1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 //===----------------------------------------------------------------------===//
205 // String and Memory Library Call Optimizations
206 //===----------------------------------------------------------------------===//
207 
208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
209   // Extract some information from the instruction
210   Value *Dst = CI->getArgOperand(0);
211   Value *Src = CI->getArgOperand(1);
212   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
213 
214   // See if we can get the length of the input string.
215   uint64_t Len = GetStringLength(Src);
216   if (Len)
217     annotateDereferenceableBytes(CI, 1, Len);
218   else
219     return nullptr;
220   --Len; // Unbias length.
221 
222   // Handle the simple, do-nothing case: strcat(x, "") -> x
223   if (Len == 0)
224     return Dst;
225 
226   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
227 }
228 
229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
230                                            IRBuilderBase &B) {
231   // We need to find the end of the destination string.  That's where the
232   // memory is to be moved to. We just generate a call to strlen.
233   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
234   if (!DstLen)
235     return nullptr;
236 
237   // Now that we have the destination's length, we must index into the
238   // destination's pointer to get the actual memcpy destination (end of
239   // the string .. we're concatenating).
240   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
241 
242   // We have enough information to now generate the memcpy call to do the
243   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
244   B.CreateMemCpy(
245       CpyDst, Align(1), Src, Align(1),
246       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
247   return Dst;
248 }
249 
250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
251   // Extract some information from the instruction.
252   Value *Dst = CI->getArgOperand(0);
253   Value *Src = CI->getArgOperand(1);
254   Value *Size = CI->getArgOperand(2);
255   uint64_t Len;
256   annotateNonNullNoUndefBasedOnAccess(CI, 0);
257   if (isKnownNonZero(Size, DL))
258     annotateNonNullNoUndefBasedOnAccess(CI, 1);
259 
260   // We don't do anything if length is not constant.
261   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
262   if (LengthArg) {
263     Len = LengthArg->getZExtValue();
264     // strncat(x, c, 0) -> x
265     if (!Len)
266       return Dst;
267   } else {
268     return nullptr;
269   }
270 
271   // See if we can get the length of the input string.
272   uint64_t SrcLen = GetStringLength(Src);
273   if (SrcLen) {
274     annotateDereferenceableBytes(CI, 1, SrcLen);
275     --SrcLen; // Unbias length.
276   } else {
277     return nullptr;
278   }
279 
280   // strncat(x, "", c) -> x
281   if (SrcLen == 0)
282     return Dst;
283 
284   // We don't optimize this case.
285   if (Len < SrcLen)
286     return nullptr;
287 
288   // strncat(x, s, c) -> strcat(x, s)
289   // s is constant so the strcat can be optimized further.
290   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
291 }
292 
293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
294   Function *Callee = CI->getCalledFunction();
295   FunctionType *FT = Callee->getFunctionType();
296   Value *SrcStr = CI->getArgOperand(0);
297   annotateNonNullNoUndefBasedOnAccess(CI, 0);
298 
299   // If the second operand is non-constant, see if we can compute the length
300   // of the input string and turn this into memchr.
301   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
302   if (!CharC) {
303     uint64_t Len = GetStringLength(SrcStr);
304     if (Len)
305       annotateDereferenceableBytes(CI, 0, Len);
306     else
307       return nullptr;
308     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
309       return nullptr;
310 
311     return copyFlags(
312         *CI,
313         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
314                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
315                    DL, TLI));
316   }
317 
318   // Otherwise, the character is a constant, see if the first argument is
319   // a string literal.  If so, we can constant fold.
320   StringRef Str;
321   if (!getConstantStringInfo(SrcStr, Str)) {
322     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
323       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
324         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
325     return nullptr;
326   }
327 
328   // Compute the offset, make sure to handle the case when we're searching for
329   // zero (a weird way to spell strlen).
330   size_t I = (0xFF & CharC->getSExtValue()) == 0
331                  ? Str.size()
332                  : Str.find(CharC->getSExtValue());
333   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
334     return Constant::getNullValue(CI->getType());
335 
336   // strchr(s+n,c)  -> gep(s+n+i,c)
337   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
338 }
339 
340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
341   Value *SrcStr = CI->getArgOperand(0);
342   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
343   annotateNonNullNoUndefBasedOnAccess(CI, 0);
344 
345   // Cannot fold anything if we're not looking for a constant.
346   if (!CharC)
347     return nullptr;
348 
349   StringRef Str;
350   if (!getConstantStringInfo(SrcStr, Str)) {
351     // strrchr(s, 0) -> strchr(s, 0)
352     if (CharC->isZero())
353       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
354     return nullptr;
355   }
356 
357   // Compute the offset.
358   size_t I = (0xFF & CharC->getSExtValue()) == 0
359                  ? Str.size()
360                  : Str.rfind(CharC->getSExtValue());
361   if (I == StringRef::npos) // Didn't find the char. Return null.
