1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 // Helper to avoid truncating the length if size_t is 32-bits.
205 static StringRef substr(StringRef Str, uint64_t Len) {
206   return Len >= Str.size() ? Str : Str.substr(0, Len);
207 }
208 
209 //===----------------------------------------------------------------------===//
210 // String and Memory Library Call Optimizations
211 //===----------------------------------------------------------------------===//
212 
213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
214   // Extract some information from the instruction
215   Value *Dst = CI->getArgOperand(0);
216   Value *Src = CI->getArgOperand(1);
217   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
218 
219   // See if we can get the length of the input string.
220   uint64_t Len = GetStringLength(Src);
221   if (Len)
222     annotateDereferenceableBytes(CI, 1, Len);
223   else
224     return nullptr;
225   --Len; // Unbias length.
226 
227   // Handle the simple, do-nothing case: strcat(x, "") -> x
228   if (Len == 0)
229     return Dst;
230 
231   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
232 }
233 
234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
235                                            IRBuilderBase &B) {
236   // We need to find the end of the destination string.  That's where the
237   // memory is to be moved to. We just generate a call to strlen.
238   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
239   if (!DstLen)
240     return nullptr;
241 
242   // Now that we have the destination's length, we must index into the
243   // destination's pointer to get the actual memcpy destination (end of
244   // the string .. we're concatenating).
245   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
246 
247   // We have enough information to now generate the memcpy call to do the
248   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
249   B.CreateMemCpy(
250       CpyDst, Align(1), Src, Align(1),
251       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
252   return Dst;
253 }
254 
255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
256   // Extract some information from the instruction.
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   Value *Size = CI->getArgOperand(2);
260   uint64_t Len;
261   annotateNonNullNoUndefBasedOnAccess(CI, 0);
262   if (isKnownNonZero(Size, DL))
263     annotateNonNullNoUndefBasedOnAccess(CI, 1);
264 
265   // We don't do anything if length is not constant.
266   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
267   if (LengthArg) {
268     Len = LengthArg->getZExtValue();
269     // strncat(x, c, 0) -> x
270     if (!Len)
271       return Dst;
272   } else {
273     return nullptr;
274   }
275 
276   // See if we can get the length of the input string.
277   uint64_t SrcLen = GetStringLength(Src);
278   if (SrcLen) {
279     annotateDereferenceableBytes(CI, 1, SrcLen);
280     --SrcLen; // Unbias length.
281   } else {
282     return nullptr;
283   }
284 
285   // strncat(x, "", c) -> x
286   if (SrcLen == 0)
287     return Dst;
288 
289   // We don't optimize this case.
290   if (Len < SrcLen)
291     return nullptr;
292 
293   // strncat(x, s, c) -> strcat(x, s)
294   // s is constant so the strcat can be optimized further.
295   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
296 }
297 
298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
299   Function *Callee = CI->getCalledFunction();
300   FunctionType *FT = Callee->getFunctionType();
301   Value *SrcStr = CI->getArgOperand(0);
302   annotateNonNullNoUndefBasedOnAccess(CI, 0);
303 
304   // If the second operand is non-constant, see if we can compute the length
305   // of the input string and turn this into memchr.
306   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
307   if (!CharC) {
308     uint64_t Len = GetStringLength(SrcStr);
309     if (Len)
310       annotateDereferenceableBytes(CI, 0, Len);
311     else
312       return nullptr;
313     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
314       return nullptr;
315 
316     return copyFlags(
317         *CI,
318         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
319                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
320                    DL, TLI));
321   }
322 
323   // Otherwise, the character is a constant, see if the first argument is
324   // a string literal.  If so, we can constant fold.
325   StringRef Str;
326   if (!getConstantStringInfo(SrcStr, Str)) {
327     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
328       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
329         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
330     return nullptr;
331   }
332 
333   // Compute the offset, make sure to handle the case when we're searching for
334   // zero (a weird way to spell strlen).
335   size_t I = (0xFF & CharC->getSExtValue()) == 0
336                  ? Str.size()
337                  : Str.find(CharC->getSExtValue());
338   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
339     return Constant::getNullValue(CI->getType());
340 
341   // strchr(s+n,c)  -> gep(s+n+i,c)
342   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
343 }
344 
345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
346   Value *SrcStr = CI->getArgOperand(0);
347   Value *CharVal = CI->getArgOperand(1);
348   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
349   annotateNonNullNoUndefBasedOnAccess(CI, 0);
350 
351   StringRef Str;
352   if (!getConstantStringInfo(SrcStr, Str)) {
353     // strrchr(s, 0) -> strchr(s, 0)
354     if (CharC && CharC->isZero())
355       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
356     return nullptr;
357   }
358 
359   // Try to expand strrchr to the memrchr nonstandard extension if it's
360   // available, or simply fail otherwise.
361   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
362   Type *IntPtrType = DL.getIntPtrType(CI->getContext());
363   Value *Size = ConstantInt::get(IntPtrType, NBytes);
364   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
365 }
366 
367 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
368   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
369   if (Str1P == Str2P) // strcmp(x,x)  -> 0
370     return ConstantInt::get(CI->getType(), 0);
371 
372   StringRef Str1, Str2;
373   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
374   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
375 
376   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
377   if (HasStr1 && HasStr2)
378     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
379 
380   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
381     return B.CreateNeg(B.CreateZExt(
382         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
383 
384   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
385     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
386                         CI->getType());
387 
388   // strcmp(P, "x") -> memcmp(P, "x", 2)
389   uint64_t Len1 = GetStringLength(Str1P);
390   if (Len1)
391     annotateDereferenceableBytes(CI, 0, Len1);
392   uint64_t Len2 = GetStringLength(Str2P);
393   if (Len2)
394     annotateDereferenceableBytes(CI, 1, Len2);
395 
396   if (Len1 && Len2) {
397     return copyFlags(
398         *CI, emitMemCmp(Str1P, Str2P,
399                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
400                                          std::min(Len1, Len2)),
401                         B, DL, TLI));
402   }
403 
404   // strcmp to memcmp
405   if (!HasStr1 && HasStr2) {
406     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
407       return copyFlags(
408           *CI,
409           emitMemCmp(Str1P, Str2P,
410                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
411                      B, DL, TLI));
412   } else if (HasStr1 && !HasStr2) {
413     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
414       return copyFlags(
415           *CI,
416           emitMemCmp(Str1P, Str2P,
417                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
418                      B, DL, TLI));
419   }
420 
421   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
422   return nullptr;
423 }
424 
425 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
426 // arrays LHS and RHS and nonconstant Size.
427 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
428                                     Value *Size, bool StrNCmp,
429                                     IRBuilderBase &B, const DataLayout &DL);
430 
431 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
432   Value *Str1P = CI->getArgOperand(0);
433   Value *Str2P = CI->getArgOperand(1);
434   Value *Size = CI->getArgOperand(2);
435   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
436     return ConstantInt::get(CI->getType(), 0);
437 
438   if (isKnownNonZero(Size, DL))
439     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
440   // Get the length argument if it is constant.
441   uint64_t Length;
442   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
443     Length = LengthArg->getZExtValue();
444   else
445     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
446 
447   if (Length == 0) // strncmp(x,y,0)   -> 0
448     return ConstantInt::get(CI->getType(), 0);
449 
450   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
451     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
452 
453   StringRef Str1, Str2;
454   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
455   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
456 
457   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
458   if (HasStr1 && HasStr2) {
459     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
460     StringRef SubStr1 = substr(Str1, Length);
461     StringRef SubStr2 = substr(Str2, Length);
462     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
463   }
464 
465   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
466     return B.CreateNeg(B.CreateZExt(
467         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
468 
469   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
470     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
471                         CI->getType());
472 
473   uint64_t Len1 = GetStringLength(Str1P);
474   if (Len1)
475     annotateDereferenceableBytes(CI, 0, Len1);
476   uint64_t Len2 = GetStringLength(Str2P);
477   if (Len2)
478     annotateDereferenceableBytes(CI, 1, Len2);
479 
480   // strncmp to memcmp
481   if (!HasStr1 && HasStr2) {
482     Len2 = std::min(Len2, Length);
483     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
484       return copyFlags(
485           *CI,
486           emitMemCmp(Str1P, Str2P,
487                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
488                      B, DL, TLI));
489   } else if (HasStr1 && !HasStr2) {
490     Len1 = std::min(Len1, Length);
491     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
492       return copyFlags(
493           *CI,
494           emitMemCmp(Str1P, Str2P,
495                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
496                      B, DL, TLI));
497   }
498 
499   return nullptr;
500 }
501 
502 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
503   Value *Src = CI->getArgOperand(0);
504   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
505   uint64_t SrcLen = GetStringLength(Src);
506   if (SrcLen && Size) {
507     annotateDereferenceableBytes(CI, 0, SrcLen);
508     if (SrcLen <= Size->getZExtValue() + 1)
509       return copyFlags(*CI, emitStrDup(Src, B, TLI));
510   }
511 
512   return nullptr;
513 }
514 
515 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
516   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
517   if (Dst == Src) // strcpy(x,x)  -> x
518     return Src;
519 
520   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
521   // See if we can get the length of the input string.
522   uint64_t Len = GetStringLength(Src);
523   if (Len)
524     annotateDereferenceableBytes(CI, 1, Len);
525   else
526     return nullptr;
527 
528   // We have enough information to now generate the memcpy call to do the
529   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
530   CallInst *NewCI =
531       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
532                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
533   NewCI->setAttributes(CI->getAttributes());
534   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
535   copyFlags(*CI, NewCI);
536   return Dst;
537 }
538 
539 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
540   Function *Callee = CI->getCalledFunction();
541   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
542 
543   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
544   if (CI->use_empty())
545     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
546 
547   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
548     Value *StrLen = emitStrLen(Src, B, DL, TLI);
549     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
550   }
551 
552   // See if we can get the length of the input string.
553   uint64_t Len = GetStringLength(Src);
554   if (Len)
555     annotateDereferenceableBytes(CI, 1, Len);
556   else
557     return nullptr;
558 
559   Type *PT = Callee->getFunctionType()->getParamType(0);
560   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
561   Value *DstEnd = B.CreateInBoundsGEP(
562       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
563 
564   // We have enough information to now generate the memcpy call to do the
565   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
566   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
567   NewCI->setAttributes(CI->getAttributes());
568   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
569   copyFlags(*CI, NewCI);
570   return DstEnd;
571 }
572 
573 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
574   Function *Callee = CI->getCalledFunction();
575   Value *Dst = CI->getArgOperand(0);
576   Value *Src = CI->getArgOperand(1);
577   Value *Size = CI->getArgOperand(2);
578   annotateNonNullNoUndefBasedOnAccess(CI, 0);
579   if (isKnownNonZero(Size, DL))
580     annotateNonNullNoUndefBasedOnAccess(CI, 1);
581 
582   uint64_t Len;
583   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
584     Len = LengthArg->getZExtValue();
585   else
586     return nullptr;
587 
588   // strncpy(x, y, 0) -> x
589   if (Len == 0)
590     return Dst;
591 
592   // See if we can get the length of the input string.
593   uint64_t SrcLen = GetStringLength(Src);
594   if (SrcLen) {
595     annotateDereferenceableBytes(CI, 1, SrcLen);
596     --SrcLen; // Unbias length.
597   } else {
598     return nullptr;
599   }
600 
601   if (SrcLen == 0) {
602     // strncpy(x, "", y) -> memset(x, '\0', y)
603     Align MemSetAlign =
604         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
605     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
606     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
607     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
608         CI->getContext(), 0, ArgAttrs));
609     copyFlags(*CI, NewCI);
610     return Dst;
611   }
612 
613   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
614   if (Len > SrcLen + 1) {
615     if (Len <= 128) {
616       StringRef Str;
617       if (!getConstantStringInfo(Src, Str))
618         return nullptr;
619       std::string SrcStr = Str.str();
620       SrcStr.resize(Len, '\0');
621       Src = B.CreateGlobalString(SrcStr, "str");
622     } else {
623       return nullptr;
624     }
625   }
626 
627   Type *PT = Callee->getFunctionType()->getParamType(0);
628   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
629   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
630                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
631   NewCI->setAttributes(CI->getAttributes());
632   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
633   copyFlags(*CI, NewCI);
634   return Dst;
635 }
636 
637 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
638                                                unsigned CharSize,
639                                                Value *Bound) {
640   Value *Src = CI->getArgOperand(0);
641   Type *CharTy = B.getIntNTy(CharSize);
642 
643   if (isOnlyUsedInZeroEqualityComparison(CI) &&
644       (!Bound || isKnownNonZero(Bound, DL))) {
645     // Fold strlen:
646     //   strlen(x) != 0 --> *x != 0
647     //   strlen(x) == 0 --> *x == 0
648     // and likewise strnlen with constant N > 0:
649     //   strnlen(x, N) != 0 --> *x != 0
650     //   strnlen(x, N) == 0 --> *x == 0
651     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
652                         CI->getType());
653   }
654 
655   if (Bound) {
656     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
657       if (BoundCst->isZero())
658         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
659         return ConstantInt::get(CI->getType(), 0);
660 
661       if (BoundCst->isOne()) {
662         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
663         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
664         Value *ZeroChar = ConstantInt::get(CharTy, 0);
665         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
666         return B.CreateZExt(Cmp, CI->getType());
667       }
668     }
669   }
670 
671   if (uint64_t Len = GetStringLength(Src, CharSize)) {
672     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
673     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
674     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
675     if (Bound)
676       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
677     return LenC;
678   }
679 
680   if (Bound)
681     // Punt for strnlen for now.
