr};
1778       InnerChain[1] = Base;
1779       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1780 
1781       // We cannot readily convert a non-double type (like float) to a double.
1782       // So we first convert it to something which could be converted to double.
1783       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1784       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1785 
1786       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1787       if (Sqrt)
1788         FMul = B.CreateFMul(FMul, Sqrt);
1789 
1790       // If the exponent is negative, then get the reciprocal.
1791       if (ExpoF->isNegative())
1792         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1793 
1794       return FMul;
1795     }
1796 
1797     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1798     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1799     if (ExpoF->isInteger() &&
1800         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1801             APFloat::opOK) {
1802       return copyFlags(
1803           *Pow,
1804           createPowWithIntegerExponent(
1805               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1806               M, B));
1807     }
1808   }
1809 
1810   // powf(x, itofp(y)) -> powi(x, y)
1811   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1812     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1813       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1814   }
1815 
1816   // Shrink pow() to powf() if the arguments are single precision,
1817   // unless the result is expected to be double precision.
1818   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1819       hasFloatVersion(Name)) {
1820     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1821       return Shrunk;
1822   }
1823 
1824   return nullptr;
1825 }
1826 
1827 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1828   Function *Callee = CI->getCalledFunction();
1829   AttributeList Attrs; // Attributes are only meaningful on the original call
1830   StringRef Name = Callee->getName();
1831   Value *Ret = nullptr;
1832   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1833       hasFloatVersion(Name))
1834     Ret = optimizeUnaryDoubleFP(CI, B, true);
1835 
1836   Type *Ty = CI->getType();
1837   Value *Op = CI->getArgOperand(0);
1838 
1839   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1840   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1841   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1842       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1843     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1844       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1845                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1846                                    B, Attrs);
1847   }
1848 
1849   return Ret;
1850 }
1851 
1852 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1853   // If we can shrink the call to a float function rather than a double
1854   // function, do that first.
1855   Function *Callee = CI->getCalledFunction();
1856   StringRef Name = Callee->getName();
1857   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1858     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1859       return Ret;
1860 
1861   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1862   // the intrinsics for improved optimization (for example, vectorization).
1863   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1864   // From the C standard draft WG14/N1256:
1865   // "Ideally, fmax would be sensitive to the sign of zero, for example
1866   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1867   // might be impractical."
1868   IRBuilderBase::FastMathFlagGuard Guard(B);
1869   FastMathFlags FMF = CI->getFastMathFlags();
1870   FMF.setNoSignedZeros();
1871   B.setFastMathFlags(FMF);
1872 
1873   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1874                                                            : Intrinsic::maxnum;
1875   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1876   return copyFlags(
1877       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
1878 }
1879 
1880 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1881   Function *LogFn = Log->getCalledFunction();
1882   AttributeList Attrs; // Attributes are only meaningful on the original call
1883   StringRef LogNm = LogFn->getName();
1884   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1885   Module *Mod = Log->getModule();
1886   Type *Ty = Log->getType();
1887   Value *Ret = nullptr;
1888 
1889   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1890     Ret = optimizeUnaryDoubleFP(Log, B, true);
1891 
1892   // The earlier call must also be 'fast' in order to do these transforms.
1893   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1894   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1895     return Ret;
1896 
1897   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1898 
1899   // This is only applicable to log(), log2(), log10().
1900   if (TLI->getLibFunc(LogNm, LogLb))
1901     switch (LogLb) {
1902     case LibFunc_logf:
1903       LogID = Intrinsic::log;
1904       ExpLb = LibFunc_expf;
1905       Exp2Lb = LibFunc_exp2f;
1906       Exp10Lb = LibFunc_exp10f;
1907       PowLb = LibFunc_powf;
1908       break;
1909     case LibFunc_log:
1910       LogID = Intrinsic::log;
1911       ExpLb = LibFunc_exp;
1912       Exp2Lb = LibFunc_exp2;
1913       Exp10Lb = LibFunc_exp10;
1914       PowLb = LibFunc_pow;
1915       break;
1916     case LibFunc_logl:
1917       LogID = Intrinsic::log;
1918       ExpLb = LibFunc_expl;
1919       Exp2Lb = LibFunc_exp2l;
1920       Exp10Lb = LibFunc_exp10l;
1921       PowLb = LibFunc_powl;
1922       break;
1923     case LibFunc_log2f:
1924       LogID = Intrinsic::log2;
1925       ExpLb = LibFunc_expf;
1926       Exp2Lb = LibFunc_exp2f;
1927       Exp10Lb = LibFunc_exp10f;
1928       PowLb = LibFunc_powf;
1929       break;
1930     case LibFunc_log2:
1931       LogID = Intrinsic::log2;
1932       ExpLb = LibFunc_exp;
1933       Exp2Lb = LibFunc_exp2;
1934       Exp10Lb = LibFunc_exp10;
1935       PowLb = LibFunc_pow;
1936       break;
1937     case LibFunc_log2l:
1938       LogID = Intrinsic::log2;
1939       ExpLb = LibFunc_expl;
1940       Exp2Lb = LibFunc_exp2l;
1941       Exp10Lb = LibFunc_exp10l;
1942       PowLb = LibFunc_powl;
1943       break;
1944     case LibFunc_log10f:
1945       LogID = Intrinsic::log10;
1946       ExpLb = LibFunc_expf;
1947       Exp2Lb = LibFunc_exp2f;
1948       Exp10Lb = LibFunc_exp10f;
1949       PowLb = LibFunc_powf;
1950       break;
1951     case LibFunc_log10:
1952       LogID = Intrinsic::log10;
1953       ExpLb = LibFunc_exp;
1954       Exp2Lb = LibFunc_exp2;
1955       Exp10Lb = LibFunc_exp10;
1956       PowLb = LibFunc_pow;
1957       break;
1958     case LibFunc_log10l:
1959       LogID = Intrinsic::log10;
1960       ExpLb = LibFunc_expl;
1961       Exp2Lb = LibFunc_exp2l;
1962       Exp10Lb = LibFunc_exp10l;
1963       PowLb = LibFunc_powl;
1964       break;
1965     default:
1966       return Ret;
1967     }
1968   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1969            LogID == Intrinsic::log10) {
1970     if (Ty->getScalarType()->isFloatTy()) {
1971       ExpLb = LibFunc_expf;
1972       Exp2Lb = LibFunc_exp2f;
1973       Exp10Lb = LibFunc_exp10f;
1974       PowLb = LibFunc_powf;
1975     } else if (Ty->getScalarType()->isDoubleTy()) {
1976       ExpLb = LibFunc_exp;
1977       Exp2Lb = LibFunc_exp2;
1978       Exp10Lb = LibFunc_exp10;
1979       PowLb = LibFunc_pow;
1980     } else
1981       return Ret;
1982   } else
1983     return Ret;
1984 
1985   IRBuilderBase::FastMathFlagGuard Guard(B);
1986   B.setFastMathFlags(FastMathFlags::getFast());
1987 
1988   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1989   LibFunc ArgLb = NotLibFunc;
1990   TLI->getLibFunc(*Arg, ArgLb);
1991 
1992   // log(pow(x,y)) -> y*log(x)
1993   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1994     Value *LogX =
1995         Log->doesNotAccessMemory()
1996             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1997                            Arg->getOperand(0), "log")
1998             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1999     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2000     // Since pow() may have side effects, e.g. errno,
2001     // dead code elimination may not be trusted to remove it.