362     return Constant::getNullValue(CI->getType());
363 
364   // strrchr(s+n,c) -> gep(s+n+i,c)
365   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
366 }
367 
368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
369   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
370   if (Str1P == Str2P) // strcmp(x,x)  -> 0
371     return ConstantInt::get(CI->getType(), 0);
372 
373   StringRef Str1, Str2;
374   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
375   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
376 
377   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
378   if (HasStr1 && HasStr2)
379     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
380 
381   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
382     return B.CreateNeg(B.CreateZExt(
383         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
384 
385   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
386     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
387                         CI->getType());
388 
389   // strcmp(P, "x") -> memcmp(P, "x", 2)
390   uint64_t Len1 = GetStringLength(Str1P);
391   if (Len1)
392     annotateDereferenceableBytes(CI, 0, Len1);
393   uint64_t Len2 = GetStringLength(Str2P);
394   if (Len2)
395     annotateDereferenceableBytes(CI, 1, Len2);
396 
397   if (Len1 && Len2) {
398     return copyFlags(
399         *CI, emitMemCmp(Str1P, Str2P,
400                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
401                                          std::min(Len1, Len2)),
402                         B, DL, TLI));
403   }
404 
405   // strcmp to memcmp
406   if (!HasStr1 && HasStr2) {
407     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
408       return copyFlags(
409           *CI,
410           emitMemCmp(Str1P, Str2P,
411                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
412                      B, DL, TLI));
413   } else if (HasStr1 && !HasStr2) {
414     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
415       return copyFlags(
416           *CI,
417           emitMemCmp(Str1P, Str2P,
418                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
419                      B, DL, TLI));
420   }
421 
422   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
423   return nullptr;
424 }
425 
426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
427   Value *Str1P = CI->getArgOperand(0);
428   Value *Str2P = CI->getArgOperand(1);
429   Value *Size = CI->getArgOperand(2);
430   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
431     return ConstantInt::get(CI->getType(), 0);
432 
433   if (isKnownNonZero(Size, DL))
434     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
435   // Get the length argument if it is constant.
436   uint64_t Length;
437   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
438     Length = LengthArg->getZExtValue();
439   else
440     return nullptr;
441 
442   if (Length == 0) // strncmp(x,y,0)   -> 0
443     return ConstantInt::get(CI->getType(), 0);
444 
445   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
446     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
447 
448   StringRef Str1, Str2;
449   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
450   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
451 
452   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
453   if (HasStr1 && HasStr2) {
454     StringRef SubStr1 = Str1.substr(0, Length);
455     StringRef SubStr2 = Str2.substr(0, Length);
456     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
457   }
458 
459   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
460     return B.CreateNeg(B.CreateZExt(
461         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
462 
463   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
464     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
465                         CI->getType());
466 
467   uint64_t Len1 = GetStringLength(Str1P);
468   if (Len1)
469     annotateDereferenceableBytes(CI, 0, Len1);
470   uint64_t Len2 = GetStringLength(Str2P);
471   if (Len2)
472     annotateDereferenceableBytes(CI, 1, Len2);
473 
474   // strncmp to memcmp
475   if (!HasStr1 && HasStr2) {
476     Len2 = std::min(Len2, Length);
477     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
478       return copyFlags(
479           *CI,
480           emitMemCmp(Str1P, Str2P,
481                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
482                      B, DL, TLI));
483   } else if (HasStr1 && !HasStr2) {
484     Len1 = std::min(Len1, Length);
485     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
486       return copyFlags(
487           *CI,
488           emitMemCmp(Str1P, Str2P,
489                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
490                      B, DL, TLI));
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
497   Value *Src = CI->getArgOperand(0);
498   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
499   uint64_t SrcLen = GetStringLength(Src);
500   if (SrcLen && Size) {
501     annotateDereferenceableBytes(CI, 0, SrcLen);
502     if (SrcLen <= Size->getZExtValue() + 1)
503       return copyFlags(*CI, emitStrDup(Src, B, TLI));
504   }
505 
506   return nullptr;
507 }
508 
509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
510   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
511   if (Dst == Src) // strcpy(x,x)  -> x
512     return Src;
513 
514   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
515   // See if we can get the length of the input string.
516   uint64_t Len = GetStringLength(Src);
517   if (Len)
518     annotateDereferenceableBytes(CI, 1, Len);
519   else
520     return nullptr;
521 
522   // We have enough information to now generate the memcpy call to do the
523   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
524   CallInst *NewCI =
525       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
526                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
527   NewCI->setAttributes(CI->getAttributes());
528   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
529   copyFlags(*CI, NewCI);
530   return Dst;
531 }
532 
533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
534   Function *Callee = CI->getCalledFunction();
535   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
536 
537   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
538   if (CI->use_empty())
539     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
540 
541   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
542     Value *StrLen = emitStrLen(Src, B, DL, TLI);
543     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
544   }
545 
546   // See if we can get the length of the input string.
547   uint64_t Len = GetStringLength(Src);
548   if (Len)
549     annotateDereferenceableBytes(CI, 1, Len);
550   else
551     return nullptr;
552 
553   Type *PT = Callee->getFunctionType()->getParamType(0);
554   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
555   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
556                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
557 
558   // We have enough information to now generate the memcpy call to do the
559   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
560   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
561   NewCI->setAttributes(CI->getAttributes());
562   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
563   copyFlags(*CI, NewCI);
564   return DstEnd;
565 }
566 
567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
568   Function *Callee = CI->getCalledFunction();
569   Value *Dst = CI->getArgOperand(0);
570   Value *Src = CI->getArgOperand(1);
571   Value *Size = CI->getArgOperand(2);
572   annotateNonNullNoUndefBasedOnAccess(CI, 0);
573   if (isKnownNonZero(Size, DL))
574     annotateNonNullNoUndefBasedOnAccess(CI, 1);
575 
576   uint64_t Len;
577   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
578     Len = LengthArg->getZExtValue();
579   else
580     return nullptr;
581 
582   // strncpy(x, y, 0) -> x
583   if (Len == 0)
584     return Dst;
585 
586   // See if we can get the length of the input string.
587   uint64_t SrcLen = GetStringLength(Src);
588   if (SrcLen) {
589     annotateDereferenceableBytes(CI, 1, SrcLen);
590     --SrcLen; // Unbias length.
