1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 42 cl::desc("Treat error-reporting calls as cold")); 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc::Func Func) { 56 return Func == LibFunc::abs || Func == LibFunc::labs || 57 Func == LibFunc::llabs || Func == LibFunc::strlen; 58 } 59 60 /// Return true if it only matters that the value is equal or not-equal to zero. 61 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 62 for (User *U : V->users()) { 63 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 64 if (IC->isEquality()) 65 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 66 if (C->isNullValue()) 67 continue; 68 // Unknown instruction. 69 return false; 70 } 71 return true; 72 } 73 74 /// Return true if it is only used in equality comparisons with With. 75 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 76 for (User *U : V->users()) { 77 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 78 if (IC->isEquality() && IC->getOperand(1) == With) 79 continue; 80 // Unknown instruction. 81 return false; 82 } 83 return true; 84 } 85 86 static bool callHasFloatingPointArgument(const CallInst *CI) { 87 return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) { 88 return OI->getType()->isFloatingPointTy(); 89 }); 90 } 91 92 /// \brief Check whether the overloaded unary floating point function 93 /// corresponding to \a Ty is available. 94 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 95 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 96 LibFunc::Func LongDoubleFn) { 97 switch (Ty->getTypeID()) { 98 case Type::FloatTyID: 99 return TLI->has(FloatFn); 100 case Type::DoubleTyID: 101 return TLI->has(DoubleFn); 102 default: 103 return TLI->has(LongDoubleFn); 104 } 105 } 106 107 /// \brief Returns whether \p F matches the signature expected for the 108 /// string/memory copying library function \p Func. 109 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 110 /// Their fortified (_chk) counterparts are also accepted. 111 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 112 const DataLayout &DL = F->getParent()->getDataLayout(); 113 FunctionType *FT = F->getFunctionType(); 114 LLVMContext &Context = F->getContext(); 115 Type *PCharTy = Type::getInt8PtrTy(Context); 116 Type *SizeTTy = DL.getIntPtrType(Context); 117 unsigned NumParams = FT->getNumParams(); 118 119 // All string libfuncs return the same type as the first parameter. 120 if (FT->getReturnType() != FT->getParamType(0)) 121 return false; 122 123 switch (Func) { 124 default: 125 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 126 case LibFunc::stpncpy_chk: 127 case LibFunc::strncpy_chk: 128 --NumParams; // fallthrough 129 case LibFunc::stpncpy: 130 case LibFunc::strncpy: { 131 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 132 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 133 return false; 134 break; 135 } 136 case LibFunc::strcpy_chk: 137 case LibFunc::stpcpy_chk: 138 --NumParams; // fallthrough 139 case LibFunc::stpcpy: 140 case LibFunc::strcpy: { 141 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 142 FT->getParamType(0) != PCharTy) 143 return false; 144 break; 145 } 146 case LibFunc::memmove_chk: 147 case LibFunc::memcpy_chk: 148 --NumParams; // fallthrough 149 case LibFunc::memmove: 150 case LibFunc::memcpy: { 151 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 152 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 153 return false; 154 break; 155 } 156 case LibFunc::memset_chk: 157 --NumParams; // fallthrough 158 case LibFunc::memset: { 159 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 160 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 161 return false; 162 break; 163 } 164 } 165 // If this is a fortified libcall, the last parameter is a size_t. 166 if (NumParams == FT->getNumParams() - 1) 167 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 168 return true; 169 } 170 171 //===----------------------------------------------------------------------===// 172 // String and Memory Library Call Optimizations 173 //===----------------------------------------------------------------------===// 174 175 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 176 Function *Callee = CI->getCalledFunction(); 177 // Verify the "strcat" function prototype. 178 FunctionType *FT = Callee->getFunctionType(); 179 if (FT->getNumParams() != 2|| 180 FT->getReturnType() != B.getInt8PtrTy() || 181 FT->getParamType(0) != FT->getReturnType() || 182 FT->getParamType(1) != FT->getReturnType()) 183 return nullptr; 184 185 // Extract some information from the instruction 186 Value *Dst = CI->getArgOperand(0); 187 Value *Src = CI->getArgOperand(1); 188 189 // See if we can get the length of the input string. 190 uint64_t Len = GetStringLength(Src); 191 if (Len == 0) 192 return nullptr; 193 --Len; // Unbias length. 194 195 // Handle the simple, do-nothing case: strcat(x, "") -> x 196 if (Len == 0) 197 return Dst; 198 199 return emitStrLenMemCpy(Src, Dst, Len, B); 200 } 201 202 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 203 IRBuilder<> &B) { 204 // We need to find the end of the destination string. That's where the 205 // memory is to be moved to. We just generate a call to strlen. 206 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 207 if (!DstLen) 208 return nullptr; 209 210 // Now that we have the destination's length, we must index into the 211 // destination's pointer to get the actual memcpy destination (end of 212 // the string .. we're concatenating). 213 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 214 215 // We have enough information to now generate the memcpy call to do the 216 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 217 B.CreateMemCpy(CpyDst, Src, 218 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 219 1); 220 return Dst; 221 } 222 223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 224 Function *Callee = CI->getCalledFunction(); 225 // Verify the "strncat" function prototype. 226 FunctionType *FT = Callee->getFunctionType(); 227 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 228 FT->getParamType(0) != FT->getReturnType() || 229 FT->getParamType(1) != FT->getReturnType() || 230 !FT->getParamType(2)->isIntegerTy()) 231 return nullptr; 232 233 // Extract some information from the instruction. 234 Value *Dst = CI->getArgOperand(0); 235 Value *Src = CI->getArgOperand(1); 236 uint64_t Len; 237 238 // We don't do anything if length is not constant. 239 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 240 Len = LengthArg->getZExtValue(); 241 else 242 return nullptr; 243 244 // See if we can get the length of the input string. 245 uint64_t SrcLen = GetStringLength(Src); 246 if (SrcLen == 0) 247 return nullptr; 248 --SrcLen; // Unbias length. 249 250 // Handle the simple, do-nothing cases: 251 // strncat(x, "", c) -> x 252 // strncat(x, c, 0) -> x 253 if (SrcLen == 0 || Len == 0) 254 return Dst; 255 256 // We don't optimize this case. 257 if (Len < SrcLen) 258 return nullptr; 259 260 // strncat(x, s, c) -> strcat(x, s) 261 // s is constant so the strcat can be optimized further. 262 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 263 } 264 265 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 266 Function *Callee = CI->getCalledFunction(); 267 // Verify the "strchr" function prototype. 268 FunctionType *FT = Callee->getFunctionType(); 269 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 270 FT->getParamType(0) != FT->getReturnType() || 271 !FT->getParamType(1)->isIntegerTy(32)) 272 return nullptr; 273 274 Value *SrcStr = CI->getArgOperand(0); 275 276 // If the second operand is non-constant, see if we can compute the length 277 // of the input string and turn this into memchr. 278 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 279 if (!CharC) { 280 uint64_t Len = GetStringLength(SrcStr); 281 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 282 return nullptr; 283 284 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 285 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 286 B, DL, TLI); 287 } 288 289 // Otherwise, the character is a constant, see if the first argument is 290 // a string literal. If so, we can constant fold. 291 StringRef Str; 292 if (!getConstantStringInfo(SrcStr, Str)) { 293 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 294 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 295 "strchr"); 296 return nullptr; 297 } 298 299 // Compute the offset, make sure to handle the case when we're searching for 300 // zero (a weird way to spell strlen). 301 size_t I = (0xFF & CharC->getSExtValue()) == 0 302 ? Str.size() 303 : Str.find(CharC->getSExtValue()); 304 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 305 return Constant::getNullValue(CI->getType()); 306 307 // strchr(s+n,c) -> gep(s+n+i,c) 308 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 309 } 310 311 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 312 Function *Callee = CI->getCalledFunction(); 313 // Verify the "strrchr" function prototype. 314 FunctionType *FT = Callee->getFunctionType(); 315 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 316 FT->getParamType(0) != FT->getReturnType() || 317 !FT->getParamType(1)->isIntegerTy(32)) 318 return nullptr; 319 320 Value *SrcStr = CI->getArgOperand(0); 321 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 322 323 // Cannot fold anything if we're not looking for a constant. 324 if (!CharC) 325 return nullptr; 326 327 StringRef Str; 328 if (!getConstantStringInfo(SrcStr, Str)) { 329 // strrchr(s, 0) -> strchr(s, 0) 330 if (CharC->isZero()) 331 return emitStrChr(SrcStr, '\0', B, TLI); 332 return nullptr; 333 } 334 335 // Compute the offset. 336 size_t I = (0xFF & CharC->getSExtValue()) == 0 337 ? Str.size() 338 : Str.rfind(CharC->getSExtValue()); 339 if (I == StringRef::npos) // Didn't find the char. Return null. 340 return Constant::getNullValue(CI->getType()); 341 342 // strrchr(s+n,c) -> gep(s+n+i,c) 343 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 344 } 345 346 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 347 Function *Callee = CI->getCalledFunction(); 348 // Verify the "strcmp" function prototype. 349 FunctionType *FT = Callee->getFunctionType(); 350 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 351 FT->getParamType(0) != FT->getParamType(1) || 352 FT->getParamType(0) != B.getInt8PtrTy()) 353 return nullptr; 354 355 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 356 if (Str1P == Str2P) // strcmp(x,x) -> 0 357 return ConstantInt::get(CI->getType(), 0); 358 359 StringRef Str1, Str2; 360 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 361 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 362 363 // strcmp(x, y) -> cnst (if both x and y are constant strings) 364 if (HasStr1 && HasStr2) 365 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 366 367 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 368 return B.CreateNeg( 369 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 370 371 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 372 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 373 374 // strcmp(P, "x") -> memcmp(P, "x", 2) 375 uint64_t Len1 = GetStringLength(Str1P); 376 uint64_t Len2 = GetStringLength(Str2P); 377 if (Len1 && Len2) { 378 return emitMemCmp(Str1P, Str2P, 379 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 380 std::min(Len1, Len2)), 381 B, DL, TLI); 382 } 383 384 return nullptr; 385 } 386 387 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 388 Function *Callee = CI->getCalledFunction(); 389 // Verify the "strncmp" function prototype. 