2002     substituteInParent(Arg, MulY);
2003     return MulY;
2004   }
2005 
2006   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2007   // TODO: There is no exp10() intrinsic yet.
2008   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2009            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2010     Constant *Eul;
2011     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2012       // FIXME: Add more precise value of e for long double.
2013       Eul = ConstantFP::get(Log->getType(), numbers::e);
2014     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2015       Eul = ConstantFP::get(Log->getType(), 2.0);
2016     else
2017       Eul = ConstantFP::get(Log->getType(), 10.0);
2018     Value *LogE = Log->doesNotAccessMemory()
2019                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2020                                      Eul, "log")
2021                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
2022     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2023     // Since exp() may have side effects, e.g. errno,
2024     // dead code elimination may not be trusted to remove it.
2025     substituteInParent(Arg, MulY);
2026     return MulY;
2027   }
2028 
2029   return Ret;
2030 }
2031 
2032 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2033   Function *Callee = CI->getCalledFunction();
2034   Value *Ret = nullptr;
2035   // TODO: Once we have a way (other than checking for the existince of the
2036   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2037   // condition below.
2038   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2039                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2040     Ret = optimizeUnaryDoubleFP(CI, B, true);
2041 
2042   if (!CI->isFast())
2043     return Ret;
2044 
2045   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2046   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2047     return Ret;
2048 
2049   // We're looking for a repeated factor in a multiplication tree,
2050   // so we can do this fold: sqrt(x * x) -> fabs(x);
2051   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2052   Value *Op0 = I->getOperand(0);
2053   Value *Op1 = I->getOperand(1);
2054   Value *RepeatOp = nullptr;
2055   Value *OtherOp = nullptr;
2056   if (Op0 == Op1) {
2057     // Simple match: the operands of the multiply are identical.
2058     RepeatOp = Op0;
2059   } else {
2060     // Look for a more complicated pattern: one of the operands is itself
2061     // a multiply, so search for a common factor in that multiply.
2062     // Note: We don't bother looking any deeper than this first level or for
2063     // variations of this pattern because instcombine's visitFMUL and/or the
2064     // reassociation pass should give us this form.
2065     Value *OtherMul0, *OtherMul1;
2066     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2067       // Pattern: sqrt((x * y) * z)
2068       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2069         // Matched: sqrt((x * x) * z)
2070         RepeatOp = OtherMul0;
2071         OtherOp = Op1;
2072       }
2073     }
2074   }
2075   if (!RepeatOp)
2076     return Ret;
2077 
2078   // Fast math flags for any created instructions should match the sqrt
2079   // and multiply.
2080   IRBuilderBase::FastMathFlagGuard Guard(B);
2081   B.setFastMathFlags(I->getFastMathFlags());
2082 
2083   // If we found a repeated factor, hoist it out of the square root and
2084   // replace it with the fabs of that factor.
2085   Module *M = Callee->getParent();
2086   Type *ArgType = I->getType();
2087   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2088   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2089   if (OtherOp) {
2090     // If we found a non-repeated factor, we still need to get its square
2091     // root. We then multiply that by the value that was simplified out
2092     // of the square root calculation.
2093     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2094     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2095     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2096   }
2097   return copyFlags(*CI, FabsCall);
2098 }
2099 
2100 // TODO: Generalize to handle any trig function and its inverse.
2101 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2102   Function *Callee = CI->getCalledFunction();
2103   Value *Ret = nullptr;
2104   StringRef Name = Callee->getName();
2105   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2106     Ret = optimizeUnaryDoubleFP(CI, B, true);
2107 
2108   Value *Op1 = CI->getArgOperand(0);
2109   auto *OpC = dyn_cast<CallInst>(Op1);
2110   if (!OpC)
2111     return Ret;
2112 
2113   // Both calls must be 'fast' in order to remove them.
2114   if (!CI->isFast() || !OpC->isFast())
2115     return Ret;
2116 
2117   // tan(atan(x)) -> x
2118   // tanf(atanf(x)) -> x
2119   // tanl(atanl(x)) -> x
2120   LibFunc Func;
2121   Function *F = OpC->getCalledFunction();
2122   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2123       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2124        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2125        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2126     Ret = OpC->getArgOperand(0);
2127   return Ret;
2128 }
2129 
2130 static bool isTrigLibCall(CallInst *CI) {
2131   // We can only hope to do anything useful if we can ignore things like errno
2132   // and floating-point exceptions.
2133   // We already checked the prototype.
2134   return CI->hasFnAttr(Attribute::NoUnwind) &&
2135          CI->hasFnAttr(Attribute::ReadNone);
2136 }
2137 
2138 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2139                              bool UseFloat, Value *&Sin, Value *&Cos,
2140                              Value *&SinCos) {
2141   Type *ArgTy = Arg->getType();
2142   Type *ResTy;
2143   StringRef Name;
2144 
2145   Triple T(OrigCallee->getParent()->getTargetTriple());
2146   if (UseFloat) {
2147     Name = "__sincospif_stret";
2148 
2149     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2150     // x86_64 can't use {float, float} since that would be returned in both
2151     // xmm0 and xmm1, which isn't what a real struct would do.
2152     ResTy = T.getArch() == Triple::x86_64
2153                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2154                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2155   } else {
2156     Name = "__sincospi_stret";
2157     ResTy = StructType::get(ArgTy, ArgTy);
2158   }
2159 
2160   Module *M = OrigCallee->getParent();
2161   FunctionCallee Callee =
2162       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2163 
2164   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2165     // If the argument is an instruction, it must dominate all uses so put our
2166     // sincos call there.
2167     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2168   } else {
2169     // Otherwise (e.g. for a constant) the beginning of the function is as
2170     // good a place as any.
2171     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2172     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2173   }
2174 
2175   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2176 
2177   if (SinCos->getType()->isStructTy()) {
2178     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2179     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2180   } else {
2181     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2182                                  "sinpi");
2183     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2184                                  "cospi");
2185   }
2186 }
2187 
2188 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2189   // Make sure the prototype is as expected, otherwise the rest of the
2190   // function is probably invalid and likely to abort.
2191   if (!isTrigLibCall(CI))
2192     return nullptr;
2193 
2194   Value *Arg = CI->getArgOperand(0);
2195   SmallVector<CallInst *, 1> SinCalls;
2196   SmallVector<CallInst *, 1> CosCalls;
2197   SmallVector<CallInst *, 1> SinCosCalls;
2198 
2199   bool IsFloat = Arg->getType()->isFloatTy();
2200 
2201   // Look for all compatible sinpi, cospi and sincospi calls with the same
2202   // argument. If there are enough (in some sense) we can make the
2203   // substitution.
2204   Function *F = CI->getFunction();
2205   for (User *U : Arg->users())
2206     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2207 
2208   // It's only worthwhile if both sinpi and cospi are actually used.