591   } else {
592     return nullptr;
593   }
594 
595   if (SrcLen == 0) {
596     // strncpy(x, "", y) -> memset(x, '\0', y)
597     Align MemSetAlign =
598         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
599     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
600     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
601     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
602         CI->getContext(), 0, ArgAttrs));
603     copyFlags(*CI, NewCI);
604     return Dst;
605   }
606 
607   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
608   if (Len > SrcLen + 1) {
609     if (Len <= 128) {
610       StringRef Str;
611       if (!getConstantStringInfo(Src, Str))
612         return nullptr;
613       std::string SrcStr = Str.str();
614       SrcStr.resize(Len, '\0');
615       Src = B.CreateGlobalString(SrcStr, "str");
616     } else {
617       return nullptr;
618     }
619   }
620 
621   Type *PT = Callee->getFunctionType()->getParamType(0);
622   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
623   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
624                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
625   NewCI->setAttributes(CI->getAttributes());
626   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
627   copyFlags(*CI, NewCI);
628   return Dst;
629 }
630 
631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
632                                                unsigned CharSize,
633                                                Value *Bound) {
634   Value *Src = CI->getArgOperand(0);
635 
636   if (Bound) {
637     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
638       if (BoundCst->isZero())
639         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
640         return ConstantInt::get(CI->getType(), 0);
641 
642       if (BoundCst->isOne()) {
643         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
644         Type *CharTy = B.getIntNTy(CharSize);
645         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
646         Value *ZeroChar = ConstantInt::get(CharTy, 0);
647         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
648         return B.CreateZExt(Cmp, CI->getType());
649       }
650     }
651     // Otherwise punt for strnlen for now.
652     return nullptr;
653   }
654 
655   // Constant folding: strlen("xyz") -> 3
656   if (uint64_t Len = GetStringLength(Src, CharSize))
657     return ConstantInt::get(CI->getType(), Len - 1);
658 
659   // If s is a constant pointer pointing to a string literal, we can fold
660   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
661   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
662   // We only try to simplify strlen when the pointer s points to an array
663   // of i8. Otherwise, we would need to scale the offset x before doing the
664   // subtraction. This will make the optimization more complex, and it's not
665   // very useful because calling strlen for a pointer of other types is
666   // very uncommon.
667   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
668     if (!isGEPBasedOnPointerToString(GEP, CharSize))
669       return nullptr;
670 
671     ConstantDataArraySlice Slice;
672     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
673       uint64_t NullTermIdx;
674       if (Slice.Array == nullptr) {
675         NullTermIdx = 0;
676       } else {
677         NullTermIdx = ~((uint64_t)0);
678         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
679           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
680             NullTermIdx = I;
681             break;
682           }
683         }
684         // If the string does not have '\0', leave it to strlen to compute
685         // its length.
686         if (NullTermIdx == ~((uint64_t)0))
687           return nullptr;
688       }
689 
690       Value *Offset = GEP->getOperand(2);
691       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
692       uint64_t ArrSize =
693              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
694 
695       // If Offset is not provably in the range [0, NullTermIdx], we can still
696       // optimize if we can prove that the program has undefined behavior when
697       // Offset is outside that range. That is the case when GEP->getOperand(0)
698       // is a pointer to an object whose memory extent is NullTermIdx+1.
699       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
700           (isa<GlobalVariable>(GEP->getOperand(0)) &&
701            NullTermIdx == ArrSize - 1)) {
702         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
703         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
704                            Offset);
705       }
706     }
707   }
708 
709   // strlen(x?"foo":"bars") --> x ? 3 : 4
710   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
711     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
712     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
713     if (LenTrue && LenFalse) {
714       ORE.emit([&]() {
715         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
716                << "folded strlen(select) to select of constants";
717       });
718       return B.CreateSelect(SI->getCondition(),
719                             ConstantInt::get(CI->getType(), LenTrue - 1),
720                             ConstantInt::get(CI->getType(), LenFalse - 1));
721     }
722   }
723 
724   // strlen(x) != 0 --> *x != 0
725   // strlen(x) == 0 --> *x == 0
726   if (isOnlyUsedInZeroEqualityComparison(CI))
727     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
728                         CI->getType());
729 
730   return nullptr;
731 }
732 
733 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
734   if (Value *V = optimizeStringLength(CI, B, 8))
735     return V;
736   annotateNonNullNoUndefBasedOnAccess(CI, 0);
737   return nullptr;
738 }
739 
740 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
741   Value *Bound = CI->getArgOperand(1);
742   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
743     return V;
744 
745   if (isKnownNonZero(Bound, DL))
746     annotateNonNullNoUndefBasedOnAccess(CI, 0);
747   return nullptr;
748 }
749 
750 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
751   Module &M = *CI->getModule();
752   unsigned WCharSize = TLI->getWCharSize(M) * 8;
753   // We cannot perform this optimization without wchar_size metadata.
754   if (WCharSize == 0)
755     return nullptr;
756 
757   return optimizeStringLength(CI, B, WCharSize);
758 }
759 
760 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
761   StringRef S1, S2;
762   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
763   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
764 
765   // strpbrk(s, "") -> nullptr
766   // strpbrk("", s) -> nullptr
767   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
768     return Constant::getNullValue(CI->getType());
769 
770   // Constant folding.
771   if (HasS1 && HasS2) {
772     size_t I = S1.find_first_of(S2);
773     if (I == StringRef::npos) // No match.