390 FunctionType *FT = Callee->getFunctionType(); 391 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 392 FT->getParamType(0) != FT->getParamType(1) || 393 FT->getParamType(0) != B.getInt8PtrTy() || 394 !FT->getParamType(2)->isIntegerTy()) 395 return nullptr; 396 397 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 398 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 399 return ConstantInt::get(CI->getType(), 0); 400 401 // Get the length argument if it is constant. 402 uint64_t Length; 403 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 404 Length = LengthArg->getZExtValue(); 405 else 406 return nullptr; 407 408 if (Length == 0) // strncmp(x,y,0) -> 0 409 return ConstantInt::get(CI->getType(), 0); 410 411 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 412 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 413 414 StringRef Str1, Str2; 415 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 416 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 417 418 // strncmp(x, y) -> cnst (if both x and y are constant strings) 419 if (HasStr1 && HasStr2) { 420 StringRef SubStr1 = Str1.substr(0, Length); 421 StringRef SubStr2 = Str2.substr(0, Length); 422 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 423 } 424 425 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 426 return B.CreateNeg( 427 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 428 429 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 430 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 431 432 return nullptr; 433 } 434 435 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 436 Function *Callee = CI->getCalledFunction(); 437 438 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 439 return nullptr; 440 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // See if we can get the length of the input string. 446 uint64_t Len = GetStringLength(Src); 447 if (Len == 0) 448 return nullptr; 449 450 // We have enough information to now generate the memcpy call to do the 451 // copy for us. Make a memcpy to copy the nul byte with align = 1. 452 B.CreateMemCpy(Dst, Src, 453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 454 return Dst; 455 } 456 457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 458 Function *Callee = CI->getCalledFunction(); 459 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 460 return nullptr; 461 462 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 463 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 464 Value *StrLen = emitStrLen(Src, B, DL, TLI); 465 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 466 } 467 468 // See if we can get the length of the input string. 469 uint64_t Len = GetStringLength(Src); 470 if (Len == 0) 471 return nullptr; 472 473 Type *PT = Callee->getFunctionType()->getParamType(0); 474 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 475 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 476 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 477 478 // We have enough information to now generate the memcpy call to do the 479 // copy for us. Make a memcpy to copy the nul byte with align = 1. 480 B.CreateMemCpy(Dst, Src, LenV, 1); 481 return DstEnd; 482 } 483 484 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 485 Function *Callee = CI->getCalledFunction(); 486 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 487 return nullptr; 488 489 Value *Dst = CI->getArgOperand(0); 490 Value *Src = CI->getArgOperand(1); 491 Value *LenOp = CI->getArgOperand(2); 492 493 // See if we can get the length of the input string. 494 uint64_t SrcLen = GetStringLength(Src); 495 if (SrcLen == 0) 496 return nullptr; 497 --SrcLen; 498 499 if (SrcLen == 0) { 500 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 501 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 502 return Dst; 503 } 504 505 uint64_t Len; 506 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 507 Len = LengthArg->getZExtValue(); 508 else 509 return nullptr; 510 511 if (Len == 0) 512 return Dst; // strncpy(x, y, 0) -> x 513 514 // Let strncpy handle the zero padding 515 if (Len > SrcLen + 1) 516 return nullptr; 517 518 Type *PT = Callee->getFunctionType()->getParamType(0); 519 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 520 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 521 522 return Dst; 523 } 524 525 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 526 Function *Callee = CI->getCalledFunction(); 527 FunctionType *FT = Callee->getFunctionType(); 528 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 529 !FT->getReturnType()->isIntegerTy()) 530 return nullptr; 531 532 Value *Src = CI->getArgOperand(0); 533 534 // Constant folding: strlen("xyz") -> 3 535 if (uint64_t Len = GetStringLength(Src)) 536 return ConstantInt::get(CI->getType(), Len - 1); 537 538 // If s is a constant pointer pointing to a string literal, we can fold 539 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 540 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 541 // We only try to simplify strlen when the pointer s points to an array 542 // of i8. Otherwise, we would need to scale the offset x before doing the 543 // subtraction. This will make the optimization more complex, and it's not 544 // very useful because calling strlen for a pointer of other types is 545 // very uncommon. 546 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 547 if (!isGEPBasedOnPointerToString(GEP)) 548 return nullptr; 549 550 StringRef Str; 551 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 552 size_t NullTermIdx = Str.find('\0'); 553 554 // If the string does not have '\0', leave it to strlen to compute 555 // its length. 556 if (NullTermIdx == StringRef::npos) 557 return nullptr; 558 559 Value *Offset = GEP->getOperand(2); 560 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 561 APInt KnownZero(BitWidth, 0); 562 APInt KnownOne(BitWidth, 0); 563 computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 564 nullptr); 565 KnownZero.flipAllBits(); 566 size_t ArrSize = 567 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 568 569 // KnownZero's bits are flipped, so zeros in KnownZero now represent 570 // bits known to be zeros in Offset, and ones in KnowZero represent 571 // bits unknown in Offset. Therefore, Offset is known to be in range 572 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 573 // unsigned-less-than NullTermIdx. 574 // 575 // If Offset is not provably in the range [0, NullTermIdx], we can still 576 // optimize if we can prove that the program has undefined behavior when 577 // Offset is outside that range. That is the case when GEP->getOperand(0) 578 // is a pointer to an object whose memory extent is NullTermIdx+1. 579 if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 580 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 581 NullTermIdx == ArrSize - 1)) 582 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 583 Offset); 584 } 585 586 return nullptr; 587 } 588 589 // strlen(x?"foo":"bars") --> x ? 3 : 4 590 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 591 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 592 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 593 if (LenTrue && LenFalse) { 594 Function *Caller = CI->getParent()->getParent(); 595 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 596 SI->getDebugLoc(), 597 "folded strlen(select) to select of constants"); 598 return B.CreateSelect(SI->getCondition(), 599 ConstantInt::get(CI->getType(), LenTrue - 1), 600 ConstantInt::get(CI->getType(), LenFalse - 1)); 601 } 602 } 603 604 // strlen(x) != 0 --> *x != 0 605 // strlen(x) == 0 --> *x == 0 606 if (isOnlyUsedInZeroEqualityComparison(CI)) 607 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 608 609 return nullptr; 610 } 611 612 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 613 Function *Callee = CI->getCalledFunction(); 614 FunctionType *FT = Callee->getFunctionType(); 615 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 616 FT->getParamType(1) != FT->getParamType(0) || 617 FT->getReturnType() != FT->getParamType(0)) 618 return nullptr; 619 620 StringRef S1, S2; 621 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 622 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 623 624 // strpbrk(s, "") -> nullptr 625 // strpbrk("", s) -> nullptr 626 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 627 return Constant::getNullValue(CI->getType()); 628 629 // Constant folding. 630 if (HasS1 && HasS2) { 631 size_t I = S1.find_first_of(S2); 632 if (I == StringRef::npos) // No match. 633 return Constant::getNullValue(CI->getType()); 634 635 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 636 "strpbrk"); 637 } 638 639 // strpbrk(s, "a") -> strchr(s, 'a') 640 if (HasS2 && S2.size() == 1) 641 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 642 643 return nullptr; 644 } 645 646 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 647 Function *Callee = CI->getCalledFunction(); 648 FunctionType *FT = Callee->getFunctionType(); 649 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 650 !FT->getParamType(0)->isPointerTy() || 651 !FT->getParamType(1)->isPointerTy()) 652 return nullptr; 653 654 Value *EndPtr = CI->getArgOperand(1); 655 if (isa<ConstantPointerNull>(EndPtr)) { 656 // With a null EndPtr, this function won't capture the main argument. 657 // It would be readonly too, except that it still may write to errno. 658 CI->addAttribute(1, Attribute::NoCapture); 659 } 660 661 return nullptr; 662 } 663 664 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 665 Function *Callee = CI->getCalledFunction(); 666 FunctionType *FT = Callee->getFunctionType(); 667 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 668 FT->getParamType(1) != FT->getParamType(0) || 669 !FT->getReturnType()->isIntegerTy()) 670 return nullptr; 671 672 StringRef S1, S2; 673 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 674 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 675 676 // strspn(s, "") -> 0 677 // strspn("", s) -> 0 678 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 679 return Constant::getNullValue(CI->getType()); 680 681 // Constant folding. 682 if (HasS1 && HasS2) { 683 size_t Pos = S1.find_first_not_of(S2); 684 if (Pos == StringRef::npos) 685 Pos = S1.size(); 686 return ConstantInt::get(CI->getType(), Pos); 687 } 688 689 return nullptr; 690 } 691 692 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 693 Function *Callee = CI->getCalledFunction(); 694 FunctionType *FT = Callee->getFunctionType(); 695 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 696 FT->getParamType(1) != FT->getParamType(0) || 697 !FT->getReturnType()->isIntegerTy()) 698 return nullptr; 699 700 StringRef S1, S2; 701 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 702 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 703 704 // strcspn("", s) -> 0 705 if (HasS1 && S1.empty()) 706 return Constant::getNullValue(CI->getType()); 707 708 // Constant folding. 