682     return nullptr;
683 
684   // If s is a constant pointer pointing to a string literal, we can fold
685   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
686   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
687   // We only try to simplify strlen when the pointer s points to an array
688   // of i8. Otherwise, we would need to scale the offset x before doing the
689   // subtraction. This will make the optimization more complex, and it's not
690   // very useful because calling strlen for a pointer of other types is
691   // very uncommon.
692   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
693     // TODO: Handle subobjects.
694     if (!isGEPBasedOnPointerToString(GEP, CharSize))
695       return nullptr;
696 
697     ConstantDataArraySlice Slice;
698     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
699       uint64_t NullTermIdx;
700       if (Slice.Array == nullptr) {
701         NullTermIdx = 0;
702       } else {
703         NullTermIdx = ~((uint64_t)0);
704         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
705           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
706             NullTermIdx = I;
707             break;
708           }
709         }
710         // If the string does not have '\0', leave it to strlen to compute
711         // its length.
712         if (NullTermIdx == ~((uint64_t)0))
713           return nullptr;
714       }
715 
716       Value *Offset = GEP->getOperand(2);
717       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
718       uint64_t ArrSize =
719              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
720 
721       // If Offset is not provably in the range [0, NullTermIdx], we can still
722       // optimize if we can prove that the program has undefined behavior when
723       // Offset is outside that range. That is the case when GEP->getOperand(0)
724       // is a pointer to an object whose memory extent is NullTermIdx+1.
725       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
726           (isa<GlobalVariable>(GEP->getOperand(0)) &&
727            NullTermIdx == ArrSize - 1)) {
728         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
729         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
730                            Offset);
731       }
732     }
733   }
734 
735   // strlen(x?"foo":"bars") --> x ? 3 : 4
736   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
737     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
738     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
739     if (LenTrue && LenFalse) {
740       ORE.emit([&]() {
741         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
742                << "folded strlen(select) to select of constants";
743       });
744       return B.CreateSelect(SI->getCondition(),
745                             ConstantInt::get(CI->getType(), LenTrue - 1),
746                             ConstantInt::get(CI->getType(), LenFalse - 1));
747     }
748   }
749 
750   return nullptr;
751 }
752 
753 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
754   if (Value *V = optimizeStringLength(CI, B, 8))
755     return V;
756   annotateNonNullNoUndefBasedOnAccess(CI, 0);
757   return nullptr;
758 }
759 
760 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
761   Value *Bound = CI->getArgOperand(1);
762   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
763     return V;
764 
765   if (isKnownNonZero(Bound, DL))
766     annotateNonNullNoUndefBasedOnAccess(CI, 0);
767   return nullptr;
768 }
769 
770 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
771   Module &M = *CI->getModule();
772   unsigned WCharSize = TLI->getWCharSize(M) * 8;
773   // We cannot perform this optimization without wchar_size metadata.
774   if (WCharSize == 0)
775     return nullptr;
776 
777   return optimizeStringLength(CI, B, WCharSize);
778 }
779 
780 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
781   StringRef S1, S2;
782   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
783   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
784 
785   // strpbrk(s, "") -> nullptr
786   // strpbrk("", s) -> nullptr
787   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
788     return Constant::getNullValue(CI->getType());
789 
790   // Constant folding.
791   if (HasS1 && HasS2) {
792     size_t I = S1.find_first_of(S2);
793     if (I == StringRef::npos) // No match.
794       return Constant::getNullValue(CI->getType());
795 
796     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
797                                B.getInt64(I), "strpbrk");
798   }
799 
800   // strpbrk(s, "a") -> strchr(s, 'a')
801   if (HasS2 && S2.size() == 1)
802     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
803 
804   return nullptr;
805 }
806 
807 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
808   Value *EndPtr = CI->getArgOperand(1);
809   if (isa<ConstantPointerNull>(EndPtr)) {
810     // With a null EndPtr, this function won't capture the main argument.
811     // It would be readonly too, except that it still may write to errno.
812     CI->addParamAttr(0, Attribute::NoCapture);
813   }
814 
815   return nullptr;
816 }
817 
818 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
819   StringRef S1, S2;
820   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
821   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
822 
823   // strspn(s, "") -> 0
824   // strspn("", s) -> 0
825   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
826     return Constant::getNullValue(CI->getType());
827 
828   // Constant folding.
829   if (HasS1 && HasS2) {
830     size_t Pos = S1.find_first_not_of(S2);
831     if (Pos == StringRef::npos)
832       Pos = S1.size();
833     return ConstantInt::get(CI->getType(), Pos);
834   }
835 
836   return nullptr;
837 }
838 
839 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
840   StringRef S1, S2;
841   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
842   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
843 
844   // strcspn("", s) -> 0
845   if (HasS1 && S1.empty())
846     return Constant::getNullValue(CI->getType());
847 
848   // Constant folding.
849   if (HasS1 && HasS2) {
850     size_t Pos = S1.find_first_of(S2);
851     if (Pos == StringRef::npos)
852       Pos = S1.size();
853     return ConstantInt::get(CI->getType(), Pos);
854   }
855 
856   // strcspn(s, "") -> strlen(s)
857   if (HasS2 && S2.empty())
858     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
859 
860   return nullptr;
861 }
862 
863 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
864   // fold strstr(x, x) -> x.
865   if (CI->getArgOperand(0) == CI->getArgOperand(1))
866     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
867 
868   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
869   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
870     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
871     if (!StrLen)
872       return nullptr;
873     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
874                                  StrLen, B, DL, TLI);
875     if (!StrNCmp)
876       return nullptr;
877     for (User *U : llvm::make_early_inc_range(CI->users())) {
878       ICmpInst *Old = cast<ICmpInst>(U);
879       Value *Cmp =
880           B.CreateICmp(Old->getPredicate(), StrNCmp,
881                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
882       replaceAllUsesWith(Old, Cmp);
883     }
884     return CI;
885   }
886 
887   // See if either input string is a constant string.
888   StringRef SearchStr, ToFindStr;
889   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
890   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
891 
892   // fold strstr(x, "") -> x.
893   if (HasStr2 && ToFindStr.empty())
894     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
895 
896   // If both strings are known, constant fold it.
897   if (HasStr1 && HasStr2) {
898     size_t Offset = SearchStr.find(ToFindStr);
899 
900     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
901       return Constant::getNullValue(CI->getType());
902 
903     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
904     Value *Result = castToCStr(CI->getArgOperand(0), B);
905     Result =
906         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
907     return B.CreateBitCast(Result, CI->getType());
908   }
909 
910   // fold strstr(x, "y") -> strchr(x, 'y').
911   if (HasStr2 && ToFindStr.size() == 1) {
912     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
913     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
914   }
915 
916   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
917   return nullptr;
918 }
919 
920 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
921   Value *SrcStr = CI->getArgOperand(0);
922   Value *Size = CI->getArgOperand(2);
923   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
924   Value *CharVal = CI->getArgOperand(1);
925   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
926   Value *NullPtr = Constant::getNullValue(CI->getType());
927 
928   if (LenC) {
929     if (LenC->isZero())
930       // Fold memrchr(x, y, 0) --> null.
931       return NullPtr;
932 
933     if (LenC->isOne()) {
934       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
935       // constant or otherwise.
936       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
937       // Slice off the character's high end bits.
938       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
939       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
940       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
941     }
942   }
943 
944   StringRef Str;
945   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
946     return nullptr;
947 
948   if (Str.size() == 0)
949     // If the array is empty fold memrchr(A, C, N) to null for any value
950     // of C and N on the basis that the only valid value of N is zero
951     // (otherwise the call is undefined).
952     return NullPtr;
953 
954   uint64_t EndOff = UINT64_MAX;
955   if (LenC) {
956     EndOff = LenC->getZExtValue();
957     if (Str.size() < EndOff)
958       // Punt out-of-bounds accesses to sanitizers and/or libc.
959       return nullptr;
960   }
961 
962   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
963     // Fold memrchr(S, C, N) for a constant C.
964     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
965     if (Pos == StringRef::npos)
966       // When the character is not in the source array fold the result
967       // to null regardless of Size.
968       return NullPtr;
969 
970     if (LenC)
971       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
972       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
973 
974     if (Str.find(Str[Pos]) == Pos) {
975       // When there is just a single occurrence of C in S, i.e., the one
976       // in Str[Pos], fold
977       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
978       // for nonconstant N.
979       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
980                                    "memrchr.cmp");
981       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
982                                            B.getInt64(Pos), "memrchr.ptr_plus");
983       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
984     }
985   }
986 
987   // Truncate the string to search at most EndOff characters.
988   Str = Str.substr(0, EndOff);
989   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
990     return nullptr;
991 
992   // If the source array consists of all equal characters, then for any
993   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
994   //   N != 0 && *S == C ? S + N - 1 : null
995   Type *SizeTy = Size->getType();
996   Type *Int8Ty = B.getInt8Ty();
997   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
998   // Slice off the sought character's high end bits.
999   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1000   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1001   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1002   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1003   Value *SrcPlus =
1004       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1005   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1006 }
1007 
1008 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1009   Value *SrcStr = CI->getArgOperand(0);
1010   Value *Size = CI->getArgOperand(2);
1011   if (isKnownNonZero(Size, DL))
1012     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1013 
1014   Value *CharVal = CI->getArgOperand(1);
1015   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1016   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1017   Value *NullPtr = Constant::getNullValue(CI->getType());
1018 
1019   // memchr(x, y, 0) -> null
1020   if (LenC) {
1021     if (LenC->isZero())
1022       return NullPtr;
1023 
1024     if (LenC->isOne()) {
1025       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1026       // constant or otherwise.
1027       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1028       // Slice off the character's high end bits.
1029       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1030       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1031       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1032     }
1033   }
1034 
1035   StringRef Str;
1036   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1037     return nullptr;
1038 
1039   if (CharC) {
1040     size_t Pos = Str.find(CharC->getZExtValue());
1041     if (Pos == StringRef::npos)
1042       // When the character is not in the source array fold the result
1043       // to null regardless of Size.
1044       return NullPtr;
1045 
1046     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1047     // When the constant Size is less than or equal to the character
1048     // position also fold the result to null.
1049     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1050                                  "memchr.cmp");
1051     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1052                                          "memchr.ptr");
1053     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1054   }
1055 
1056   if (Str.size() == 0)
1057     // If the array is empty fold memchr(A, C, N) to null for any value
1058     // of C and N on the basis that the only valid value of N is zero
1059     // (otherwise the call is undefined).
1060     return NullPtr;
1061 
1062   if (LenC)
1063     Str = substr(Str, LenC->getZExtValue());
1064 
1065   size_t Pos = Str.find_first_not_of(Str[0]);
1066   if (Pos == StringRef::npos
1067       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1068     // If the source array consists of at most two consecutive sequences
1069     // of the same characters, then for any C and N (whether in bounds or
1070     // not), fold memchr(S, C, N) to
1071     //   N != 0 && *S == C ? S : null
1072     // or for the two sequences to:
1073     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1074     //   ^Sel2                   ^Sel1 are denoted above.
1075     // The latter makes it also possible to fold strchr() calls with strings
1076     // of the same characters.
1077     Type *SizeTy = Size->getType();
1078     Type *Int8Ty = B.getInt8Ty();
1079 
1080     // Slice off the sought character's high end bits.
1081     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1082 
1083     Value *Sel1 = NullPtr;
1084     if (Pos != StringRef::npos) {
1085       // Handle two consecutive sequences of the same characters.
1086       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1087       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1088       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1089       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1090       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1091       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1092       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1093     }
1094 
1095     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1096     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1097     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1098     Value *And = B.CreateAnd(NNeZ, CEqS0);
1099     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1100   }
1101 
1102   if (!LenC)
1103     // From now on we need a constant length and constant array.
1104     return nullptr;
1105 
1106   // If the char is variable but the input str and length are not we can turn
1107   // this memchr call into a simple bit field test. Of course this only works
1108   // when the return value is only checked against null.
1109   //
1110   // It would be really nice to reuse switch lowering here but we can't change
1111   // the CFG at this point.
1112   //
1113   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1114   // != 0
1115   //   after bounds check.
1116   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1117     return nullptr;
1118 
1119   unsigned char Max =
1120       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1121                         reinterpret_cast<const unsigned char *>(Str.end()));
1122 
1123   // Make sure the bit field we're about to create fits in a register on the
1124   // target.
1125   // FIXME: On a 64 bit architecture this prevents us from using the
1126   // interesting range of alpha ascii chars. We could do better by emitting
1127   // two bitfields or shifting the range by 64 if no lower chars are used.
1128   if (!DL.fitsInLegalInteger(Max + 1))
1129     return nullptr;
1130 
1131   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1132   // creating unnecessary illegal types.
1133   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1134 
1135   // Now build the bit field.
1136   APInt Bitfield(Width, 0);
1137   for (char C : Str)
1138     Bitfield.setBit((unsigned char)C);
1139   Value *BitfieldC = B.getInt(Bitfield);
1140 
1141   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1142   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1143   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1144 
1145   // First check that the bit field access is within bounds.
1146   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1147                                "memchr.bounds");
1148 
1149   // Create code that checks if the given bit is set in the field.
1150   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1151   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1152 
1153   // Finally merge both checks and cast to pointer type. The inttoptr
1154   // implicitly zexts the i1 to intptr type.
1155   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1156                           CI->getType());
1157 }
1158 
1159 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1160 // arrays LHS and RHS and nonconstant Size.
1161 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1162                                     Value *Size, bool StrNCmp,
1163                                     IRBuilderBase &B, const DataLayout &DL) {
1164   if (LHS == RHS) // memcmp(s,s,x) -> 0
1165     return Constant::getNullValue(CI->getType());
1166 
1167   StringRef LStr, RStr;
1168   if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
1169       !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
1170     return nullptr;
1171 
1172   // If the contents of both constant arrays are known, fold a call to
1173   // memcmp(A, B, N) to
1174   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1175   // where Pos is the first mismatch between A and B, determined below.