774       return Constant::getNullValue(CI->getType());
775 
776     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
777                        "strpbrk");
778   }
779 
780   // strpbrk(s, "a") -> strchr(s, 'a')
781   if (HasS2 && S2.size() == 1)
782     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
783 
784   return nullptr;
785 }
786 
787 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
788   Value *EndPtr = CI->getArgOperand(1);
789   if (isa<ConstantPointerNull>(EndPtr)) {
790     // With a null EndPtr, this function won't capture the main argument.
791     // It would be readonly too, except that it still may write to errno.
792     CI->addParamAttr(0, Attribute::NoCapture);
793   }
794 
795   return nullptr;
796 }
797 
798 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
799   StringRef S1, S2;
800   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
801   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
802 
803   // strspn(s, "") -> 0
804   // strspn("", s) -> 0
805   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
806     return Constant::getNullValue(CI->getType());
807 
808   // Constant folding.
809   if (HasS1 && HasS2) {
810     size_t Pos = S1.find_first_not_of(S2);
811     if (Pos == StringRef::npos)
812       Pos = S1.size();
813     return ConstantInt::get(CI->getType(), Pos);
814   }
815 
816   return nullptr;
817 }
818 
819 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
820   StringRef S1, S2;
821   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
822   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
823 
824   // strcspn("", s) -> 0
825   if (HasS1 && S1.empty())
826     return Constant::getNullValue(CI->getType());
827 
828   // Constant folding.
829   if (HasS1 && HasS2) {
830     size_t Pos = S1.find_first_of(S2);
831     if (Pos == StringRef::npos)
832       Pos = S1.size();
833     return ConstantInt::get(CI->getType(), Pos);
834   }
835 
836   // strcspn(s, "") -> strlen(s)
837   if (HasS2 && S2.empty())
838     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
839 
840   return nullptr;
841 }
842 
843 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
844   // fold strstr(x, x) -> x.
845   if (CI->getArgOperand(0) == CI->getArgOperand(1))
846     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
847 
848   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
849   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
850     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
851     if (!StrLen)
852       return nullptr;
853     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
854                                  StrLen, B, DL, TLI);
855     if (!StrNCmp)
856       return nullptr;
857     for (User *U : llvm::make_early_inc_range(CI->users())) {
858       ICmpInst *Old = cast<ICmpInst>(U);
859       Value *Cmp =
860           B.CreateICmp(Old->getPredicate(), StrNCmp,
861                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
862       replaceAllUsesWith(Old, Cmp);
863     }
864     return CI;
865   }
866 
867   // See if either input string is a constant string.
868   StringRef SearchStr, ToFindStr;
869   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
870   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
871 
872   // fold strstr(x, "") -> x.
873   if (HasStr2 && ToFindStr.empty())
874     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
875 
876   // If both strings are known, constant fold it.
877   if (HasStr1 && HasStr2) {
878     size_t Offset = SearchStr.find(ToFindStr);
879 
880     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
881       return Constant::getNullValue(CI->getType());
882 
883     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
884     Value *Result = castToCStr(CI->getArgOperand(0), B);
885     Result =
886         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
887     return B.CreateBitCast(Result, CI->getType());
888   }
889 
890   // fold strstr(x, "y") -> strchr(x, 'y').
891   if (HasStr2 && ToFindStr.size() == 1) {
892     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
893     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
894   }
895 
896   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
897   return nullptr;
898 }
899 
900 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
901   Value *SrcStr = CI->getArgOperand(0);
902   Value *Size = CI->getArgOperand(2);
903   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
904   Value *CharVal = CI->getArgOperand(1);
905   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
906   Value *NullPtr = Constant::getNullValue(CI->getType());
907 
908   if (LenC) {
909     if (LenC->isZero())
910       // Fold memrchr(x, y, 0) --> null.
911       return NullPtr;
912 
913     if (LenC->isOne()) {
914       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
915       // constant or otherwise.
916       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
917       // Slice off the character's high end bits.
918       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
919       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
920       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
921     }
922   }
923 
924   StringRef Str;
925   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
926     return nullptr;
927 
928   uint64_t EndOff = UINT64_MAX;
929   if (LenC) {
930     EndOff = LenC->getZExtValue();
931     if (Str.size() < EndOff)
932       // Punt out-of-bounds accesses to sanitizers and/or libc.
933       return nullptr;
934   }
935 
936   return nullptr;
937 }
938 
939 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
940   Value *SrcStr = CI->getArgOperand(0);
941   Value *Size = CI->getArgOperand(2);
942   if (isKnownNonZero(Size, DL))
943     annotateNonNullNoUndefBasedOnAccess(CI, 0);
944 
945   Value *CharVal = CI->getArgOperand(1);
946   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
947   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
948 
949   // memchr(x, y, 0) -> null
950   if (LenC) {
951     if (LenC->isZero())
952       return Constant::getNullValue(CI->getType());
953 
954     if (LenC->isOne()) {
955       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
956       // constant or otherwise.
957       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
958       // Slice off the character's high end bits.
959       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
960       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
961       Value *NullPtr = Constant::getNullValue(CI->getType());
962       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
963     }
964   }
965 
966   StringRef Str;
967   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
968     return nullptr;
969 
970   if (CharC) {
971     size_t Pos = Str.find(CharC->getZExtValue());
972     if (Pos == StringRef::npos)
973       // When the character is not in the source array fold the result
974       // to null regardless of Size.
975       return Constant::getNullValue(CI->getType());
976 
977     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
978     // When the constant Size is less than or equal to the character
979     // position also fold the result to null.