709 if (HasS1 && HasS2) { 710 size_t Pos = S1.find_first_of(S2); 711 if (Pos == StringRef::npos) 712 Pos = S1.size(); 713 return ConstantInt::get(CI->getType(), Pos); 714 } 715 716 // strcspn(s, "") -> strlen(s) 717 if (HasS2 && S2.empty()) 718 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 719 720 return nullptr; 721 } 722 723 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 724 Function *Callee = CI->getCalledFunction(); 725 FunctionType *FT = Callee->getFunctionType(); 726 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 727 !FT->getParamType(1)->isPointerTy() || 728 !FT->getReturnType()->isPointerTy()) 729 return nullptr; 730 731 // fold strstr(x, x) -> x. 732 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 733 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 734 735 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 736 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 737 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 738 if (!StrLen) 739 return nullptr; 740 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 741 StrLen, B, DL, TLI); 742 if (!StrNCmp) 743 return nullptr; 744 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 745 ICmpInst *Old = cast<ICmpInst>(*UI++); 746 Value *Cmp = 747 B.CreateICmp(Old->getPredicate(), StrNCmp, 748 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 749 replaceAllUsesWith(Old, Cmp); 750 } 751 return CI; 752 } 753 754 // See if either input string is a constant string. 755 StringRef SearchStr, ToFindStr; 756 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 757 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 758 759 // fold strstr(x, "") -> x. 760 if (HasStr2 && ToFindStr.empty()) 761 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 762 763 // If both strings are known, constant fold it. 764 if (HasStr1 && HasStr2) { 765 size_t Offset = SearchStr.find(ToFindStr); 766 767 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 768 return Constant::getNullValue(CI->getType()); 769 770 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 771 Value *Result = castToCStr(CI->getArgOperand(0), B); 772 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 773 return B.CreateBitCast(Result, CI->getType()); 774 } 775 776 // fold strstr(x, "y") -> strchr(x, 'y'). 777 if (HasStr2 && ToFindStr.size() == 1) { 778 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 779 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 780 } 781 return nullptr; 782 } 783 784 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 785 Function *Callee = CI->getCalledFunction(); 786 FunctionType *FT = Callee->getFunctionType(); 787 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 788 !FT->getParamType(1)->isIntegerTy(32) || 789 !FT->getParamType(2)->isIntegerTy() || 790 !FT->getReturnType()->isPointerTy()) 791 return nullptr; 792 793 Value *SrcStr = CI->getArgOperand(0); 794 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 795 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 796 797 // memchr(x, y, 0) -> null 798 if (LenC && LenC->isNullValue()) 799 return Constant::getNullValue(CI->getType()); 800 801 // From now on we need at least constant length and string. 802 StringRef Str; 803 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 804 return nullptr; 805 806 // Truncate the string to LenC. If Str is smaller than LenC we will still only 807 // scan the string, as reading past the end of it is undefined and we can just 808 // return null if we don't find the char. 809 Str = Str.substr(0, LenC->getZExtValue()); 810 811 // If the char is variable but the input str and length are not we can turn 812 // this memchr call into a simple bit field test. Of course this only works 813 // when the return value is only checked against null. 814 // 815 // It would be really nice to reuse switch lowering here but we can't change 816 // the CFG at this point. 817 // 818 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 819 // after bounds check. 820 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 821 unsigned char Max = 822 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 823 reinterpret_cast<const unsigned char *>(Str.end())); 824 825 // Make sure the bit field we're about to create fits in a register on the 826 // target. 827 // FIXME: On a 64 bit architecture this prevents us from using the 828 // interesting range of alpha ascii chars. We could do better by emitting 829 // two bitfields or shifting the range by 64 if no lower chars are used. 830 if (!DL.fitsInLegalInteger(Max + 1)) 831 return nullptr; 832 833 // For the bit field use a power-of-2 type with at least 8 bits to avoid 834 // creating unnecessary illegal types. 835 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 836 837 // Now build the bit field. 838 APInt Bitfield(Width, 0); 839 for (char C : Str) 840 Bitfield.setBit((unsigned char)C); 841 Value *BitfieldC = B.getInt(Bitfield); 842 843 // First check that the bit field access is within bounds. 844 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 845 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 846 "memchr.bounds"); 847 848 // Create code that checks if the given bit is set in the field. 849 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 850 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 851 852 // Finally merge both checks and cast to pointer type. The inttoptr 853 // implicitly zexts the i1 to intptr type. 854 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 855 } 856 857 // Check if all arguments are constants. If so, we can constant fold. 858 if (!CharC) 859 return nullptr; 860 861 // Compute the offset. 862 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 863 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 864 return Constant::getNullValue(CI->getType()); 865 866 // memchr(s+n,c,l) -> gep(s+n+i,c) 867 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 868 } 869 870 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 871 Function *Callee = CI->getCalledFunction(); 872 FunctionType *FT = Callee->getFunctionType(); 873 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 874 !FT->getParamType(1)->isPointerTy() || 875 !FT->getReturnType()->isIntegerTy(32)) 876 return nullptr; 877 878 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 879 880 if (LHS == RHS) // memcmp(s,s,x) -> 0 881 return Constant::getNullValue(CI->getType()); 882 883 // Make sure we have a constant length. 884 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 885 if (!LenC) 886 return nullptr; 887 uint64_t Len = LenC->getZExtValue(); 888 889 if (Len == 0) // memcmp(s1,s2,0) -> 0 890 return Constant::getNullValue(CI->getType()); 891 892 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 893 if (Len == 1) { 894 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 895 CI->getType(), "lhsv"); 896 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 897 CI->getType(), "rhsv"); 898 return B.CreateSub(LHSV, RHSV, "chardiff"); 899 } 900 901 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 902 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 903 904 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 905 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 906 907 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 908 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 909 910 Type *LHSPtrTy = 911 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 912 Type *RHSPtrTy = 913 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 914 915 Value *LHSV = 916 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 917 Value *RHSV = 918 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 919 920 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 921 } 922 } 923 924 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 925 StringRef LHSStr, RHSStr; 926 if (getConstantStringInfo(LHS, LHSStr) && 927 getConstantStringInfo(RHS, RHSStr)) { 928 // Make sure we're not reading out-of-bounds memory. 929 if (Len > LHSStr.size() || Len > RHSStr.size()) 930 return nullptr; 931 // Fold the memcmp and normalize the result. This way we get consistent 932 // results across multiple platforms. 933 uint64_t Ret = 0; 934 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 935 if (Cmp < 0) 936 Ret = -1; 937 else if (Cmp > 0) 938 Ret = 1; 939 return ConstantInt::get(CI->getType(), Ret); 940 } 941 942 return nullptr; 943 } 944 945 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 946 Function *Callee = CI->getCalledFunction(); 947 948 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 949 return nullptr; 950 951 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 952 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 953 CI->getArgOperand(2), 1); 954 return CI->getArgOperand(0); 955 } 956 957 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 958 Function *Callee = CI->getCalledFunction(); 959 960 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 961 return nullptr; 962 963 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 964 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 965 CI->getArgOperand(2), 1); 966 return CI->getArgOperand(0); 967 } 968 969 // TODO: Does this belong in BuildLibCalls or should all of those similar 970 // functions be moved here? 971 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, 972 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 973 LibFunc::Func Func; 974 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 975 return nullptr; 976 977 Module *M = B.GetInsertBlock()->getModule(); 978 const DataLayout &DL = M->getDataLayout(); 979 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 980 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 981 PtrType, PtrType, nullptr); 982 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 983 984 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 985 CI->setCallingConv(F->getCallingConv()); 986 987 return CI; 988 } 989 990 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 991 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 992 const TargetLibraryInfo &TLI) { 993 // This has to be a memset of zeros (bzero). 994 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 995 if (!FillValue || FillValue->getZExtValue() != 0) 996 return nullptr; 997 998 // TODO: We should handle the case where the malloc has more than one use. 999 // This is necessary to optimize common patterns such as when the result of 1000 // the malloc is checked against null or when a memset intrinsic is used in 1001 // place of a memset library call. 1002 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1003 if (!Malloc || !Malloc->hasOneUse()) 1004 return nullptr; 1005 1006 // Is the inner call really malloc()? 1007 Function *InnerCallee = Malloc->getCalledFunction(); 1008 LibFunc::Func Func; 1009 if (!TLI.getLibFunc(InnerCallee->getName(), Func) || !TLI.has(Func) || 1010 Func != LibFunc::malloc) 1011 return nullptr; 1012 1013 // Matching the name is not good enough. Make sure the parameter and return 1014 // type match the standard library signature. 1015 FunctionType *FT = InnerCallee->getFunctionType(); 1016 if (FT->getNumParams() != 1 || !FT->getParamType(0)->isIntegerTy()) 1017 return nullptr; 1018 1019 auto *RetType = dyn_cast<PointerType>(FT->getReturnType()); 1020 if (!RetType || !RetType->getPointerElementType()->isIntegerTy(8)) 1021 return nullptr; 1022 1023 // The memset must cover the same number of bytes that are malloc'd. 1024 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1025 return nullptr; 1026 1027 // Replace the malloc with a calloc. We need the data layout to know what the 1028 // actual size of a 'size_t' parameter is. 1029 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1030 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1031 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1032 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1033 Malloc->getArgOperand(0), Malloc->getAttributes(), 1034 B, TLI); 1035 if (!Calloc) 1036 return nullptr; 1037 1038 Malloc->replaceAllUsesWith(Calloc); 1039 Malloc->eraseFromParent(); 1040 1041 return Calloc; 1042 } 1043 1044 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1045 Function *Callee = CI->getCalledFunction(); 1046 1047 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 1048 return nullptr; 1049 1050 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 1051 return Calloc; 1052 1053 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 1054 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1055 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1056 return CI->getArgOperand(0); 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // Math Library Optimizations 1061 //===----------------------------------------------------------------------===// 1062 1063 /// Return a variant of Val with float type. 1064 /// Currently this works in two cases: If Val is an FPExtension of a float 1065 /// value to something bigger, simply return the operand. 