1176 
1177   uint64_t Pos = 0;
1178   Value *Zero = ConstantInt::get(CI->getType(), 0);
1179   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1180     if (Pos == MinSize ||
1181         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1182       // One array is a leading part of the other of equal or greater
1183       // size, or for strncmp, the arrays are equal strings.
1184       // Fold the result to zero.  Size is assumed to be in bounds, since
1185       // otherwise the call would be undefined.
1186       return Zero;
1187     }
1188 
1189     if (LStr[Pos] != RStr[Pos])
1190       break;
1191   }
1192 
1193   // Normalize the result.
1194   typedef unsigned char UChar;
1195   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1196   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1197   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1198   Value *Res = ConstantInt::get(CI->getType(), IRes);
1199   return B.CreateSelect(Cmp, Zero, Res);
1200 }
1201 
1202 // Optimize a memcmp call CI with constant size Len.
1203 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1204                                          uint64_t Len, IRBuilderBase &B,
1205                                          const DataLayout &DL) {
1206   if (Len == 0) // memcmp(s1,s2,0) -> 0
1207     return Constant::getNullValue(CI->getType());
1208 
1209   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1210   if (Len == 1) {
1211     Value *LHSV =
1212         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1213                      CI->getType(), "lhsv");
1214     Value *RHSV =
1215         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1216                      CI->getType(), "rhsv");
1217     return B.CreateSub(LHSV, RHSV, "chardiff");
1218   }
1219 
1220   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1221   // TODO: The case where both inputs are constants does not need to be limited
1222   // to legal integers or equality comparison. See block below this.
1223   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1224     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1225     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1226 
1227     // First, see if we can fold either argument to a constant.
1228     Value *LHSV = nullptr;
1229     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1230       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1231       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1232     }
1233     Value *RHSV = nullptr;
1234     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1235       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1236       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1237     }
1238 
1239     // Don't generate unaligned loads. If either source is constant data,
1240     // alignment doesn't matter for that source because there is no load.
1241     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1242         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1243       if (!LHSV) {
1244         Type *LHSPtrTy =
1245             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1246         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1247       }
1248       if (!RHSV) {
1249         Type *RHSPtrTy =
1250             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1251         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1252       }
1253       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1254     }
1255   }
1256 
1257   return nullptr;
1258 }
1259 
1260 // Most simplifications for memcmp also apply to bcmp.
1261 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1262                                                    IRBuilderBase &B) {
1263   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1264   Value *Size = CI->getArgOperand(2);
1265 
1266   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1267 
1268   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1269     return Res;
1270 
1271   // Handle constant Size.
1272   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1273   if (!LenC)
1274     return nullptr;
1275 
1276   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1277 }
1278 
1279 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1280   Module *M = CI->getModule();
1281   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1282     return V;
1283 
1284   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1285   // bcmp can be more efficient than memcmp because it only has to know that
1286   // there is a difference, not how different one is to the other.
1287   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1288       isOnlyUsedInZeroEqualityComparison(CI)) {
1289     Value *LHS = CI->getArgOperand(0);
1290     Value *RHS = CI->getArgOperand(1);
1291     Value *Size = CI->getArgOperand(2);
1292     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1293   }
1294 
1295   return nullptr;
1296 }
1297 
1298 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1299   return optimizeMemCmpBCmpCommon(CI, B);
1300 }
1301 
1302 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1303   Value *Size = CI->getArgOperand(2);
1304   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1305   if (isa<IntrinsicInst>(CI))
1306     return nullptr;
1307 
1308   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1309   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1310                                    CI->getArgOperand(1), Align(1), Size);
1311   NewCI->setAttributes(CI->getAttributes());
1312   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1313   copyFlags(*CI, NewCI);
1314   return CI->getArgOperand(0);
1315 }
1316 
1317 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1318   Value *Dst = CI->getArgOperand(0);
1319   Value *Src = CI->getArgOperand(1);
1320   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1321   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1322   StringRef SrcStr;
1323   if (CI->use_empty() && Dst == Src)
1324     return Dst;
1325   // memccpy(d, s, c, 0) -> nullptr
1326   if (N) {
1327     if (N->isNullValue())
1328       return Constant::getNullValue(CI->getType());
1329     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1330                                /*TrimAtNul=*/false) ||
1331         // TODO: Handle zeroinitializer.
1332         !StopChar)
1333       return nullptr;
1334   } else {
1335     return nullptr;
1336   }
1337 
1338   // Wrap arg 'c' of type int to char
1339   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1340   if (Pos == StringRef::npos) {
1341     if (N->getZExtValue() <= SrcStr.size()) {
1342       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1343                                     CI->getArgOperand(3)));
1344       return Constant::getNullValue(CI->getType());
1345     }
1346     return nullptr;
1347   }
1348 
1349   Value *NewN =
1350       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1351   // memccpy -> llvm.memcpy
1352   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1353   return Pos + 1 <= N->getZExtValue()
1354              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1355              : Constant::getNullValue(CI->getType());
1356 }
1357 
1358 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1359   Value *Dst = CI->getArgOperand(0);
1360   Value *N = CI->getArgOperand(2);
1361   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1362   CallInst *NewCI =
1363       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1364   // Propagate attributes, but memcpy has no return value, so make sure that
1365   // any return attributes are compliant.
1366   // TODO: Attach return value attributes to the 1st operand to preserve them?
1367   NewCI->setAttributes(CI->getAttributes());
1368   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1369   copyFlags(*CI, NewCI);
1370   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1371 }
1372 
1373 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1374   Value *Size = CI->getArgOperand(2);
1375   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1376   if (isa<IntrinsicInst>(CI))
1377     return nullptr;
1378 
1379   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1380   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1381                                     CI->getArgOperand(1), Align(1), Size);
1382   NewCI->setAttributes(CI->getAttributes());
1383   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1384   copyFlags(*CI, NewCI);
1385   return CI->getArgOperand(0);
1386 }
1387 
1388 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1389   Value *Size = CI->getArgOperand(2);
1390   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1391   if (isa<IntrinsicInst>(CI))
1392     return nullptr;
1393 
1394   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1395   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1396   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1397   NewCI->setAttributes(CI->getAttributes());
1398   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1399   copyFlags(*CI, NewCI);
1400   return CI->getArgOperand(0);
1401 }
1402 
1403 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1404   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1405     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1406 
1407   return nullptr;
1408 }
1409 
1410 //===----------------------------------------------------------------------===//
1411 // Math Library Optimizations
1412 //===----------------------------------------------------------------------===//
1413 
1414 // Replace a libcall \p CI with a call to intrinsic \p IID
1415 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1416                                Intrinsic::ID IID) {
1417   // Propagate fast-math flags from the existing call to the new call.
1418   IRBuilderBase::FastMathFlagGuard Guard(B);
1419   B.setFastMathFlags(CI->getFastMathFlags());
1420 
1421   Module *M = CI->getModule();
1422   Value *V = CI->getArgOperand(0);
1423   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1424   CallInst *NewCall = B.CreateCall(F, V);
1425   NewCall->takeName(CI);
1426   return copyFlags(*CI, NewCall);
1427 }
1428 
1429 /// Return a variant of Val with float type.
1430 /// Currently this works in two cases: If Val is an FPExtension of a float
1431 /// value to something bigger, simply return the operand.
1432 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1433 /// loss of precision do so.
1434 static Value *valueHasFloatPrecision(Value *Val) {
1435   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1436     Value *Op = Cast->getOperand(0);
1437     if (Op->getType()->isFloatTy())
1438       return Op;
1439   }
1440   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1441     APFloat F = Const->getValueAPF();
1442     bool losesInfo;
1443     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1444                     &losesInfo);
1445     if (!losesInfo)
1446       return ConstantFP::get(Const->getContext(), F);
1447   }
1448   return nullptr;
1449 }
1450 
1451 /// Shrink double -> float functions.
1452 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1453                                bool isBinary, const TargetLibraryInfo *TLI,
1454                                bool isPrecise = false) {
1455   Function *CalleeFn = CI->getCalledFunction();
1456   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1457     return nullptr;
1458 
1459   // If not all the uses of the function are converted to float, then bail out.
1460   // This matters if the precision of the result is more important than the
1461   // precision of the arguments.
1462   if (isPrecise)
1463     for (User *U : CI->users()) {
1464       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1465       if (!Cast || !Cast->getType()->isFloatTy())
1466         return nullptr;
1467     }
1468 
1469   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1470   Value *V[2];
1471   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1472   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1473   if (!V[0] || (isBinary && !V[1]))
1474     return nullptr;
1475 
1476   // If call isn't an intrinsic, check that it isn't within a function with the
1477   // same name as the float version of this call, otherwise the result is an
1478   // infinite loop.  For example, from MinGW-w64:
1479   //
1480   // float expf(float val) { return (float) exp((double) val); }
1481   StringRef CalleeName = CalleeFn->getName();
1482   bool IsIntrinsic = CalleeFn->isIntrinsic();
1483   if (!IsIntrinsic) {
1484     StringRef CallerName = CI->getFunction()->getName();
1485     if (!CallerName.empty() && CallerName.back() == 'f' &&
1486         CallerName.size() == (CalleeName.size() + 1) &&
1487         CallerName.startswith(CalleeName))
1488       return nullptr;
1489   }
1490 
1491   // Propagate the math semantics from the current function to the new function.
1492   IRBuilderBase::FastMathFlagGuard Guard(B);
1493   B.setFastMathFlags(CI->getFastMathFlags());
1494 
1495   // g((double) float) -> (double) gf(float)
1496   Value *R;
1497   if (IsIntrinsic) {
1498     Module *M = CI->getModule();
1499     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1500     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1501     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1502   } else {
1503     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1504     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1505                                          CalleeAttrs)
1506                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1507   }
1508   return B.CreateFPExt(R, B.getDoubleTy());
1509 }
1510 
1511 /// Shrink double -> float for unary functions.
1512 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1513                                     const TargetLibraryInfo *TLI,
1514                                     bool isPrecise = false) {
1515   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1516 }
1517 
1518 /// Shrink double -> float for binary functions.
1519 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1520                                      const TargetLibraryInfo *TLI,
1521                                      bool isPrecise = false) {
1522   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1523 }
1524 
1525 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1526 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1527   if (!CI->isFast())
1528     return nullptr;
1529 
1530   // Propagate fast-math flags from the existing call to new instructions.
1531   IRBuilderBase::FastMathFlagGuard Guard(B);
1532   B.setFastMathFlags(CI->getFastMathFlags());
1533 
1534   Value *Real, *Imag;
1535   if (CI->arg_size() == 1) {
1536     Value *Op = CI->getArgOperand(0);
1537     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1538     Real = B.CreateExtractValue(Op, 0, "real");
1539     Imag = B.CreateExtractValue(Op, 1, "imag");
1540   } else {
1541     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1542     Real = CI->getArgOperand(0);
1543     Imag = CI->getArgOperand(1);
1544   }
1545 
1546   Value *RealReal = B.CreateFMul(Real, Real);
1547   Value *ImagImag = B.CreateFMul(Imag, Imag);
1548 
1549   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1550                                               CI->getType());
1551   return copyFlags(
1552       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1553 }
1554 
1555 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1556                                       IRBuilderBase &B) {
1557   if (!isa<FPMathOperator>(Call))
1558     return nullptr;
1559 
1560   IRBuilderBase::FastMathFlagGuard Guard(B);
1561   B.setFastMathFlags(Call->getFastMathFlags());
1562 
1563   // TODO: Can this be shared to also handle LLVM intrinsics?
1564   Value *X;
1565   switch (Func) {
1566   case LibFunc_sin:
1567   case LibFunc_sinf:
1568   case LibFunc_sinl:
1569   case LibFunc_tan:
1570   case LibFunc_tanf:
1571   case LibFunc_tanl:
1572     // sin(-X) --> -sin(X)
1573     // tan(-X) --> -tan(X)
1574     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1575       return B.CreateFNeg(
1576           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1577     break;
1578   case LibFunc_cos:
1579   case LibFunc_cosf:
1580   case LibFunc_cosl:
1581     // cos(-X) --> cos(X)
1582     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1583       return copyFlags(*Call,
1584                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1585     break;
1586   default:
1587     break;
1588   }
1589   return nullptr;
1590 }
1591 
1592 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1593   // Multiplications calculated using Addition Chains.
1594   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1595 
1596   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1597 
1598   if (InnerChain[Exp])
1599     return InnerChain[Exp];
1600 
1601   static const unsigned AddChain[33][2] = {
1602       {0, 0}, // Unused.
1603       {0, 0}, // Unused (base case = pow1).
1604       {1, 1}, // Unused (pre-computed).
1605       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1606       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1607       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1608       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1609       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1610   };
1611 
1612   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1613                                  getPow(InnerChain, AddChain[Exp][1], B));
1614   return InnerChain[Exp];
1615 }
1616 
1617 // Return a properly extended integer (DstWidth bits wide) if the operation is
1618 // an itofp.
1619 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1620   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1621     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1622     // Make sure that the exponent fits inside an "int" of size DstWidth,
1623     // thus avoiding any range issues that FP has not.
1624     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1625     if (BitWidth < DstWidth ||
1626         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1627       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1628                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1629   }
1630 
1631   return nullptr;
1632 }
1633 
1634 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1635 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1636 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1637 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1638   Module *M = Pow->getModule();
1639   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1640   AttributeList Attrs; // Attributes are only meaningful on the original call
1641   Module *Mod = Pow->getModule();
1642   Type *Ty = Pow->getType();
1643   bool Ignored;
1644 
1645   // Evaluate special cases related to a nested function as the base.