980     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
981                                  "memchr.cmp");
982     Value *NullPtr = Constant::getNullValue(CI->getType());
983     Value *SrcPlus =
984         B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr");
985     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
986   }
987 
988   if (!LenC)
989     // From now on we need a constant length and constant array.
990     return nullptr;
991 
992   // Truncate the string to LenC.
993   Str = Str.substr(0, LenC->getZExtValue());
994 
995   // If the char is variable but the input str and length are not we can turn
996   // this memchr call into a simple bit field test. Of course this only works
997   // when the return value is only checked against null.
998   //
999   // It would be really nice to reuse switch lowering here but we can't change
1000   // the CFG at this point.
1001   //
1002   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1003   // != 0
1004   //   after bounds check.
1005   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1006     return nullptr;
1007 
1008   unsigned char Max =
1009       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1010                         reinterpret_cast<const unsigned char *>(Str.end()));
1011 
1012   // Make sure the bit field we're about to create fits in a register on the
1013   // target.
1014   // FIXME: On a 64 bit architecture this prevents us from using the
1015   // interesting range of alpha ascii chars. We could do better by emitting
1016   // two bitfields or shifting the range by 64 if no lower chars are used.
1017   if (!DL.fitsInLegalInteger(Max + 1))
1018     return nullptr;
1019 
1020   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1021   // creating unnecessary illegal types.
1022   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1023 
1024   // Now build the bit field.
1025   APInt Bitfield(Width, 0);
1026   for (char C : Str)
1027     Bitfield.setBit((unsigned char)C);
1028   Value *BitfieldC = B.getInt(Bitfield);
1029 
1030   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1031   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1032   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1033 
1034   // First check that the bit field access is within bounds.
1035   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1036                                "memchr.bounds");
1037 
1038   // Create code that checks if the given bit is set in the field.
1039   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1040   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1041 
1042   // Finally merge both checks and cast to pointer type. The inttoptr
1043   // implicitly zexts the i1 to intptr type.
1044   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1045                           CI->getType());
1046 }
1047 
1048 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1049                                          uint64_t Len, IRBuilderBase &B,
1050                                          const DataLayout &DL) {
1051   if (Len == 0) // memcmp(s1,s2,0) -> 0
1052     return Constant::getNullValue(CI->getType());
1053 
1054   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1055   if (Len == 1) {
1056     Value *LHSV =
1057         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1058                      CI->getType(), "lhsv");
1059     Value *RHSV =
1060         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1061                      CI->getType(), "rhsv");
1062     return B.CreateSub(LHSV, RHSV, "chardiff");
1063   }
1064 
1065   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1066   // TODO: The case where both inputs are constants does not need to be limited
1067   // to legal integers or equality comparison. See block below this.
1068   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1069     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1070     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1071 
1072     // First, see if we can fold either argument to a constant.
1073     Value *LHSV = nullptr;
1074     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1075       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1076       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1077     }
1078     Value *RHSV = nullptr;
1079     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1080       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1081       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1082     }
1083 
1084     // Don't generate unaligned loads. If either source is constant data,
1085     // alignment doesn't matter for that source because there is no load.
1086     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1087         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1088       if (!LHSV) {
1089         Type *LHSPtrTy =
1090             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1091         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1092       }
1093       if (!RHSV) {
1094         Type *RHSPtrTy =
1095             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1096         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1097       }
1098       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1099     }
1100   }
1101 
1102   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1103   // TODO: This is limited to i8 arrays.
1104   StringRef LHSStr, RHSStr;
1105   if (getConstantStringInfo(LHS, LHSStr) &&
1106       getConstantStringInfo(RHS, RHSStr)) {
1107     // Make sure we're not reading out-of-bounds memory.
1108     if (Len > LHSStr.size() || Len > RHSStr.size())
1109       return nullptr;
1110     // Fold the memcmp and normalize the result.  This way we get consistent
1111     // results across multiple platforms.
1112     uint64_t Ret = 0;
1113     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1114     if (Cmp < 0)
1115       Ret = -1;
1116     else if (Cmp > 0)
1117       Ret = 1;
1118     return ConstantInt::get(CI->getType(), Ret);
1119   }
1120 
1121   return nullptr;
1122 }
1123 
1124 // Most simplifications for memcmp also apply to bcmp.
1125 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1126                                                    IRBuilderBase &B) {
1127   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1128   Value *Size = CI->getArgOperand(2);
1129 
1130   if (LHS == RHS) // memcmp(s,s,x) -> 0
1131     return Constant::getNullValue(CI->getType());
1132 
1133   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1134   // Handle constant lengths.
1135   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1136   if (!LenC)
1137     return nullptr;
1138 
1139   // memcmp(d,s,0) -> 0
1140   if (LenC->getZExtValue() == 0)
1141     return Constant::getNullValue(CI->getType());
1142 
1143   if (Value *Res =
1144           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1145     return Res;
1146   return nullptr;
1147 }
1148 
1149 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1150   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1151     return V;
1152 
1153   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1154   // bcmp can be more efficient than memcmp because it only has to know that
1155   // there is a difference, not how different one is to the other.
