1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
108   if (Base < 2 || Base > 36)
109     // handle special zero base
110     if (Base != 0)
111       return nullptr;
112 
113   char *End;
114   std::string nptr = Str.str();
115   errno = 0;
116   long long int Result = strtoll(nptr.c_str(), &End, Base);
117   if (errno)
118     return nullptr;
119 
120   // if we assume all possible target locales are ASCII supersets,
121   // then if strtoll successfully parses a number on the host,
122   // it will also successfully parse the same way on the target
123   if (*End != '\0')
124     return nullptr;
125 
126   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
127     return nullptr;
128 
129   return ConstantInt::get(CI->getType(), Result);
130 }
131 
132 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
133                                 const TargetLibraryInfo *TLI) {
134   CallInst *FOpen = dyn_cast<CallInst>(File);
135   if (!FOpen)
136     return false;
137 
138   Function *InnerCallee = FOpen->getCalledFunction();
139   if (!InnerCallee)
140     return false;
141 
142   LibFunc Func;
143   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
144       Func != LibFunc_fopen)
145     return false;
146 
147   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
148   if (PointerMayBeCaptured(File, true, true))
149     return false;
150 
151   return true;
152 }
153 
154 static bool isOnlyUsedInComparisonWithZero(Value *V) {
155   for (User *U : V->users()) {
156     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
157       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
158         if (C->isNullValue())
159           continue;
160     // Unknown instruction.
161     return false;
162   }
163   return true;
164 }
165 
166 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
167                                  const DataLayout &DL) {
168   if (!isOnlyUsedInComparisonWithZero(CI))
169     return false;
170 
171   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
172     return false;
173 
174   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
175     return false;
176 
177   return true;
178 }
179 
180 //===----------------------------------------------------------------------===//
181 // String and Memory Library Call Optimizations
182 //===----------------------------------------------------------------------===//
183 
184 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
185   // Extract some information from the instruction
186   Value *Dst = CI->getArgOperand(0);
187   Value *Src = CI->getArgOperand(1);
188 
189   // See if we can get the length of the input string.
190   uint64_t Len = GetStringLength(Src);
191   if (Len == 0)
192     return nullptr;
193   --Len; // Unbias length.
194 
195   // Handle the simple, do-nothing case: strcat(x, "") -> x
196   if (Len == 0)
197     return Dst;
198 
199   return emitStrLenMemCpy(Src, Dst, Len, B);
200 }
201 
202 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
203                                            IRBuilder<> &B) {
204   // We need to find the end of the destination string.  That's where the
205   // memory is to be moved to. We just generate a call to strlen.
206   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
207   if (!DstLen)
208     return nullptr;
209 
210   // Now that we have the destination's length, we must index into the
211   // destination's pointer to get the actual memcpy destination (end of
212   // the string .. we're concatenating).
213   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
214 
215   // We have enough information to now generate the memcpy call to do the
216   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
217   B.CreateMemCpy(CpyDst, 1, Src, 1,
218                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
219   return Dst;
220 }
221 
222 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
223   // Extract some information from the instruction.
224   Value *Dst = CI->getArgOperand(0);
225   Value *Src = CI->getArgOperand(1);
226   uint64_t Len;
227 
228   // We don't do anything if length is not constant.
229   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
230     Len = LengthArg->getZExtValue();
231   else
232     return nullptr;
233 
234   // See if we can get the length of the input string.
235   uint64_t SrcLen = GetStringLength(Src);
236   if (SrcLen == 0)
237     return nullptr;
238   --SrcLen; // Unbias length.
239 
240   // Handle the simple, do-nothing cases:
241   // strncat(x, "", c) -> x
242   // strncat(x,  c, 0) -> x
243   if (SrcLen == 0 || Len == 0)
244     return Dst;
245 
246   // We don't optimize this case.
247   if (Len < SrcLen)
248     return nullptr;
249 
250   // strncat(x, s, c) -> strcat(x, s)
251   // s is constant so the strcat can be optimized further.
252   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
253 }
254 
255 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
256   Function *Callee = CI->getCalledFunction();
257   FunctionType *FT = Callee->getFunctionType();
258   Value *SrcStr = CI->getArgOperand(0);
259 
260   // If the second operand is non-constant, see if we can compute the length
261   // of the input string and turn this into memchr.
262   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
263   if (!CharC) {
264     uint64_t Len = GetStringLength(SrcStr);
265     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
266       return nullptr;
267 
268     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
269                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
270                       B, DL, TLI);
271   }
272 
273   // Otherwise, the character is a constant, see if the first argument is
274   // a string literal.  If so, we can constant fold.
275   StringRef Str;
276   if (!getConstantStringInfo(SrcStr, Str)) {
277     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
278       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
279                          "strchr");
280     return nullptr;
281   }
282 
283   // Compute the offset, make sure to handle the case when we're searching for
284   // zero (a weird way to spell strlen).
285   size_t I = (0xFF & CharC->getSExtValue()) == 0
286                  ? Str.size()
287                  : Str.find(CharC->getSExtValue());
288   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
289     return Constant::getNullValue(CI->getType());
290 
291   // strchr(s+n,c)  -> gep(s+n+i,c)
292   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
293 }
294 
295 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
296   Value *SrcStr = CI->getArgOperand(0);
297   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
298 
299   // Cannot fold anything if we're not looking for a constant.
300   if (!CharC)
301     return nullptr;
302 
303   StringRef Str;
304   if (!getConstantStringInfo(SrcStr, Str)) {
305     // strrchr(s, 0) -> strchr(s, 0)
306     if (CharC->isZero())
307       return emitStrChr(SrcStr, '\0', B, TLI);
308     return nullptr;
309   }
310 
311   // Compute the offset.
312   size_t I = (0xFF & CharC->getSExtValue()) == 0
313                  ? Str.size()
314                  : Str.rfind(CharC->getSExtValue());
315   if (I == StringRef::npos) // Didn't find the char. Return null.
316     return Constant::getNullValue(CI->getType());
317 
318   // strrchr(s+n,c) -> gep(s+n+i,c)
319   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
320 }
321 
322 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
323   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
324   if (Str1P == Str2P) // strcmp(x,x)  -> 0
325     return ConstantInt::get(CI->getType(), 0);
326 
327   StringRef Str1, Str2;
328   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
329   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
330 
331   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
332   if (HasStr1 && HasStr2)
333     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
334 
335   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
336     return B.CreateNeg(B.CreateZExt(
337         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
338 
339   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
340     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
341                         CI->getType());
342 
343   // strcmp(P, "x") -> memcmp(P, "x", 2)
344   uint64_t Len1 = GetStringLength(Str1P);
345   uint64_t Len2 = GetStringLength(Str2P);
346   if (Len1 && Len2) {
347     return emitMemCmp(Str1P, Str2P,
348                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
349                                        std::min(Len1, Len2)),
350                       B, DL, TLI);
351   }
352 
353   // strcmp to memcmp
354   if (!HasStr1 && HasStr2) {
355     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
356       return emitMemCmp(
357           Str1P, Str2P,
358           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
359           TLI);
360   } else if (HasStr1 && !HasStr2) {
361     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
362       return emitMemCmp(
363           Str1P, Str2P,
364           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
365           TLI);
366   }
367 
368   return nullptr;
369 }
370 
371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
372   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
373   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
374     return ConstantInt::get(CI->getType(), 0);
375 
376   // Get the length argument if it is constant.
377   uint64_t Length;
378   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
379     Length = LengthArg->getZExtValue();
380   else
381     return nullptr;
382 
383   if (Length == 0) // strncmp(x,y,0)   -> 0
384     return ConstantInt::get(CI->getType(), 0);
385 
386   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
387     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
388 
389   StringRef Str1, Str2;
390   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
391   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
392 
393   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
394   if (HasStr1 && HasStr2) {
395     StringRef SubStr1 = Str1.substr(0, Length);
396     StringRef SubStr2 = Str2.substr(0, Length);
397     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
398   }
399 
400   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
401     return B.CreateNeg(B.CreateZExt(
402         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
403 
404   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
405     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
406                         CI->getType());
407 
408   uint64_t Len1 = GetStringLength(Str1P);
409   uint64_t Len2 = GetStringLength(Str2P);
410 
411   // strncmp to memcmp
412   if (!HasStr1 && HasStr2) {
413     Len2 = std::min(Len2, Length);
414     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
415       return emitMemCmp(
416           Str1P, Str2P,
417           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
418           TLI);
419   } else if (HasStr1 && !HasStr2) {
420     Len1 = std::min(Len1, Length);
421     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
422       return emitMemCmp(
423           Str1P, Str2P,
424           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
425           TLI);
426   }
427 
428   return nullptr;
429 }
430 
431 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
432   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
433   if (Dst == Src) // strcpy(x,x)  -> x
434     return Src;
435 
436   // See if we can get the length of the input string.
437   uint64_t Len = GetStringLength(Src);
438   if (Len == 0)
439     return nullptr;
440 
441   // We have enough information to now generate the memcpy call to do the
442   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
443   B.CreateMemCpy(Dst, 1, Src, 1,
444                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
445   return Dst;
446 }
447 
448 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
449   Function *Callee = CI->getCalledFunction();
450   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
451   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
452     Value *StrLen = emitStrLen(Src, B, DL, TLI);
453     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
454   }
455 
456   // See if we can get the length of the input string.
457   uint64_t Len = GetStringLength(Src);
458   if (Len == 0)
459     return nullptr;
460 
461   Type *PT = Callee->getFunctionType()->getParamType(0);
462   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
463   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
464                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
465 
466   // We have enough information to now generate the memcpy call to do the
467   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
468   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
469   return DstEnd;
470 }
471 
472 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
473   Function *Callee = CI->getCalledFunction();
474   Value *Dst = CI->getArgOperand(0);
475   Value *Src = CI->getArgOperand(1);
476   Value *LenOp = CI->getArgOperand(2);
477 
478   // See if we can get the length of the input string.
479   uint64_t SrcLen = GetStringLength(Src);
480   if (SrcLen == 0)
481     return nullptr;
482   --SrcLen;
483 
484   if (SrcLen == 0) {
485     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
486     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
487     return Dst;
488   }
489 
490   uint64_t Len;
491   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
492     Len = LengthArg->getZExtValue();
493   else
494     return nullptr;
495 
496   if (Len == 0)
497     return Dst; // strncpy(x, y, 0) -> x
498 
499   // Let strncpy handle the zero padding
500   if (Len > SrcLen + 1)
501     return nullptr;
502 
503   Type *PT = Callee->getFunctionType()->getParamType(0);
504   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
505   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
506 
507   return Dst;
508 }
509 
510 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
511                                                unsigned CharSize) {
512   Value *Src = CI->getArgOperand(0);
513 
514   // Constant folding: strlen("xyz") -> 3
515   if (uint64_t Len = GetStringLength(Src, CharSize))
516     return ConstantInt::get(CI->getType(), Len - 1);
517 
518   // If s is a constant pointer pointing to a string literal, we can fold
519   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
520   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
521   // We only try to simplify strlen when the pointer s points to an array
522   // of i8. Otherwise, we would need to scale the offset x before doing the
523   // subtraction. This will make the optimization more complex, and it's not
524   // very useful because calling strlen for a pointer of other types is
525   // very uncommon.