1646 
1647   // pow(exp(x), y) -> exp(x * y)
1648   // pow(exp2(x), y) -> exp2(x * y)
1649   // If exp{,2}() is used only once, it is better to fold two transcendental
1650   // math functions into one.  If used again, exp{,2}() would still have to be
1651   // called with the original argument, then keep both original transcendental
1652   // functions.  However, this transformation is only safe with fully relaxed
1653   // math semantics, since, besides rounding differences, it changes overflow
1654   // and underflow behavior quite dramatically.  For example:
1655   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1656   // Whereas:
1657   //   exp(1000 * 0.001) = exp(1)
1658   // TODO: Loosen the requirement for fully relaxed math semantics.
1659   // TODO: Handle exp10() when more targets have it available.
1660   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1661   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1662     LibFunc LibFn;
1663 
1664     Function *CalleeFn = BaseFn->getCalledFunction();
1665     if (CalleeFn &&
1666         TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1667         isLibFuncEmittable(M, TLI, LibFn)) {
1668       StringRef ExpName;
1669       Intrinsic::ID ID;
1670       Value *ExpFn;
1671       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1672 
1673       switch (LibFn) {
1674       default:
1675         return nullptr;
1676       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1677         ExpName = TLI->getName(LibFunc_exp);
1678         ID = Intrinsic::exp;
1679         LibFnFloat = LibFunc_expf;
1680         LibFnDouble = LibFunc_exp;
1681         LibFnLongDouble = LibFunc_expl;
1682         break;
1683       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1684         ExpName = TLI->getName(LibFunc_exp2);
1685         ID = Intrinsic::exp2;
1686         LibFnFloat = LibFunc_exp2f;
1687         LibFnDouble = LibFunc_exp2;
1688         LibFnLongDouble = LibFunc_exp2l;
1689         break;
1690       }
1691 
1692       // Create new exp{,2}() with the product as its argument.
1693       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1694       ExpFn = BaseFn->doesNotAccessMemory()
1695               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1696                              FMul, ExpName)
1697               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1698                                      LibFnLongDouble, B,
1699                                      BaseFn->getAttributes());
1700 
1701       // Since the new exp{,2}() is different from the original one, dead code
1702       // elimination cannot be trusted to remove it, since it may have side
1703       // effects (e.g., errno).  When the only consumer for the original
1704       // exp{,2}() is pow(), then it has to be explicitly erased.
1705       substituteInParent(BaseFn, ExpFn);
1706       return ExpFn;
1707     }
1708   }
1709 
1710   // Evaluate special cases related to a constant base.
1711 
1712   const APFloat *BaseF;
1713   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1714     return nullptr;
1715 
1716   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1717   if (match(Base, m_SpecificFP(2.0)) &&
1718       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1719       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1720     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1721       return copyFlags(*Pow,
1722                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1723                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1724                                              LibFunc_ldexpl, B, Attrs));
1725   }
1726 
1727   // pow(2.0 ** n, x) -> exp2(n * x)
1728   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1729     APFloat BaseR = APFloat(1.0);
1730     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1731     BaseR = BaseR / *BaseF;
1732     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1733     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1734     APSInt NI(64, false);
1735     if ((IsInteger || IsReciprocal) &&
1736         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1737             APFloat::opOK &&
1738         NI > 1 && NI.isPowerOf2()) {
1739       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1740       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1741       if (Pow->doesNotAccessMemory())
1742         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1743                                                 Mod, Intrinsic::exp2, Ty),
1744                                             FMul, "exp2"));
1745       else
1746         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1747                                                     LibFunc_exp2f,
1748                                                     LibFunc_exp2l, B, Attrs));
1749     }
1750   }
1751 
1752   // pow(10.0, x) -> exp10(x)
1753   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1754   if (match(Base, m_SpecificFP(10.0)) &&
1755       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1756     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1757                                                 LibFunc_exp10f, LibFunc_exp10l,
1758                                                 B, Attrs));
1759 
1760   // pow(x, y) -> exp2(log2(x) * y)
1761   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1762       !BaseF->isNegative()) {
1763     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1764     // Luckily optimizePow has already handled the x == 1 case.
1765     assert(!match(Base, m_FPOne()) &&
1766            "pow(1.0, y) should have been simplified earlier!");
1767 
1768     Value *Log = nullptr;
1769     if (Ty->isFloatTy())
1770       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1771     else if (Ty->isDoubleTy())
1772       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1773 
1774     if (Log) {
1775       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1776       if (Pow->doesNotAccessMemory())
1777         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1778                                                 Mod, Intrinsic::exp2, Ty),
1779                                             FMul, "exp2"));
1780       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1781                           LibFunc_exp2l))
1782         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1783                                                     LibFunc_exp2f,
1784                                                     LibFunc_exp2l, B, Attrs));
1785     }
1786   }
1787 
1788   return nullptr;
1789 }
1790 
1791 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1792                           Module *M, IRBuilderBase &B,
1793                           const TargetLibraryInfo *TLI) {
1794   // If errno is never set, then use the intrinsic for sqrt().
1795   if (NoErrno) {
1796     Function *SqrtFn =
1797         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1798     return B.CreateCall(SqrtFn, V, "sqrt");
1799   }
1800 
1801   // Otherwise, use the libcall for sqrt().
1802   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1803                  LibFunc_sqrtl))
1804     // TODO: We also should check that the target can in fact lower the sqrt()
1805     // libcall. We currently have no way to ask this question, so we ask if
1806     // the target has a sqrt() libcall, which is not exactly the same.
1807     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1808                                 LibFunc_sqrtl, B, Attrs);
1809 
1810   return nullptr;
1811 }
1812 
1813 /// Use square root in place of pow(x, +/-0.5).
1814 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1815   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1816   AttributeList Attrs; // Attributes are only meaningful on the original call
1817   Module *Mod = Pow->getModule();
1818   Type *Ty = Pow->getType();
1819 
1820   const APFloat *ExpoF;
1821   if (!match(Expo, m_APFloat(ExpoF)) ||
1822       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1823     return nullptr;
1824 
1825   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1826   // so that requires fast-math-flags (afn or reassoc).
1827   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1828     return nullptr;
1829 
1830   // If we have a pow() library call (accesses memory) and we can't guarantee
1831   // that the base is not an infinity, give up:
1832   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1833   // errno), but sqrt(-Inf) is required by various standards to set errno.
1834   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1835       !isKnownNeverInfinity(Base, TLI))
1836     return nullptr;
1837 
1838   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1839   if (!Sqrt)
1840     return nullptr;
1841 
1842   // Handle signed zero base by expanding to fabs(sqrt(x)).
1843   if (!Pow->hasNoSignedZeros()) {
1844     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1845     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1846   }
1847 
1848   Sqrt = copyFlags(*Pow, Sqrt);
1849 
1850   // Handle non finite base by expanding to
1851   // (x == -infinity ? +infinity : sqrt(x)).
1852   if (!Pow->hasNoInfs()) {
1853     Value *PosInf = ConstantFP::getInfinity(Ty),
1854           *NegInf = ConstantFP::getInfinity(Ty, true);
1855     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1856     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1857   }
1858 
1859   // If the exponent is negative, then get the reciprocal.
1860   if (ExpoF->isNegative())
1861     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1862 
1863   return Sqrt;
1864 }
1865 
1866 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1867                                            IRBuilderBase &B) {
1868   Value *Args[] = {Base, Expo};
1869   Type *Types[] = {Base->getType(), Expo->getType()};
1870   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1871   return B.CreateCall(F, Args);
1872 }
1873 
1874 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1875   Value *Base = Pow->getArgOperand(0);
1876   Value *Expo = Pow->getArgOperand(1);
1877   Function *Callee = Pow->getCalledFunction();
1878   StringRef Name = Callee->getName();
1879   Type *Ty = Pow->getType();
1880   Module *M = Pow->getModule();
1881   bool AllowApprox = Pow->hasApproxFunc();
1882   bool Ignored;
1883 
1884   // Propagate the math semantics from the call to any created instructions.
1885   IRBuilderBase::FastMathFlagGuard Guard(B);
1886   B.setFastMathFlags(Pow->getFastMathFlags());
1887   // Evaluate special cases related to the base.
1888 
1889   // pow(1.0, x) -> 1.0
1890   if (match(Base, m_FPOne()))
1891     return Base;
1892 
1893   if (Value *Exp = replacePowWithExp(Pow, B))
1894     return Exp;
1895 
1896   // Evaluate special cases related to the exponent.
1897 
1898   // pow(x, -1.0) -> 1.0 / x
1899   if (match(Expo, m_SpecificFP(-1.0)))
1900     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1901 
1902   // pow(x, +/-0.0) -> 1.0
1903   if (match(Expo, m_AnyZeroFP()))
1904     return ConstantFP::get(Ty, 1.0);
1905 
1906   // pow(x, 1.0) -> x
1907   if (match(Expo, m_FPOne()))
1908     return Base;
1909 
1910   // pow(x, 2.0) -> x * x
1911   if (match(Expo, m_SpecificFP(2.0)))
1912     return B.CreateFMul(Base, Base, "square");
1913 
1914   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1915     return Sqrt;
1916 
1917   // pow(x, n) -> x * x * x * ...
1918   const APFloat *ExpoF;
1919   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1920       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1921     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1922     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1923     // additional fmul.
1924     // TODO: This whole transformation should be backend specific (e.g. some
1925     //       backends might prefer libcalls or the limit for the exponent might
1926     //       be different) and it should also consider optimizing for size.
1927     APFloat LimF(ExpoF->getSemantics(), 33),
1928             ExpoA(abs(*ExpoF));
1929     if (ExpoA < LimF) {
1930       // This transformation applies to integer or integer+0.5 exponents only.
1931       // For integer+0.5, we create a sqrt(Base) call.
1932       Value *Sqrt = nullptr;
1933       if (!ExpoA.isInteger()) {
1934         APFloat Expo2 = ExpoA;
1935         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1936         // is no floating point exception and the result is an integer, then
1937         // ExpoA == integer + 0.5
1938         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1939           return nullptr;
1940 
1941         if (!Expo2.isInteger())
1942           return nullptr;
1943 
1944         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1945                            Pow->doesNotAccessMemory(), M, B, TLI);
1946         if (!Sqrt)
1947           return nullptr;
1948       }
1949 
1950       // We will memoize intermediate products of the Addition Chain.
1951       Value *InnerChain[33] = {nullptr};
1952       InnerChain[1] = Base;
1953       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1954 
1955       // We cannot readily convert a non-double type (like float) to a double.
1956       // So we first convert it to something which could be converted to double.
1957       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1958       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1959 
1960       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1961       if (Sqrt)
1962         FMul = B.CreateFMul(FMul, Sqrt);
1963 
1964       // If the exponent is negative, then get the reciprocal.
1965       if (ExpoF->isNegative())
1966         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1967 
1968       return FMul;
1969     }
1970 
1971     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1972     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1973     if (ExpoF->isInteger() &&
1974         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1975             APFloat::opOK) {
1976       return copyFlags(
1977           *Pow,
1978           createPowWithIntegerExponent(
1979               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1980               M, B));
1981     }
1982   }
1983 
1984   // powf(x, itofp(y)) -> powi(x, y)
1985   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1986     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1987       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1988   }
1989 
1990   // Shrink pow() to powf() if the arguments are single precision,
1991   // unless the result is expected to be double precision.
1992   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1993       hasFloatVersion(M, Name)) {
1994     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
1995       return Shrunk;
1996   }
1997 
1998   return nullptr;
1999 }
2000 
2001 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2002   Module *M = CI->getModule();
2003   Function *Callee = CI->getCalledFunction();
2004   AttributeList Attrs; // Attributes are only meaningful on the original call
2005   StringRef Name = Callee->getName();
2006   Value *Ret = nullptr;
2007   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2008       hasFloatVersion(M, Name))
2009     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2010 
2011   Type *Ty = CI->getType();
2012   Value *Op = CI->getArgOperand(0);
2013 
2014   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2015   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2016   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2017       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2018     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2019       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2020                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
2021                                    B, Attrs);
2022   }
2023 
2024   return Ret;
2025 }
2026 
2027 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2028   Module *M = CI->getModule();
2029 
2030   // If we can shrink the call to a float function rather than a double
2031   // function, do that first.
2032   Function *Callee = CI->getCalledFunction();
2033   StringRef Name = Callee->getName();
2034   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2035     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2036       return Ret;
2037 
2038   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2039   // the intrinsics for improved optimization (for example, vectorization).
2040   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2041   // From the C standard draft WG14/N1256:
2042   // "Ideally, fmax would be sensitive to the sign of zero, for example
2043   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2044   // might be impractical."
2045   IRBuilderBase::FastMathFlagGuard Guard(B);
2046   FastMathFlags FMF = CI->getFastMathFlags();
2047   FMF.setNoSignedZeros();
2048   B.setFastMathFlags(FMF);
2049 
2050   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2051                                                            : Intrinsic::maxnum;
2052   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2053   return copyFlags(
2054       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2055 }
2056 
2057 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2058   Function *LogFn = Log->getCalledFunction();
2059   AttributeList Attrs; // Attributes are only meaningful on the original call
2060   StringRef LogNm = LogFn->getName();
2061   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2062   Module *Mod = Log->getModule();
2063   Type *Ty = Log->getType();
2064   Value *Ret = nullptr;
2065 
2066   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2067     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2068 
2069   // The earlier call must also be 'fast' in order to do these transforms.
2070   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2071   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2072     return Ret;
2073 
2074   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2075 
2076   // This is only applicable to log(), log2(), log10().