1156   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1157     Value *LHS = CI->getArgOperand(0);
1158     Value *RHS = CI->getArgOperand(1);
1159     Value *Size = CI->getArgOperand(2);
1160     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1161   }
1162 
1163   return nullptr;
1164 }
1165 
1166 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1167   return optimizeMemCmpBCmpCommon(CI, B);
1168 }
1169 
1170 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1171   Value *Size = CI->getArgOperand(2);
1172   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1173   if (isa<IntrinsicInst>(CI))
1174     return nullptr;
1175 
1176   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1177   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1178                                    CI->getArgOperand(1), Align(1), Size);
1179   NewCI->setAttributes(CI->getAttributes());
1180   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1181   copyFlags(*CI, NewCI);
1182   return CI->getArgOperand(0);
1183 }
1184 
1185 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1186   Value *Dst = CI->getArgOperand(0);
1187   Value *Src = CI->getArgOperand(1);
1188   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1189   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1190   StringRef SrcStr;
1191   if (CI->use_empty() && Dst == Src)
1192     return Dst;
1193   // memccpy(d, s, c, 0) -> nullptr
1194   if (N) {
1195     if (N->isNullValue())
1196       return Constant::getNullValue(CI->getType());
1197     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1198                                /*TrimAtNul=*/false) ||
1199         !StopChar)
1200       return nullptr;
1201   } else {
1202     return nullptr;
1203   }
1204 
1205   // Wrap arg 'c' of type int to char
1206   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1207   if (Pos == StringRef::npos) {
1208     if (N->getZExtValue() <= SrcStr.size()) {
1209       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1210                                     CI->getArgOperand(3)));
1211       return Constant::getNullValue(CI->getType());
1212     }
1213     return nullptr;
1214   }
1215 
1216   Value *NewN =
1217       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1218   // memccpy -> llvm.memcpy
1219   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1220   return Pos + 1 <= N->getZExtValue()
1221              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1222              : Constant::getNullValue(CI->getType());
1223 }
1224 
1225 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1226   Value *Dst = CI->getArgOperand(0);
1227   Value *N = CI->getArgOperand(2);
1228   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1229   CallInst *NewCI =
1230       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1231   // Propagate attributes, but memcpy has no return value, so make sure that
1232   // any return attributes are compliant.
1233   // TODO: Attach return value attributes to the 1st operand to preserve them?
1234   NewCI->setAttributes(CI->getAttributes());
1235   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1236   copyFlags(*CI, NewCI);
1237   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1238 }
1239 
1240 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1241   Value *Size = CI->getArgOperand(2);
1242   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1243   if (isa<IntrinsicInst>(CI))
1244     return nullptr;
1245 
1246   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1247   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1248                                     CI->getArgOperand(1), Align(1), Size);
1249   NewCI->setAttributes(CI->getAttributes());
1250   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1251   copyFlags(*CI, NewCI);
1252   return CI->getArgOperand(0);
1253 }
1254 
1255 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1256   Value *Size = CI->getArgOperand(2);
1257   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1258   if (isa<IntrinsicInst>(CI))
1259     return nullptr;
1260 
1261   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1262   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1263   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1264   NewCI->setAttributes(CI->getAttributes());
1265   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1266   copyFlags(*CI, NewCI);
1267   return CI->getArgOperand(0);
1268 }
1269 
1270 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1271   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1272     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1273 
1274   return nullptr;
1275 }
1276 
1277 //===----------------------------------------------------------------------===//
1278 // Math Library Optimizations
1279 //===----------------------------------------------------------------------===//
1280 
1281 // Replace a libcall \p CI with a call to intrinsic \p IID
1282 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1283                                Intrinsic::ID IID) {
1284   // Propagate fast-math flags from the existing call to the new call.
1285   IRBuilderBase::FastMathFlagGuard Guard(B);
1286   B.setFastMathFlags(CI->getFastMathFlags());
1287 
1288   Module *M = CI->getModule();
1289   Value *V = CI->getArgOperand(0);
1290   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1291   CallInst *NewCall = B.CreateCall(F, V);
1292   NewCall->takeName(CI);
1293   return copyFlags(*CI, NewCall);
1294 }
1295 
1296 /// Return a variant of Val with float type.
1297 /// Currently this works in two cases: If Val is an FPExtension of a float
1298 /// value to something bigger, simply return the operand.
1299 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1300 /// loss of precision do so.
1301 static Value *valueHasFloatPrecision(Value *Val) {
1302   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1303     Value *Op = Cast->getOperand(0);
1304     if (Op->getType()->isFloatTy())
1305       return Op;
1306   }
1307   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1308     APFloat F = Const->getValueAPF();
1309     bool losesInfo;
1310     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1311                     &losesInfo);
1312     if (!losesInfo)
1313       return ConstantFP::get(Const->getContext(), F);
1314   }
1315   return nullptr;
1316 }
1317 
1318 /// Shrink double -> float functions.
1319 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1320                                bool isBinary, bool isPrecise = false) {
1321   Function *CalleeFn = CI->getCalledFunction();
1322   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1323     return nullptr;
1324 
1325   // If not all the uses of the function are converted to float, then bail out.
1326   // This matters if the precision of the result is more important than the
1327   // precision of the arguments.
1328   if (isPrecise)
1329     for (User *U : CI->users()) {
1330       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1331       if (!Cast || !Cast->getType()->isFloatTy())
1332         return nullptr;
1333     }
1334 
1335   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1336   Value *V[2];
1337   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1338   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1339   if (!V[0] || (isBinary && !V[1]))
1340     return nullptr;
1341 
1342   // If call isn't an intrinsic, check that it isn't within a function with the
1343   // same name as the float version of this call, otherwise the result is an
1344   // infinite loop.  For example, from MinGW-w64:
1345   //
1346   // float expf(float val) { return (float) exp((double) val); }
1347   StringRef CalleeName = CalleeFn->getName();
1348   bool IsIntrinsic = CalleeFn->isIntrinsic();
1349   if (!IsIntrinsic) {
1350     StringRef CallerName = CI->getFunction()->getName();
1351     if (!CallerName.empty() && CallerName.back() == 'f' &&
1352         CallerName.size() == (CalleeName.size() + 1) &&
1353         CallerName.startswith(CalleeName))
1354       return nullptr;
1355   }
1356 
1357   // Propagate the math semantics from the current function to the new function.