1066 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1067 /// loss of precision do so. 1068 static Value *valueHasFloatPrecision(Value *Val) { 1069 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1070 Value *Op = Cast->getOperand(0); 1071 if (Op->getType()->isFloatTy()) 1072 return Op; 1073 } 1074 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1075 APFloat F = Const->getValueAPF(); 1076 bool losesInfo; 1077 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 1078 &losesInfo); 1079 if (!losesInfo) 1080 return ConstantFP::get(Const->getContext(), F); 1081 } 1082 return nullptr; 1083 } 1084 1085 /// Any floating-point library function that we're trying to simplify will have 1086 /// a signature of the form: fptype foo(fptype param1, fptype param2, ...). 1087 /// CheckDoubleTy indicates that 'fptype' must be 'double'. 1088 static bool matchesFPLibFunctionSignature(const Function *F, unsigned NumParams, 1089 bool CheckDoubleTy) { 1090 FunctionType *FT = F->getFunctionType(); 1091 if (FT->getNumParams() != NumParams) 1092 return false; 1093 1094 // The return type must match what we're looking for. 1095 Type *RetTy = FT->getReturnType(); 1096 if (CheckDoubleTy ? !RetTy->isDoubleTy() : !RetTy->isFloatingPointTy()) 1097 return false; 1098 1099 // Each parameter must match the return type, and therefore, match every other 1100 // parameter too. 1101 for (const Type *ParamTy : FT->params()) 1102 if (ParamTy != RetTy) 1103 return false; 1104 1105 return true; 1106 } 1107 1108 /// Shrink double -> float for unary functions like 'floor'. 1109 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1110 bool CheckRetType) { 1111 Function *Callee = CI->getCalledFunction(); 1112 if (!matchesFPLibFunctionSignature(Callee, 1, true)) 1113 return nullptr; 1114 1115 if (CheckRetType) { 1116 // Check if all the uses for function like 'sin' are converted to float. 1117 for (User *U : CI->users()) { 1118 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1119 if (!Cast || !Cast->getType()->isFloatTy()) 1120 return nullptr; 1121 } 1122 } 1123 1124 // If this is something like 'floor((double)floatval)', convert to floorf. 1125 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 1126 if (V == nullptr) 1127 return nullptr; 1128 1129 // Propagate fast-math flags from the existing call to the new call. 1130 IRBuilder<>::FastMathFlagGuard Guard(B); 1131 B.setFastMathFlags(CI->getFastMathFlags()); 1132 1133 // floor((double)floatval) -> (double)floorf(floatval) 1134 if (Callee->isIntrinsic()) { 1135 Module *M = CI->getModule(); 1136 Intrinsic::ID IID = Callee->getIntrinsicID(); 1137 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1138 V = B.CreateCall(F, V); 1139 } else { 1140 // The call is a library call rather than an intrinsic. 1141 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1142 } 1143 1144 return B.CreateFPExt(V, B.getDoubleTy()); 1145 } 1146 1147 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1148 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1149 Function *Callee = CI->getCalledFunction(); 1150 if (!matchesFPLibFunctionSignature(Callee, 2, true)) 1151 return nullptr; 1152 1153 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1154 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1155 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1156 if (V1 == nullptr) 1157 return nullptr; 1158 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1159 if (V2 == nullptr) 1160 return nullptr; 1161 1162 // Propagate fast-math flags from the existing call to the new call. 1163 IRBuilder<>::FastMathFlagGuard Guard(B); 1164 B.setFastMathFlags(CI->getFastMathFlags()); 1165 1166 // fmin((double)floatval1, (double)floatval2) 1167 // -> (double)fminf(floatval1, floatval2) 1168 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1169 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1170 Callee->getAttributes()); 1171 return B.CreateFPExt(V, B.getDoubleTy()); 1172 } 1173 1174 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1175 Function *Callee = CI->getCalledFunction(); 1176 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1177 return nullptr; 1178 1179 Value *Ret = nullptr; 1180 StringRef Name = Callee->getName(); 1181 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1182 Ret = optimizeUnaryDoubleFP(CI, B, true); 1183 1184 // cos(-x) -> cos(x) 1185 Value *Op1 = CI->getArgOperand(0); 1186 if (BinaryOperator::isFNeg(Op1)) { 1187 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1188 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1189 } 1190 return Ret; 1191 } 1192 1193 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1194 // Multiplications calculated using Addition Chains. 1195 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1196 1197 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1198 1199 if (InnerChain[Exp]) 1200 return InnerChain[Exp]; 1201 1202 static const unsigned AddChain[33][2] = { 1203 {0, 0}, // Unused. 1204 {0, 0}, // Unused (base case = pow1). 1205 {1, 1}, // Unused (pre-computed). 1206 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1207 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1208 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1209 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1210 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1211 }; 1212 1213 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1214 getPow(InnerChain, AddChain[Exp][1], B)); 1215 return InnerChain[Exp]; 1216 } 1217 1218 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1219 Function *Callee = CI->getCalledFunction(); 1220 if (!matchesFPLibFunctionSignature(Callee, 2, false)) 1221 return nullptr; 1222 1223 Value *Ret = nullptr; 1224 StringRef Name = Callee->getName(); 1225 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1226 Ret = optimizeUnaryDoubleFP(CI, B, true); 1227 1228 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1229 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1230 // pow(1.0, x) -> 1.0 1231 if (Op1C->isExactlyValue(1.0)) 1232 return Op1C; 1233 // pow(2.0, x) -> exp2(x) 1234 if (Op1C->isExactlyValue(2.0) && 1235 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1236 LibFunc::exp2l)) 1237 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1238 Callee->getAttributes()); 1239 // pow(10.0, x) -> exp10(x) 1240 if (Op1C->isExactlyValue(10.0) && 1241 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1242 LibFunc::exp10l)) 1243 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1244 Callee->getAttributes()); 1245 } 1246 1247 // pow(exp(x), y) -> exp(x * y) 1248 // pow(exp2(x), y) -> exp2(x * y) 1249 // We enable these only with fast-math. Besides rounding differences, the 1250 // transformation changes overflow and underflow behavior quite dramatically. 1251 // Example: x = 1000, y = 0.001. 1252 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1253 auto *OpC = dyn_cast<CallInst>(Op1); 1254 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1255 LibFunc::Func Func; 1256 Function *OpCCallee = OpC->getCalledFunction(); 1257 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1258 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { 1259 IRBuilder<>::FastMathFlagGuard Guard(B); 1260 B.setFastMathFlags(CI->getFastMathFlags()); 1261 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1262 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1263 OpCCallee->getAttributes()); 1264 } 1265 } 1266 1267 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1268 if (!Op2C) 1269 return Ret; 1270 1271 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1272 return ConstantFP::get(CI->getType(), 1.0); 1273 1274 if (Op2C->isExactlyValue(0.5) && 1275 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1276 LibFunc::sqrtl) && 1277 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1278 LibFunc::fabsl)) { 1279 1280 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1281 if (CI->hasUnsafeAlgebra()) { 1282 IRBuilder<>::FastMathFlagGuard Guard(B); 1283 B.setFastMathFlags(CI->getFastMathFlags()); 1284 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1285 Callee->getAttributes()); 1286 } 1287 1288 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1289 // This is faster than calling pow, and still handles negative zero 1290 // and negative infinity correctly. 1291 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1292 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1293 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1294 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1295 Value *FAbs = 1296 emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1297 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1298 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1299 return Sel; 1300 } 1301 1302 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1303 return Op1; 1304 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1305 return B.CreateFMul(Op1, Op1, "pow2"); 1306 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1307 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1308 1309 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1310 if (CI->hasUnsafeAlgebra()) { 1311 APFloat V = abs(Op2C->getValueAPF()); 1312 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1313 // This transformation applies to integer exponents only. 1314 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1315 !V.isInteger()) 1316 return nullptr; 1317 1318 // We will memoize intermediate products of the Addition Chain. 1319 Value *InnerChain[33] = {nullptr}; 1320 InnerChain[1] = Op1; 1321 InnerChain[2] = B.CreateFMul(Op1, Op1); 1322 1323 // We cannot readily convert a non-double type (like float) to a double. 1324 // So we first convert V to something which could be converted to double. 1325 bool ignored; 1326 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1327 1328 // TODO: Should the new instructions propagate the 'fast' flag of the pow()? 1329 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1330 // For negative exponents simply compute the reciprocal. 