2077   if (TLI->getLibFunc(LogNm, LogLb))
2078     switch (LogLb) {
2079     case LibFunc_logf:
2080       LogID = Intrinsic::log;
2081       ExpLb = LibFunc_expf;
2082       Exp2Lb = LibFunc_exp2f;
2083       Exp10Lb = LibFunc_exp10f;
2084       PowLb = LibFunc_powf;
2085       break;
2086     case LibFunc_log:
2087       LogID = Intrinsic::log;
2088       ExpLb = LibFunc_exp;
2089       Exp2Lb = LibFunc_exp2;
2090       Exp10Lb = LibFunc_exp10;
2091       PowLb = LibFunc_pow;
2092       break;
2093     case LibFunc_logl:
2094       LogID = Intrinsic::log;
2095       ExpLb = LibFunc_expl;
2096       Exp2Lb = LibFunc_exp2l;
2097       Exp10Lb = LibFunc_exp10l;
2098       PowLb = LibFunc_powl;
2099       break;
2100     case LibFunc_log2f:
2101       LogID = Intrinsic::log2;
2102       ExpLb = LibFunc_expf;
2103       Exp2Lb = LibFunc_exp2f;
2104       Exp10Lb = LibFunc_exp10f;
2105       PowLb = LibFunc_powf;
2106       break;
2107     case LibFunc_log2:
2108       LogID = Intrinsic::log2;
2109       ExpLb = LibFunc_exp;
2110       Exp2Lb = LibFunc_exp2;
2111       Exp10Lb = LibFunc_exp10;
2112       PowLb = LibFunc_pow;
2113       break;
2114     case LibFunc_log2l:
2115       LogID = Intrinsic::log2;
2116       ExpLb = LibFunc_expl;
2117       Exp2Lb = LibFunc_exp2l;
2118       Exp10Lb = LibFunc_exp10l;
2119       PowLb = LibFunc_powl;
2120       break;
2121     case LibFunc_log10f:
2122       LogID = Intrinsic::log10;
2123       ExpLb = LibFunc_expf;
2124       Exp2Lb = LibFunc_exp2f;
2125       Exp10Lb = LibFunc_exp10f;
2126       PowLb = LibFunc_powf;
2127       break;
2128     case LibFunc_log10:
2129       LogID = Intrinsic::log10;
2130       ExpLb = LibFunc_exp;
2131       Exp2Lb = LibFunc_exp2;
2132       Exp10Lb = LibFunc_exp10;
2133       PowLb = LibFunc_pow;
2134       break;
2135     case LibFunc_log10l:
2136       LogID = Intrinsic::log10;
2137       ExpLb = LibFunc_expl;
2138       Exp2Lb = LibFunc_exp2l;
2139       Exp10Lb = LibFunc_exp10l;
2140       PowLb = LibFunc_powl;
2141       break;
2142     default:
2143       return Ret;
2144     }
2145   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2146            LogID == Intrinsic::log10) {
2147     if (Ty->getScalarType()->isFloatTy()) {
2148       ExpLb = LibFunc_expf;
2149       Exp2Lb = LibFunc_exp2f;
2150       Exp10Lb = LibFunc_exp10f;
2151       PowLb = LibFunc_powf;
2152     } else if (Ty->getScalarType()->isDoubleTy()) {
2153       ExpLb = LibFunc_exp;
2154       Exp2Lb = LibFunc_exp2;
2155       Exp10Lb = LibFunc_exp10;
2156       PowLb = LibFunc_pow;
2157     } else
2158       return Ret;
2159   } else
2160     return Ret;
2161 
2162   IRBuilderBase::FastMathFlagGuard Guard(B);
2163   B.setFastMathFlags(FastMathFlags::getFast());
2164 
2165   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2166   LibFunc ArgLb = NotLibFunc;
2167   TLI->getLibFunc(*Arg, ArgLb);
2168 
2169   // log(pow(x,y)) -> y*log(x)
2170   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2171     Value *LogX =
2172         Log->doesNotAccessMemory()
2173             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2174                            Arg->getOperand(0), "log")
2175             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
2176     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2177     // Since pow() may have side effects, e.g. errno,
2178     // dead code elimination may not be trusted to remove it.
2179     substituteInParent(Arg, MulY);
2180     return MulY;
2181   }
2182 
2183   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2184   // TODO: There is no exp10() intrinsic yet.
2185   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2186            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2187     Constant *Eul;
2188     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2189       // FIXME: Add more precise value of e for long double.
2190       Eul = ConstantFP::get(Log->getType(), numbers::e);
2191     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2192       Eul = ConstantFP::get(Log->getType(), 2.0);
2193     else
2194       Eul = ConstantFP::get(Log->getType(), 10.0);
2195     Value *LogE = Log->doesNotAccessMemory()
2196                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2197                                      Eul, "log")
2198                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
2199     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2200     // Since exp() may have side effects, e.g. errno,
2201     // dead code elimination may not be trusted to remove it.
2202     substituteInParent(Arg, MulY);
2203     return MulY;
2204   }
2205 
2206   return Ret;
2207 }
2208 
2209 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2210   Module *M = CI->getModule();
2211   Function *Callee = CI->getCalledFunction();
2212   Value *Ret = nullptr;
2213   // TODO: Once we have a way (other than checking for the existince of the
2214   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2215   // condition below.
2216   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2217       (Callee->getName() == "sqrt" ||
2218        Callee->getIntrinsicID() == Intrinsic::sqrt))
2219     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2220 
2221   if (!CI->isFast())
2222     return Ret;
2223 
2224   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2225   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2226     return Ret;
2227 
2228   // We're looking for a repeated factor in a multiplication tree,
2229   // so we can do this fold: sqrt(x * x) -> fabs(x);
2230   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2231   Value *Op0 = I->getOperand(0);
2232   Value *Op1 = I->getOperand(1);
2233   Value *RepeatOp = nullptr;
2234   Value *OtherOp = nullptr;
2235   if (Op0 == Op1) {
2236     // Simple match: the operands of the multiply are identical.
2237     RepeatOp = Op0;
2238   } else {
2239     // Look for a more complicated pattern: one of the operands is itself
2240     // a multiply, so search for a common factor in that multiply.
2241     // Note: We don't bother looking any deeper than this first level or for
2242     // variations of this pattern because instcombine's visitFMUL and/or the
2243     // reassociation pass should give us this form.
2244     Value *OtherMul0, *OtherMul1;
2245     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2246       // Pattern: sqrt((x * y) * z)
2247       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2248         // Matched: sqrt((x * x) * z)
2249         RepeatOp = OtherMul0;
2250         OtherOp = Op1;
2251       }
2252     }
2253   }
2254   if (!RepeatOp)
2255     return Ret;
2256 
2257   // Fast math flags for any created instructions should match the sqrt
2258   // and multiply.
2259   IRBuilderBase::FastMathFlagGuard Guard(B);
2260   B.setFastMathFlags(I->getFastMathFlags());
2261 
2262   // If we found a repeated factor, hoist it out of the square root and
2263   // replace it with the fabs of that factor.
2264   Type *ArgType = I->getType();
2265   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2266   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2267   if (OtherOp) {
2268     // If we found a non-repeated factor, we still need to get its square
2269     // root. We then multiply that by the value that was simplified out
2270     // of the square root calculation.
2271     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2272     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2273     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2274   }
2275   return copyFlags(*CI, FabsCall);
2276 }
2277 
2278 // TODO: Generalize to handle any trig function and its inverse.
2279 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2280   Module *M = CI->getModule();
2281   Function *Callee = CI->getCalledFunction();
2282   Value *Ret = nullptr;
2283   StringRef Name = Callee->getName();
2284   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2285     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2286 
2287   Value *Op1 = CI->getArgOperand(0);
2288   auto *OpC = dyn_cast<CallInst>(Op1);
2289   if (!OpC)
2290     return Ret;
2291 
2292   // Both calls must be 'fast' in order to remove them.
2293   if (!CI->isFast() || !OpC->isFast())
2294     return Ret;
2295 
2296   // tan(atan(x)) -> x
2297   // tanf(atanf(x)) -> x
2298   // tanl(atanl(x)) -> x
2299   LibFunc Func;
2300   Function *F = OpC->getCalledFunction();
2301   if (F && TLI->getLibFunc(F->getName(), Func) &&
2302       isLibFuncEmittable(M, TLI, Func) &&
2303       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2304        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2305        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2306     Ret = OpC->getArgOperand(0);
2307   return Ret;
2308 }
2309 
2310 static bool isTrigLibCall(CallInst *CI) {
2311   // We can only hope to do anything useful if we can ignore things like errno
2312   // and floating-point exceptions.
2313   // We already checked the prototype.
2314   return CI->hasFnAttr(Attribute::NoUnwind) &&
2315          CI->hasFnAttr(Attribute::ReadNone);
2316 }
2317 
2318 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2319                              bool UseFloat, Value *&Sin, Value *&Cos,
2320                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2321   Module *M = OrigCallee->getParent();
2322   Type *ArgTy = Arg->getType();
2323   Type *ResTy;
2324   StringRef Name;
2325 
2326   Triple T(OrigCallee->getParent()->getTargetTriple());
2327   if (UseFloat) {
2328     Name = "__sincospif_stret";
2329 
2330     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2331     // x86_64 can't use {float, float} since that would be returned in both
2332     // xmm0 and xmm1, which isn't what a real struct would do.
2333     ResTy = T.getArch() == Triple::x86_64
2334                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2335                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2336   } else {
2337     Name = "__sincospi_stret";
2338     ResTy = StructType::get(ArgTy, ArgTy);
2339   }
2340 
2341   if (!isLibFuncEmittable(M, TLI, Name))
2342     return false;
2343   LibFunc TheLibFunc;
2344   TLI->getLibFunc(Name, TheLibFunc);
2345   FunctionCallee Callee = getOrInsertLibFunc(
2346       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2347 
2348   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2349     // If the argument is an instruction, it must dominate all uses so put our
2350     // sincos call there.
2351     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2352   } else {
2353     // Otherwise (e.g. for a constant) the beginning of the function is as
2354     // good a place as any.
2355     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2356     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2357   }
2358 
2359   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2360 
2361   if (SinCos->getType()->isStructTy()) {
2362     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2363     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2364   } else {
2365     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2366                                  "sinpi");
2367     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2368                                  "cospi");
2369   }
2370 
2371   return true;
2372 }
2373 
2374 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2375   // Make sure the prototype is as expected, otherwise the rest of the
2376   // function is probably invalid and likely to abort.
2377   if (!isTrigLibCall(CI))
2378     return nullptr;
2379 
2380   Value *Arg = CI->getArgOperand(0);
2381   SmallVector<CallInst *, 1> SinCalls;
2382   SmallVector<CallInst *, 1> CosCalls;
2383   SmallVector<CallInst *, 1> SinCosCalls;
2384 
2385   bool IsFloat = Arg->getType()->isFloatTy();
2386 
2387   // Look for all compatible sinpi, cospi and sincospi calls with the same
2388   // argument. If there are enough (in some sense) we can make the
2389   // substitution.
2390   Function *F = CI->getFunction();
2391   for (User *U : Arg->users())
2392     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2393 
2394   // It's only worthwhile if both sinpi and cospi are actually used.
2395   if (SinCalls.empty() || CosCalls.empty())
2396     return nullptr;
2397 
2398   Value *Sin, *Cos, *SinCos;
2399   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2400                         SinCos, TLI))
2401     return nullptr;
2402 
2403   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2404                                  Value *Res) {
2405     for (CallInst *C : Calls)
2406       replaceAllUsesWith(C, Res);
2407   };
2408 
2409   replaceTrigInsts(SinCalls, Sin);
2410   replaceTrigInsts(CosCalls, Cos);
2411   replaceTrigInsts(SinCosCalls, SinCos);
2412 
2413   return nullptr;
2414 }
2415 
2416 void LibCallSimplifier::classifyArgUse(
2417     Value *Val, Function *F, bool IsFloat,
2418     SmallVectorImpl<CallInst *> &SinCalls,
2419     SmallVectorImpl<CallInst *> &CosCalls,
2420     SmallVectorImpl<CallInst *> &SinCosCalls) {
2421   CallInst *CI = dyn_cast<CallInst>(Val);
2422   Module *M = CI->getModule();
2423 
2424   if (!CI || CI->use_empty())
2425     return;
2426 
2427   // Don't consider calls in other functions.
2428   if (CI->getFunction() != F)
2429     return;
2430 
2431   Function *Callee = CI->getCalledFunction();
2432   LibFunc Func;
2433   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2434       !isLibFuncEmittable(M, TLI, Func) ||
2435       !isTrigLibCall(CI))
2436     return;
2437 
2438   if (IsFloat) {
2439     if (Func == LibFunc_sinpif)
2440       SinCalls.push_back(CI);
2441     else if (Func == LibFunc_cospif)
2442       CosCalls.push_back(CI);
2443     else if (Func == LibFunc_sincospif_stret)
2444       SinCosCalls.push_back(CI);
2445   } else {
2446     if (Func == LibFunc_sinpi)
2447       SinCalls.push_back(CI);
2448     else if (Func == LibFunc_cospi)
2449       CosCalls.push_back(CI);
2450     else if (Func == LibFunc_sincospi_stret)
2451       SinCosCalls.push_back(CI);
2452   }
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // Integer Library Call Optimizations
2457 //===----------------------------------------------------------------------===//
2458 
2459 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2460   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2461   Value *Op = CI->getArgOperand(0);
2462   Type *ArgType = Op->getType();
2463   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2464                                           Intrinsic::cttz, ArgType);
2465   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2466   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2467   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2468 
2469   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2470   return B.CreateSelect(Cond, V, B.getInt32(0));
2471 }
2472 
2473 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2474   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2475   Value *Op = CI->getArgOperand(0);
2476   Type *ArgType = Op->getType();
2477   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2478                                           Intrinsic::ctlz, ArgType);
2479   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2480   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2481                   V);
2482   return B.CreateIntCast(V, CI->getType(), false);
2483 }
2484 
2485 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2486   // abs(x) -> x <s 0 ? -x : x
2487   // The negation has 'nsw' because abs of INT_MIN is undefined.