526   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
527     if (!isGEPBasedOnPointerToString(GEP, CharSize))
528       return nullptr;
529 
530     ConstantDataArraySlice Slice;
531     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
532       uint64_t NullTermIdx;
533       if (Slice.Array == nullptr) {
534         NullTermIdx = 0;
535       } else {
536         NullTermIdx = ~((uint64_t)0);
537         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
538           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
539             NullTermIdx = I;
540             break;
541           }
542         }
543         // If the string does not have '\0', leave it to strlen to compute
544         // its length.
545         if (NullTermIdx == ~((uint64_t)0))
546           return nullptr;
547       }
548 
549       Value *Offset = GEP->getOperand(2);
550       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
551       Known.Zero.flipAllBits();
552       uint64_t ArrSize =
553              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
554 
555       // KnownZero's bits are flipped, so zeros in KnownZero now represent
556       // bits known to be zeros in Offset, and ones in KnowZero represent
557       // bits unknown in Offset. Therefore, Offset is known to be in range
558       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
559       // unsigned-less-than NullTermIdx.
560       //
561       // If Offset is not provably in the range [0, NullTermIdx], we can still
562       // optimize if we can prove that the program has undefined behavior when
563       // Offset is outside that range. That is the case when GEP->getOperand(0)
564       // is a pointer to an object whose memory extent is NullTermIdx+1.
565       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
566           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
567            NullTermIdx == ArrSize - 1)) {
568         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
569         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
570                            Offset);
571       }
572     }
573 
574     return nullptr;
575   }
576 
577   // strlen(x?"foo":"bars") --> x ? 3 : 4
578   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
579     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
580     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
581     if (LenTrue && LenFalse) {
582       ORE.emit([&]() {
583         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
584                << "folded strlen(select) to select of constants";
585       });
586       return B.CreateSelect(SI->getCondition(),
587                             ConstantInt::get(CI->getType(), LenTrue - 1),
588                             ConstantInt::get(CI->getType(), LenFalse - 1));
589     }
590   }
591 
592   // strlen(x) != 0 --> *x != 0
593   // strlen(x) == 0 --> *x == 0
594   if (isOnlyUsedInZeroEqualityComparison(CI))
595     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
596                         CI->getType());
597 
598   return nullptr;
599 }
600 
601 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
602   return optimizeStringLength(CI, B, 8);
603 }
604 
605 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
606   Module &M = *CI->getModule();
607   unsigned WCharSize = TLI->getWCharSize(M) * 8;
608   // We cannot perform this optimization without wchar_size metadata.
609   if (WCharSize == 0)
610     return nullptr;
611 
612   return optimizeStringLength(CI, B, WCharSize);
613 }
614 
615 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
616   StringRef S1, S2;
617   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
618   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
619 
620   // strpbrk(s, "") -> nullptr
621   // strpbrk("", s) -> nullptr
622   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
623     return Constant::getNullValue(CI->getType());
624 
625   // Constant folding.
626   if (HasS1 && HasS2) {
627     size_t I = S1.find_first_of(S2);
628     if (I == StringRef::npos) // No match.
629       return Constant::getNullValue(CI->getType());
630 
631     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
632                        "strpbrk");
633   }
634 
635   // strpbrk(s, "a") -> strchr(s, 'a')
636   if (HasS2 && S2.size() == 1)
637     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
638 
639   return nullptr;
640 }
641 
642 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
643   Value *EndPtr = CI->getArgOperand(1);
644   if (isa<ConstantPointerNull>(EndPtr)) {
645     // With a null EndPtr, this function won't capture the main argument.
646     // It would be readonly too, except that it still may write to errno.
647     CI->addParamAttr(0, Attribute::NoCapture);
648   }
649 
650   return nullptr;
651 }
652 
653 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
654   StringRef S1, S2;
655   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
656   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
657 
658   // strspn(s, "") -> 0
659   // strspn("", s) -> 0
660   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
661     return Constant::getNullValue(CI->getType());
662 
663   // Constant folding.
664   if (HasS1 && HasS2) {
665     size_t Pos = S1.find_first_not_of(S2);
666     if (Pos == StringRef::npos)
667       Pos = S1.size();
668     return ConstantInt::get(CI->getType(), Pos);
669   }
670 
671   return nullptr;
672 }
673 
674 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
675   StringRef S1, S2;
676   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
677   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
678 
679   // strcspn("", s) -> 0
680   if (HasS1 && S1.empty())
681     return Constant::getNullValue(CI->getType());
682 
683   // Constant folding.
684   if (HasS1 && HasS2) {
685     size_t Pos = S1.find_first_of(S2);
686     if (Pos == StringRef::npos)
687       Pos = S1.size();
688     return ConstantInt::get(CI->getType(), Pos);
689   }
690 
691   // strcspn(s, "") -> strlen(s)
692   if (HasS2 && S2.empty())
693     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
694 
695   return nullptr;
696 }
697 
698 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
699   // fold strstr(x, x) -> x.
700   if (CI->getArgOperand(0) == CI->getArgOperand(1))
701     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
702 
703   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
704   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
705     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
706     if (!StrLen)
707       return nullptr;
708     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
709                                  StrLen, B, DL, TLI);
710     if (!StrNCmp)
711       return nullptr;
712     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
713       ICmpInst *Old = cast<ICmpInst>(*UI++);
714       Value *Cmp =
715           B.CreateICmp(Old->getPredicate(), StrNCmp,
716                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
717       replaceAllUsesWith(Old, Cmp);
718     }
719     return CI;
720   }
721 
722   // See if either input string is a constant string.
723   StringRef SearchStr, ToFindStr;
724   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
725   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
726 
727   // fold strstr(x, "") -> x.
728   if (HasStr2 && ToFindStr.empty())
729     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
730 
731   // If both strings are known, constant fold it.
732   if (HasStr1 && HasStr2) {
733     size_t Offset = SearchStr.find(ToFindStr);
734 
735     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
736       return Constant::getNullValue(CI->getType());
737 
738     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
739     Value *Result = castToCStr(CI->getArgOperand(0), B);
740     Result =
741         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
742     return B.CreateBitCast(Result, CI->getType());
743   }
744 
745   // fold strstr(x, "y") -> strchr(x, 'y').
746   if (HasStr2 && ToFindStr.size() == 1) {
747     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
748     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
749   }
750   return nullptr;
751 }
752 
753 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
754   Value *SrcStr = CI->getArgOperand(0);
755   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
756   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
757 
758   // memchr(x, y, 0) -> null
759   if (LenC && LenC->isZero())
760     return Constant::getNullValue(CI->getType());
761 
762   // From now on we need at least constant length and string.
763   StringRef Str;
764   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
765     return nullptr;
766 
767   // Truncate the string to LenC. If Str is smaller than LenC we will still only
768   // scan the string, as reading past the end of it is undefined and we can just
769   // return null if we don't find the char.
770   Str = Str.substr(0, LenC->getZExtValue());
771 
772   // If the char is variable but the input str and length are not we can turn
773   // this memchr call into a simple bit field test. Of course this only works
774   // when the return value is only checked against null.
775   //
776   // It would be really nice to reuse switch lowering here but we can't change
777   // the CFG at this point.
778   //
779   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
780   // != 0
781   //   after bounds check.
782   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
783     unsigned char Max =
784         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
785                           reinterpret_cast<const unsigned char *>(Str.end()));
786 
787     // Make sure the bit field we're about to create fits in a register on the
788     // target.
789     // FIXME: On a 64 bit architecture this prevents us from using the
790     // interesting range of alpha ascii chars. We could do better by emitting
791     // two bitfields or shifting the range by 64 if no lower chars are used.
792     if (!DL.fitsInLegalInteger(Max + 1))
793       return nullptr;
794 
795     // For the bit field use a power-of-2 type with at least 8 bits to avoid
796     // creating unnecessary illegal types.
797     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
798 
799     // Now build the bit field.
800     APInt Bitfield(Width, 0);
801     for (char C : Str)
802       Bitfield.setBit((unsigned char)C);
803     Value *BitfieldC = B.getInt(Bitfield);
804 
805     // Adjust width of "C" to the bitfield width, then mask off the high bits.
806     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
807     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
808 
809     // First check that the bit field access is within bounds.
810     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
811                                  "memchr.bounds");
812 
813     // Create code that checks if the given bit is set in the field.
814     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
815     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
816 
817     // Finally merge both checks and cast to pointer type. The inttoptr
818     // implicitly zexts the i1 to intptr type.
819     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
820   }
821 
822   // Check if all arguments are constants.  If so, we can constant fold.
823   if (!CharC)
824     return nullptr;
825 
826   // Compute the offset.
827   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
828   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
829     return Constant::getNullValue(CI->getType());
830 
831   // memchr(s+n,c,l) -> gep(s+n+i,c)
832   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
833 }
834 
835 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
836                                          uint64_t Len, IRBuilder<> &B,
837                                          const DataLayout &DL) {
838   if (Len == 0) // memcmp(s1,s2,0) -> 0
839     return Constant::getNullValue(CI->getType());
840 
841   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
842   if (Len == 1) {
843     Value *LHSV =
844         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
845                      CI->getType(), "lhsv");
846     Value *RHSV =
847         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
848                      CI->getType(), "rhsv");
849     return B.CreateSub(LHSV, RHSV, "chardiff");
850   }
851 
852   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
853   // TODO: The case where both inputs are constants does not need to be limited
854   // to legal integers or equality comparison. See block below this.
855   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
856     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
857     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
858 
859     // First, see if we can fold either argument to a constant.
860     Value *LHSV = nullptr;
861     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
862       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
863       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
864     }
865     Value *RHSV = nullptr;
866     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
867       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
868       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
869     }
870 
871     // Don't generate unaligned loads. If either source is constant data,
872     // alignment doesn't matter for that source because there is no load.
873     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
874         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
875       if (!LHSV) {
876         Type *LHSPtrTy =
877             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
878         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
879       }
880       if (!RHSV) {
881         Type *RHSPtrTy =
882             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
883         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
884       }
885       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
886     }
887   }
888 
889   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
890   // TODO: This is limited to i8 arrays.