2209   if (SinCalls.empty() || CosCalls.empty())
2210     return nullptr;
2211 
2212   Value *Sin, *Cos, *SinCos;
2213   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2214 
2215   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2216                                  Value *Res) {
2217     for (CallInst *C : Calls)
2218       replaceAllUsesWith(C, Res);
2219   };
2220 
2221   replaceTrigInsts(SinCalls, Sin);
2222   replaceTrigInsts(CosCalls, Cos);
2223   replaceTrigInsts(SinCosCalls, SinCos);
2224 
2225   return nullptr;
2226 }
2227 
2228 void LibCallSimplifier::classifyArgUse(
2229     Value *Val, Function *F, bool IsFloat,
2230     SmallVectorImpl<CallInst *> &SinCalls,
2231     SmallVectorImpl<CallInst *> &CosCalls,
2232     SmallVectorImpl<CallInst *> &SinCosCalls) {
2233   CallInst *CI = dyn_cast<CallInst>(Val);
2234 
2235   if (!CI || CI->use_empty())
2236     return;
2237 
2238   // Don't consider calls in other functions.
2239   if (CI->getFunction() != F)
2240     return;
2241 
2242   Function *Callee = CI->getCalledFunction();
2243   LibFunc Func;
2244   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2245       !isTrigLibCall(CI))
2246     return;
2247 
2248   if (IsFloat) {
2249     if (Func == LibFunc_sinpif)
2250       SinCalls.push_back(CI);
2251     else if (Func == LibFunc_cospif)
2252       CosCalls.push_back(CI);
2253     else if (Func == LibFunc_sincospif_stret)
2254       SinCosCalls.push_back(CI);
2255   } else {
2256     if (Func == LibFunc_sinpi)
2257       SinCalls.push_back(CI);
2258     else if (Func == LibFunc_cospi)
2259       CosCalls.push_back(CI);
2260     else if (Func == LibFunc_sincospi_stret)
2261       SinCosCalls.push_back(CI);
2262   }
2263 }
2264 
2265 //===----------------------------------------------------------------------===//
2266 // Integer Library Call Optimizations
2267 //===----------------------------------------------------------------------===//
2268 
2269 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2270   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2271   Value *Op = CI->getArgOperand(0);
2272   Type *ArgType = Op->getType();
2273   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2274                                           Intrinsic::cttz, ArgType);
2275   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2276   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2277   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2278 
2279   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2280   return B.CreateSelect(Cond, V, B.getInt32(0));
2281 }
2282 
2283 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2284   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2285   Value *Op = CI->getArgOperand(0);
2286   Type *ArgType = Op->getType();
2287   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2288                                           Intrinsic::ctlz, ArgType);
2289   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2290   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2291                   V);
2292   return B.CreateIntCast(V, CI->getType(), false);
2293 }
2294 
2295 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2296   // abs(x) -> x <s 0 ? -x : x
2297   // The negation has 'nsw' because abs of INT_MIN is undefined.
2298   Value *X = CI->getArgOperand(0);
2299   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2300   Value *NegX = B.CreateNSWNeg(X, "neg");
2301   return B.CreateSelect(IsNeg, NegX, X);
2302 }
2303 
2304 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2305   // isdigit(c) -> (c-'0') <u 10
2306   Value *Op = CI->getArgOperand(0);
2307   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2308   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2309   return B.CreateZExt(Op, CI->getType());
2310 }
2311 
2312 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2313   // isascii(c) -> c <u 128
2314   Value *Op = CI->getArgOperand(0);
2315   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2316   return B.CreateZExt(Op, CI->getType());
2317 }
2318 
2319 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2320   // toascii(c) -> c & 0x7f
2321   return B.CreateAnd(CI->getArgOperand(0),
2322                      ConstantInt::get(CI->getType(), 0x7F));
2323 }
2324 
2325 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2326   StringRef Str;
2327   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2328     return nullptr;
2329 
2330   return convertStrToNumber(CI, Str, 10);
2331 }
2332 
2333 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2334   StringRef Str;
2335   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2336     return nullptr;
2337 
2338   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2339     return nullptr;
2340 
2341   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2342     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2343   }
2344 
2345   return nullptr;
2346 }
2347 
2348 //===----------------------------------------------------------------------===//
2349 // Formatting and IO Library Call Optimizations
2350 //===----------------------------------------------------------------------===//
2351 
2352 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2353 
2354 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2355                                                  int StreamArg) {
2356   Function *Callee = CI->getCalledFunction();
2357   // Error reporting calls should be cold, mark them as such.
2358   // This applies even to non-builtin calls: it is only a hint and applies to
2359   // functions that the frontend might not understand as builtins.
2360 
2361   // This heuristic was suggested in:
2362   // Improving Static Branch Prediction in a Compiler
2363   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2364   // Proceedings of PACT'98, Oct. 1998, IEEE
2365   if (!CI->hasFnAttr(Attribute::Cold) &&
2366       isReportingError(Callee, CI, StreamArg)) {
2367     CI->addFnAttr(Attribute::Cold);
2368   }
2369 
2370   return nullptr;
2371 }
2372 
2373 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2374   if (!Callee || !Callee->isDeclaration())
2375     return false;
2376 
2377   if (StreamArg < 0)
2378     return true;
2379 
2380   // These functions might be considered cold, but only if their stream
2381   // argument is stderr.
2382 
2383   if (StreamArg >= (int)CI->arg_size())
2384     return false;
2385   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2386   if (!LI)
2387     return false;
2388   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2389   if (!GV || !GV->isDeclaration())
2390     return false;
2391   return GV->getName() == "stderr";
2392 }
2393 
2394 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2395   // Check for a fixed format string.
2396   StringRef FormatStr;
2397   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2398     return nullptr;
2399 
2400   // Empty format string -> noop.
2401   if (FormatStr.empty()) // Tolerate printf's declared void.
2402     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2403 
2404   // Do not do any of the following transformations if the printf return value
2405   // is used, in general the printf return value is not compatible with either
2406   // putchar() or puts().
2407   if (!CI->use_empty())
2408     return nullptr;
2409 
2410   // printf("x") -> putchar('x'), even for "%" and "%%".
2411   if (FormatStr.size() == 1 || FormatStr == "%%")
2412     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2413 
2414   // Try to remove call or emit putchar/puts.
2415   if (FormatStr == "%s" && CI->arg_size() > 1) {
2416     StringRef OperandStr;
2417     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2418       return nullptr;
2419     // printf("%s", "") --> NOP
2420     if (OperandStr.empty())
2421       return (Value *)CI;
2422     // printf("%s", "a") --> putchar('a')
2423     if (OperandStr.size() == 1)
2424       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2425     // printf("%s", str"\n") --> puts(str)
2426     if (OperandStr.back() == '\n') {
2427       OperandStr = OperandStr.drop_back();
2428       Value *GV = B.CreateGlobalString(OperandStr, "str");
2429       return copyFlags(*CI, emitPutS(GV, B, TLI));
2430     }
2431     return nullptr;
2432   }
2433 
2434   // printf("foo\n") --> puts("foo")
2435   if (FormatStr.back() == '\n' &&
2436       !FormatStr.contains('%')) { // No format characters.
2437     // Create a string literal with no \n on it.  We expect the constant merge
2438     // pass to be run after this pass, to merge duplicate strings.
2439     FormatStr = FormatStr.drop_back();
2440     Value *GV = B.CreateGlobalString(FormatStr, "str");
2441     return copyFlags(*CI, emitPutS(GV, B, TLI));
2442   }
2443 
2444   // Optimize specific format strings.