2488   Value *X = CI->getArgOperand(0);
2489   Value *IsNeg = B.CreateIsNeg(X);
2490   Value *NegX = B.CreateNSWNeg(X, "neg");
2491   return B.CreateSelect(IsNeg, NegX, X);
2492 }
2493 
2494 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2495   // isdigit(c) -> (c-'0') <u 10
2496   Value *Op = CI->getArgOperand(0);
2497   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2498   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2499   return B.CreateZExt(Op, CI->getType());
2500 }
2501 
2502 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2503   // isascii(c) -> c <u 128
2504   Value *Op = CI->getArgOperand(0);
2505   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2506   return B.CreateZExt(Op, CI->getType());
2507 }
2508 
2509 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2510   // toascii(c) -> c & 0x7f
2511   return B.CreateAnd(CI->getArgOperand(0),
2512                      ConstantInt::get(CI->getType(), 0x7F));
2513 }
2514 
2515 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2516   StringRef Str;
2517   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2518     return nullptr;
2519 
2520   return convertStrToNumber(CI, Str, 10);
2521 }
2522 
2523 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2524   StringRef Str;
2525   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2526     return nullptr;
2527 
2528   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2529     return nullptr;
2530 
2531   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2532     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2533   }
2534 
2535   return nullptr;
2536 }
2537 
2538 //===----------------------------------------------------------------------===//
2539 // Formatting and IO Library Call Optimizations
2540 //===----------------------------------------------------------------------===//
2541 
2542 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2543 
2544 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2545                                                  int StreamArg) {
2546   Function *Callee = CI->getCalledFunction();
2547   // Error reporting calls should be cold, mark them as such.
2548   // This applies even to non-builtin calls: it is only a hint and applies to
2549   // functions that the frontend might not understand as builtins.
2550 
2551   // This heuristic was suggested in:
2552   // Improving Static Branch Prediction in a Compiler
2553   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2554   // Proceedings of PACT'98, Oct. 1998, IEEE
2555   if (!CI->hasFnAttr(Attribute::Cold) &&
2556       isReportingError(Callee, CI, StreamArg)) {
2557     CI->addFnAttr(Attribute::Cold);
2558   }
2559 
2560   return nullptr;
2561 }
2562 
2563 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2564   if (!Callee || !Callee->isDeclaration())
2565     return false;
2566 
2567   if (StreamArg < 0)
2568     return true;
2569 
2570   // These functions might be considered cold, but only if their stream
2571   // argument is stderr.
2572 
2573   if (StreamArg >= (int)CI->arg_size())
2574     return false;
2575   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2576   if (!LI)
2577     return false;
2578   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2579   if (!GV || !GV->isDeclaration())
2580     return false;
2581   return GV->getName() == "stderr";
2582 }
2583 
2584 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2585   // Check for a fixed format string.
2586   StringRef FormatStr;
2587   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2588     return nullptr;
2589 
2590   // Empty format string -> noop.
2591   if (FormatStr.empty()) // Tolerate printf's declared void.
2592     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2593 
2594   // Do not do any of the following transformations if the printf return value
2595   // is used, in general the printf return value is not compatible with either
2596   // putchar() or puts().
2597   if (!CI->use_empty())
2598     return nullptr;
2599 
2600   // printf("x") -> putchar('x'), even for "%" and "%%".
2601   if (FormatStr.size() == 1 || FormatStr == "%%")
2602     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2603 
2604   // Try to remove call or emit putchar/puts.
2605   if (FormatStr == "%s" && CI->arg_size() > 1) {
2606     StringRef OperandStr;
2607     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2608       return nullptr;
2609     // printf("%s", "") --> NOP
2610     if (OperandStr.empty())
2611       return (Value *)CI;
2612     // printf("%s", "a") --> putchar('a')
2613     if (OperandStr.size() == 1)
2614       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2615     // printf("%s", str"\n") --> puts(str)
2616     if (OperandStr.back() == '\n') {
2617       OperandStr = OperandStr.drop_back();
2618       Value *GV = B.CreateGlobalString(OperandStr, "str");
2619       return copyFlags(*CI, emitPutS(GV, B, TLI));
2620     }
2621     return nullptr;
2622   }
2623 
2624   // printf("foo\n") --> puts("foo")
2625   if (FormatStr.back() == '\n' &&
2626       !FormatStr.contains('%')) { // No format characters.
2627     // Create a string literal with no \n on it.  We expect the constant merge
2628     // pass to be run after this pass, to merge duplicate strings.
2629     FormatStr = FormatStr.drop_back();
2630     Value *GV = B.CreateGlobalString(FormatStr, "str");
2631     return copyFlags(*CI, emitPutS(GV, B, TLI));
2632   }
2633 
2634   // Optimize specific format strings.
2635   // printf("%c", chr) --> putchar(chr)
2636   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2637       CI->getArgOperand(1)->getType()->isIntegerTy())
2638     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2639 
2640   // printf("%s\n", str) --> puts(str)
2641   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2642       CI->getArgOperand(1)->getType()->isPointerTy())
2643     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2644   return nullptr;
2645 }
2646 
2647 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2648 
2649   Module *M = CI->getModule();
2650   Function *Callee = CI->getCalledFunction();
2651   FunctionType *FT = Callee->getFunctionType();
2652   if (Value *V = optimizePrintFString(CI, B)) {
2653     return V;
2654   }
2655 
2656   // printf(format, ...) -> iprintf(format, ...) if no floating point
2657   // arguments.
2658   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2659       !callHasFloatingPointArgument(CI)) {
2660     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2661                                                   Callee->getAttributes());
2662     CallInst *New = cast<CallInst>(CI->clone());
2663     New->setCalledFunction(IPrintFFn);
2664     B.Insert(New);
2665     return New;
2666   }
2667 
2668   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2669   // arguments.
2670   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2671       !callHasFP128Argument(CI)) {
2672     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2673                                             Callee->getAttributes());
2674     CallInst *New = cast<CallInst>(CI->clone());
2675     New->setCalledFunction(SmallPrintFFn);
2676     B.Insert(New);
2677     return New;
2678   }
2679 
2680   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2681   return nullptr;
2682 }
2683 
2684 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2685                                                 IRBuilderBase &B) {
2686   // Check for a fixed format string.
2687   StringRef FormatStr;
2688   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2689     return nullptr;
2690 
2691   // If we just have a format string (nothing else crazy) transform it.
2692   Value *Dest = CI->getArgOperand(0);
2693   if (CI->arg_size() == 2) {
2694     // Make sure there's no % in the constant array.  We could try to handle
2695     // %% -> % in the future if we cared.
2696     if (FormatStr.contains('%'))
2697       return nullptr; // we found a format specifier, bail out.
2698 
2699     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2700     B.CreateMemCpy(
2701         Dest, Align(1), CI->getArgOperand(1), Align(1),
2702         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2703                          FormatStr.size() + 1)); // Copy the null byte.
2704     return ConstantInt::get(CI->getType(), FormatStr.size());
2705   }
2706 
2707   // The remaining optimizations require the format string to be "%s" or "%c"
2708   // and have an extra operand.
2709   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2710     return nullptr;
2711 
2712   // Decode the second character of the format string.
2713   if (FormatStr[1] == 'c') {
2714     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2715     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2716       return nullptr;
2717     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2718     Value *Ptr = castToCStr(Dest, B);
2719     B.CreateStore(V, Ptr);
2720     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2721     B.CreateStore(B.getInt8(0), Ptr);
2722 
2723     return ConstantInt::get(CI->getType(), 1);
2724   }
2725 
2726   if (FormatStr[1] == 's') {
2727     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2728     // strlen(str)+1)
2729     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2730       return nullptr;
2731 
2732     if (CI->use_empty())
2733       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2734       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2735 
2736     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2737     if (SrcLen) {
2738       B.CreateMemCpy(
2739           Dest, Align(1), CI->getArgOperand(2), Align(1),
2740           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2741       // Returns total number of characters written without null-character.
2742       return ConstantInt::get(CI->getType(), SrcLen - 1);
2743     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2744       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2745       // Handle mismatched pointer types (goes away with typeless pointers?).
2746       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2747       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2748       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2749       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2750     }
2751 
2752     bool OptForSize = CI->getFunction()->hasOptSize() ||
2753                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2754                                                   PGSOQueryType::IRPass);
2755     if (OptForSize)
2756       return nullptr;
2757 
2758     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2759     if (!Len)
2760       return nullptr;
2761     Value *IncLen =
2762         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2763     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2764 
2765     // The sprintf result is the unincremented number of bytes in the string.
2766     return B.CreateIntCast(Len, CI->getType(), false);
2767   }
2768   return nullptr;
2769 }
2770 
2771 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2772   Module *M = CI->getModule();
2773   Function *Callee = CI->getCalledFunction();
2774   FunctionType *FT = Callee->getFunctionType();
2775   if (Value *V = optimizeSPrintFString(CI, B)) {
2776     return V;
2777   }
2778 
2779   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2780   // point arguments.
2781   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
2782       !callHasFloatingPointArgument(CI)) {
2783     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
2784                                                    FT, Callee->getAttributes());
2785     CallInst *New = cast<CallInst>(CI->clone());
2786     New->setCalledFunction(SIPrintFFn);
2787     B.Insert(New);
2788     return New;
2789   }
2790 
2791   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2792   // floating point arguments.
2793   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
2794       !callHasFP128Argument(CI)) {
2795     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
2796                                              Callee->getAttributes());
2797     CallInst *New = cast<CallInst>(CI->clone());
2798     New->setCalledFunction(SmallSPrintFFn);
2799     B.Insert(New);
2800     return New;
2801   }
2802 
2803   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2804   return nullptr;
2805 }
2806 
2807 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2808                                                  IRBuilderBase &B) {
2809   // Check for size
2810   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2811   if (!Size)
2812     return nullptr;
2813 
2814   uint64_t N = Size->getZExtValue();
2815   // Check for a fixed format string.
2816   StringRef FormatStr;
2817   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2818     return nullptr;
2819 
2820   // If we just have a format string (nothing else crazy) transform it.
2821   if (CI->arg_size() == 3) {
2822     // Make sure there's no % in the constant array.  We could try to handle
2823     // %% -> % in the future if we cared.
2824     if (FormatStr.contains('%'))
2825       return nullptr; // we found a format specifier, bail out.
2826 
2827     if (N == 0)
2828       return ConstantInt::get(CI->getType(), FormatStr.size());
2829     else if (N < FormatStr.size() + 1)
2830       return nullptr;
2831 
2832     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2833     // strlen(fmt)+1)
2834     copyFlags(
2835         *CI,
2836         B.CreateMemCpy(
2837             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2838             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2839                              FormatStr.size() + 1))); // Copy the null byte.
2840     return ConstantInt::get(CI->getType(), FormatStr.size());
2841   }
2842 
2843   // The remaining optimizations require the format string to be "%s" or "%c"
2844   // and have an extra operand.
2845   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2846 
2847     // Decode the second character of the format string.
2848     if (FormatStr[1] == 'c') {
2849       if (N == 0)
2850         return ConstantInt::get(CI->getType(), 1);
2851       else if (N == 1)
2852         return nullptr;
2853 
2854       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2855       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2856         return nullptr;
2857       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2858       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2859       B.CreateStore(V, Ptr);
2860       Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2861       B.CreateStore(B.getInt8(0), Ptr);
2862 
2863       return ConstantInt::get(CI->getType(), 1);
2864     }
2865 
2866     if (FormatStr[1] == 's') {
2867       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2868       StringRef Str;
2869       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2870         return nullptr;
2871 
2872       if (N == 0)
2873         return ConstantInt::get(CI->getType(), Str.size());
2874       else if (N < Str.size() + 1)
2875         return nullptr;
2876 
2877       copyFlags(
2878           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2879                               CI->getArgOperand(3), Align(1),
2880                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2881 
2882       // The snprintf result is the unincremented number of bytes in the string.
2883       return ConstantInt::get(CI->getType(), Str.size());
2884     }
2885   }
2886   return nullptr;
2887 }
2888 
2889 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2890   if (Value *V = optimizeSnPrintFString(CI, B)) {
2891     return V;
2892   }
2893 
2894   if (isKnownNonZero(CI->getOperand(1), DL))
2895     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2896   return nullptr;
2897 }
2898 
2899 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2900                                                 IRBuilderBase &B) {
2901   optimizeErrorReporting(CI, B, 0);
2902 
2903   // All the optimizations depend on the format string.
2904   StringRef FormatStr;
2905   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2906     return nullptr;
2907 
2908   // Do not do any of the following transformations if the fprintf return
2909   // value is used, in general the fprintf return value is not compatible
2910   // with fwrite(), fputc() or fputs().
2911   if (!CI->use_empty())
2912     return nullptr;
2913 
2914   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2915   if (CI->arg_size() == 2) {
2916     // Could handle %% -> % if we cared.
2917     if (FormatStr.contains('%'))
2918       return nullptr; // We found a format specifier.
2919 
2920     return copyFlags(
2921         *CI, emitFWrite(CI->getArgOperand(1),
2922                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2923                                          FormatStr.size()),
2924                         CI->getArgOperand(0), B, DL, TLI));
2925   }
2926 
2927   // The remaining optimizations require the format string to be "%s" or "%c"
2928   // and have an extra operand.
2929   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2930     return nullptr;
2931 
2932   // Decode the second character of the format string.