891   StringRef LHSStr, RHSStr;
892   if (getConstantStringInfo(LHS, LHSStr) &&
893       getConstantStringInfo(RHS, RHSStr)) {
894     // Make sure we're not reading out-of-bounds memory.
895     if (Len > LHSStr.size() || Len > RHSStr.size())
896       return nullptr;
897     // Fold the memcmp and normalize the result.  This way we get consistent
898     // results across multiple platforms.
899     uint64_t Ret = 0;
900     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
901     if (Cmp < 0)
902       Ret = -1;
903     else if (Cmp > 0)
904       Ret = 1;
905     return ConstantInt::get(CI->getType(), Ret);
906   }
907   return nullptr;
908 }
909 
910 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
911   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
912   Value *Size = CI->getArgOperand(2);
913 
914   if (LHS == RHS) // memcmp(s,s,x) -> 0
915     return Constant::getNullValue(CI->getType());
916 
917   // Handle constant lengths.
918   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size))
919     if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS,
920                                                 LenC->getZExtValue(), B, DL))
921       return Res;
922 
923   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
924   // `bcmp` can be more efficient than memcmp because it only has to know that
925   // there is a difference, not where it is.
926   if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) {
927     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
928   }
929 
930   return nullptr;
931 }
932 
933 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
934   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
935   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
936                  CI->getArgOperand(2));
937   return CI->getArgOperand(0);
938 }
939 
940 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
941   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
942   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
943                   CI->getArgOperand(2));
944   return CI->getArgOperand(0);
945 }
946 
947 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
948 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
949   // This has to be a memset of zeros (bzero).
950   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
951   if (!FillValue || FillValue->getZExtValue() != 0)
952     return nullptr;
953 
954   // TODO: We should handle the case where the malloc has more than one use.
955   // This is necessary to optimize common patterns such as when the result of
956   // the malloc is checked against null or when a memset intrinsic is used in
957   // place of a memset library call.
958   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
959   if (!Malloc || !Malloc->hasOneUse())
960     return nullptr;
961 
962   // Is the inner call really malloc()?
963   Function *InnerCallee = Malloc->getCalledFunction();
964   if (!InnerCallee)
965     return nullptr;
966 
967   LibFunc Func;
968   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
969       Func != LibFunc_malloc)
970     return nullptr;
971 
972   // The memset must cover the same number of bytes that are malloc'd.
973   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
974     return nullptr;
975 
976   // Replace the malloc with a calloc. We need the data layout to know what the
977   // actual size of a 'size_t' parameter is.
978   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
979   const DataLayout &DL = Malloc->getModule()->getDataLayout();
980   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
981   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
982                              Malloc->getArgOperand(0), Malloc->getAttributes(),
983                              B, *TLI);
984   if (!Calloc)
985     return nullptr;
986 
987   Malloc->replaceAllUsesWith(Calloc);
988   eraseFromParent(Malloc);
989 
990   return Calloc;
991 }
992 
993 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
994   if (auto *Calloc = foldMallocMemset(CI, B))
995     return Calloc;
996 
997   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
998   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
999   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
1000   return CI->getArgOperand(0);
1001 }
1002 
1003 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1004   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1005     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1006 
1007   return nullptr;
1008 }
1009 
1010 //===----------------------------------------------------------------------===//
1011 // Math Library Optimizations
1012 //===----------------------------------------------------------------------===//
1013 
1014 // Replace a libcall \p CI with a call to intrinsic \p IID
1015 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1016   // Propagate fast-math flags from the existing call to the new call.
1017   IRBuilder<>::FastMathFlagGuard Guard(B);
1018   B.setFastMathFlags(CI->getFastMathFlags());
1019 
1020   Module *M = CI->getModule();
1021   Value *V = CI->getArgOperand(0);
1022   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1023   CallInst *NewCall = B.CreateCall(F, V);
1024   NewCall->takeName(CI);
1025   return NewCall;
1026 }
1027 
1028 /// Return a variant of Val with float type.
1029 /// Currently this works in two cases: If Val is an FPExtension of a float
1030 /// value to something bigger, simply return the operand.
1031 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1032 /// loss of precision do so.
1033 static Value *valueHasFloatPrecision(Value *Val) {
1034   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1035     Value *Op = Cast->getOperand(0);
1036     if (Op->getType()->isFloatTy())
1037       return Op;
1038   }
1039   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1040     APFloat F = Const->getValueAPF();
1041     bool losesInfo;
1042     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1043                     &losesInfo);
1044     if (!losesInfo)
1045       return ConstantFP::get(Const->getContext(), F);
1046   }
1047   return nullptr;
1048 }
1049 
1050 /// Shrink double -> float functions.
1051 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1052                                bool isBinary, bool isPrecise = false) {
1053   if (!CI->getType()->isDoubleTy())
1054     return nullptr;
1055 
1056   // If not all the uses of the function are converted to float, then bail out.
1057   // This matters if the precision of the result is more important than the
1058   // precision of the arguments.
1059   if (isPrecise)
1060     for (User *U : CI->users()) {
1061       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1062       if (!Cast || !Cast->getType()->isFloatTy())
1063         return nullptr;
1064     }
1065 
1066   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1067   Value *V[2];
1068   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1069   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1070   if (!V[0] || (isBinary && !V[1]))
1071     return nullptr;
1072 
1073   // If call isn't an intrinsic, check that it isn't within a function with the
1074   // same name as the float version of this call, otherwise the result is an
1075   // infinite loop.  For example, from MinGW-w64:
1076   //
1077   // float expf(float val) { return (float) exp((double) val); }
1078   Function *CalleeFn = CI->getCalledFunction();
1079   StringRef CalleeNm = CalleeFn->getName();
1080   AttributeList CalleeAt = CalleeFn->getAttributes();
1081   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1082     const Function *Fn = CI->getFunction();
1083     StringRef FnName = Fn->getName();
1084     if (FnName.back() == 'f' &&
1085         FnName.size() == (CalleeNm.size() + 1) &&
1086         FnName.startswith(CalleeNm))
1087       return nullptr;
1088   }
1089 
1090   // Propagate the math semantics from the current function to the new function.
1091   IRBuilder<>::FastMathFlagGuard Guard(B);
1092   B.setFastMathFlags(CI->getFastMathFlags());
1093 
1094   // g((double) float) -> (double) gf(float)
1095   Value *R;
1096   if (CalleeFn->isIntrinsic()) {
1097     Module *M = CI->getModule();
1098     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1099     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1100     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1101   }
1102   else
1103     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1104                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1105 
1106   return B.CreateFPExt(R, B.getDoubleTy());
1107 }
1108 
1109 /// Shrink double -> float for unary functions.
1110 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1111                                     bool isPrecise = false) {
1112   return optimizeDoubleFP(CI, B, false, isPrecise);
1113 }
1114 
1115 /// Shrink double -> float for binary functions.
1116 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1117                                      bool isPrecise = false) {
1118   return optimizeDoubleFP(CI, B, true, isPrecise);
1119 }
1120 
1121 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1122 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1123   if (!CI->isFast())
1124     return nullptr;
1125 
1126   // Propagate fast-math flags from the existing call to new instructions.
1127   IRBuilder<>::FastMathFlagGuard Guard(B);
1128   B.setFastMathFlags(CI->getFastMathFlags());
1129 
1130   Value *Real, *Imag;
1131   if (CI->getNumArgOperands() == 1) {
1132     Value *Op = CI->getArgOperand(0);
1133     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1134     Real = B.CreateExtractValue(Op, 0, "real");
1135     Imag = B.CreateExtractValue(Op, 1, "imag");
1136   } else {
1137     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1138     Real = CI->getArgOperand(0);
1139     Imag = CI->getArgOperand(1);
1140   }
1141 
1142   Value *RealReal = B.CreateFMul(Real, Real);
1143   Value *ImagImag = B.CreateFMul(Imag, Imag);
1144 
1145   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1146                                               CI->getType());
1147   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1148 }
1149 
1150 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1151                                       IRBuilder<> &B) {
1152   if (!isa<FPMathOperator>(Call))
1153     return nullptr;
1154 
1155   IRBuilder<>::FastMathFlagGuard Guard(B);
1156   B.setFastMathFlags(Call->getFastMathFlags());
1157 
1158   // TODO: Can this be shared to also handle LLVM intrinsics?
1159   Value *X;
1160   switch (Func) {
1161   case LibFunc_sin:
1162   case LibFunc_sinf:
1163   case LibFunc_sinl:
1164   case LibFunc_tan:
1165   case LibFunc_tanf:
1166   case LibFunc_tanl:
1167     // sin(-X) --> -sin(X)
1168     // tan(-X) --> -tan(X)
1169     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1170       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1171     break;
1172   case LibFunc_cos:
1173   case LibFunc_cosf:
1174   case LibFunc_cosl:
1175     // cos(-X) --> cos(X)
1176     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1177       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1178     break;
1179   default:
1180     break;
1181   }
1182   return nullptr;
1183 }
1184 
1185 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1186   // Multiplications calculated using Addition Chains.
1187   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1188 
1189   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1190 
1191   if (InnerChain[Exp])
1192     return InnerChain[Exp];
1193 
1194   static const unsigned AddChain[33][2] = {
1195       {0, 0}, // Unused.
1196       {0, 0}, // Unused (base case = pow1).
1197       {1, 1}, // Unused (pre-computed).
1198       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1199       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1200       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1201       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1202       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1203   };
1204 
1205   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1206                                  getPow(InnerChain, AddChain[Exp][1], B));
1207   return InnerChain[Exp];
1208 }
1209 
1210 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1211 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
1212 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1213   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1214   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1215   Module *Mod = Pow->getModule();
1216   Type *Ty = Pow->getType();
1217   bool Ignored;
1218 
1219   // Evaluate special cases related to a nested function as the base.
1220 
1221   // pow(exp(x), y) -> exp(x * y)
1222   // pow(exp2(x), y) -> exp2(x * y)
1223   // If exp{,2}() is used only once, it is better to fold two transcendental
1224   // math functions into one.  If used again, exp{,2}() would still have to be
1225   // called with the original argument, then keep both original transcendental
1226   // functions.  However, this transformation is only safe with fully relaxed
1227   // math semantics, since, besides rounding differences, it changes overflow
1228   // and underflow behavior quite dramatically.  For example:
1229   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1230   // Whereas:
1231   //   exp(1000 * 0.001) = exp(1)
1232   // TODO: Loosen the requirement for fully relaxed math semantics.
1233   // TODO: Handle exp10() when more targets have it available.