1331 if (Op2C->isNegative()) 1332 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1333 return FMul; 1334 } 1335 1336 return nullptr; 1337 } 1338 1339 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1340 Function *Callee = CI->getCalledFunction(); 1341 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1342 return nullptr; 1343 1344 Value *Ret = nullptr; 1345 StringRef Name = Callee->getName(); 1346 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1347 Ret = optimizeUnaryDoubleFP(CI, B, true); 1348 1349 Value *Op = CI->getArgOperand(0); 1350 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1351 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1352 LibFunc::Func LdExp = LibFunc::ldexpl; 1353 if (Op->getType()->isFloatTy()) 1354 LdExp = LibFunc::ldexpf; 1355 else if (Op->getType()->isDoubleTy()) 1356 LdExp = LibFunc::ldexp; 1357 1358 if (TLI->has(LdExp)) { 1359 Value *LdExpArg = nullptr; 1360 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1361 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1362 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1363 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1364 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1365 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1366 } 1367 1368 if (LdExpArg) { 1369 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1370 if (!Op->getType()->isFloatTy()) 1371 One = ConstantExpr::getFPExtend(One, Op->getType()); 1372 1373 Module *M = CI->getModule(); 1374 Value *NewCallee = 1375 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1376 Op->getType(), B.getInt32Ty(), nullptr); 1377 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1378 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1379 CI->setCallingConv(F->getCallingConv()); 1380 1381 return CI; 1382 } 1383 } 1384 return Ret; 1385 } 1386 1387 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1388 Function *Callee = CI->getCalledFunction(); 1389 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1390 return nullptr; 1391 1392 Value *Ret = nullptr; 1393 StringRef Name = Callee->getName(); 1394 if (Name == "fabs" && hasFloatVersion(Name)) 1395 Ret = optimizeUnaryDoubleFP(CI, B, false); 1396 1397 Value *Op = CI->getArgOperand(0); 1398 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1399 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1400 if (I->getOpcode() == Instruction::FMul) 1401 if (I->getOperand(0) == I->getOperand(1)) 1402 return Op; 1403 } 1404 return Ret; 1405 } 1406 1407 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1408 Function *Callee = CI->getCalledFunction(); 1409 if (!matchesFPLibFunctionSignature(Callee, 2, false)) 1410 return nullptr; 1411 1412 // If we can shrink the call to a float function rather than a double 1413 // function, do that first. 1414 StringRef Name = Callee->getName(); 1415 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1416 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1417 return Ret; 1418 1419 IRBuilder<>::FastMathFlagGuard Guard(B); 1420 FastMathFlags FMF; 1421 if (CI->hasUnsafeAlgebra()) { 1422 // Unsafe algebra sets all fast-math-flags to true. 1423 FMF.setUnsafeAlgebra(); 1424 } else { 1425 // At a minimum, no-nans-fp-math must be true. 1426 if (!CI->hasNoNaNs()) 1427 return nullptr; 1428 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1429 // "Ideally, fmax would be sensitive to the sign of zero, for example 1430 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1431 // might be impractical." 1432 FMF.setNoSignedZeros(); 1433 FMF.setNoNaNs(); 1434 } 1435 B.setFastMathFlags(FMF); 1436 1437 // We have a relaxed floating-point environment. We can ignore NaN-handling 1438 // and transform to a compare and select. We do not have to consider errno or 1439 // exceptions, because fmin/fmax do not have those. 1440 Value *Op0 = CI->getArgOperand(0); 1441 Value *Op1 = CI->getArgOperand(1); 1442 Value *Cmp = Callee->getName().startswith("fmin") ? 1443 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1444 return B.CreateSelect(Cmp, Op0, Op1); 1445 } 1446 1447 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1448 Function *Callee = CI->getCalledFunction(); 1449 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1450 return nullptr; 1451 1452 Value *Ret = nullptr; 1453 StringRef Name = Callee->getName(); 1454 if (UnsafeFPShrink && hasFloatVersion(Name)) 1455 Ret = optimizeUnaryDoubleFP(CI, B, true); 1456 1457 if (!CI->hasUnsafeAlgebra()) 1458 return Ret; 1459 Value *Op1 = CI->getArgOperand(0); 1460 auto *OpC = dyn_cast<CallInst>(Op1); 1461 1462 // The earlier call must also be unsafe in order to do these transforms. 1463 if (!OpC || !OpC->hasUnsafeAlgebra()) 1464 return Ret; 1465 1466 // log(pow(x,y)) -> y*log(x) 1467 // This is only applicable to log, log2, log10. 1468 if (Name != "log" && Name != "log2" && Name != "log10") 1469 return Ret; 1470 1471 IRBuilder<>::FastMathFlagGuard Guard(B); 1472 FastMathFlags FMF; 1473 FMF.setUnsafeAlgebra(); 1474 B.setFastMathFlags(FMF); 1475 1476 LibFunc::Func Func; 1477 Function *F = OpC->getCalledFunction(); 1478 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1479 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1480 return B.CreateFMul(OpC->getArgOperand(1), 1481 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1482 Callee->getAttributes()), "mul"); 1483 1484 // log(exp2(y)) -> y*log(2) 1485 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1486 TLI->has(Func) && Func == LibFunc::exp2) 1487 return B.CreateFMul( 1488 OpC->getArgOperand(0), 1489 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1490 Callee->getName(), B, Callee->getAttributes()), 1491 "logmul"); 1492 return Ret; 1493 } 1494 1495 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1496 Function *Callee = CI->getCalledFunction(); 1497 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1498 return nullptr; 1499 1500 Value *Ret = nullptr; 1501 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1502 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1503 Ret = optimizeUnaryDoubleFP(CI, B, true); 1504 1505 if (!CI->hasUnsafeAlgebra()) 1506 return Ret; 1507 1508 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1509 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1510 return Ret; 1511 1512 // We're looking for a repeated factor in a multiplication tree, 1513 // so we can do this fold: sqrt(x * x) -> fabs(x); 1514 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1515 Value *Op0 = I->getOperand(0); 1516 Value *Op1 = I->getOperand(1); 1517 Value *RepeatOp = nullptr; 1518 Value *OtherOp = nullptr; 1519 if (Op0 == Op1) { 1520 // Simple match: the operands of the multiply are identical. 1521 RepeatOp = Op0; 1522 } else { 1523 // Look for a more complicated pattern: one of the operands is itself 1524 // a multiply, so search for a common factor in that multiply. 1525 // Note: We don't bother looking any deeper than this first level or for 1526 // variations of this pattern because instcombine's visitFMUL and/or the 1527 // reassociation pass should give us this form. 1528 Value *OtherMul0, *OtherMul1; 1529 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1530 // Pattern: sqrt((x * y) * z) 1531 if (OtherMul0 == OtherMul1 && 1532 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1533 // Matched: sqrt((x * x) * z) 1534 RepeatOp = OtherMul0; 1535 OtherOp = Op1; 1536 } 1537 } 1538 } 1539 if (!RepeatOp) 1540 return Ret; 1541 1542 // Fast math flags for any created instructions should match the sqrt 1543 // and multiply. 1544 IRBuilder<>::FastMathFlagGuard Guard(B); 1545 B.setFastMathFlags(I->getFastMathFlags()); 1546 1547 // If we found a repeated factor, hoist it out of the square root and 1548 // replace it with the fabs of that factor. 1549 Module *M = Callee->getParent(); 1550 Type *ArgType = I->getType(); 1551 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1552 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1553 if (OtherOp) { 1554 // If we found a non-repeated factor, we still need to get its square 1555 // root. We then multiply that by the value that was simplified out 1556 // of the square root calculation. 1557 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1558 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1559 return B.CreateFMul(FabsCall, SqrtCall); 1560 } 1561 return FabsCall; 1562 } 1563 1564 // TODO: Generalize to handle any trig function and its inverse. 1565 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1566 Function *Callee = CI->getCalledFunction(); 1567 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1568 return nullptr; 1569 1570 Value *Ret = nullptr; 1571 StringRef Name = Callee->getName(); 1572 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1573 Ret = optimizeUnaryDoubleFP(CI, B, true); 1574 1575 Value *Op1 = CI->getArgOperand(0); 1576 auto *OpC = dyn_cast<CallInst>(Op1); 1577 if (!OpC) 1578 return Ret; 1579 1580 // Both calls must allow unsafe optimizations in order to remove them. 1581 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1582 return Ret; 1583 1584 // tan(atan(x)) -> x 1585 // tanf(atanf(x)) -> x 1586 // tanl(atanl(x)) -> x 1587 LibFunc::Func Func; 1588 Function *F = OpC->getCalledFunction(); 1589 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1590 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1591 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1592 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1593 Ret = OpC->getArgOperand(0); 1594 return Ret; 1595 } 1596 1597 static bool isTrigLibCall(CallInst *CI) { 1598 Function *Callee = CI->getCalledFunction(); 1599 FunctionType *FT = Callee->getFunctionType(); 1600 1601 // We can only hope to do anything useful if we can ignore things like errno 1602 // and floating-point exceptions. 1603 bool AttributesSafe = 1604 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1605 1606 // Other than that we need float(float) or double(double) 1607 return AttributesSafe && FT->getNumParams() == 1 && 1608 FT->getReturnType() == FT->getParamType(0) && 1609 (FT->getParamType(0)->isFloatTy() || 1610 FT->getParamType(0)->isDoubleTy()); 1611 } 1612 1613 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1614 bool UseFloat, Value *&Sin, Value *&Cos, 1615 Value *&SinCos) { 1616 Type *ArgTy = Arg->getType(); 1617 Type *ResTy; 1618 StringRef Name; 1619 1620 Triple T(OrigCallee->getParent()->getTargetTriple()); 1621 if (UseFloat) { 1622 Name = "__sincospif_stret"; 1623 1624 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1625 // x86_64 can't use {float, float} since that would be returned in both 1626 // xmm0 and xmm1, which isn't what a real struct would do. 1627 ResTy = T.getArch() == Triple::x86_64 1628 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1629 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1630 } else { 1631 Name = "__sincospi_stret"; 1632 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1633 } 1634 1635 Module *M = OrigCallee->getParent(); 1636 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1637 ResTy, ArgTy, nullptr); 1638 1639 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1640 // If the argument is an instruction, it must dominate all uses so put our 1641 // sincos call there. 1642 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1643 } else { 1644 // Otherwise (e.g. for a constant) the beginning of the function is as 1645 // good a place as any. 1646 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1647 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1648 } 1649 1650 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1651 1652 if (SinCos->getType()->isStructTy()) { 1653 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1654 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1655 } else { 1656 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1657 "sinpi"); 1658 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1659 "cospi"); 1660 } 1661 } 1662 1663 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1664 // Make sure the prototype is as expected, otherwise the rest of the 1665 // function is probably invalid and likely to abort. 