2445   // printf("%c", chr) --> putchar(chr)
2446   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2447       CI->getArgOperand(1)->getType()->isIntegerTy())
2448     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2449 
2450   // printf("%s\n", str) --> puts(str)
2451   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2452       CI->getArgOperand(1)->getType()->isPointerTy())
2453     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2454   return nullptr;
2455 }
2456 
2457 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2458 
2459   Function *Callee = CI->getCalledFunction();
2460   FunctionType *FT = Callee->getFunctionType();
2461   if (Value *V = optimizePrintFString(CI, B)) {
2462     return V;
2463   }
2464 
2465   // printf(format, ...) -> iprintf(format, ...) if no floating point
2466   // arguments.
2467   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2468     Module *M = B.GetInsertBlock()->getParent()->getParent();
2469     FunctionCallee IPrintFFn =
2470         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2471     CallInst *New = cast<CallInst>(CI->clone());
2472     New->setCalledFunction(IPrintFFn);
2473     B.Insert(New);
2474     return New;
2475   }
2476 
2477   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2478   // arguments.
2479   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2480     Module *M = B.GetInsertBlock()->getParent()->getParent();
2481     auto SmallPrintFFn =
2482         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2483                                FT, Callee->getAttributes());
2484     CallInst *New = cast<CallInst>(CI->clone());
2485     New->setCalledFunction(SmallPrintFFn);
2486     B.Insert(New);
2487     return New;
2488   }
2489 
2490   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2491   return nullptr;
2492 }
2493 
2494 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2495                                                 IRBuilderBase &B) {
2496   // Check for a fixed format string.
2497   StringRef FormatStr;
2498   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2499     return nullptr;
2500 
2501   // If we just have a format string (nothing else crazy) transform it.
2502   Value *Dest = CI->getArgOperand(0);
2503   if (CI->arg_size() == 2) {
2504     // Make sure there's no % in the constant array.  We could try to handle
2505     // %% -> % in the future if we cared.
2506     if (FormatStr.contains('%'))
2507       return nullptr; // we found a format specifier, bail out.
2508 
2509     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2510     B.CreateMemCpy(
2511         Dest, Align(1), CI->getArgOperand(1), Align(1),
2512         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2513                          FormatStr.size() + 1)); // Copy the null byte.
2514     return ConstantInt::get(CI->getType(), FormatStr.size());
2515   }
2516 
2517   // The remaining optimizations require the format string to be "%s" or "%c"
2518   // and have an extra operand.
2519   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2520     return nullptr;
2521 
2522   // Decode the second character of the format string.
2523   if (FormatStr[1] == 'c') {
2524     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2525     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2526       return nullptr;
2527     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2528     Value *Ptr = castToCStr(Dest, B);
2529     B.CreateStore(V, Ptr);
2530     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2531     B.CreateStore(B.getInt8(0), Ptr);
2532 
2533     return ConstantInt::get(CI->getType(), 1);
2534   }
2535 
2536   if (FormatStr[1] == 's') {
2537     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2538     // strlen(str)+1)
2539     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2540       return nullptr;
2541 
2542     if (CI->use_empty())
2543       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2544       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2545 
2546     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2547     if (SrcLen) {
2548       B.CreateMemCpy(
2549           Dest, Align(1), CI->getArgOperand(2), Align(1),
2550           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2551       // Returns total number of characters written without null-character.
2552       return ConstantInt::get(CI->getType(), SrcLen - 1);
2553     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2554       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2555       // Handle mismatched pointer types (goes away with typeless pointers?).
2556       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2557       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2558       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2559       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2560     }
2561 
2562     bool OptForSize = CI->getFunction()->hasOptSize() ||
2563                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2564                                                   PGSOQueryType::IRPass);
2565     if (OptForSize)
2566       return nullptr;
2567 
2568     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2569     if (!Len)
2570       return nullptr;
2571     Value *IncLen =
2572         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2573     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2574 
2575     // The sprintf result is the unincremented number of bytes in the string.
2576     return B.CreateIntCast(Len, CI->getType(), false);
2577   }
2578   return nullptr;
2579 }
2580 
2581 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2582   Function *Callee = CI->getCalledFunction();
2583   FunctionType *FT = Callee->getFunctionType();
2584   if (Value *V = optimizeSPrintFString(CI, B)) {
2585     return V;
2586   }
2587 
2588   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2589   // point arguments.
2590   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2591     Module *M = B.GetInsertBlock()->getParent()->getParent();
2592     FunctionCallee SIPrintFFn =
2593         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2594     CallInst *New = cast<CallInst>(CI->clone());
2595     New->setCalledFunction(SIPrintFFn);
2596     B.Insert(New);
2597     return New;
2598   }
2599 
2600   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2601   // floating point arguments.
2602   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2603     Module *M = B.GetInsertBlock()->getParent()->getParent();
2604     auto SmallSPrintFFn =
2605         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2606                                FT, Callee->getAttributes());
2607     CallInst *New = cast<CallInst>(CI->clone());
2608     New->setCalledFunction(SmallSPrintFFn);
2609     B.Insert(New);
2610     return New;
2611   }
2612 
2613   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2614   return nullptr;
2615 }
2616 
2617 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2618                                                  IRBuilderBase &B) {
2619   // Check for size
2620   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2621   if (!Size)
2622     return nullptr;
2623 
2624   uint64_t N = Size->getZExtValue();
2625   // Check for a fixed format string.
2626   StringRef FormatStr;
2627   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2628     return nullptr;
2629 
2630   // If we just have a format string (nothing else crazy) transform it.
2631   if (CI->arg_size() == 3) {
2632     // Make sure there's no % in the constant array.  We could try to handle
2633     // %% -> % in the future if we cared.
2634     if (FormatStr.contains('%'))
2635       return nullptr; // we found a format specifier, bail out.
2636 
2637     if (N == 0)
2638       return ConstantInt::get(CI->getType(), FormatStr.size());
2639     else if (N < FormatStr.size() + 1)
2640       return nullptr;
2641 
2642     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2643     // strlen(fmt)+1)
2644     copyFlags(
2645         *CI,
2646         B.CreateMemCpy(
2647             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2648             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2649                              FormatStr.size() + 1))); // Copy the null byte.
2650     return ConstantInt::get(CI->getType(), FormatStr.size());
2651   }
2652 
2653   // The remaining optimizations require the format string to be "%s" or "%c"
2654   // and have an extra operand.
2655   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2656 
2657     // Decode the second character of the format string.
2658     if (FormatStr[1] == 'c') {
2659       if (N == 0)
2660         return ConstantInt::get(CI->getType(), 1);
2661       else if (N == 1)
2662         return nullptr;
2663 
2664       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2665       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2666         return nullptr;
2667       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2668       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2669       B.CreateStore(V, Ptr);
2670       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2671       B.CreateStore(B.getInt8(0), Ptr);
2672 
2673       return ConstantInt::get(CI->getType(), 1);
2674     }
2675 
2676     if (FormatStr[1] == 's') {
2677       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2678       StringRef Str;
2679       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2680         return nullptr;
2681 
2682       if (N == 0)
2683         return ConstantInt::get(CI->getType(), Str.size());
2684       else if (N < Str.size() + 1)
2685         return nullptr;
2686 
2687       copyFlags(
2688           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2689                               CI->getArgOperand(3), Align(1),
2690                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2691 
2692       // The snprintf result is the unincremented number of bytes in the string.