1234   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1235   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1236     LibFunc LibFn;
1237 
1238     Function *CalleeFn = BaseFn->getCalledFunction();
1239     if (CalleeFn &&
1240         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1241       StringRef ExpName;
1242       Intrinsic::ID ID;
1243       Value *ExpFn;
1244       LibFunc LibFnFloat;
1245       LibFunc LibFnDouble;
1246       LibFunc LibFnLongDouble;
1247 
1248       switch (LibFn) {
1249       default:
1250         return nullptr;
1251       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1252         ExpName = TLI->getName(LibFunc_exp);
1253         ID = Intrinsic::exp;
1254         LibFnFloat = LibFunc_expf;
1255         LibFnDouble = LibFunc_exp;
1256         LibFnLongDouble = LibFunc_expl;
1257         break;
1258       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1259         ExpName = TLI->getName(LibFunc_exp2);
1260         ID = Intrinsic::exp2;
1261         LibFnFloat = LibFunc_exp2f;
1262         LibFnDouble = LibFunc_exp2;
1263         LibFnLongDouble = LibFunc_exp2l;
1264         break;
1265       }
1266 
1267       // Create new exp{,2}() with the product as its argument.
1268       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1269       ExpFn = BaseFn->doesNotAccessMemory()
1270               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1271                              FMul, ExpName)
1272               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1273                                      LibFnLongDouble, B,
1274                                      BaseFn->getAttributes());
1275 
1276       // Since the new exp{,2}() is different from the original one, dead code
1277       // elimination cannot be trusted to remove it, since it may have side
1278       // effects (e.g., errno).  When the only consumer for the original
1279       // exp{,2}() is pow(), then it has to be explicitly erased.
1280       BaseFn->replaceAllUsesWith(ExpFn);
1281       eraseFromParent(BaseFn);
1282 
1283       return ExpFn;
1284     }
1285   }
1286 
1287   // Evaluate special cases related to a constant base.
1288 
1289   const APFloat *BaseF;
1290   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1291     return nullptr;
1292 
1293   // pow(2.0 ** n, x) -> exp2(n * x)
1294   if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1295     APFloat BaseR = APFloat(1.0);
1296     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1297     BaseR = BaseR / *BaseF;
1298     bool IsInteger    = BaseF->isInteger(),
1299          IsReciprocal = BaseR.isInteger();
1300     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1301     APSInt NI(64, false);
1302     if ((IsInteger || IsReciprocal) &&
1303         !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
1304         NI > 1 && NI.isPowerOf2()) {
1305       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1306       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1307       if (Pow->doesNotAccessMemory())
1308         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1309                             FMul, "exp2");
1310       else
1311         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1312                                     LibFunc_exp2l, B, Attrs);
1313     }
1314   }
1315 
1316   // pow(10.0, x) -> exp10(x)
1317   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1318   if (match(Base, m_SpecificFP(10.0)) &&
1319       hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1320     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1321                                 LibFunc_exp10l, B, Attrs);
1322 
1323   return nullptr;
1324 }
1325 
1326 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1327                           Module *M, IRBuilder<> &B,
1328                           const TargetLibraryInfo *TLI) {
1329   // If errno is never set, then use the intrinsic for sqrt().
1330   if (NoErrno) {
1331     Function *SqrtFn =
1332         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1333     return B.CreateCall(SqrtFn, V, "sqrt");
1334   }
1335 
1336   // Otherwise, use the libcall for sqrt().
1337   if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1338                       LibFunc_sqrtl))
1339     // TODO: We also should check that the target can in fact lower the sqrt()
1340     // libcall. We currently have no way to ask this question, so we ask if
1341     // the target has a sqrt() libcall, which is not exactly the same.
1342     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1343                                 LibFunc_sqrtl, B, Attrs);
1344 
1345   return nullptr;
1346 }
1347 
1348 /// Use square root in place of pow(x, +/-0.5).
1349 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1350   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1351   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1352   Module *Mod = Pow->getModule();
1353   Type *Ty = Pow->getType();
1354 
1355   const APFloat *ExpoF;
1356   if (!match(Expo, m_APFloat(ExpoF)) ||
1357       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1358     return nullptr;
1359 
1360   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1361   if (!Sqrt)
1362     return nullptr;
1363 
1364   // Handle signed zero base by expanding to fabs(sqrt(x)).
1365   if (!Pow->hasNoSignedZeros()) {
1366     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1367     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1368   }
1369 
1370   // Handle non finite base by expanding to
1371   // (x == -infinity ? +infinity : sqrt(x)).
1372   if (!Pow->hasNoInfs()) {
1373     Value *PosInf = ConstantFP::getInfinity(Ty),
1374           *NegInf = ConstantFP::getInfinity(Ty, true);
1375     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1376     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1377   }
1378 
1379   // If the exponent is negative, then get the reciprocal.
1380   if (ExpoF->isNegative())
1381     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1382 
1383   return Sqrt;
1384 }
1385 
1386 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1387   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1388   Function *Callee = Pow->getCalledFunction();
1389   StringRef Name = Callee->getName();
1390   Type *Ty = Pow->getType();
1391   Value *Shrunk = nullptr;
1392   bool Ignored;
1393 
1394   // Bail out if simplifying libcalls to pow() is disabled.
1395   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1396     return nullptr;
1397 
1398   // Propagate the math semantics from the call to any created instructions.
1399   IRBuilder<>::FastMathFlagGuard Guard(B);
1400   B.setFastMathFlags(Pow->getFastMathFlags());
1401 
1402   // Shrink pow() to powf() if the arguments are single precision,
1403   // unless the result is expected to be double precision.
1404   if (UnsafeFPShrink &&
1405       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1406     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1407 
1408   // Evaluate special cases related to the base.
1409 
1410   // pow(1.0, x) -> 1.0
1411   if (match(Base, m_FPOne()))
1412     return Base;
1413 
1414   if (Value *Exp = replacePowWithExp(Pow, B))
1415     return Exp;
1416 
1417   // Evaluate special cases related to the exponent.
1418 
1419   // pow(x, -1.0) -> 1.0 / x
1420   if (match(Expo, m_SpecificFP(-1.0)))
1421     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1422 
1423   // pow(x, 0.0) -> 1.0
1424   if (match(Expo, m_SpecificFP(0.0)))
1425       return ConstantFP::get(Ty, 1.0);
1426 
1427   // pow(x, 1.0) -> x
1428   if (match(Expo, m_FPOne()))
1429     return Base;
1430 
1431   // pow(x, 2.0) -> x * x
1432   if (match(Expo, m_SpecificFP(2.0)))
1433     return B.CreateFMul(Base, Base, "square");
1434 
1435   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1436     return Sqrt;
1437 
1438   // pow(x, n) -> x * x * x * ...
1439   const APFloat *ExpoF;
1440   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1441     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1442     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1443     // additional fmul.
1444     // TODO: This whole transformation should be backend specific (e.g. some
1445     //       backends might prefer libcalls or the limit for the exponent might
1446     //       be different) and it should also consider optimizing for size.
1447     APFloat LimF(ExpoF->getSemantics(), 33.0),
1448             ExpoA(abs(*ExpoF));
1449     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1450       // This transformation applies to integer or integer+0.5 exponents only.
1451       // For integer+0.5, we create a sqrt(Base) call.
1452       Value *Sqrt = nullptr;
1453       if (!ExpoA.isInteger()) {
1454         APFloat Expo2 = ExpoA;
1455         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1456         // is no floating point exception and the result is an integer, then
1457         // ExpoA == integer + 0.5
1458         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1459           return nullptr;
1460 
1461         if (!Expo2.isInteger())
1462           return nullptr;
1463 
1464         Sqrt =
1465             getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1466                         Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI);
1467       }
1468 
1469       // We will memoize intermediate products of the Addition Chain.
1470       Value *InnerChain[33] = {nullptr};
1471       InnerChain[1] = Base;
1472       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1473 
1474       // We cannot readily convert a non-double type (like float) to a double.
1475       // So we first convert it to something which could be converted to double.
1476       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1477       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1478 
1479       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1480       if (Sqrt)
1481         FMul = B.CreateFMul(FMul, Sqrt);
1482 
1483       // If the exponent is negative, then get the reciprocal.
1484       if (ExpoF->isNegative())
1485         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1486 
1487       return FMul;
1488     }
1489   }
1490 
1491   return Shrunk;
1492 }
1493 
1494 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1495   Function *Callee = CI->getCalledFunction();
1496   Value *Ret = nullptr;
1497   StringRef Name = Callee->getName();
1498   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1499     Ret = optimizeUnaryDoubleFP(CI, B, true);
1500 
1501   Value *Op = CI->getArgOperand(0);
1502   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1503   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1504   LibFunc LdExp = LibFunc_ldexpl;
1505   if (Op->getType()->isFloatTy())
1506     LdExp = LibFunc_ldexpf;
1507   else if (Op->getType()->isDoubleTy())
1508     LdExp = LibFunc_ldexp;
1509 
1510   if (TLI->has(LdExp)) {
1511     Value *LdExpArg = nullptr;
1512     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1513       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1514         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1515     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1516       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1517         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1518     }
1519 
1520     if (LdExpArg) {
1521       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1522       if (!Op->getType()->isFloatTy())
1523         One = ConstantExpr::getFPExtend(One, Op->getType());
1524 
1525       Module *M = CI->getModule();
1526       FunctionCallee NewCallee = M->getOrInsertFunction(
1527           TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty());
1528       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1529       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1530         CI->setCallingConv(F->getCallingConv());
1531 
1532       return CI;
1533     }
1534   }
1535   return Ret;
1536 }
1537 
1538 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1539   Function *Callee = CI->getCalledFunction();
1540   // If we can shrink the call to a float function rather than a double
1541   // function, do that first.
1542   StringRef Name = Callee->getName();
1543   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1544     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1545       return Ret;
1546 
1547   IRBuilder<>::FastMathFlagGuard Guard(B);
1548   FastMathFlags FMF;
1549   if (CI->isFast()) {
1550     // If the call is 'fast', then anything we create here will also be 'fast'.
1551     FMF.setFast();
1552   } else {
1553     // At a minimum, no-nans-fp-math must be true.
1554     if (!CI->hasNoNaNs())
1555       return nullptr;
1556     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1557     // "Ideally, fmax would be sensitive to the sign of zero, for example
1558     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1559     // might be impractical."
1560     FMF.setNoSignedZeros();
1561     FMF.setNoNaNs();
1562   }
1563   B.setFastMathFlags(FMF);
1564 
1565   // We have a relaxed floating-point environment. We can ignore NaN-handling
1566   // and transform to a compare and select. We do not have to consider errno or
1567   // exceptions, because fmin/fmax do not have those.