1666 if (!isTrigLibCall(CI)) 1667 return nullptr; 1668 1669 Value *Arg = CI->getArgOperand(0); 1670 SmallVector<CallInst *, 1> SinCalls; 1671 SmallVector<CallInst *, 1> CosCalls; 1672 SmallVector<CallInst *, 1> SinCosCalls; 1673 1674 bool IsFloat = Arg->getType()->isFloatTy(); 1675 1676 // Look for all compatible sinpi, cospi and sincospi calls with the same 1677 // argument. If there are enough (in some sense) we can make the 1678 // substitution. 1679 Function *F = CI->getFunction(); 1680 for (User *U : Arg->users()) 1681 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1682 1683 // It's only worthwhile if both sinpi and cospi are actually used. 1684 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1685 return nullptr; 1686 1687 Value *Sin, *Cos, *SinCos; 1688 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1689 1690 replaceTrigInsts(SinCalls, Sin); 1691 replaceTrigInsts(CosCalls, Cos); 1692 replaceTrigInsts(SinCosCalls, SinCos); 1693 1694 return nullptr; 1695 } 1696 1697 void LibCallSimplifier::classifyArgUse( 1698 Value *Val, Function *F, bool IsFloat, 1699 SmallVectorImpl<CallInst *> &SinCalls, 1700 SmallVectorImpl<CallInst *> &CosCalls, 1701 SmallVectorImpl<CallInst *> &SinCosCalls) { 1702 CallInst *CI = dyn_cast<CallInst>(Val); 1703 1704 if (!CI) 1705 return; 1706 1707 // Don't consider calls in other functions. 1708 if (CI->getFunction() != F) 1709 return; 1710 1711 Function *Callee = CI->getCalledFunction(); 1712 LibFunc::Func Func; 1713 if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) || 1714 !isTrigLibCall(CI)) 1715 return; 1716 1717 if (IsFloat) { 1718 if (Func == LibFunc::sinpif) 1719 SinCalls.push_back(CI); 1720 else if (Func == LibFunc::cospif) 1721 CosCalls.push_back(CI); 1722 else if (Func == LibFunc::sincospif_stret) 1723 SinCosCalls.push_back(CI); 1724 } else { 1725 if (Func == LibFunc::sinpi) 1726 SinCalls.push_back(CI); 1727 else if (Func == LibFunc::cospi) 1728 CosCalls.push_back(CI); 1729 else if (Func == LibFunc::sincospi_stret) 1730 SinCosCalls.push_back(CI); 1731 } 1732 } 1733 1734 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1735 Value *Res) { 1736 for (CallInst *C : Calls) 1737 replaceAllUsesWith(C, Res); 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // Integer Library Call Optimizations 1742 //===----------------------------------------------------------------------===// 1743 1744 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1745 FunctionType *FT = Callee->getFunctionType(); 1746 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1747 FT->getParamType(0)->isIntegerTy(); 1748 } 1749 1750 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1751 Function *Callee = CI->getCalledFunction(); 1752 if (!checkIntUnaryReturnAndParam(Callee)) 1753 return nullptr; 1754 Value *Op = CI->getArgOperand(0); 1755 1756 // Constant fold. 1757 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1758 if (CI->isZero()) // ffs(0) -> 0. 1759 return B.getInt32(0); 1760 // ffs(c) -> cttz(c)+1 1761 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1762 } 1763 1764 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1765 Type *ArgType = Op->getType(); 1766 Value *F = 1767 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1768 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1769 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1770 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1771 1772 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1773 return B.CreateSelect(Cond, V, B.getInt32(0)); 1774 } 1775 1776 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1777 Function *Callee = CI->getCalledFunction(); 1778 FunctionType *FT = Callee->getFunctionType(); 1779 // We require integer(integer) where the types agree. 1780 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1781 FT->getParamType(0) != FT->getReturnType()) 1782 return nullptr; 1783 1784 // abs(x) -> x >s -1 ? x : -x 1785 Value *Op = CI->getArgOperand(0); 1786 Value *Pos = 1787 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1788 Value *Neg = B.CreateNeg(Op, "neg"); 1789 return B.CreateSelect(Pos, Op, Neg); 1790 } 1791 1792 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1793 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1794 return nullptr; 1795 1796 // isdigit(c) -> (c-'0') <u 10 1797 Value *Op = CI->getArgOperand(0); 1798 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1799 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1800 return B.CreateZExt(Op, CI->getType()); 1801 } 1802 1803 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1804 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1805 return nullptr; 1806 1807 // isascii(c) -> c <u 128 1808 Value *Op = CI->getArgOperand(0); 1809 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1810 return B.CreateZExt(Op, CI->getType()); 1811 } 1812 1813 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1814 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1815 return nullptr; 1816 1817 // toascii(c) -> c & 0x7f 1818 return B.CreateAnd(CI->getArgOperand(0), 1819 ConstantInt::get(CI->getType(), 0x7F)); 1820 } 1821 1822 //===----------------------------------------------------------------------===// 1823 // Formatting and IO Library Call Optimizations 1824 //===----------------------------------------------------------------------===// 1825 1826 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1827 1828 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1829 int StreamArg) { 1830 // Error reporting calls should be cold, mark them as such. 1831 // This applies even to non-builtin calls: it is only a hint and applies to 1832 // functions that the frontend might not understand as builtins. 1833 1834 // This heuristic was suggested in: 1835 // Improving Static Branch Prediction in a Compiler 1836 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1837 // Proceedings of PACT'98, Oct. 1998, IEEE 1838 Function *Callee = CI->getCalledFunction(); 1839 1840 if (!CI->hasFnAttr(Attribute::Cold) && 1841 isReportingError(Callee, CI, StreamArg)) { 1842 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1843 } 1844 1845 return nullptr; 1846 } 1847 1848 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1849 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1850 return false; 1851 1852 if (StreamArg < 0) 1853 return true; 1854 1855 // These functions might be considered cold, but only if their stream 1856 // argument is stderr. 1857 1858 if (StreamArg >= (int)CI->getNumArgOperands()) 1859 return false; 1860 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1861 if (!LI) 1862 return false; 1863 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1864 if (!GV || !GV->isDeclaration()) 1865 return false; 1866 return GV->getName() == "stderr"; 1867 } 1868 1869 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1870 // Check for a fixed format string. 1871 StringRef FormatStr; 1872 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1873 return nullptr; 1874 1875 // Empty format string -> noop. 1876 if (FormatStr.empty()) // Tolerate printf's declared void. 1877 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1878 1879 // Do not do any of the following transformations if the printf return value 1880 // is used, in general the printf return value is not compatible with either 1881 // putchar() or puts(). 1882 if (!CI->use_empty()) 1883 return nullptr; 1884 1885 // printf("x") -> putchar('x'), even for '%'. 1886 if (FormatStr.size() == 1) 1887 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1888 1889 // printf("%s", "a") --> putchar('a') 1890 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1891 StringRef ChrStr; 1892 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1893 return nullptr; 1894 if (ChrStr.size() != 1) 1895 return nullptr; 1896 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1897 } 1898 1899 // printf("foo\n") --> puts("foo") 1900 if (FormatStr[FormatStr.size() - 1] == '\n' && 1901 FormatStr.find('%') == StringRef::npos) { // No format characters. 1902 // Create a string literal with no \n on it. We expect the constant merge 1903 // pass to be run after this pass, to merge duplicate strings. 1904 FormatStr = FormatStr.drop_back(); 1905 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1906 return emitPutS(GV, B, TLI); 1907 } 1908 1909 // Optimize specific format strings. 1910 // printf("%c", chr) --> putchar(chr) 1911 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1912 CI->getArgOperand(1)->getType()->isIntegerTy()) 1913 return emitPutChar(CI->getArgOperand(1), B, TLI); 1914 1915 // printf("%s\n", str) --> puts(str) 1916 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1917 CI->getArgOperand(1)->getType()->isPointerTy()) 1918 return emitPutS(CI->getArgOperand(1), B, TLI); 1919 return nullptr; 1920 } 1921 1922 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1923 1924 Function *Callee = CI->getCalledFunction(); 1925 // Require one fixed pointer argument and an integer/void result. 1926 FunctionType *FT = Callee->getFunctionType(); 1927 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1928 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1929 return nullptr; 1930 1931 if (Value *V = optimizePrintFString(CI, B)) { 1932 return V; 1933 } 1934 1935 // printf(format, ...) -> iprintf(format, ...) if no floating point 1936 // arguments. 1937 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1938 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1939 Constant *IPrintFFn = 1940 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1941 CallInst *New = cast<CallInst>(CI->clone()); 1942 New->setCalledFunction(IPrintFFn); 1943 B.Insert(New); 1944 return New; 1945 } 1946 return nullptr; 1947 } 1948 1949 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1950 // Check for a fixed format string. 1951 StringRef FormatStr; 1952 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1953 return nullptr; 1954 1955 // If we just have a format string (nothing else crazy) transform it. 1956 if (CI->getNumArgOperands() == 2) { 1957 // Make sure there's no % in the constant array. We could try to handle 1958 // %% -> % in the future if we cared. 1959 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1960 if (FormatStr[i] == '%') 1961 return nullptr; // we found a format specifier, bail out. 1962 1963 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1964 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1965 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1966 FormatStr.size() + 1), 1967 1); // Copy the null byte. 1968 return ConstantInt::get(CI->getType(), FormatStr.size()); 1969 } 1970 1971 // The remaining optimizations require the format string to be "%s" or "%c" 1972 // and have an extra operand. 1973 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1974 CI->getNumArgOperands() < 3) 1975 return nullptr; 1976 1977 // Decode the second character of the format string. 1978 if (FormatStr[1] == 'c') { 1979 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1980 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1981 return nullptr; 1982 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1983 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1984 B.CreateStore(V, Ptr); 1985 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1986 B.CreateStore(B.getInt8(0), Ptr); 1987 1988 return ConstantInt::get(CI->getType(), 1); 1989 } 1990 1991 if (FormatStr[1] == 's') { 1992 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1993 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1994 return nullptr; 1995 1996 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1997 if (!Len) 1998 return nullptr; 1999 Value *IncLen = 2000 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2001 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 2002 2003 // The sprintf result is the unincremented number of bytes in the string. 