2693       return ConstantInt::get(CI->getType(), Str.size());
2694     }
2695   }
2696   return nullptr;
2697 }
2698 
2699 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2700   if (Value *V = optimizeSnPrintFString(CI, B)) {
2701     return V;
2702   }
2703 
2704   if (isKnownNonZero(CI->getOperand(1), DL))
2705     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2706   return nullptr;
2707 }
2708 
2709 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2710                                                 IRBuilderBase &B) {
2711   optimizeErrorReporting(CI, B, 0);
2712 
2713   // All the optimizations depend on the format string.
2714   StringRef FormatStr;
2715   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2716     return nullptr;
2717 
2718   // Do not do any of the following transformations if the fprintf return
2719   // value is used, in general the fprintf return value is not compatible
2720   // with fwrite(), fputc() or fputs().
2721   if (!CI->use_empty())
2722     return nullptr;
2723 
2724   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2725   if (CI->arg_size() == 2) {
2726     // Could handle %% -> % if we cared.
2727     if (FormatStr.contains('%'))
2728       return nullptr; // We found a format specifier.
2729 
2730     return copyFlags(
2731         *CI, emitFWrite(CI->getArgOperand(1),
2732                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2733                                          FormatStr.size()),
2734                         CI->getArgOperand(0), B, DL, TLI));
2735   }
2736 
2737   // The remaining optimizations require the format string to be "%s" or "%c"
2738   // and have an extra operand.
2739   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2740     return nullptr;
2741 
2742   // Decode the second character of the format string.
2743   if (FormatStr[1] == 'c') {
2744     // fprintf(F, "%c", chr) --> fputc(chr, F)
2745     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2746       return nullptr;
2747     return copyFlags(
2748         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2749   }
2750 
2751   if (FormatStr[1] == 's') {
2752     // fprintf(F, "%s", str) --> fputs(str, F)
2753     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2754       return nullptr;
2755     return copyFlags(
2756         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2757   }
2758   return nullptr;
2759 }
2760 
2761 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2762   Function *Callee = CI->getCalledFunction();
2763   FunctionType *FT = Callee->getFunctionType();
2764   if (Value *V = optimizeFPrintFString(CI, B)) {
2765     return V;
2766   }
2767 
2768   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2769   // floating point arguments.
2770   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2771     Module *M = B.GetInsertBlock()->getParent()->getParent();
2772     FunctionCallee FIPrintFFn =
2773         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2774     CallInst *New = cast<CallInst>(CI->clone());
2775     New->setCalledFunction(FIPrintFFn);
2776     B.Insert(New);
2777     return New;
2778   }
2779 
2780   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2781   // 128-bit floating point arguments.
2782   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2783     Module *M = B.GetInsertBlock()->getParent()->getParent();
2784     auto SmallFPrintFFn =
2785         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2786                                FT, Callee->getAttributes());
2787     CallInst *New = cast<CallInst>(CI->clone());
2788     New->setCalledFunction(SmallFPrintFFn);
2789     B.Insert(New);
2790     return New;
2791   }
2792 
2793   return nullptr;
2794 }
2795 
2796 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2797   optimizeErrorReporting(CI, B, 3);
2798 
2799   // Get the element size and count.
2800   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2801   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2802   if (SizeC && CountC) {
2803     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2804 
2805     // If this is writing zero records, remove the call (it's a noop).
2806     if (Bytes == 0)
2807       return ConstantInt::get(CI->getType(), 0);
2808 
2809     // If this is writing one byte, turn it into fputc.
2810     // This optimisation is only valid, if the return value is unused.
2811     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2812       Value *Char = B.CreateLoad(B.getInt8Ty(),
2813                                  castToCStr(CI->getArgOperand(0), B), "char");
2814       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2815       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2816     }
2817   }
2818 
2819   return nullptr;
2820 }
2821 
2822 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2823   optimizeErrorReporting(CI, B, 1);
2824 
2825   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2826   // requires more arguments and thus extra MOVs are required.
2827   bool OptForSize = CI->getFunction()->hasOptSize() ||
2828                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2829                                                 PGSOQueryType::IRPass);
2830   if (OptForSize)
2831     return nullptr;
2832 
2833   // We can't optimize if return value is used.
2834   if (!CI->use_empty())
2835     return nullptr;
2836 
2837   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2838   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2839   if (!Len)
2840     return nullptr;
2841 
2842   // Known to have no uses (see above).
2843   return copyFlags(
2844       *CI,
2845       emitFWrite(CI->getArgOperand(0),
2846                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2847                  CI->getArgOperand(1), B, DL, TLI));
2848 }
2849 
2850 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2851   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2852   if (!CI->use_empty())
2853     return nullptr;
2854 
2855   // Check for a constant string.
2856   // puts("") -> putchar('\n')
2857   StringRef Str;
2858   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2859     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
2860 
2861   return nullptr;
2862 }
2863 
2864 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2865   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2866   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
2867                                         CI->getArgOperand(0), Align(1),
2868                                         CI->getArgOperand(2)));
2869 }
2870 
2871 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2872   LibFunc Func;
2873   SmallString<20> FloatFuncName = FuncName;
2874   FloatFuncName += 'f';
2875   if (TLI->getLibFunc(FloatFuncName, Func))
2876     return TLI->has(Func);
2877   return false;
2878 }
2879 
2880 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2881                                                       IRBuilderBase &Builder) {
2882   LibFunc Func;
2883   Function *Callee = CI->getCalledFunction();
2884   // Check for string/memory library functions.
2885   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2886     // Make sure we never change the calling convention.
2887     assert(
2888         (ignoreCallingConv(Func) ||
2889          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2890         "Optimizing string/memory libcall would change the calling convention");
2891     switch (Func) {
2892     case LibFunc_strcat:
2893       return optimizeStrCat(CI, Builder);
2894     case LibFunc_strncat:
2895       return optimizeStrNCat(CI, Builder);
2896     case LibFunc_strchr:
2897       return optimizeStrChr(CI, Builder);
2898     case LibFunc_strrchr:
2899       return optimizeStrRChr(CI, Builder);
2900     case LibFunc_strcmp:
2901       return optimizeStrCmp(CI, Builder);
2902     case LibFunc_strncmp:
2903       return optimizeStrNCmp(CI, Builder);
2904     case LibFunc_strcpy:
2905       return optimizeStrCpy(CI, Builder);
2906     case LibFunc_stpcpy:
2907       return optimizeStpCpy(CI, Builder);
2908     case LibFunc_strncpy:
2909       return optimizeStrNCpy(CI, Builder);
2910     case LibFunc_strlen:
2911       return optimizeStrLen(CI, Builder);
2912     case LibFunc_strnlen:
2913       return optimizeStrNLen(CI, Builder);
2914     case LibFunc_strpbrk:
2915       return optimizeStrPBrk(CI, Builder);
2916     case LibFunc_strndup:
2917       return optimizeStrNDup(CI, Builder);
2918     case LibFunc_strtol:
2919     case LibFunc_strtod:
2920     case LibFunc_strtof:
2921     case LibFunc_strtoul:
2922     case LibFunc_strtoll:
2923     case LibFunc_strtold:
2924     case LibFunc_strtoull:
2925       return optimizeStrTo(CI, Builder);
2926     case LibFunc_strspn:
2927       return optimizeStrSpn(CI, Builder);
2928     case LibFunc_strcspn:
2929       return optimizeStrCSpn(CI, Builder);
2930     case LibFunc_strstr:
2931       return optimizeStrStr(CI, Builder);
2932     case LibFunc_memchr:
2933       return optimizeMemChr(CI, Builder);
2934     case LibFunc_memrchr:
2935       return optimizeMemRChr(CI, Builder);
2936     case LibFunc_bcmp:
2937       return optimizeBCmp(CI, Builder);
2938     case LibFunc_memcmp:
2939       return optimizeMemCmp(CI, Builder);
2940     case LibFunc_memcpy:
2941       return optimizeMemCpy(CI, Builder);
2942     case LibFunc_memccpy:
2943       return optimizeMemCCpy(CI, Builder);
2944     case LibFunc_mempcpy:
2945       return optimizeMemPCpy(CI, Builder);
2946     case LibFunc_memmove:
2947       return optimizeMemMove(CI, Builder);
2948     case LibFunc_memset:
2949       return optimizeMemSet(CI, Builder);
2950     case LibFunc_realloc:
2951       return optimizeRealloc(CI, Builder);
2952     case LibFunc_wcslen:
2953       return optimizeWcslen(CI, Builder);
2954     case LibFunc_bcopy:
2955       return optimizeBCopy(CI, Builder);
2956     default:
2957       break;
2958     }
2959   }
2960   return nullptr;
2961 }
2962 
2963 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2964                                                        LibFunc Func,
2965                                                        IRBuilderBase &Builder) {
2966   // Don't optimize calls that require strict floating point semantics.