1568   Value *Op0 = CI->getArgOperand(0);
1569   Value *Op1 = CI->getArgOperand(1);
1570   Value *Cmp = Callee->getName().startswith("fmin") ?
1571     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1572   return B.CreateSelect(Cmp, Op0, Op1);
1573 }
1574 
1575 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1576   Function *Callee = CI->getCalledFunction();
1577   Value *Ret = nullptr;
1578   StringRef Name = Callee->getName();
1579   if (UnsafeFPShrink && hasFloatVersion(Name))
1580     Ret = optimizeUnaryDoubleFP(CI, B, true);
1581 
1582   if (!CI->isFast())
1583     return Ret;
1584   Value *Op1 = CI->getArgOperand(0);
1585   auto *OpC = dyn_cast<CallInst>(Op1);
1586 
1587   // The earlier call must also be 'fast' in order to do these transforms.
1588   if (!OpC || !OpC->isFast())
1589     return Ret;
1590 
1591   // log(pow(x,y)) -> y*log(x)
1592   // This is only applicable to log, log2, log10.
1593   if (Name != "log" && Name != "log2" && Name != "log10")
1594     return Ret;
1595 
1596   IRBuilder<>::FastMathFlagGuard Guard(B);
1597   FastMathFlags FMF;
1598   FMF.setFast();
1599   B.setFastMathFlags(FMF);
1600 
1601   LibFunc Func;
1602   Function *F = OpC->getCalledFunction();
1603   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1604       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1605     return B.CreateFMul(OpC->getArgOperand(1),
1606       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1607                            Callee->getAttributes()), "mul");
1608 
1609   // log(exp2(y)) -> y*log(2)
1610   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1611       TLI->has(Func) && Func == LibFunc_exp2)
1612     return B.CreateFMul(
1613         OpC->getArgOperand(0),
1614         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1615                              Callee->getName(), B, Callee->getAttributes()),
1616         "logmul");
1617   return Ret;
1618 }
1619 
1620 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1621   Function *Callee = CI->getCalledFunction();
1622   Value *Ret = nullptr;
1623   // TODO: Once we have a way (other than checking for the existince of the
1624   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1625   // condition below.
1626   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1627                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1628     Ret = optimizeUnaryDoubleFP(CI, B, true);
1629 
1630   if (!CI->isFast())
1631     return Ret;
1632 
1633   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1634   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1635     return Ret;
1636 
1637   // We're looking for a repeated factor in a multiplication tree,
1638   // so we can do this fold: sqrt(x * x) -> fabs(x);
1639   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1640   Value *Op0 = I->getOperand(0);
1641   Value *Op1 = I->getOperand(1);
1642   Value *RepeatOp = nullptr;
1643   Value *OtherOp = nullptr;
1644   if (Op0 == Op1) {
1645     // Simple match: the operands of the multiply are identical.
1646     RepeatOp = Op0;
1647   } else {
1648     // Look for a more complicated pattern: one of the operands is itself
1649     // a multiply, so search for a common factor in that multiply.
1650     // Note: We don't bother looking any deeper than this first level or for
1651     // variations of this pattern because instcombine's visitFMUL and/or the
1652     // reassociation pass should give us this form.
1653     Value *OtherMul0, *OtherMul1;
1654     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1655       // Pattern: sqrt((x * y) * z)
1656       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1657         // Matched: sqrt((x * x) * z)
1658         RepeatOp = OtherMul0;
1659         OtherOp = Op1;
1660       }
1661     }
1662   }
1663   if (!RepeatOp)
1664     return Ret;
1665 
1666   // Fast math flags for any created instructions should match the sqrt
1667   // and multiply.
1668   IRBuilder<>::FastMathFlagGuard Guard(B);
1669   B.setFastMathFlags(I->getFastMathFlags());
1670 
1671   // If we found a repeated factor, hoist it out of the square root and
1672   // replace it with the fabs of that factor.
1673   Module *M = Callee->getParent();
1674   Type *ArgType = I->getType();
1675   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1676   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1677   if (OtherOp) {
1678     // If we found a non-repeated factor, we still need to get its square
1679     // root. We then multiply that by the value that was simplified out
1680     // of the square root calculation.
1681     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1682     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1683     return B.CreateFMul(FabsCall, SqrtCall);
1684   }
1685   return FabsCall;
1686 }
1687 
1688 // TODO: Generalize to handle any trig function and its inverse.
1689 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1690   Function *Callee = CI->getCalledFunction();
1691   Value *Ret = nullptr;
1692   StringRef Name = Callee->getName();
1693   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1694     Ret = optimizeUnaryDoubleFP(CI, B, true);
1695 
1696   Value *Op1 = CI->getArgOperand(0);
1697   auto *OpC = dyn_cast<CallInst>(Op1);
1698   if (!OpC)
1699     return Ret;
1700 
1701   // Both calls must be 'fast' in order to remove them.
1702   if (!CI->isFast() || !OpC->isFast())
1703     return Ret;
1704 
1705   // tan(atan(x)) -> x
1706   // tanf(atanf(x)) -> x
1707   // tanl(atanl(x)) -> x
1708   LibFunc Func;
1709   Function *F = OpC->getCalledFunction();
1710   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1711       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1712        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1713        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1714     Ret = OpC->getArgOperand(0);
1715   return Ret;
1716 }
1717 
1718 static bool isTrigLibCall(CallInst *CI) {
1719   // We can only hope to do anything useful if we can ignore things like errno
1720   // and floating-point exceptions.
1721   // We already checked the prototype.
1722   return CI->hasFnAttr(Attribute::NoUnwind) &&
1723          CI->hasFnAttr(Attribute::ReadNone);
1724 }
1725 
1726 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1727                              bool UseFloat, Value *&Sin, Value *&Cos,
1728                              Value *&SinCos) {
1729   Type *ArgTy = Arg->getType();
1730   Type *ResTy;
1731   StringRef Name;
1732 
1733   Triple T(OrigCallee->getParent()->getTargetTriple());
1734   if (UseFloat) {
1735     Name = "__sincospif_stret";
1736 
1737     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1738     // x86_64 can't use {float, float} since that would be returned in both
1739     // xmm0 and xmm1, which isn't what a real struct would do.
1740     ResTy = T.getArch() == Triple::x86_64
1741                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1742                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1743   } else {
1744     Name = "__sincospi_stret";
1745     ResTy = StructType::get(ArgTy, ArgTy);
1746   }
1747 
1748   Module *M = OrigCallee->getParent();
1749   FunctionCallee Callee =
1750       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
1751 
1752   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1753     // If the argument is an instruction, it must dominate all uses so put our
1754     // sincos call there.
1755     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1756   } else {
1757     // Otherwise (e.g. for a constant) the beginning of the function is as
1758     // good a place as any.
1759     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1760     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1761   }
1762 
1763   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1764 
1765   if (SinCos->getType()->isStructTy()) {
1766     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1767     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1768   } else {
1769     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1770                                  "sinpi");
1771     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1772                                  "cospi");
1773   }
1774 }
1775 
1776 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1777   // Make sure the prototype is as expected, otherwise the rest of the
1778   // function is probably invalid and likely to abort.
1779   if (!isTrigLibCall(CI))
1780     return nullptr;
1781 
1782   Value *Arg = CI->getArgOperand(0);
1783   SmallVector<CallInst *, 1> SinCalls;
1784   SmallVector<CallInst *, 1> CosCalls;
1785   SmallVector<CallInst *, 1> SinCosCalls;
1786 
1787   bool IsFloat = Arg->getType()->isFloatTy();
1788 
1789   // Look for all compatible sinpi, cospi and sincospi calls with the same
1790   // argument. If there are enough (in some sense) we can make the
1791   // substitution.
1792   Function *F = CI->getFunction();
1793   for (User *U : Arg->users())
1794     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1795 
1796   // It's only worthwhile if both sinpi and cospi are actually used.
1797   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1798     return nullptr;
1799 
1800   Value *Sin, *Cos, *SinCos;
1801   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1802 
1803   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1804                                  Value *Res) {
1805     for (CallInst *C : Calls)
1806       replaceAllUsesWith(C, Res);
1807   };
1808 
1809   replaceTrigInsts(SinCalls, Sin);
1810   replaceTrigInsts(CosCalls, Cos);
1811   replaceTrigInsts(SinCosCalls, SinCos);
1812 
1813   return nullptr;
1814 }
1815 
1816 void LibCallSimplifier::classifyArgUse(
1817     Value *Val, Function *F, bool IsFloat,
1818     SmallVectorImpl<CallInst *> &SinCalls,
1819     SmallVectorImpl<CallInst *> &CosCalls,
1820     SmallVectorImpl<CallInst *> &SinCosCalls) {
1821   CallInst *CI = dyn_cast<CallInst>(Val);
1822 
1823   if (!CI)
1824     return;
1825 
1826   // Don't consider calls in other functions.
1827   if (CI->getFunction() != F)
1828     return;
1829 
1830   Function *Callee = CI->getCalledFunction();
1831   LibFunc Func;
1832   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1833       !isTrigLibCall(CI))
1834     return;
1835 
1836   if (IsFloat) {
1837     if (Func == LibFunc_sinpif)
1838       SinCalls.push_back(CI);
1839     else if (Func == LibFunc_cospif)
1840       CosCalls.push_back(CI);
1841     else if (Func == LibFunc_sincospif_stret)
1842       SinCosCalls.push_back(CI);
1843   } else {
1844     if (Func == LibFunc_sinpi)
1845       SinCalls.push_back(CI);
1846     else if (Func == LibFunc_cospi)
1847       CosCalls.push_back(CI);
1848     else if (Func == LibFunc_sincospi_stret)
1849       SinCosCalls.push_back(CI);
1850   }
1851 }
1852 
1853 //===----------------------------------------------------------------------===//
1854 // Integer Library Call Optimizations
1855 //===----------------------------------------------------------------------===//
1856 
1857 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1858   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1859   Value *Op = CI->getArgOperand(0);
1860   Type *ArgType = Op->getType();
1861   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1862                                           Intrinsic::cttz, ArgType);
1863   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1864   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1865   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1866 
1867   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1868   return B.CreateSelect(Cond, V, B.getInt32(0));
1869 }
1870 
1871 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1872   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1873   Value *Op = CI->getArgOperand(0);
1874   Type *ArgType = Op->getType();
1875   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1876                                           Intrinsic::ctlz, ArgType);
1877   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1878   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1879                   V);
1880   return B.CreateIntCast(V, CI->getType(), false);
1881 }
1882 
1883 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1884   // abs(x) -> x <s 0 ? -x : x
1885   // The negation has 'nsw' because abs of INT_MIN is undefined.