2004 return B.CreateIntCast(Len, CI->getType(), false); 2005 } 2006 return nullptr; 2007 } 2008 2009 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2010 Function *Callee = CI->getCalledFunction(); 2011 // Require two fixed pointer arguments and an integer result. 2012 FunctionType *FT = Callee->getFunctionType(); 2013 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2014 !FT->getParamType(1)->isPointerTy() || 2015 !FT->getReturnType()->isIntegerTy()) 2016 return nullptr; 2017 2018 if (Value *V = optimizeSPrintFString(CI, B)) { 2019 return V; 2020 } 2021 2022 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2023 // point arguments. 2024 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 2025 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2026 Constant *SIPrintFFn = 2027 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2028 CallInst *New = cast<CallInst>(CI->clone()); 2029 New->setCalledFunction(SIPrintFFn); 2030 B.Insert(New); 2031 return New; 2032 } 2033 return nullptr; 2034 } 2035 2036 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2037 optimizeErrorReporting(CI, B, 0); 2038 2039 // All the optimizations depend on the format string. 2040 StringRef FormatStr; 2041 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2042 return nullptr; 2043 2044 // Do not do any of the following transformations if the fprintf return 2045 // value is used, in general the fprintf return value is not compatible 2046 // with fwrite(), fputc() or fputs(). 2047 if (!CI->use_empty()) 2048 return nullptr; 2049 2050 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2051 if (CI->getNumArgOperands() == 2) { 2052 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 2053 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 2054 return nullptr; // We found a format specifier. 2055 2056 return emitFWrite( 2057 CI->getArgOperand(1), 2058 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2059 CI->getArgOperand(0), B, DL, TLI); 2060 } 2061 2062 // The remaining optimizations require the format string to be "%s" or "%c" 2063 // and have an extra operand. 2064 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2065 CI->getNumArgOperands() < 3) 2066 return nullptr; 2067 2068 // Decode the second character of the format string. 2069 if (FormatStr[1] == 'c') { 2070 // fprintf(F, "%c", chr) --> fputc(chr, F) 2071 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2072 return nullptr; 2073 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2074 } 2075 2076 if (FormatStr[1] == 's') { 2077 // fprintf(F, "%s", str) --> fputs(str, F) 2078 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2079 return nullptr; 2080 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2081 } 2082 return nullptr; 2083 } 2084 2085 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2086 Function *Callee = CI->getCalledFunction(); 2087 // Require two fixed paramters as pointers and integer result. 2088 FunctionType *FT = Callee->getFunctionType(); 2089 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2090 !FT->getParamType(1)->isPointerTy() || 2091 !FT->getReturnType()->isIntegerTy()) 2092 return nullptr; 2093 2094 if (Value *V = optimizeFPrintFString(CI, B)) { 2095 return V; 2096 } 2097 2098 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2099 // floating point arguments. 2100 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 2101 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2102 Constant *FIPrintFFn = 2103 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2104 CallInst *New = cast<CallInst>(CI->clone()); 2105 New->setCalledFunction(FIPrintFFn); 2106 B.Insert(New); 2107 return New; 2108 } 2109 return nullptr; 2110 } 2111 2112 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2113 optimizeErrorReporting(CI, B, 3); 2114 2115 Function *Callee = CI->getCalledFunction(); 2116 // Require a pointer, an integer, an integer, a pointer, returning integer. 2117 FunctionType *FT = Callee->getFunctionType(); 2118 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 2119 !FT->getParamType(1)->isIntegerTy() || 2120 !FT->getParamType(2)->isIntegerTy() || 2121 !FT->getParamType(3)->isPointerTy() || 2122 !FT->getReturnType()->isIntegerTy()) 2123 return nullptr; 2124 2125 // Get the element size and count. 2126 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2127 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2128 if (!SizeC || !CountC) 2129 return nullptr; 2130 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2131 2132 // If this is writing zero records, remove the call (it's a noop). 2133 if (Bytes == 0) 2134 return ConstantInt::get(CI->getType(), 0); 2135 2136 // If this is writing one byte, turn it into fputc. 2137 // This optimisation is only valid, if the return value is unused. 2138 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2139 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2140 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2141 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2142 } 2143 2144 return nullptr; 2145 } 2146 2147 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2148 optimizeErrorReporting(CI, B, 1); 2149 2150 Function *Callee = CI->getCalledFunction(); 2151 2152 // Require two pointers. Also, we can't optimize if return value is used. 2153 FunctionType *FT = Callee->getFunctionType(); 2154 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2155 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 2156 return nullptr; 2157 2158 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2159 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2160 if (!Len) 2161 return nullptr; 2162 2163 // Known to have no uses (see above). 2164 return emitFWrite( 2165 CI->getArgOperand(0), 2166 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2167 CI->getArgOperand(1), B, DL, TLI); 2168 } 2169 2170 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2171 Function *Callee = CI->getCalledFunction(); 2172 // Require one fixed pointer argument and an integer/void result. 2173 FunctionType *FT = Callee->getFunctionType(); 2174 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 2175 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 2176 return nullptr; 2177 2178 // Check for a constant string. 2179 StringRef Str; 2180 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2181 return nullptr; 2182 2183 if (Str.empty() && CI->use_empty()) { 2184 // puts("") -> putchar('\n') 2185 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2186 if (CI->use_empty() || !Res) 2187 return Res; 2188 return B.CreateIntCast(Res, CI->getType(), true); 2189 } 2190 2191 return nullptr; 2192 } 2193 2194 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2195 LibFunc::Func Func; 2196 SmallString<20> FloatFuncName = FuncName; 2197 FloatFuncName += 'f'; 2198 if (TLI->getLibFunc(FloatFuncName, Func)) 2199 return TLI->has(Func); 2200 return false; 2201 } 2202 2203 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2204 IRBuilder<> &Builder) { 2205 LibFunc::Func Func; 2206 Function *Callee = CI->getCalledFunction(); 2207 StringRef FuncName = Callee->getName(); 2208 2209 // Check for string/memory library functions. 2210 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2211 // Make sure we never change the calling convention. 2212 assert((ignoreCallingConv(Func) || 2213 CI->getCallingConv() == llvm::CallingConv::C) && 2214 "Optimizing string/memory libcall would change the calling convention"); 2215 switch (Func) { 2216 case LibFunc::strcat: 2217 return optimizeStrCat(CI, Builder); 2218 case LibFunc::strncat: 2219 return optimizeStrNCat(CI, Builder); 2220 case LibFunc::strchr: 2221 return optimizeStrChr(CI, Builder); 2222 case LibFunc::strrchr: 2223 return optimizeStrRChr(CI, Builder); 2224 case LibFunc::strcmp: 2225 return optimizeStrCmp(CI, Builder); 2226 case LibFunc::strncmp: 2227 return optimizeStrNCmp(CI, Builder); 2228 case LibFunc::strcpy: 2229 return optimizeStrCpy(CI, Builder); 2230 case LibFunc::stpcpy: 2231 return optimizeStpCpy(CI, Builder); 2232 case LibFunc::strncpy: 2233 return optimizeStrNCpy(CI, Builder); 2234 case LibFunc::strlen: 2235 return optimizeStrLen(CI, Builder); 2236 case LibFunc::strpbrk: 2237 return optimizeStrPBrk(CI, Builder); 2238 case LibFunc::strtol: 2239 case LibFunc::strtod: 2240 case LibFunc::strtof: 2241 case LibFunc::strtoul: 2242 case LibFunc::strtoll: 2243 case LibFunc::strtold: 2244 case LibFunc::strtoull: 2245 return optimizeStrTo(CI, Builder); 2246 case LibFunc::strspn: 2247 return optimizeStrSpn(CI, Builder); 2248 case LibFunc::strcspn: 2249 return optimizeStrCSpn(CI, Builder); 2250 case LibFunc::strstr: 2251 return optimizeStrStr(CI, Builder); 2252 case LibFunc::memchr: 2253 return optimizeMemChr(CI, Builder); 2254 case LibFunc::memcmp: 2255 return optimizeMemCmp(CI, Builder); 2256 case LibFunc::memcpy: 2257 return optimizeMemCpy(CI, Builder); 2258 case LibFunc::memmove: 2259 return optimizeMemMove(CI, Builder); 2260 case LibFunc::memset: 2261 return optimizeMemSet(CI, Builder); 2262 default: 2263 break; 2264 } 2265 } 2266 return nullptr; 2267 } 2268 2269 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2270 if (CI->isNoBuiltin()) 2271 return nullptr; 2272 2273 LibFunc::Func Func; 2274 Function *Callee = CI->getCalledFunction(); 2275 StringRef FuncName = Callee->getName(); 2276 2277 SmallVector<OperandBundleDef, 2> OpBundles; 2278 CI->getOperandBundlesAsDefs(OpBundles); 2279 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2280 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2281 2282 // Command-line parameter overrides instruction attribute. 2283 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2284 UnsafeFPShrink = EnableUnsafeFPShrink; 2285 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2286 UnsafeFPShrink = true; 2287 2288 // First, check for intrinsics. 2289 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2290 if (!isCallingConvC) 2291 return nullptr; 2292 switch (II->getIntrinsicID()) { 2293 case Intrinsic::pow: 2294 return optimizePow(CI, Builder); 2295 case Intrinsic::exp2: 2296 return optimizeExp2(CI, Builder); 2297 case Intrinsic::fabs: 2298 return optimizeFabs(CI, Builder); 2299 case Intrinsic::log: 2300 return optimizeLog(CI, Builder); 2301 case Intrinsic::sqrt: 2302 return optimizeSqrt(CI, Builder); 2303 // TODO: Use foldMallocMemset() with memset intrinsic. 2304 default: 2305 return nullptr; 2306 } 2307 } 2308 2309 // Also try to simplify calls to fortified library functions. 2310 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2311 // Try to further simplify the result. 2312 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2313 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2314 // Use an IR Builder from SimplifiedCI if available instead of CI 2315 // to guarantee we reach all uses we might replace later on. 2316 IRBuilder<> TmpBuilder(SimplifiedCI); 2317 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2318 // If we were able to further simplify, remove the now redundant call. 2319 SimplifiedCI->replaceAllUsesWith(V); 2320 SimplifiedCI->eraseFromParent(); 2321 return V; 2322 } 2323 } 2324 return SimplifiedFortifiedCI; 2325 } 2326 2327 // Then check for known library functions. 2328 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2329 // We never change the calling convention. 