2967   if (CI->isStrictFP())
2968     return nullptr;
2969 
2970   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2971     return V;
2972 
2973   switch (Func) {
2974   case LibFunc_sinpif:
2975   case LibFunc_sinpi:
2976   case LibFunc_cospif:
2977   case LibFunc_cospi:
2978     return optimizeSinCosPi(CI, Builder);
2979   case LibFunc_powf:
2980   case LibFunc_pow:
2981   case LibFunc_powl:
2982     return optimizePow(CI, Builder);
2983   case LibFunc_exp2l:
2984   case LibFunc_exp2:
2985   case LibFunc_exp2f:
2986     return optimizeExp2(CI, Builder);
2987   case LibFunc_fabsf:
2988   case LibFunc_fabs:
2989   case LibFunc_fabsl:
2990     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2991   case LibFunc_sqrtf:
2992   case LibFunc_sqrt:
2993   case LibFunc_sqrtl:
2994     return optimizeSqrt(CI, Builder);
2995   case LibFunc_logf:
2996   case LibFunc_log:
2997   case LibFunc_logl:
2998   case LibFunc_log10f:
2999   case LibFunc_log10:
3000   case LibFunc_log10l:
3001   case LibFunc_log1pf:
3002   case LibFunc_log1p:
3003   case LibFunc_log1pl:
3004   case LibFunc_log2f:
3005   case LibFunc_log2:
3006   case LibFunc_log2l:
3007   case LibFunc_logbf:
3008   case LibFunc_logb:
3009   case LibFunc_logbl:
3010     return optimizeLog(CI, Builder);
3011   case LibFunc_tan:
3012   case LibFunc_tanf:
3013   case LibFunc_tanl:
3014     return optimizeTan(CI, Builder);
3015   case LibFunc_ceil:
3016     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3017   case LibFunc_floor:
3018     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3019   case LibFunc_round:
3020     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3021   case LibFunc_roundeven:
3022     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3023   case LibFunc_nearbyint:
3024     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3025   case LibFunc_rint:
3026     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3027   case LibFunc_trunc:
3028     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3029   case LibFunc_acos:
3030   case LibFunc_acosh:
3031   case LibFunc_asin:
3032   case LibFunc_asinh:
3033   case LibFunc_atan:
3034   case LibFunc_atanh:
3035   case LibFunc_cbrt:
3036   case LibFunc_cosh:
3037   case LibFunc_exp:
3038   case LibFunc_exp10:
3039   case LibFunc_expm1:
3040   case LibFunc_cos:
3041   case LibFunc_sin:
3042   case LibFunc_sinh:
3043   case LibFunc_tanh:
3044     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3045       return optimizeUnaryDoubleFP(CI, Builder, true);
3046     return nullptr;
3047   case LibFunc_copysign:
3048     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3049       return optimizeBinaryDoubleFP(CI, Builder);
3050     return nullptr;
3051   case LibFunc_fminf:
3052   case LibFunc_fmin:
3053   case LibFunc_fminl:
3054   case LibFunc_fmaxf:
3055   case LibFunc_fmax:
3056   case LibFunc_fmaxl:
3057     return optimizeFMinFMax(CI, Builder);
3058   case LibFunc_cabs:
3059   case LibFunc_cabsf:
3060   case LibFunc_cabsl:
3061     return optimizeCAbs(CI, Builder);
3062   default:
3063     return nullptr;
3064   }
3065 }
3066 
3067 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3068   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3069 
3070   // TODO: Split out the code below that operates on FP calls so that
3071   //       we can all non-FP calls with the StrictFP attribute to be
3072   //       optimized.
3073   if (CI->isNoBuiltin())
3074     return nullptr;
3075 
3076   LibFunc Func;
3077   Function *Callee = CI->getCalledFunction();
3078   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3079 
3080   SmallVector<OperandBundleDef, 2> OpBundles;
3081   CI->getOperandBundlesAsDefs(OpBundles);
3082 
3083   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3084   Builder.setDefaultOperandBundles(OpBundles);
3085 
3086   // Command-line parameter overrides instruction attribute.
3087   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3088   // used by the intrinsic optimizations.
3089   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3090     UnsafeFPShrink = EnableUnsafeFPShrink;
3091   else if (isa<FPMathOperator>(CI) && CI->isFast())
3092     UnsafeFPShrink = true;
3093 
3094   // First, check for intrinsics.
3095   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3096     if (!IsCallingConvC)
3097       return nullptr;
3098     // The FP intrinsics have corresponding constrained versions so we don't
3099     // need to check for the StrictFP attribute here.
3100     switch (II->getIntrinsicID()) {
3101     case Intrinsic::pow:
3102       return optimizePow(CI, Builder);
3103     case Intrinsic::exp2:
3104       return optimizeExp2(CI, Builder);
3105     case Intrinsic::log:
3106     case Intrinsic::log2:
3107     case Intrinsic::log10:
3108       return optimizeLog(CI, Builder);
3109     case Intrinsic::sqrt:
3110       return optimizeSqrt(CI, Builder);
3111     case Intrinsic::memset:
3112       return optimizeMemSet(CI, Builder);
3113     case Intrinsic::memcpy:
3114       return optimizeMemCpy(CI, Builder);
3115     case Intrinsic::memmove:
3116       return optimizeMemMove(CI, Builder);
3117     default:
3118       return nullptr;
3119     }
3120   }
3121 
3122   // Also try to simplify calls to fortified library functions.
3123   if (Value *SimplifiedFortifiedCI =
3124           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3125     // Try to further simplify the result.
3126     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3127     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3128       // Ensure that SimplifiedCI's uses are complete, since some calls have
3129       // their uses analyzed.
3130       replaceAllUsesWith(CI, SimplifiedCI);
3131 
3132       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3133       // we might replace later on.
3134       IRBuilderBase::InsertPointGuard Guard(Builder);
3135       Builder.SetInsertPoint(SimplifiedCI);
3136       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3137         // If we were able to further simplify, remove the now redundant call.