1358   IRBuilderBase::FastMathFlagGuard Guard(B);
1359   B.setFastMathFlags(CI->getFastMathFlags());
1360 
1361   // g((double) float) -> (double) gf(float)
1362   Value *R;
1363   if (IsIntrinsic) {
1364     Module *M = CI->getModule();
1365     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1366     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1367     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1368   } else {
1369     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1370     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1371                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1372   }
1373   return B.CreateFPExt(R, B.getDoubleTy());
1374 }
1375 
1376 /// Shrink double -> float for unary functions.
1377 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1378                                     bool isPrecise = false) {
1379   return optimizeDoubleFP(CI, B, false, isPrecise);
1380 }
1381 
1382 /// Shrink double -> float for binary functions.
1383 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1384                                      bool isPrecise = false) {
1385   return optimizeDoubleFP(CI, B, true, isPrecise);
1386 }
1387 
1388 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1389 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1390   if (!CI->isFast())
1391     return nullptr;
1392 
1393   // Propagate fast-math flags from the existing call to new instructions.
1394   IRBuilderBase::FastMathFlagGuard Guard(B);
1395   B.setFastMathFlags(CI->getFastMathFlags());
1396 
1397   Value *Real, *Imag;
1398   if (CI->arg_size() == 1) {
1399     Value *Op = CI->getArgOperand(0);
1400     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1401     Real = B.CreateExtractValue(Op, 0, "real");
1402     Imag = B.CreateExtractValue(Op, 1, "imag");
1403   } else {
1404     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1405     Real = CI->getArgOperand(0);
1406     Imag = CI->getArgOperand(1);
1407   }
1408 
1409   Value *RealReal = B.CreateFMul(Real, Real);
1410   Value *ImagImag = B.CreateFMul(Imag, Imag);
1411 
1412   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1413                                               CI->getType());
1414   return copyFlags(
1415       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1416 }
1417 
1418 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1419                                       IRBuilderBase &B) {
1420   if (!isa<FPMathOperator>(Call))
1421     return nullptr;
1422 
1423   IRBuilderBase::FastMathFlagGuard Guard(B);
1424   B.setFastMathFlags(Call->getFastMathFlags());
1425 
1426   // TODO: Can this be shared to also handle LLVM intrinsics?
1427   Value *X;
1428   switch (Func) {
1429   case LibFunc_sin:
1430   case LibFunc_sinf:
1431   case LibFunc_sinl:
1432   case LibFunc_tan:
1433   case LibFunc_tanf:
1434   case LibFunc_tanl:
1435     // sin(-X) --> -sin(X)
1436     // tan(-X) --> -tan(X)
1437     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1438       return B.CreateFNeg(
1439           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1440     break;
1441   case LibFunc_cos:
1442   case LibFunc_cosf:
1443   case LibFunc_cosl:
1444     // cos(-X) --> cos(X)
1445     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1446       return copyFlags(*Call,
1447                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1448     break;
1449   default:
1450     break;
1451   }
1452   return nullptr;
1453 }
1454 
1455 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1456   // Multiplications calculated using Addition Chains.
1457   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1458 
1459   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1460 
1461   if (InnerChain[Exp])
1462     return InnerChain[Exp];
1463 
1464   static const unsigned AddChain[33][2] = {
1465       {0, 0}, // Unused.
1466       {0, 0}, // Unused (base case = pow1).
1467       {1, 1}, // Unused (pre-computed).
1468       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1469       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1470       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1471       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1472       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1473   };
1474 
1475   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1476                                  getPow(InnerChain, AddChain[Exp][1], B));
1477   return InnerChain[Exp];
1478 }
1479 
1480 // Return a properly extended integer (DstWidth bits wide) if the operation is
1481 // an itofp.
1482 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1483   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1484     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1485     // Make sure that the exponent fits inside an "int" of size DstWidth,
1486     // thus avoiding any range issues that FP has not.
1487     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1488     if (BitWidth < DstWidth ||
1489         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1490       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1491                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1492   }
1493 
1494   return nullptr;
1495 }
1496 
1497 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1498 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1499 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1500 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1501   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1502   AttributeList Attrs; // Attributes are only meaningful on the original call
1503   Module *Mod = Pow->getModule();
1504   Type *Ty = Pow->getType();
1505   bool Ignored;
1506 
1507   // Evaluate special cases related to a nested function as the base.
1508 
1509   // pow(exp(x), y) -> exp(x * y)
1510   // pow(exp2(x), y) -> exp2(x * y)
1511   // If exp{,2}() is used only once, it is better to fold two transcendental
1512   // math functions into one.  If used again, exp{,2}() would still have to be
1513   // called with the original argument, then keep both original transcendental
1514   // functions.  However, this transformation is only safe with fully relaxed
1515   // math semantics, since, besides rounding differences, it changes overflow
1516   // and underflow behavior quite dramatically.  For example:
1517   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1518   // Whereas:
1519   //   exp(1000 * 0.001) = exp(1)
1520   // TODO: Loosen the requirement for fully relaxed math semantics.
1521   // TODO: Handle exp10() when more targets have it available.