1886   Value *X = CI->getArgOperand(0);
1887   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1888   Value *NegX = B.CreateNSWNeg(X, "neg");
1889   return B.CreateSelect(IsNeg, NegX, X);
1890 }
1891 
1892 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1893   // isdigit(c) -> (c-'0') <u 10
1894   Value *Op = CI->getArgOperand(0);
1895   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1896   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1897   return B.CreateZExt(Op, CI->getType());
1898 }
1899 
1900 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1901   // isascii(c) -> c <u 128
1902   Value *Op = CI->getArgOperand(0);
1903   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1904   return B.CreateZExt(Op, CI->getType());
1905 }
1906 
1907 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1908   // toascii(c) -> c & 0x7f
1909   return B.CreateAnd(CI->getArgOperand(0),
1910                      ConstantInt::get(CI->getType(), 0x7F));
1911 }
1912 
1913 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1914   StringRef Str;
1915   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1916     return nullptr;
1917 
1918   return convertStrToNumber(CI, Str, 10);
1919 }
1920 
1921 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1922   StringRef Str;
1923   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1924     return nullptr;
1925 
1926   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1927     return nullptr;
1928 
1929   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1930     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1931   }
1932 
1933   return nullptr;
1934 }
1935 
1936 //===----------------------------------------------------------------------===//
1937 // Formatting and IO Library Call Optimizations
1938 //===----------------------------------------------------------------------===//
1939 
1940 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1941 
1942 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1943                                                  int StreamArg) {
1944   Function *Callee = CI->getCalledFunction();
1945   // Error reporting calls should be cold, mark them as such.
1946   // This applies even to non-builtin calls: it is only a hint and applies to
1947   // functions that the frontend might not understand as builtins.
1948 
1949   // This heuristic was suggested in:
1950   // Improving Static Branch Prediction in a Compiler
1951   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1952   // Proceedings of PACT'98, Oct. 1998, IEEE
1953   if (!CI->hasFnAttr(Attribute::Cold) &&
1954       isReportingError(Callee, CI, StreamArg)) {
1955     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1956   }
1957 
1958   return nullptr;
1959 }
1960 
1961 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1962   if (!Callee || !Callee->isDeclaration())
1963     return false;
1964 
1965   if (StreamArg < 0)
1966     return true;
1967 
1968   // These functions might be considered cold, but only if their stream
1969   // argument is stderr.
1970 
1971   if (StreamArg >= (int)CI->getNumArgOperands())
1972     return false;
1973   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1974   if (!LI)
1975     return false;
1976   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1977   if (!GV || !GV->isDeclaration())
1978     return false;
1979   return GV->getName() == "stderr";
1980 }
1981 
1982 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1983   // Check for a fixed format string.
1984   StringRef FormatStr;
1985   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1986     return nullptr;
1987 
1988   // Empty format string -> noop.
1989   if (FormatStr.empty()) // Tolerate printf's declared void.
1990     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1991 
1992   // Do not do any of the following transformations if the printf return value
1993   // is used, in general the printf return value is not compatible with either
1994   // putchar() or puts().
1995   if (!CI->use_empty())
1996     return nullptr;
1997 
1998   // printf("x") -> putchar('x'), even for "%" and "%%".
1999   if (FormatStr.size() == 1 || FormatStr == "%%")
2000     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2001 
2002   // printf("%s", "a") --> putchar('a')
2003   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2004     StringRef ChrStr;
2005     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2006       return nullptr;
2007     if (ChrStr.size() != 1)
2008       return nullptr;
2009     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2010   }
2011 
2012   // printf("foo\n") --> puts("foo")
2013   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2014       FormatStr.find('%') == StringRef::npos) { // No format characters.
2015     // Create a string literal with no \n on it.  We expect the constant merge
2016     // pass to be run after this pass, to merge duplicate strings.
2017     FormatStr = FormatStr.drop_back();
2018     Value *GV = B.CreateGlobalString(FormatStr, "str");
2019     return emitPutS(GV, B, TLI);
2020   }
2021 
2022   // Optimize specific format strings.
2023   // printf("%c", chr) --> putchar(chr)
2024   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2025       CI->getArgOperand(1)->getType()->isIntegerTy())
2026     return emitPutChar(CI->getArgOperand(1), B, TLI);
2027 
2028   // printf("%s\n", str) --> puts(str)
2029   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2030       CI->getArgOperand(1)->getType()->isPointerTy())
2031     return emitPutS(CI->getArgOperand(1), B, TLI);
2032   return nullptr;
2033 }
2034 
2035 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2036 
2037   Function *Callee = CI->getCalledFunction();
2038   FunctionType *FT = Callee->getFunctionType();
2039   if (Value *V = optimizePrintFString(CI, B)) {
2040     return V;
2041   }
2042 
2043   // printf(format, ...) -> iprintf(format, ...) if no floating point
2044   // arguments.
2045   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2046     Module *M = B.GetInsertBlock()->getParent()->getParent();
2047     FunctionCallee IPrintFFn =
2048         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2049     CallInst *New = cast<CallInst>(CI->clone());
2050     New->setCalledFunction(IPrintFFn);
2051     B.Insert(New);
2052     return New;
2053   }
2054   return nullptr;
2055 }
2056 
2057 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2058   // Check for a fixed format string.
2059   StringRef FormatStr;
2060   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2061     return nullptr;
2062 
2063   // If we just have a format string (nothing else crazy) transform it.
2064   if (CI->getNumArgOperands() == 2) {
2065     // Make sure there's no % in the constant array.  We could try to handle
2066     // %% -> % in the future if we cared.
2067     if (FormatStr.find('%') != StringRef::npos)
2068       return nullptr; // we found a format specifier, bail out.
2069 
2070     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2071     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2072                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2073                                     FormatStr.size() + 1)); // Copy the null byte.
2074     return ConstantInt::get(CI->getType(), FormatStr.size());
2075   }
2076 
2077   // The remaining optimizations require the format string to be "%s" or "%c"
2078   // and have an extra operand.
2079   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2080       CI->getNumArgOperands() < 3)
2081     return nullptr;
2082 
2083   // Decode the second character of the format string.
2084   if (FormatStr[1] == 'c') {
2085     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2086     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2087       return nullptr;
2088     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2089     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2090     B.CreateStore(V, Ptr);
2091     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2092     B.CreateStore(B.getInt8(0), Ptr);
2093 
2094     return ConstantInt::get(CI->getType(), 1);
2095   }
2096 
2097   if (FormatStr[1] == 's') {
2098     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2099     // strlen(str)+1)
2100     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2101       return nullptr;
2102 
2103     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2104     if (!Len)
2105       return nullptr;
2106     Value *IncLen =
2107         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2108     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2109 
2110     // The sprintf result is the unincremented number of bytes in the string.
2111     return B.CreateIntCast(Len, CI->getType(), false);
2112   }
2113   return nullptr;
2114 }
2115 
2116 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2117   Function *Callee = CI->getCalledFunction();
2118   FunctionType *FT = Callee->getFunctionType();
2119   if (Value *V = optimizeSPrintFString(CI, B)) {
2120     return V;
2121   }
2122 
2123   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2124   // point arguments.
2125   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2126     Module *M = B.GetInsertBlock()->getParent()->getParent();
2127     FunctionCallee SIPrintFFn =
2128         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2129     CallInst *New = cast<CallInst>(CI->clone());
2130     New->setCalledFunction(SIPrintFFn);
2131     B.Insert(New);
2132     return New;
2133   }
2134   return nullptr;
2135 }
2136 
2137 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2138   // Check for a fixed format string.
2139   StringRef FormatStr;
2140   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2141     return nullptr;
2142 
2143   // Check for size
2144   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2145   if (!Size)
2146     return nullptr;
2147 
2148   uint64_t N = Size->getZExtValue();
2149 
2150   // If we just have a format string (nothing else crazy) transform it.
2151   if (CI->getNumArgOperands() == 3) {
2152     // Make sure there's no % in the constant array.  We could try to handle
2153     // %% -> % in the future if we cared.
2154     if (FormatStr.find('%') != StringRef::npos)
2155       return nullptr; // we found a format specifier, bail out.
2156 
2157     if (N == 0)
2158       return ConstantInt::get(CI->getType(), FormatStr.size());
2159     else if (N < FormatStr.size() + 1)
2160       return nullptr;
2161 
2162     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2163     // strlen(fmt)+1)
2164     B.CreateMemCpy(
2165         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2166         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2167                          FormatStr.size() + 1)); // Copy the null byte.
2168     return ConstantInt::get(CI->getType(), FormatStr.size());
2169   }
2170 
2171   // The remaining optimizations require the format string to be "%s" or "%c"
2172   // and have an extra operand.
2173   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2174       CI->getNumArgOperands() == 4) {
2175 
2176     // Decode the second character of the format string.
2177     if (FormatStr[1] == 'c') {
2178       if (N == 0)
2179         return ConstantInt::get(CI->getType(), 1);
2180       else if (N == 1)
2181         return nullptr;
2182 
2183       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2184       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2185         return nullptr;
2186       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2187       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2188       B.CreateStore(V, Ptr);
2189       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2190       B.CreateStore(B.getInt8(0), Ptr);
2191 
2192       return ConstantInt::get(CI->getType(), 1);
2193     }
2194 
2195     if (FormatStr[1] == 's') {
2196       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2197       StringRef Str;
2198       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2199         return nullptr;
2200 
2201       if (N == 0)
2202         return ConstantInt::get(CI->getType(), Str.size());
2203       else if (N < Str.size() + 1)
2204         return nullptr;
2205 
2206       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2207                      ConstantInt::get(CI->getType(), Str.size() + 1));
2208 
2209       // The snprintf result is the unincremented number of bytes in the string.
2210       return ConstantInt::get(CI->getType(), Str.size());
2211     }
2212   }
2213   return nullptr;
2214 }
2215 
2216 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2217   if (Value *V = optimizeSnPrintFString(CI, B)) {
2218     return V;
2219   }
2220 
2221   return nullptr;
2222 }
2223 
2224 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2225   optimizeErrorReporting(CI, B, 0);
2226 
2227   // All the optimizations depend on the format string.
2228   StringRef FormatStr;
2229   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2230     return nullptr;
2231 
2232   // Do not do any of the following transformations if the fprintf return
2233   // value is used, in general the fprintf return value is not compatible
2234   // with fwrite(), fputc() or fputs().
2235   if (!CI->use_empty())
2236     return nullptr;
2237 
2238   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2239   if (CI->getNumArgOperands() == 2) {
2240     // Could handle %% -> % if we cared.
2241     if (FormatStr.find('%') != StringRef::npos)
2242       return nullptr; // We found a format specifier.