3138         substituteInParent(SimplifiedCI, V);
3139         return V;
3140       }
3141     }
3142     return SimplifiedFortifiedCI;
3143   }
3144 
3145   // Then check for known library functions.
3146   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3147     // We never change the calling convention.
3148     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3149       return nullptr;
3150     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3151       return V;
3152     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3153       return V;
3154     switch (Func) {
3155     case LibFunc_ffs:
3156     case LibFunc_ffsl:
3157     case LibFunc_ffsll:
3158       return optimizeFFS(CI, Builder);
3159     case LibFunc_fls:
3160     case LibFunc_flsl:
3161     case LibFunc_flsll:
3162       return optimizeFls(CI, Builder);
3163     case LibFunc_abs:
3164     case LibFunc_labs:
3165     case LibFunc_llabs:
3166       return optimizeAbs(CI, Builder);
3167     case LibFunc_isdigit:
3168       return optimizeIsDigit(CI, Builder);
3169     case LibFunc_isascii:
3170       return optimizeIsAscii(CI, Builder);
3171     case LibFunc_toascii:
3172       return optimizeToAscii(CI, Builder);
3173     case LibFunc_atoi:
3174     case LibFunc_atol:
3175     case LibFunc_atoll:
3176       return optimizeAtoi(CI, Builder);
3177     case LibFunc_strtol:
3178     case LibFunc_strtoll:
3179       return optimizeStrtol(CI, Builder);
3180     case LibFunc_printf:
3181       return optimizePrintF(CI, Builder);
3182     case LibFunc_sprintf:
3183       return optimizeSPrintF(CI, Builder);
3184     case LibFunc_snprintf:
3185       return optimizeSnPrintF(CI, Builder);
3186     case LibFunc_fprintf:
3187       return optimizeFPrintF(CI, Builder);
3188     case LibFunc_fwrite:
3189       return optimizeFWrite(CI, Builder);
3190     case LibFunc_fputs:
3191       return optimizeFPuts(CI, Builder);
3192     case LibFunc_puts:
3193       return optimizePuts(CI, Builder);
3194     case LibFunc_perror:
3195       return optimizeErrorReporting(CI, Builder);
3196     case LibFunc_vfprintf:
3197     case LibFunc_fiprintf:
3198       return optimizeErrorReporting(CI, Builder, 0);
3199     default:
3200       return nullptr;
3201     }
3202   }
3203   return nullptr;
3204 }
3205 
3206 LibCallSimplifier::LibCallSimplifier(
3207     const DataLayout &DL, const TargetLibraryInfo *TLI,
3208     OptimizationRemarkEmitter &ORE,
3209     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3210     function_ref<void(Instruction *, Value *)> Replacer,
3211     function_ref<void(Instruction *)> Eraser)
3212     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3213       Replacer(Replacer), Eraser(Eraser) {}
3214 
3215 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3216   // Indirect through the replacer used in this instance.
3217   Replacer(I, With);
3218 }
3219 
3220 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3221   Eraser(I);
3222 }
3223 
3224 // TODO:
3225 //   Additional cases that we need to add to this file:
3226 //
3227 // cbrt:
3228 //   * cbrt(expN(X))  -> expN(x/3)
3229 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3230 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3231 //
3232 // exp, expf, expl:
3233 //   * exp(log(x))  -> x
3234 //
3235 // log, logf, logl:
3236 //   * log(exp(x))   -> x
3237 //   * log(exp(y))   -> y*log(e)
3238 //   * log(exp10(y)) -> y*log(10)
3239 //   * log(sqrt(x))  -> 0.5*log(x)
3240 //
3241 // pow, powf, powl:
3242 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3243 //   * pow(pow(x,y),z)-> pow(x,y*z)
3244 //
3245 // signbit:
3246 //   * signbit(cnst) -> cnst'
3247 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3248 //
3249 // sqrt, sqrtf, sqrtl:
3250 //   * sqrt(expN(x))  -> expN(x*0.5)
3251 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3252 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3253 //
3254 
3255 //===----------------------------------------------------------------------===//
3256 // Fortified Library Call Optimizations
3257 //===----------------------------------------------------------------------===//
3258 
3259 bool
3260 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3261                                                     unsigned ObjSizeOp,
3262                                                     Optional<unsigned> SizeOp,
3263                                                     Optional<unsigned> StrOp,
3264                                                     Optional<unsigned> FlagOp) {
3265   // If this function takes a flag argument, the implementation may use it to
3266   // perform extra checks. Don't fold into the non-checking variant.
3267   if (FlagOp) {
3268     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3269     if (!Flag || !Flag->isZero())
3270       return false;
3271   }
3272 
3273   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3274     return true;
3275 
3276   if (ConstantInt *ObjSizeCI =
3277           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3278     if (ObjSizeCI->isMinusOne())
3279       return true;
3280     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3281     if (OnlyLowerUnknownSize)
3282       return false;
3283     if (StrOp) {
3284       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3285       // If the length is 0 we don't know how long it is and so we can't
3286       // remove the check.
3287       if (Len)
3288         annotateDereferenceableBytes(CI, *StrOp, Len);
3289       else
3290         return false;
3291       return ObjSizeCI->getZExtValue() >= Len;
3292     }
3293 
3294     if (SizeOp) {
3295       if (ConstantInt *SizeCI =
3296               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3297         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3298     }
3299   }
3300   return false;
3301 }
3302 
3303 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3304                                                      IRBuilderBase &B) {
3305   if (isFortifiedCallFoldable(CI, 3, 2)) {
3306     CallInst *NewCI =
3307         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3308                        Align(1), CI->getArgOperand(2));
3309     NewCI->setAttributes(CI->getAttributes());
3310     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3311     copyFlags(*CI, NewCI);
3312     return CI->getArgOperand(0);
3313   }
3314   return nullptr;
3315 }
3316 
3317 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3318                                                       IRBuilderBase &B) {
3319   if (isFortifiedCallFoldable(CI, 3, 2)) {
3320     CallInst *NewCI =
3321         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3322                         Align(1), CI->getArgOperand(2));
3323     NewCI->setAttributes(CI->getAttributes());
3324     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3325     copyFlags(*CI, NewCI);
3326     return CI->getArgOperand(0);
3327   }
3328   return nullptr;
3329 }
3330 
3331 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3332                                                      IRBuilderBase &B) {
3333   if (isFortifiedCallFoldable(CI, 3, 2)) {
3334     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3335     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3336                                      CI->getArgOperand(2), Align(1));
3337     NewCI->setAttributes(CI->getAttributes());
3338     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3339     copyFlags(*CI, NewCI);
3340     return CI->getArgOperand(0);
3341   }
3342   return nullptr;
3343 }
3344 
3345 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3346                                                       IRBuilderBase &B) {
3347   const DataLayout &DL = CI->getModule()->getDataLayout();
3348   if (isFortifiedCallFoldable(CI, 3, 2))
3349     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3350                                   CI->getArgOperand(2), B, DL, TLI)) {
3351       CallInst *NewCI = cast<CallInst>(Call);
3352       NewCI->setAttributes(CI->getAttributes());
3353       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3354       return copyFlags(*CI, NewCI);
3355     }
3356   return nullptr;
3357 }
3358 
3359 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3360                                                       IRBuilderBase &B,
3361                                                       LibFunc Func) {
3362   const DataLayout &DL = CI->getModule()->getDataLayout();
3363   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3364         *ObjSize = CI->getArgOperand(2);
3365 
3366   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3367   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3368     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3369     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3370   }
3371 
3372   // If a) we don't have any length information, or b) we know this will
3373   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3374   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3375   // TODO: It might be nice to get a maximum length out of the possible
3376   // string lengths for varying.