2933   if (FormatStr[1] == 'c') {
2934     // fprintf(F, "%c", chr) --> fputc(chr, F)
2935     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2936       return nullptr;
2937     return copyFlags(
2938         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2939   }
2940 
2941   if (FormatStr[1] == 's') {
2942     // fprintf(F, "%s", str) --> fputs(str, F)
2943     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2944       return nullptr;
2945     return copyFlags(
2946         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2947   }
2948   return nullptr;
2949 }
2950 
2951 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2952   Module *M = CI->getModule();
2953   Function *Callee = CI->getCalledFunction();
2954   FunctionType *FT = Callee->getFunctionType();
2955   if (Value *V = optimizeFPrintFString(CI, B)) {
2956     return V;
2957   }
2958 
2959   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2960   // floating point arguments.
2961   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
2962       !callHasFloatingPointArgument(CI)) {
2963     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
2964                                                    FT, Callee->getAttributes());
2965     CallInst *New = cast<CallInst>(CI->clone());
2966     New->setCalledFunction(FIPrintFFn);
2967     B.Insert(New);
2968     return New;
2969   }
2970 
2971   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2972   // 128-bit floating point arguments.
2973   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
2974       !callHasFP128Argument(CI)) {
2975     auto SmallFPrintFFn =
2976         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
2977                            Callee->getAttributes());
2978     CallInst *New = cast<CallInst>(CI->clone());
2979     New->setCalledFunction(SmallFPrintFFn);
2980     B.Insert(New);
2981     return New;
2982   }
2983 
2984   return nullptr;
2985 }
2986 
2987 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2988   optimizeErrorReporting(CI, B, 3);
2989 
2990   // Get the element size and count.
2991   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2992   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2993   if (SizeC && CountC) {
2994     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2995 
2996     // If this is writing zero records, remove the call (it's a noop).
2997     if (Bytes == 0)
2998       return ConstantInt::get(CI->getType(), 0);
2999 
3000     // If this is writing one byte, turn it into fputc.
3001     // This optimisation is only valid, if the return value is unused.
3002     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3003       Value *Char = B.CreateLoad(B.getInt8Ty(),
3004                                  castToCStr(CI->getArgOperand(0), B), "char");
3005       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
3006       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3007     }
3008   }
3009 
3010   return nullptr;
3011 }
3012 
3013 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3014   optimizeErrorReporting(CI, B, 1);
3015 
3016   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3017   // requires more arguments and thus extra MOVs are required.
3018   bool OptForSize = CI->getFunction()->hasOptSize() ||
3019                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3020                                                 PGSOQueryType::IRPass);
3021   if (OptForSize)
3022     return nullptr;
3023 
3024   // We can't optimize if return value is used.
3025   if (!CI->use_empty())
3026     return nullptr;
3027 
3028   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3029   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3030   if (!Len)
3031     return nullptr;
3032 
3033   // Known to have no uses (see above).
3034   return copyFlags(
3035       *CI,
3036       emitFWrite(CI->getArgOperand(0),
3037                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
3038                  CI->getArgOperand(1), B, DL, TLI));
3039 }
3040 
3041 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3042   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3043   if (!CI->use_empty())
3044     return nullptr;
3045 
3046   // Check for a constant string.
3047   // puts("") -> putchar('\n')
3048   StringRef Str;
3049   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
3050     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
3051 
3052   return nullptr;
3053 }
3054 
3055 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3056   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3057   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3058                                         CI->getArgOperand(0), Align(1),
3059                                         CI->getArgOperand(2)));
3060 }
3061 
3062 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3063   SmallString<20> FloatFuncName = FuncName;
3064   FloatFuncName += 'f';
3065   return isLibFuncEmittable(M, TLI, FloatFuncName);
3066 }
3067 
3068 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3069                                                       IRBuilderBase &Builder) {
3070   Module *M = CI->getModule();
3071   LibFunc Func;
3072   Function *Callee = CI->getCalledFunction();
3073   // Check for string/memory library functions.
3074   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3075     // Make sure we never change the calling convention.
3076     assert(
3077         (ignoreCallingConv(Func) ||
3078          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3079         "Optimizing string/memory libcall would change the calling convention");
3080     switch (Func) {
3081     case LibFunc_strcat:
3082       return optimizeStrCat(CI, Builder);
3083     case LibFunc_strncat:
3084       return optimizeStrNCat(CI, Builder);
3085     case LibFunc_strchr:
3086       return optimizeStrChr(CI, Builder);
3087     case LibFunc_strrchr:
3088       return optimizeStrRChr(CI, Builder);
3089     case LibFunc_strcmp:
3090       return optimizeStrCmp(CI, Builder);
3091     case LibFunc_strncmp:
3092       return optimizeStrNCmp(CI, Builder);
3093     case LibFunc_strcpy:
3094       return optimizeStrCpy(CI, Builder);
3095     case LibFunc_stpcpy:
3096       return optimizeStpCpy(CI, Builder);
3097     case LibFunc_strncpy:
3098       return optimizeStrNCpy(CI, Builder);
3099     case LibFunc_strlen:
3100       return optimizeStrLen(CI, Builder);
3101     case LibFunc_strnlen:
3102       return optimizeStrNLen(CI, Builder);
3103     case LibFunc_strpbrk:
3104       return optimizeStrPBrk(CI, Builder);
3105     case LibFunc_strndup:
3106       return optimizeStrNDup(CI, Builder);
3107     case LibFunc_strtol:
3108     case LibFunc_strtod:
3109     case LibFunc_strtof:
3110     case LibFunc_strtoul:
3111     case LibFunc_strtoll:
3112     case LibFunc_strtold:
3113     case LibFunc_strtoull:
3114       return optimizeStrTo(CI, Builder);
3115     case LibFunc_strspn:
3116       return optimizeStrSpn(CI, Builder);
3117     case LibFunc_strcspn:
3118       return optimizeStrCSpn(CI, Builder);
3119     case LibFunc_strstr:
3120       return optimizeStrStr(CI, Builder);
3121     case LibFunc_memchr:
3122       return optimizeMemChr(CI, Builder);
3123     case LibFunc_memrchr:
3124       return optimizeMemRChr(CI, Builder);
3125     case LibFunc_bcmp:
3126       return optimizeBCmp(CI, Builder);
3127     case LibFunc_memcmp:
3128       return optimizeMemCmp(CI, Builder);
3129     case LibFunc_memcpy:
3130       return optimizeMemCpy(CI, Builder);
3131     case LibFunc_memccpy:
3132       return optimizeMemCCpy(CI, Builder);
3133     case LibFunc_mempcpy:
3134       return optimizeMemPCpy(CI, Builder);
3135     case LibFunc_memmove:
3136       return optimizeMemMove(CI, Builder);
3137     case LibFunc_memset:
3138       return optimizeMemSet(CI, Builder);
3139     case LibFunc_realloc:
3140       return optimizeRealloc(CI, Builder);
3141     case LibFunc_wcslen:
3142       return optimizeWcslen(CI, Builder);
3143     case LibFunc_bcopy:
3144       return optimizeBCopy(CI, Builder);
3145     default:
3146       break;
3147     }
3148   }
3149   return nullptr;
3150 }
3151 
3152 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3153                                                        LibFunc Func,
3154                                                        IRBuilderBase &Builder) {
3155   const Module *M = CI->getModule();
3156 
3157   // Don't optimize calls that require strict floating point semantics.
3158   if (CI->isStrictFP())
3159     return nullptr;
3160 
3161   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3162     return V;
3163 
3164   switch (Func) {
3165   case LibFunc_sinpif:
3166   case LibFunc_sinpi:
3167   case LibFunc_cospif:
3168   case LibFunc_cospi:
3169     return optimizeSinCosPi(CI, Builder);
3170   case LibFunc_powf:
3171   case LibFunc_pow:
3172   case LibFunc_powl:
3173     return optimizePow(CI, Builder);
3174   case LibFunc_exp2l:
3175   case LibFunc_exp2:
3176   case LibFunc_exp2f:
3177     return optimizeExp2(CI, Builder);
3178   case LibFunc_fabsf:
3179   case LibFunc_fabs:
3180   case LibFunc_fabsl:
3181     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3182   case LibFunc_sqrtf:
3183   case LibFunc_sqrt:
3184   case LibFunc_sqrtl:
3185     return optimizeSqrt(CI, Builder);
3186   case LibFunc_logf:
3187   case LibFunc_log:
3188   case LibFunc_logl:
3189   case LibFunc_log10f:
3190   case LibFunc_log10:
3191   case LibFunc_log10l:
3192   case LibFunc_log1pf:
3193   case LibFunc_log1p:
3194   case LibFunc_log1pl:
3195   case LibFunc_log2f:
3196   case LibFunc_log2:
3197   case LibFunc_log2l:
3198   case LibFunc_logbf:
3199   case LibFunc_logb:
3200   case LibFunc_logbl:
3201     return optimizeLog(CI, Builder);
3202   case LibFunc_tan:
3203   case LibFunc_tanf:
3204   case LibFunc_tanl:
3205     return optimizeTan(CI, Builder);
3206   case LibFunc_ceil:
3207     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3208   case LibFunc_floor:
3209     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3210   case LibFunc_round:
3211     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3212   case LibFunc_roundeven:
3213     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3214   case LibFunc_nearbyint:
3215     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3216   case LibFunc_rint:
3217     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3218   case LibFunc_trunc:
3219     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3220   case LibFunc_acos:
3221   case LibFunc_acosh:
3222   case LibFunc_asin:
3223   case LibFunc_asinh:
3224   case LibFunc_atan:
3225   case LibFunc_atanh:
3226   case LibFunc_cbrt:
3227   case LibFunc_cosh:
3228   case LibFunc_exp:
3229   case LibFunc_exp10:
3230   case LibFunc_expm1:
3231   case LibFunc_cos:
3232   case LibFunc_sin:
3233   case LibFunc_sinh:
3234   case LibFunc_tanh:
3235     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3236       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3237     return nullptr;
3238   case LibFunc_copysign:
3239     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3240       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3241     return nullptr;
3242   case LibFunc_fminf:
3243   case LibFunc_fmin:
3244   case LibFunc_fminl:
3245   case LibFunc_fmaxf:
3246   case LibFunc_fmax:
3247   case LibFunc_fmaxl:
3248     return optimizeFMinFMax(CI, Builder);
3249   case LibFunc_cabs:
3250   case LibFunc_cabsf:
3251   case LibFunc_cabsl:
3252     return optimizeCAbs(CI, Builder);
3253   default:
3254     return nullptr;
3255   }
3256 }
3257 
3258 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3259   Module *M = CI->getModule();
3260   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3261 
3262   // TODO: Split out the code below that operates on FP calls so that
3263   //       we can all non-FP calls with the StrictFP attribute to be
3264   //       optimized.
3265   if (CI->isNoBuiltin())
3266     return nullptr;
3267 
3268   LibFunc Func;
3269   Function *Callee = CI->getCalledFunction();
3270   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3271 
3272   SmallVector<OperandBundleDef, 2> OpBundles;
3273   CI->getOperandBundlesAsDefs(OpBundles);
3274 
3275   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3276   Builder.setDefaultOperandBundles(OpBundles);
3277 
3278   // Command-line parameter overrides instruction attribute.
3279   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3280   // used by the intrinsic optimizations.
3281   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3282     UnsafeFPShrink = EnableUnsafeFPShrink;
3283   else if (isa<FPMathOperator>(CI) && CI->isFast())
3284     UnsafeFPShrink = true;
3285 
3286   // First, check for intrinsics.
3287   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3288     if (!IsCallingConvC)
3289       return nullptr;
3290     // The FP intrinsics have corresponding constrained versions so we don't
3291     // need to check for the StrictFP attribute here.
3292     switch (II->getIntrinsicID()) {
3293     case Intrinsic::pow:
3294       return optimizePow(CI, Builder);
3295     case Intrinsic::exp2:
3296       return optimizeExp2(CI, Builder);
3297     case Intrinsic::log:
3298     case Intrinsic::log2:
3299     case Intrinsic::log10:
3300       return optimizeLog(CI, Builder);
3301     case Intrinsic::sqrt:
3302       return optimizeSqrt(CI, Builder);
3303     case Intrinsic::memset:
3304       return optimizeMemSet(CI, Builder);
3305     case Intrinsic::memcpy:
3306       return optimizeMemCpy(CI, Builder);
3307     case Intrinsic::memmove:
3308       return optimizeMemMove(CI, Builder);
3309     default:
3310       return nullptr;
3311     }
3312   }
3313 
3314   // Also try to simplify calls to fortified library functions.
3315   if (Value *SimplifiedFortifiedCI =
3316           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3317     // Try to further simplify the result.
3318     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3319     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3320       // Ensure that SimplifiedCI's uses are complete, since some calls have
3321       // their uses analyzed.
3322       replaceAllUsesWith(CI, SimplifiedCI);
3323 
3324       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3325       // we might replace later on.
3326       IRBuilderBase::InsertPointGuard Guard(Builder);
3327       Builder.SetInsertPoint(SimplifiedCI);
3328       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3329         // If we were able to further simplify, remove the now redundant call.
3330         substituteInParent(SimplifiedCI, V);
3331         return V;
3332       }
3333     }
3334     return SimplifiedFortifiedCI;
3335   }
3336 
3337   // Then check for known library functions.
3338   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3339     // We never change the calling convention.