2243 
2244     return emitFWrite(
2245         CI->getArgOperand(1),
2246         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2247         CI->getArgOperand(0), B, DL, TLI);
2248   }
2249 
2250   // The remaining optimizations require the format string to be "%s" or "%c"
2251   // and have an extra operand.
2252   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2253       CI->getNumArgOperands() < 3)
2254     return nullptr;
2255 
2256   // Decode the second character of the format string.
2257   if (FormatStr[1] == 'c') {
2258     // fprintf(F, "%c", chr) --> fputc(chr, F)
2259     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2260       return nullptr;
2261     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2262   }
2263 
2264   if (FormatStr[1] == 's') {
2265     // fprintf(F, "%s", str) --> fputs(str, F)
2266     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2267       return nullptr;
2268     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2269   }
2270   return nullptr;
2271 }
2272 
2273 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2274   Function *Callee = CI->getCalledFunction();
2275   FunctionType *FT = Callee->getFunctionType();
2276   if (Value *V = optimizeFPrintFString(CI, B)) {
2277     return V;
2278   }
2279 
2280   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2281   // floating point arguments.
2282   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2283     Module *M = B.GetInsertBlock()->getParent()->getParent();
2284     FunctionCallee FIPrintFFn =
2285         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2286     CallInst *New = cast<CallInst>(CI->clone());
2287     New->setCalledFunction(FIPrintFFn);
2288     B.Insert(New);
2289     return New;
2290   }
2291   return nullptr;
2292 }
2293 
2294 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2295   optimizeErrorReporting(CI, B, 3);
2296 
2297   // Get the element size and count.
2298   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2299   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2300   if (SizeC && CountC) {
2301     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2302 
2303     // If this is writing zero records, remove the call (it's a noop).
2304     if (Bytes == 0)
2305       return ConstantInt::get(CI->getType(), 0);
2306 
2307     // If this is writing one byte, turn it into fputc.
2308     // This optimisation is only valid, if the return value is unused.
2309     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2310       Value *Char = B.CreateLoad(B.getInt8Ty(),
2311                                  castToCStr(CI->getArgOperand(0), B), "char");
2312       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2313       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2314     }
2315   }
2316 
2317   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2318     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2319                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2320                               TLI);
2321 
2322   return nullptr;
2323 }
2324 
2325 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2326   optimizeErrorReporting(CI, B, 1);
2327 
2328   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2329   // requires more arguments and thus extra MOVs are required.
2330   if (CI->getFunction()->optForSize())
2331     return nullptr;
2332 
2333   // Check if has any use
2334   if (!CI->use_empty()) {
2335     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2336       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2337                                TLI);
2338     else
2339       // We can't optimize if return value is used.
2340       return nullptr;
2341   }
2342 
2343   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2344   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2345   if (!Len)
2346     return nullptr;
2347 
2348   // Known to have no uses (see above).
2349   return emitFWrite(
2350       CI->getArgOperand(0),
2351       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2352       CI->getArgOperand(1), B, DL, TLI);
2353 }
2354 
2355 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2356   optimizeErrorReporting(CI, B, 1);
2357 
2358   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2359     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2360                              TLI);
2361 
2362   return nullptr;
2363 }
2364 
2365 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2366   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2367     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2368 
2369   return nullptr;
2370 }
2371 
2372 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2373   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2374     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2375                              CI->getArgOperand(2), B, TLI);
2376 
2377   return nullptr;
2378 }
2379 
2380 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2381   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2382     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2383                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2384                              TLI);
2385 
2386   return nullptr;
2387 }
2388 
2389 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2390   if (!CI->use_empty())
2391     return nullptr;
2392 
2393   // Check for a constant string.
2394   // puts("") -> putchar('\n')
2395   StringRef Str;
2396   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2397     return emitPutChar(B.getInt32('\n'), B, TLI);
2398 
2399   return nullptr;
2400 }
2401 
2402 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2403   LibFunc Func;
2404   SmallString<20> FloatFuncName = FuncName;
2405   FloatFuncName += 'f';
2406   if (TLI->getLibFunc(FloatFuncName, Func))
2407     return TLI->has(Func);
2408   return false;
2409 }
2410 
2411 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2412                                                       IRBuilder<> &Builder) {
2413   LibFunc Func;
2414   Function *Callee = CI->getCalledFunction();
2415   // Check for string/memory library functions.
2416   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2417     // Make sure we never change the calling convention.
2418     assert((ignoreCallingConv(Func) ||
2419             isCallingConvCCompatible(CI)) &&
2420       "Optimizing string/memory libcall would change the calling convention");
2421     switch (Func) {
2422     case LibFunc_strcat:
2423       return optimizeStrCat(CI, Builder);
2424     case LibFunc_strncat:
2425       return optimizeStrNCat(CI, Builder);
2426     case LibFunc_strchr:
2427       return optimizeStrChr(CI, Builder);
2428     case LibFunc_strrchr:
2429       return optimizeStrRChr(CI, Builder);
2430     case LibFunc_strcmp:
2431       return optimizeStrCmp(CI, Builder);
2432     case LibFunc_strncmp:
2433       return optimizeStrNCmp(CI, Builder);
2434     case LibFunc_strcpy:
2435       return optimizeStrCpy(CI, Builder);
2436     case LibFunc_stpcpy:
2437       return optimizeStpCpy(CI, Builder);
2438     case LibFunc_strncpy:
2439       return optimizeStrNCpy(CI, Builder);
2440     case LibFunc_strlen:
2441       return optimizeStrLen(CI, Builder);
2442     case LibFunc_strpbrk:
2443       return optimizeStrPBrk(CI, Builder);
2444     case LibFunc_strtol:
2445     case LibFunc_strtod:
2446     case LibFunc_strtof:
2447     case LibFunc_strtoul:
2448     case LibFunc_strtoll:
2449     case LibFunc_strtold:
2450     case LibFunc_strtoull:
2451       return optimizeStrTo(CI, Builder);
2452     case LibFunc_strspn:
2453       return optimizeStrSpn(CI, Builder);
2454     case LibFunc_strcspn:
2455       return optimizeStrCSpn(CI, Builder);
2456     case LibFunc_strstr:
2457       return optimizeStrStr(CI, Builder);
2458     case LibFunc_memchr:
2459       return optimizeMemChr(CI, Builder);
2460     case LibFunc_memcmp:
2461       return optimizeMemCmp(CI, Builder);
2462     case LibFunc_memcpy:
2463       return optimizeMemCpy(CI, Builder);
2464     case LibFunc_memmove:
2465       return optimizeMemMove(CI, Builder);
2466     case LibFunc_memset:
2467       return optimizeMemSet(CI, Builder);
2468     case LibFunc_realloc:
2469       return optimizeRealloc(CI, Builder);
2470     case LibFunc_wcslen:
2471       return optimizeWcslen(CI, Builder);
2472     default:
2473       break;
2474     }
2475   }
2476   return nullptr;
2477 }
2478 
2479 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2480                                                        LibFunc Func,
2481                                                        IRBuilder<> &Builder) {
2482   // Don't optimize calls that require strict floating point semantics.
2483   if (CI->isStrictFP())
2484     return nullptr;
2485 
2486   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2487     return V;
2488 
2489   switch (Func) {
2490   case LibFunc_sinpif:
2491   case LibFunc_sinpi:
2492   case LibFunc_cospif:
2493   case LibFunc_cospi:
2494     return optimizeSinCosPi(CI, Builder);
2495   case LibFunc_powf:
2496   case LibFunc_pow:
2497   case LibFunc_powl:
2498     return optimizePow(CI, Builder);
2499   case LibFunc_exp2l:
2500   case LibFunc_exp2:
2501   case LibFunc_exp2f:
2502     return optimizeExp2(CI, Builder);
2503   case LibFunc_fabsf:
2504   case LibFunc_fabs:
2505   case LibFunc_fabsl:
2506     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2507   case LibFunc_sqrtf:
2508   case LibFunc_sqrt:
2509   case LibFunc_sqrtl:
2510     return optimizeSqrt(CI, Builder);
2511   case LibFunc_log:
2512   case LibFunc_log10:
2513   case LibFunc_log1p:
2514   case LibFunc_log2:
2515   case LibFunc_logb:
2516     return optimizeLog(CI, Builder);
2517   case LibFunc_tan:
2518   case LibFunc_tanf:
2519   case LibFunc_tanl:
2520     return optimizeTan(CI, Builder);
2521   case LibFunc_ceil:
2522     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2523   case LibFunc_floor:
2524     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2525   case LibFunc_round:
2526     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2527   case LibFunc_nearbyint:
2528     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2529   case LibFunc_rint:
2530     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2531   case LibFunc_trunc:
2532     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2533   case LibFunc_acos:
2534   case LibFunc_acosh:
2535   case LibFunc_asin:
2536   case LibFunc_asinh:
2537   case LibFunc_atan:
2538   case LibFunc_atanh:
2539   case LibFunc_cbrt:
2540   case LibFunc_cosh:
2541   case LibFunc_exp:
2542   case LibFunc_exp10:
2543   case LibFunc_expm1:
2544   case LibFunc_cos:
2545   case LibFunc_sin:
2546   case LibFunc_sinh:
2547   case LibFunc_tanh:
2548     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2549       return optimizeUnaryDoubleFP(CI, Builder, true);
2550     return nullptr;
2551   case LibFunc_copysign:
2552     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2553       return optimizeBinaryDoubleFP(CI, Builder);
2554     return nullptr;
2555   case LibFunc_fminf:
2556   case LibFunc_fmin:
2557   case LibFunc_fminl:
2558   case LibFunc_fmaxf:
2559   case LibFunc_fmax:
2560   case LibFunc_fmaxl:
2561     return optimizeFMinFMax(CI, Builder);
2562   case LibFunc_cabs:
2563   case LibFunc_cabsf:
2564   case LibFunc_cabsl:
2565     return optimizeCAbs(CI, Builder);
2566   default:
2567     return nullptr;
2568   }
2569 }
2570 
2571 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2572   // TODO: Split out the code below that operates on FP calls so that
2573   //       we can all non-FP calls with the StrictFP attribute to be
2574   //       optimized.
2575   if (CI->isNoBuiltin())
2576     return nullptr;
2577 
2578   LibFunc Func;
2579   Function *Callee = CI->getCalledFunction();
2580 
2581   SmallVector<OperandBundleDef, 2> OpBundles;
2582   CI->getOperandBundlesAsDefs(OpBundles);
2583   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2584   bool isCallingConvC = isCallingConvCCompatible(CI);
2585 
2586   // Command-line parameter overrides instruction attribute.
2587   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2588   // used by the intrinsic optimizations.
2589   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2590     UnsafeFPShrink = EnableUnsafeFPShrink;
2591   else if (isa<FPMathOperator>(CI) && CI->isFast())
2592     UnsafeFPShrink = true;
2593 
2594   // First, check for intrinsics.