3377   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3378     if (Func == LibFunc_strcpy_chk)
3379       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3380     else
3381       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3382   }
3383 
3384   if (OnlyLowerUnknownSize)
3385     return nullptr;
3386 
3387   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3388   uint64_t Len = GetStringLength(Src);
3389   if (Len)
3390     annotateDereferenceableBytes(CI, 1, Len);
3391   else
3392     return nullptr;
3393 
3394   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3395   // sizeof(int*) for every target. So the assumption used here to derive the
3396   // SizeTBits based on the size of an integer pointer in address space zero
3397   // isn't always valid.
3398   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3399   Value *LenV = ConstantInt::get(SizeTTy, Len);
3400   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3401   // If the function was an __stpcpy_chk, and we were able to fold it into
3402   // a __memcpy_chk, we still need to return the correct end pointer.
3403   if (Ret && Func == LibFunc_stpcpy_chk)
3404     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3405   return copyFlags(*CI, cast<CallInst>(Ret));
3406 }
3407 
3408 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3409                                                      IRBuilderBase &B) {
3410   if (isFortifiedCallFoldable(CI, 1, None, 0))
3411     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3412                                      CI->getModule()->getDataLayout(), TLI));
3413   return nullptr;
3414 }
3415 
3416 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3417                                                        IRBuilderBase &B,
3418                                                        LibFunc Func) {
3419   if (isFortifiedCallFoldable(CI, 3, 2)) {
3420     if (Func == LibFunc_strncpy_chk)
3421       return copyFlags(*CI,
3422                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3423                                    CI->getArgOperand(2), B, TLI));
3424     else
3425       return copyFlags(*CI,
3426                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3427                                    CI->getArgOperand(2), B, TLI));
3428   }
3429 
3430   return nullptr;
3431 }
3432 
3433 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3434                                                       IRBuilderBase &B) {
3435   if (isFortifiedCallFoldable(CI, 4, 3))
3436     return copyFlags(
3437         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3438                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3439 
3440   return nullptr;
3441 }
3442 
3443 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3444                                                        IRBuilderBase &B) {
3445   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3446     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3447     return copyFlags(*CI,
3448                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3449                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3450   }
3451 
3452   return nullptr;
3453 }
3454 
3455 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3456                                                       IRBuilderBase &B) {
3457   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3458     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3459     return copyFlags(*CI,
3460                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3461                                  VariadicArgs, B, TLI));
3462   }
3463 
3464   return nullptr;
3465 }
3466 
3467 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3468                                                      IRBuilderBase &B) {
3469   if (isFortifiedCallFoldable(CI, 2))
3470     return copyFlags(
3471         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3472 
3473   return nullptr;
3474 }
3475 
3476 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3477                                                    IRBuilderBase &B) {
3478   if (isFortifiedCallFoldable(CI, 3))
3479     return copyFlags(*CI,
3480                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3481                                  CI->getArgOperand(2), B, TLI));
3482 
3483   return nullptr;
3484 }
3485 
3486 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3487                                                       IRBuilderBase &B) {
3488   if (isFortifiedCallFoldable(CI, 3))
3489     return copyFlags(*CI,
3490                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3491                                  CI->getArgOperand(2), B, TLI));
3492 
3493   return nullptr;
3494 }
3495 
3496 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3497                                                       IRBuilderBase &B) {
3498   if (isFortifiedCallFoldable(CI, 3))
3499     return copyFlags(*CI,
3500                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3501                                  CI->getArgOperand(2), B, TLI));
3502 
3503   return nullptr;
3504 }
3505 
3506 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3507                                                         IRBuilderBase &B) {
3508   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3509     return copyFlags(
3510         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3511                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3512 
3513   return nullptr;
3514 }
3515 
3516 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3517                                                        IRBuilderBase &B) {
3518   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3519     return copyFlags(*CI,
3520                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3521                                   CI->getArgOperand(4), B, TLI));
3522 
3523   return nullptr;
3524 }
3525 
3526 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3527                                                 IRBuilderBase &Builder) {
3528   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3529   // Some clang users checked for _chk libcall availability using:
3530   //   __has_builtin(__builtin___memcpy_chk)
3531   // When compiling with -fno-builtin, this is always true.
3532   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3533   // end up with fortified libcalls, which isn't acceptable in a freestanding
3534   // environment which only provides their non-fortified counterparts.
3535   //
3536   // Until we change clang and/or teach external users to check for availability
3537   // differently, disregard the "nobuiltin" attribute and TLI::has.
3538   //
3539   // PR23093.
3540 
3541   LibFunc Func;
3542   Function *Callee = CI->getCalledFunction();
3543   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3544 
3545   SmallVector<OperandBundleDef, 2> OpBundles;
3546   CI->getOperandBundlesAsDefs(OpBundles);
3547 
3548   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3549   Builder.setDefaultOperandBundles(OpBundles);
3550 
3551   // First, check that this is a known library functions and that the prototype
3552   // is correct.
3553   if (!TLI->getLibFunc(*Callee, Func))
3554     return nullptr;
3555 
3556   // We never change the calling convention.
3557   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3558     return nullptr;
3559 
3560   switch (Func) {
3561   case LibFunc_memcpy_chk:
3562     return optimizeMemCpyChk(CI, Builder);
3563   case LibFunc_mempcpy_chk:
3564     return optimizeMemPCpyChk(CI, Builder);
3565   case LibFunc_memmove_chk:
3566     return optimizeMemMoveChk(CI, Builder);
3567   case LibFunc_memset_chk:
3568     return optimizeMemSetChk(CI, Builder);
3569   case LibFunc_stpcpy_chk:
3570   case LibFunc_strcpy_chk:
3571     return optimizeStrpCpyChk(CI, Builder, Func);
3572   case LibFunc_strlen_chk:
3573     return optimizeStrLenChk(CI, Builder);
3574   case LibFunc_stpncpy_chk:
3575   case LibFunc_strncpy_chk:
3576     return optimizeStrpNCpyChk(CI, Builder, Func);
3577   case LibFunc_memccpy_chk:
3578     return optimizeMemCCpyChk(CI, Builder);
3579   case LibFunc_snprintf_chk:
3580     return optimizeSNPrintfChk(CI, Builder);
3581   case LibFunc_sprintf_chk:
3582     return optimizeSPrintfChk(CI, Builder);
3583   case LibFunc_strcat_chk:
3584     return optimizeStrCatChk(CI, Builder);
3585   case LibFunc_strlcat_chk:
3586     return optimizeStrLCat(CI, Builder);
3587   case LibFunc_strncat_chk:
3588     return optimizeStrNCatChk(CI, Builder);
3589   case LibFunc_strlcpy_chk:
3590     return optimizeStrLCpyChk(CI, Builder);
3591   case LibFunc_vsnprintf_chk:
3592     return optimizeVSNPrintfChk(CI, Builder);
3593   case LibFunc_vsprintf_chk:
3594     return optimizeVSPrintfChk(CI, Builder);
3595   default:
3596     break;
3597   }
3598   return nullptr;
3599 }
3600 
3601 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3602     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3603     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3604