2330 if (!ignoreCallingConv(Func) && !isCallingConvC) 2331 return nullptr; 2332 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2333 return V; 2334 switch (Func) { 2335 case LibFunc::cosf: 2336 case LibFunc::cos: 2337 case LibFunc::cosl: 2338 return optimizeCos(CI, Builder); 2339 case LibFunc::sinpif: 2340 case LibFunc::sinpi: 2341 case LibFunc::cospif: 2342 case LibFunc::cospi: 2343 return optimizeSinCosPi(CI, Builder); 2344 case LibFunc::powf: 2345 case LibFunc::pow: 2346 case LibFunc::powl: 2347 return optimizePow(CI, Builder); 2348 case LibFunc::exp2l: 2349 case LibFunc::exp2: 2350 case LibFunc::exp2f: 2351 return optimizeExp2(CI, Builder); 2352 case LibFunc::fabsf: 2353 case LibFunc::fabs: 2354 case LibFunc::fabsl: 2355 return optimizeFabs(CI, Builder); 2356 case LibFunc::sqrtf: 2357 case LibFunc::sqrt: 2358 case LibFunc::sqrtl: 2359 return optimizeSqrt(CI, Builder); 2360 case LibFunc::ffs: 2361 case LibFunc::ffsl: 2362 case LibFunc::ffsll: 2363 return optimizeFFS(CI, Builder); 2364 case LibFunc::abs: 2365 case LibFunc::labs: 2366 case LibFunc::llabs: 2367 return optimizeAbs(CI, Builder); 2368 case LibFunc::isdigit: 2369 return optimizeIsDigit(CI, Builder); 2370 case LibFunc::isascii: 2371 return optimizeIsAscii(CI, Builder); 2372 case LibFunc::toascii: 2373 return optimizeToAscii(CI, Builder); 2374 case LibFunc::printf: 2375 return optimizePrintF(CI, Builder); 2376 case LibFunc::sprintf: 2377 return optimizeSPrintF(CI, Builder); 2378 case LibFunc::fprintf: 2379 return optimizeFPrintF(CI, Builder); 2380 case LibFunc::fwrite: 2381 return optimizeFWrite(CI, Builder); 2382 case LibFunc::fputs: 2383 return optimizeFPuts(CI, Builder); 2384 case LibFunc::log: 2385 case LibFunc::log10: 2386 case LibFunc::log1p: 2387 case LibFunc::log2: 2388 case LibFunc::logb: 2389 return optimizeLog(CI, Builder); 2390 case LibFunc::puts: 2391 return optimizePuts(CI, Builder); 2392 case LibFunc::tan: 2393 case LibFunc::tanf: 2394 case LibFunc::tanl: 2395 return optimizeTan(CI, Builder); 2396 case LibFunc::perror: 2397 return optimizeErrorReporting(CI, Builder); 2398 case LibFunc::vfprintf: 2399 case LibFunc::fiprintf: 2400 return optimizeErrorReporting(CI, Builder, 0); 2401 case LibFunc::fputc: 2402 return optimizeErrorReporting(CI, Builder, 1); 2403 case LibFunc::ceil: 2404 case LibFunc::floor: 2405 case LibFunc::rint: 2406 case LibFunc::round: 2407 case LibFunc::nearbyint: 2408 case LibFunc::trunc: 2409 if (hasFloatVersion(FuncName)) 2410 return optimizeUnaryDoubleFP(CI, Builder, false); 2411 return nullptr; 2412 case LibFunc::acos: 2413 case LibFunc::acosh: 2414 case LibFunc::asin: 2415 case LibFunc::asinh: 2416 case LibFunc::atan: 2417 case LibFunc::atanh: 2418 case LibFunc::cbrt: 2419 case LibFunc::cosh: 2420 case LibFunc::exp: 2421 case LibFunc::exp10: 2422 case LibFunc::expm1: 2423 case LibFunc::sin: 2424 case LibFunc::sinh: 2425 case LibFunc::tanh: 2426 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2427 return optimizeUnaryDoubleFP(CI, Builder, true); 2428 return nullptr; 2429 case LibFunc::copysign: 2430 if (hasFloatVersion(FuncName)) 2431 return optimizeBinaryDoubleFP(CI, Builder); 2432 return nullptr; 2433 case LibFunc::fminf: 2434 case LibFunc::fmin: 2435 case LibFunc::fminl: 2436 case LibFunc::fmaxf: 2437 case LibFunc::fmax: 2438 case LibFunc::fmaxl: 2439 return optimizeFMinFMax(CI, Builder); 2440 default: 2441 return nullptr; 2442 } 2443 } 2444 return nullptr; 2445 } 2446 2447 LibCallSimplifier::LibCallSimplifier( 2448 const DataLayout &DL, const TargetLibraryInfo *TLI, 2449 function_ref<void(Instruction *, Value *)> Replacer) 2450 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2451 Replacer(Replacer) {} 2452 2453 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2454 // Indirect through the replacer used in this instance. 2455 Replacer(I, With); 2456 } 2457 2458 // TODO: 2459 // Additional cases that we need to add to this file: 2460 // 2461 // cbrt: 2462 // * cbrt(expN(X)) -> expN(x/3) 2463 // * cbrt(sqrt(x)) -> pow(x,1/6) 2464 // * cbrt(cbrt(x)) -> pow(x,1/9) 2465 // 2466 // exp, expf, expl: 2467 // * exp(log(x)) -> x 2468 // 2469 // log, logf, logl: 2470 // * log(exp(x)) -> x 2471 // * log(exp(y)) -> y*log(e) 2472 // * log(exp10(y)) -> y*log(10) 2473 // * log(sqrt(x)) -> 0.5*log(x) 2474 // 2475 // lround, lroundf, lroundl: 2476 // * lround(cnst) -> cnst' 2477 // 2478 // pow, powf, powl: 2479 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2480 // * pow(pow(x,y),z)-> pow(x,y*z) 2481 // 2482 // round, roundf, roundl: 2483 // * round(cnst) -> cnst' 2484 // 2485 // signbit: 2486 // * signbit(cnst) -> cnst' 2487 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2488 // 2489 // sqrt, sqrtf, sqrtl: 2490 // * sqrt(expN(x)) -> expN(x*0.5) 2491 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2492 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2493 // 2494 // trunc, truncf, truncl: 2495 // * trunc(cnst) -> cnst' 2496 // 2497 // 2498 2499 //===----------------------------------------------------------------------===// 2500 // Fortified Library Call Optimizations 2501 //===----------------------------------------------------------------------===// 2502 2503 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2504 unsigned ObjSizeOp, 2505 unsigned SizeOp, 2506 bool isString) { 2507 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2508 return true; 2509 if (ConstantInt *ObjSizeCI = 2510 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2511 if (ObjSizeCI->isAllOnesValue()) 2512 return true; 2513 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2514 if (OnlyLowerUnknownSize) 2515 return false; 2516 if (isString) { 2517 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2518 // If the length is 0 we don't know how long it is and so we can't 2519 // remove the check. 2520 if (Len == 0) 2521 return false; 2522 return ObjSizeCI->getZExtValue() >= Len; 2523 } 2524 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2525 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2526 } 2527 return false; 2528 } 2529 2530 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2531 IRBuilder<> &B) { 2532 Function *Callee = CI->getCalledFunction(); 2533 2534 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2535 return nullptr; 2536 2537 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2538 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2539 CI->getArgOperand(2), 1); 2540 return CI->getArgOperand(0); 2541 } 2542 return nullptr; 2543 } 2544 2545 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2546 IRBuilder<> &B) { 2547 Function *Callee = CI->getCalledFunction(); 2548 2549 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2550 return nullptr; 2551 2552 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2553 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2554 CI->getArgOperand(2), 1); 2555 return CI->getArgOperand(0); 2556 } 2557 return nullptr; 2558 } 2559 2560 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2561 IRBuilder<> &B) { 2562 Function *Callee = CI->getCalledFunction(); 2563 2564 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2565 return nullptr; 2566 2567 // TODO: Try foldMallocMemset() here. 2568 2569 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2570 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2571 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2572 return CI->getArgOperand(0); 2573 } 2574 return nullptr; 2575 } 2576 2577 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2578 IRBuilder<> &B, 2579 LibFunc::Func Func) { 2580 Function *Callee = CI->getCalledFunction(); 2581 StringRef Name = Callee->getName(); 2582 const DataLayout &DL = CI->getModule()->getDataLayout(); 2583 2584 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2585 return nullptr; 2586 2587 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2588 *ObjSize = CI->getArgOperand(2); 2589 2590 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2591 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2592 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2593 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2594 } 2595 2596 // If a) we don't have any length information, or b) we know this will 2597 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2598 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2599 // TODO: It might be nice to get a maximum length out of the possible 2600 // string lengths for varying. 2601 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2602 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2603 2604 if (OnlyLowerUnknownSize) 2605 return nullptr; 2606 2607 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2608 uint64_t Len = GetStringLength(Src); 2609 if (Len == 0) 2610 return nullptr; 2611 2612 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2613 Value *LenV = ConstantInt::get(SizeTTy, Len); 2614 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2615 // If the function was an __stpcpy_chk, and we were able to fold it into 2616 // a __memcpy_chk, we still need to return the correct end pointer. 2617 if (Ret && Func == LibFunc::stpcpy_chk) 2618 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2619 return Ret; 2620 } 2621 2622 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2623 IRBuilder<> &B, 2624 LibFunc::Func Func) { 2625 Function *Callee = CI->getCalledFunction(); 2626 StringRef Name = Callee->getName(); 2627 2628 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2629 return nullptr; 2630 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2631 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2632 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2633 return Ret; 2634 } 2635 return nullptr; 2636 } 2637 2638 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2639 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2640 // Some clang users checked for _chk libcall availability using: 2641 // __has_builtin(__builtin___memcpy_chk) 2642 // When compiling with -fno-builtin, this is always true. 2643 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2644 // end up with fortified libcalls, which isn't acceptable in a freestanding 2645 // environment which only provides their non-fortified counterparts. 2646 // 2647 // Until we change clang and/or teach external users to check for availability 2648 // differently, disregard the "nobuiltin" attribute and TLI::has. 2649 // 2650 // PR23093. 2651 2652 LibFunc::Func Func; 2653 Function *Callee = CI->getCalledFunction(); 2654 StringRef FuncName = Callee->getName(); 2655 2656 SmallVector<OperandBundleDef, 2> OpBundles; 2657 CI->getOperandBundlesAsDefs(OpBundles); 2658 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2659 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2660 2661 // First, check that this is a known library functions. 2662 if (!TLI->getLibFunc(FuncName, Func)) 2663 return nullptr; 2664 2665 // We never change the calling convention. 2666 if (!ignoreCallingConv(Func) && !isCallingConvC) 2667 return nullptr; 2668 2669 switch (Func) { 2670 case LibFunc::memcpy_chk: 2671 return optimizeMemCpyChk(CI, Builder); 2672 case LibFunc::memmove_chk: 2673 return optimizeMemMoveChk(CI, Builder); 2674 case LibFunc::memset_chk: 2675 return optimizeMemSetChk(CI, Builder); 2676 case LibFunc::stpcpy_chk: 2677 case LibFunc::strcpy_chk: 2678 return optimizeStrpCpyChk(CI, Builder, Func); 2679 case LibFunc::stpncpy_chk: 2680 case LibFunc::strncpy_chk: 2681 return optimizeStrpNCpyChk(CI, Builder, Func); 2682 default: 2683 break; 2684 } 2685 return nullptr; 2686 } 2687 2688 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2689 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2690 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2691