2595   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2596     if (!isCallingConvC)
2597       return nullptr;
2598     // The FP intrinsics have corresponding constrained versions so we don't
2599     // need to check for the StrictFP attribute here.
2600     switch (II->getIntrinsicID()) {
2601     case Intrinsic::pow:
2602       return optimizePow(CI, Builder);
2603     case Intrinsic::exp2:
2604       return optimizeExp2(CI, Builder);
2605     case Intrinsic::log:
2606       return optimizeLog(CI, Builder);
2607     case Intrinsic::sqrt:
2608       return optimizeSqrt(CI, Builder);
2609     // TODO: Use foldMallocMemset() with memset intrinsic.
2610     default:
2611       return nullptr;
2612     }
2613   }
2614 
2615   // Also try to simplify calls to fortified library functions.
2616   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2617     // Try to further simplify the result.
2618     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2619     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2620       // Use an IR Builder from SimplifiedCI if available instead of CI
2621       // to guarantee we reach all uses we might replace later on.
2622       IRBuilder<> TmpBuilder(SimplifiedCI);
2623       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2624         // If we were able to further simplify, remove the now redundant call.
2625         SimplifiedCI->replaceAllUsesWith(V);
2626         eraseFromParent(SimplifiedCI);
2627         return V;
2628       }
2629     }
2630     return SimplifiedFortifiedCI;
2631   }
2632 
2633   // Then check for known library functions.
2634   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2635     // We never change the calling convention.
2636     if (!ignoreCallingConv(Func) && !isCallingConvC)
2637       return nullptr;
2638     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2639       return V;
2640     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2641       return V;
2642     switch (Func) {
2643     case LibFunc_ffs:
2644     case LibFunc_ffsl:
2645     case LibFunc_ffsll:
2646       return optimizeFFS(CI, Builder);
2647     case LibFunc_fls:
2648     case LibFunc_flsl:
2649     case LibFunc_flsll:
2650       return optimizeFls(CI, Builder);
2651     case LibFunc_abs:
2652     case LibFunc_labs:
2653     case LibFunc_llabs:
2654       return optimizeAbs(CI, Builder);
2655     case LibFunc_isdigit:
2656       return optimizeIsDigit(CI, Builder);
2657     case LibFunc_isascii:
2658       return optimizeIsAscii(CI, Builder);
2659     case LibFunc_toascii:
2660       return optimizeToAscii(CI, Builder);
2661     case LibFunc_atoi:
2662     case LibFunc_atol:
2663     case LibFunc_atoll:
2664       return optimizeAtoi(CI, Builder);
2665     case LibFunc_strtol:
2666     case LibFunc_strtoll:
2667       return optimizeStrtol(CI, Builder);
2668     case LibFunc_printf:
2669       return optimizePrintF(CI, Builder);
2670     case LibFunc_sprintf:
2671       return optimizeSPrintF(CI, Builder);
2672     case LibFunc_snprintf:
2673       return optimizeSnPrintF(CI, Builder);
2674     case LibFunc_fprintf:
2675       return optimizeFPrintF(CI, Builder);
2676     case LibFunc_fwrite:
2677       return optimizeFWrite(CI, Builder);
2678     case LibFunc_fread:
2679       return optimizeFRead(CI, Builder);
2680     case LibFunc_fputs:
2681       return optimizeFPuts(CI, Builder);
2682     case LibFunc_fgets:
2683       return optimizeFGets(CI, Builder);
2684     case LibFunc_fputc:
2685       return optimizeFPutc(CI, Builder);
2686     case LibFunc_fgetc:
2687       return optimizeFGetc(CI, Builder);
2688     case LibFunc_puts:
2689       return optimizePuts(CI, Builder);
2690     case LibFunc_perror:
2691       return optimizeErrorReporting(CI, Builder);
2692     case LibFunc_vfprintf:
2693     case LibFunc_fiprintf:
2694       return optimizeErrorReporting(CI, Builder, 0);
2695     default:
2696       return nullptr;
2697     }
2698   }
2699   return nullptr;
2700 }
2701 
2702 LibCallSimplifier::LibCallSimplifier(
2703     const DataLayout &DL, const TargetLibraryInfo *TLI,
2704     OptimizationRemarkEmitter &ORE,
2705     function_ref<void(Instruction *, Value *)> Replacer,
2706     function_ref<void(Instruction *)> Eraser)
2707     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2708       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
2709 
2710 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2711   // Indirect through the replacer used in this instance.
2712   Replacer(I, With);
2713 }
2714 
2715 void LibCallSimplifier::eraseFromParent(Instruction *I) {
2716   Eraser(I);
2717 }
2718 
2719 // TODO:
2720 //   Additional cases that we need to add to this file:
2721 //
2722 // cbrt:
2723 //   * cbrt(expN(X))  -> expN(x/3)
2724 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2725 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2726 //
2727 // exp, expf, expl:
2728 //   * exp(log(x))  -> x
2729 //
2730 // log, logf, logl:
2731 //   * log(exp(x))   -> x
2732 //   * log(exp(y))   -> y*log(e)
2733 //   * log(exp10(y)) -> y*log(10)
2734 //   * log(sqrt(x))  -> 0.5*log(x)
2735 //
2736 // pow, powf, powl:
2737 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2738 //   * pow(pow(x,y),z)-> pow(x,y*z)
2739 //
2740 // signbit:
2741 //   * signbit(cnst) -> cnst'
2742 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2743 //
2744 // sqrt, sqrtf, sqrtl:
2745 //   * sqrt(expN(x))  -> expN(x*0.5)
2746 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2747 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2748 //
2749 
2750 //===----------------------------------------------------------------------===//
2751 // Fortified Library Call Optimizations
2752 //===----------------------------------------------------------------------===//
2753 
2754 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2755                                                          unsigned ObjSizeOp,
2756                                                          unsigned SizeOp,
2757                                                          bool isString) {
2758   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2759     return true;
2760   if (ConstantInt *ObjSizeCI =
2761           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2762     if (ObjSizeCI->isMinusOne())
2763       return true;
2764     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2765     if (OnlyLowerUnknownSize)
2766       return false;
2767     if (isString) {
2768       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2769       // If the length is 0 we don't know how long it is and so we can't
2770       // remove the check.
2771       if (Len == 0)
2772         return false;
2773       return ObjSizeCI->getZExtValue() >= Len;
2774     }
2775     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2776       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2777   }
2778   return false;
2779 }
2780 
2781 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2782                                                      IRBuilder<> &B) {
2783   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2784     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2785                    CI->getArgOperand(2));
2786     return CI->getArgOperand(0);
2787   }
2788   return nullptr;
2789 }
2790 
2791 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2792                                                       IRBuilder<> &B) {
2793   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2794     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2795                     CI->getArgOperand(2));
2796     return CI->getArgOperand(0);
2797   }
2798   return nullptr;
2799 }
2800 
2801 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2802                                                      IRBuilder<> &B) {
2803   // TODO: Try foldMallocMemset() here.
2804 
2805   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2806     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2807     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2808     return CI->getArgOperand(0);
2809   }
2810   return nullptr;
2811 }
2812 
2813 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2814                                                       IRBuilder<> &B,
2815                                                       LibFunc Func) {
2816   Function *Callee = CI->getCalledFunction();
2817   StringRef Name = Callee->getName();
2818   const DataLayout &DL = CI->getModule()->getDataLayout();
2819   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2820         *ObjSize = CI->getArgOperand(2);
2821 
2822   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2823   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2824     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2825     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2826   }
2827 
2828   // If a) we don't have any length information, or b) we know this will
2829   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2830   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2831   // TODO: It might be nice to get a maximum length out of the possible
2832   // string lengths for varying.
2833   if (isFortifiedCallFoldable(CI, 2, 1, true))
2834     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2835 
2836   if (OnlyLowerUnknownSize)
2837     return nullptr;
2838 
2839   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2840   uint64_t Len = GetStringLength(Src);
2841   if (Len == 0)
2842     return nullptr;
2843 
2844   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2845   Value *LenV = ConstantInt::get(SizeTTy, Len);
2846   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2847   // If the function was an __stpcpy_chk, and we were able to fold it into
2848   // a __memcpy_chk, we still need to return the correct end pointer.
2849   if (Ret && Func == LibFunc_stpcpy_chk)
2850     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2851   return Ret;
2852 }
2853 
2854 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2855                                                        IRBuilder<> &B,
2856                                                        LibFunc Func) {
2857   Function *Callee = CI->getCalledFunction();
2858   StringRef Name = Callee->getName();
2859   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2860     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2861                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2862     return Ret;
2863   }
2864   return nullptr;
2865 }
2866 
2867 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2868   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2869   // Some clang users checked for _chk libcall availability using:
2870   //   __has_builtin(__builtin___memcpy_chk)
2871   // When compiling with -fno-builtin, this is always true.
2872   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2873   // end up with fortified libcalls, which isn't acceptable in a freestanding
2874   // environment which only provides their non-fortified counterparts.
2875   //
2876   // Until we change clang and/or teach external users to check for availability
2877   // differently, disregard the "nobuiltin" attribute and TLI::has.
2878   //
2879   // PR23093.
2880 
2881   LibFunc Func;
2882   Function *Callee = CI->getCalledFunction();
2883 
2884   SmallVector<OperandBundleDef, 2> OpBundles;
2885   CI->getOperandBundlesAsDefs(OpBundles);
2886   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2887   bool isCallingConvC = isCallingConvCCompatible(CI);
2888 
2889   // First, check that this is a known library functions and that the prototype
2890   // is correct.
2891   if (!TLI->getLibFunc(*Callee, Func))
2892     return nullptr;
2893 
2894   // We never change the calling convention.
2895   if (!ignoreCallingConv(Func) && !isCallingConvC)
2896     return nullptr;
2897 
2898   switch (Func) {
2899   case LibFunc_memcpy_chk:
2900     return optimizeMemCpyChk(CI, Builder);
2901   case LibFunc_memmove_chk:
2902     return optimizeMemMoveChk(CI, Builder);
2903   case LibFunc_memset_chk:
2904     return optimizeMemSetChk(CI, Builder);
2905   case LibFunc_stpcpy_chk:
2906   case LibFunc_strcpy_chk:
2907     return optimizeStrpCpyChk(CI, Builder, Func);
2908   case LibFunc_stpncpy_chk:
2909   case LibFunc_strncpy_chk:
2910     return optimizeStrpNCpyChk(CI, Builder, Func);
2911   default:
2912     break;
2913   }
2914   return nullptr;
2915 }
2916 
2917 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2918     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2919     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2920