3340     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3341       return nullptr;
3342     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3343       return V;
3344     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3345       return V;
3346     switch (Func) {
3347     case LibFunc_ffs:
3348     case LibFunc_ffsl:
3349     case LibFunc_ffsll:
3350       return optimizeFFS(CI, Builder);
3351     case LibFunc_fls:
3352     case LibFunc_flsl:
3353     case LibFunc_flsll:
3354       return optimizeFls(CI, Builder);
3355     case LibFunc_abs:
3356     case LibFunc_labs:
3357     case LibFunc_llabs:
3358       return optimizeAbs(CI, Builder);
3359     case LibFunc_isdigit:
3360       return optimizeIsDigit(CI, Builder);
3361     case LibFunc_isascii:
3362       return optimizeIsAscii(CI, Builder);
3363     case LibFunc_toascii:
3364       return optimizeToAscii(CI, Builder);
3365     case LibFunc_atoi:
3366     case LibFunc_atol:
3367     case LibFunc_atoll:
3368       return optimizeAtoi(CI, Builder);
3369     case LibFunc_strtol:
3370     case LibFunc_strtoll:
3371       return optimizeStrtol(CI, Builder);
3372     case LibFunc_printf:
3373       return optimizePrintF(CI, Builder);
3374     case LibFunc_sprintf:
3375       return optimizeSPrintF(CI, Builder);
3376     case LibFunc_snprintf:
3377       return optimizeSnPrintF(CI, Builder);
3378     case LibFunc_fprintf:
3379       return optimizeFPrintF(CI, Builder);
3380     case LibFunc_fwrite:
3381       return optimizeFWrite(CI, Builder);
3382     case LibFunc_fputs:
3383       return optimizeFPuts(CI, Builder);
3384     case LibFunc_puts:
3385       return optimizePuts(CI, Builder);
3386     case LibFunc_perror:
3387       return optimizeErrorReporting(CI, Builder);
3388     case LibFunc_vfprintf:
3389     case LibFunc_fiprintf:
3390       return optimizeErrorReporting(CI, Builder, 0);
3391     default:
3392       return nullptr;
3393     }
3394   }
3395   return nullptr;
3396 }
3397 
3398 LibCallSimplifier::LibCallSimplifier(
3399     const DataLayout &DL, const TargetLibraryInfo *TLI,
3400     OptimizationRemarkEmitter &ORE,
3401     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3402     function_ref<void(Instruction *, Value *)> Replacer,
3403     function_ref<void(Instruction *)> Eraser)
3404     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3405       Replacer(Replacer), Eraser(Eraser) {}
3406 
3407 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3408   // Indirect through the replacer used in this instance.
3409   Replacer(I, With);
3410 }
3411 
3412 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3413   Eraser(I);
3414 }
3415 
3416 // TODO:
3417 //   Additional cases that we need to add to this file:
3418 //
3419 // cbrt:
3420 //   * cbrt(expN(X))  -> expN(x/3)
3421 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3422 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3423 //
3424 // exp, expf, expl:
3425 //   * exp(log(x))  -> x
3426 //
3427 // log, logf, logl:
3428 //   * log(exp(x))   -> x
3429 //   * log(exp(y))   -> y*log(e)
3430 //   * log(exp10(y)) -> y*log(10)
3431 //   * log(sqrt(x))  -> 0.5*log(x)
3432 //
3433 // pow, powf, powl:
3434 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3435 //   * pow(pow(x,y),z)-> pow(x,y*z)
3436 //
3437 // signbit:
3438 //   * signbit(cnst) -> cnst'
3439 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3440 //
3441 // sqrt, sqrtf, sqrtl:
3442 //   * sqrt(expN(x))  -> expN(x*0.5)
3443 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3444 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3445 //
3446 
3447 //===----------------------------------------------------------------------===//
3448 // Fortified Library Call Optimizations
3449 //===----------------------------------------------------------------------===//
3450 
3451 bool
3452 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3453                                                     unsigned ObjSizeOp,
3454                                                     Optional<unsigned> SizeOp,
3455                                                     Optional<unsigned> StrOp,
3456                                                     Optional<unsigned> FlagOp) {
3457   // If this function takes a flag argument, the implementation may use it to
3458   // perform extra checks. Don't fold into the non-checking variant.
3459   if (FlagOp) {
3460     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3461     if (!Flag || !Flag->isZero())
3462       return false;
3463   }
3464 
3465   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3466     return true;
3467 
3468   if (ConstantInt *ObjSizeCI =
3469           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3470     if (ObjSizeCI->isMinusOne())
3471       return true;
3472     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3473     if (OnlyLowerUnknownSize)
3474       return false;
3475     if (StrOp) {
3476       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3477       // If the length is 0 we don't know how long it is and so we can't
3478       // remove the check.
3479       if (Len)
3480         annotateDereferenceableBytes(CI, *StrOp, Len);
3481       else
3482         return false;
3483       return ObjSizeCI->getZExtValue() >= Len;
3484     }
3485 
3486     if (SizeOp) {
3487       if (ConstantInt *SizeCI =
3488               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3489         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3490     }
3491   }
3492   return false;
3493 }
3494 
3495 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3496                                                      IRBuilderBase &B) {
3497   if (isFortifiedCallFoldable(CI, 3, 2)) {
3498     CallInst *NewCI =
3499         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3500                        Align(1), CI->getArgOperand(2));
3501     NewCI->setAttributes(CI->getAttributes());
3502     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3503     copyFlags(*CI, NewCI);
3504     return CI->getArgOperand(0);
3505   }
3506   return nullptr;
3507 }
3508 
3509 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3510                                                       IRBuilderBase &B) {
3511   if (isFortifiedCallFoldable(CI, 3, 2)) {
3512     CallInst *NewCI =
3513         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3514                         Align(1), CI->getArgOperand(2));
3515     NewCI->setAttributes(CI->getAttributes());
3516     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3517     copyFlags(*CI, NewCI);
3518     return CI->getArgOperand(0);
3519   }
3520   return nullptr;
3521 }
3522 
3523 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3524                                                      IRBuilderBase &B) {
3525   if (isFortifiedCallFoldable(CI, 3, 2)) {
3526     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3527     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3528                                      CI->getArgOperand(2), Align(1));
3529     NewCI->setAttributes(CI->getAttributes());
3530     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3531     copyFlags(*CI, NewCI);
3532     return CI->getArgOperand(0);
3533   }
3534   return nullptr;
3535 }
3536 
3537 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3538                                                       IRBuilderBase &B) {
3539   const DataLayout &DL = CI->getModule()->getDataLayout();
3540   if (isFortifiedCallFoldable(CI, 3, 2))
3541     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3542                                   CI->getArgOperand(2), B, DL, TLI)) {
3543       CallInst *NewCI = cast<CallInst>(Call);
3544       NewCI->setAttributes(CI->getAttributes());
3545       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3546       return copyFlags(*CI, NewCI);
3547     }
3548   return nullptr;
3549 }
3550 
3551 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3552                                                       IRBuilderBase &B,
3553                                                       LibFunc Func) {
3554   const DataLayout &DL = CI->getModule()->getDataLayout();
3555   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3556         *ObjSize = CI->getArgOperand(2);
3557 
3558   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3559   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3560     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3561     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3562   }
3563 
3564   // If a) we don't have any length information, or b) we know this will
3565   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3566   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3567   // TODO: It might be nice to get a maximum length out of the possible
3568   // string lengths for varying.
3569   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3570     if (Func == LibFunc_strcpy_chk)
3571       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3572     else
3573       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3574   }
3575 
3576   if (OnlyLowerUnknownSize)
3577     return nullptr;
3578 
3579   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3580   uint64_t Len = GetStringLength(Src);
3581   if (Len)
3582     annotateDereferenceableBytes(CI, 1, Len);
3583   else
3584     return nullptr;
3585 
3586   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3587   // sizeof(int*) for every target. So the assumption used here to derive the
3588   // SizeTBits based on the size of an integer pointer in address space zero
3589   // isn't always valid.
3590   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3591   Value *LenV = ConstantInt::get(SizeTTy, Len);
3592   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3593   // If the function was an __stpcpy_chk, and we were able to fold it into
3594   // a __memcpy_chk, we still need to return the correct end pointer.
3595   if (Ret && Func == LibFunc_stpcpy_chk)
3596     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3597                                ConstantInt::get(SizeTTy, Len - 1));
3598   return copyFlags(*CI, cast<CallInst>(Ret));
3599 }
3600 
3601 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3602                                                      IRBuilderBase &B) {
3603   if (isFortifiedCallFoldable(CI, 1, None, 0))
3604     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3605                                      CI->getModule()->getDataLayout(), TLI));
3606   return nullptr;
3607 }
3608 
3609 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3610                                                        IRBuilderBase &B,
3611                                                        LibFunc Func) {
3612   if (isFortifiedCallFoldable(CI, 3, 2)) {
3613     if (Func == LibFunc_strncpy_chk)
3614       return copyFlags(*CI,
3615                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3616                                    CI->getArgOperand(2), B, TLI));
3617     else
3618       return copyFlags(*CI,
3619                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3620                                    CI->getArgOperand(2), B, TLI));
3621   }
3622 
3623   return nullptr;
3624 }
3625 
3626 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3627                                                       IRBuilderBase &B) {
3628   if (isFortifiedCallFoldable(CI, 4, 3))
3629     return copyFlags(
3630         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3631                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3632 
3633   return nullptr;
3634 }
3635 
3636 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3637                                                        IRBuilderBase &B) {
3638   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3639     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3640     return copyFlags(*CI,
3641                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3642                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3643   }
3644 
3645   return nullptr;
3646 }
3647 
3648 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3649                                                       IRBuilderBase &B) {
3650   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3651     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3652     return copyFlags(*CI,
3653                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3654                                  VariadicArgs, B, TLI));
3655   }
3656 
3657   return nullptr;
3658 }
3659 
3660 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3661                                                      IRBuilderBase &B) {
3662   if (isFortifiedCallFoldable(CI, 2))
3663     return copyFlags(
3664         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3665 
3666   return nullptr;
3667 }
3668 
3669 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3670                                                    IRBuilderBase &B) {
3671   if (isFortifiedCallFoldable(CI, 3))
3672     return copyFlags(*CI,
3673                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3674                                  CI->getArgOperand(2), B, TLI));
3675 
3676   return nullptr;
3677 }
3678 
3679 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3680                                                       IRBuilderBase &B) {
3681   if (isFortifiedCallFoldable(CI, 3))
3682     return copyFlags(*CI,
3683                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3684                                  CI->getArgOperand(2), B, TLI));
3685 
3686   return nullptr;
3687 }
3688 
3689 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3690                                                       IRBuilderBase &B) {
3691   if (isFortifiedCallFoldable(CI, 3))
3692     return copyFlags(*CI,
3693                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3694                                  CI->getArgOperand(2), B, TLI));
3695 
3696   return nullptr;
3697 }
3698 
3699 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3700                                                         IRBuilderBase &B) {
3701   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3702     return copyFlags(
3703         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3704                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3705 
3706   return nullptr;
3707 }
3708 
3709 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3710                                                        IRBuilderBase &B) {
3711   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3712     return copyFlags(*CI,
3713                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3714                                   CI->getArgOperand(4), B, TLI));
3715 
3716   return nullptr;
3717 }
3718 
3719 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3720                                                 IRBuilderBase &Builder) {
3721   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3722   // Some clang users checked for _chk libcall availability using:
3723   //   __has_builtin(__builtin___memcpy_chk)
3724   // When compiling with -fno-builtin, this is always true.
3725   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3726   // end up with fortified libcalls, which isn't acceptable in a freestanding
3727   // environment which only provides their non-fortified counterparts.
3728   //
3729   // Until we change clang and/or teach external users to check for availability
3730   // differently, disregard the "nobuiltin" attribute and TLI::has.
3731   //
3732   // PR23093.
3733 
3734   LibFunc Func;
3735   Function *Callee = CI->getCalledFunction();
3736   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3737 
3738   SmallVector<OperandBundleDef, 2> OpBundles;
3739   CI->getOperandBundlesAsDefs(OpBundles);
3740 
3741   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3742   Builder.setDefaultOperandBundles(OpBundles);
3743 
3744   // First, check that this is a known library functions and that the prototype
3745   // is correct.
3746   if (!TLI->getLibFunc(*Callee, Func))
3747     return nullptr;
3748 
3749   // We never change the calling convention.
3750   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3751     return nullptr;
3752 
3753   switch (Func) {
3754   case LibFunc_memcpy_chk:
3755     return optimizeMemCpyChk(CI, Builder);
3756   case LibFunc_mempcpy_chk:
3757     return optimizeMemPCpyChk(CI, Builder);
3758   case LibFunc_memmove_chk:
3759     return optimizeMemMoveChk(CI, Builder);
3760   case LibFunc_memset_chk:
3761     return optimizeMemSetChk(CI, Builder);
3762   case LibFunc_stpcpy_chk:
3763   case LibFunc_strcpy_chk:
3764     return optimizeStrpCpyChk(CI, Builder, Func);
3765   case LibFunc_strlen_chk:
3766     return optimizeStrLenChk(CI, Builder);
3767   case LibFunc_stpncpy_chk:
3768   case LibFunc_strncpy_chk:
3769     return optimizeStrpNCpyChk(CI, Builder, Func);
3770   case LibFunc_memccpy_chk:
3771     return optimizeMemCCpyChk(CI, Builder);
3772   case LibFunc_snprintf_chk:
3773     return optimizeSNPrintfChk(CI, Builder);
3774   case LibFunc_sprintf_chk:
3775     return optimizeSPrintfChk(CI, Builder);
3776   case LibFunc_strcat_chk:
3777     return optimizeStrCatChk(CI, Builder);
3778   case LibFunc_strlcat_chk:
3779     return optimizeStrLCat(CI, Builder);
3780   case LibFunc_strncat_chk:
3781     return optimizeStrNCatChk(CI, Builder);
3782   case LibFunc_strlcpy_chk:
3783     return optimizeStrLCpyChk(CI, Builder);
3784   case LibFunc_vsnprintf_chk:
3785     return optimizeVSNPrintfChk(CI, Builder);
3786   case LibFunc_vsprintf_chk:
3787     return optimizeVSPrintfChk(CI, Builder);
3788   default:
3789     break;
3790   }
3791   return nullptr;
3792 }
3793 
3794 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3795     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3796     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3797