1522   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1523   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1524     LibFunc LibFn;
1525 
1526     Function *CalleeFn = BaseFn->getCalledFunction();
1527     if (CalleeFn &&
1528         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1529       StringRef ExpName;
1530       Intrinsic::ID ID;
1531       Value *ExpFn;
1532       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1533 
1534       switch (LibFn) {
1535       default:
1536         return nullptr;
1537       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1538         ExpName = TLI->getName(LibFunc_exp);
1539         ID = Intrinsic::exp;
1540         LibFnFloat = LibFunc_expf;
1541         LibFnDouble = LibFunc_exp;
1542         LibFnLongDouble = LibFunc_expl;
1543         break;
1544       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1545         ExpName = TLI->getName(LibFunc_exp2);
1546         ID = Intrinsic::exp2;
1547         LibFnFloat = LibFunc_exp2f;
1548         LibFnDouble = LibFunc_exp2;
1549         LibFnLongDouble = LibFunc_exp2l;
1550         break;
1551       }
1552 
1553       // Create new exp{,2}() with the product as its argument.
1554       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1555       ExpFn = BaseFn->doesNotAccessMemory()
1556               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1557                              FMul, ExpName)
1558               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1559                                      LibFnLongDouble, B,
1560                                      BaseFn->getAttributes());
1561 
1562       // Since the new exp{,2}() is different from the original one, dead code
1563       // elimination cannot be trusted to remove it, since it may have side
1564       // effects (e.g., errno).  When the only consumer for the original
1565       // exp{,2}() is pow(), then it has to be explicitly erased.
1566       substituteInParent(BaseFn, ExpFn);
1567       return ExpFn;
1568     }
1569   }
1570 
1571   // Evaluate special cases related to a constant base.
1572 
1573   const APFloat *BaseF;
1574   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1575     return nullptr;
1576 
1577   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1578   if (match(Base, m_SpecificFP(2.0)) &&
1579       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1580       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1581     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1582       return copyFlags(*Pow,
1583                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1584                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1585                                              LibFunc_ldexpl, B, Attrs));
1586   }
1587 
1588   // pow(2.0 ** n, x) -> exp2(n * x)
1589   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1590     APFloat BaseR = APFloat(1.0);
1591     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1592     BaseR = BaseR / *BaseF;
1593     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1594     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1595     APSInt NI(64, false);
1596     if ((IsInteger || IsReciprocal) &&
1597         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1598             APFloat::opOK &&
1599         NI > 1 && NI.isPowerOf2()) {
1600       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1601       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1602       if (Pow->doesNotAccessMemory())
1603         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1604                                                 Mod, Intrinsic::exp2, Ty),
1605                                             FMul, "exp2"));
1606       else
1607         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1608                                                     LibFunc_exp2f,
1609                                                     LibFunc_exp2l, B, Attrs));
1610     }
1611   }
1612 
1613   // pow(10.0, x) -> exp10(x)
1614   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1615   if (match(Base, m_SpecificFP(10.0)) &&
1616       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1617     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1618                                                 LibFunc_exp10f, LibFunc_exp10l,
1619                                                 B, Attrs));
1620 
1621   // pow(x, y) -> exp2(log2(x) * y)
1622   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1623       !BaseF->isNegative()) {
1624     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1625     // Luckily optimizePow has already handled the x == 1 case.
1626     assert(!match(Base, m_FPOne()) &&
1627            "pow(1.0, y) should have been simplified earlier!");
1628 
1629     Value *Log = nullptr;
1630     if (Ty->isFloatTy())
1631       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1632     else if (Ty->isDoubleTy())
1633       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1634 
1635     if (Log) {
1636       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1637       if (Pow->doesNotAccessMemory())
1638         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1639                                                 Mod, Intrinsic::exp2, Ty),
1640                                             FMul, "exp2"));
1641       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1642         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1643                                                     LibFunc_exp2f,
1644                                                     LibFunc_exp2l, B, Attrs));
1645     }
1646   }
1647 
1648   return nullptr;
1649 }
1650 
1651 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1652                           Module *M, IRBuilderBase &B,
1653                           const TargetLibraryInfo *TLI) {
1654   // If errno is never set, then use the intrinsic for sqrt().
1655   if (NoErrno) {
1656     Function *SqrtFn =
1657         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1658     return B.CreateCall(SqrtFn, V, "sqrt");
1659   }
1660 
1661   // Otherwise, use the libcall for sqrt().
1662   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1663     // TODO: We also should check that the target can in fact lower the sqrt()
1664     // libcall. We currently have no way to ask this question, so we ask if
1665     // the target has a sqrt() libcall, which is not exactly the same.
1666     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1667                                 LibFunc_sqrtl, B, Attrs);
1668 
1669   return nullptr;
1670 }
1671 
1672 /// Use square root in place of pow(x, +/-0.5).
1673 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1674   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1675   AttributeList Attrs; // Attributes are only meaningful on the original call
1676   Module *Mod = Pow->getModule();
1677   Type *Ty = Pow->getType();
1678 
1679   const APFloat *ExpoF;
1680   if (!match(Expo, m_APFloat(ExpoF)) ||
1681       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1682     return nullptr;
1683 
1684   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1685   // so that requires fast-math-flags (afn or reassoc).
1686   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1687     return nullptr;
1688 
1689   // If we have a pow() library call (accesses memory) and we can't guarantee
1690   // that the base is not an infinity, give up:
1691   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1692   // errno), but sqrt(-Inf) is required by various standards to set errno.
1693   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1694       !isKnownNeverInfinity(Base, TLI))
1695     return nullptr;
1696 
1697   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1698   if (!Sqrt)
1699     return nullptr;
1700 
1701   // Handle signed zero base by expanding to fabs(sqrt(x)).
1702   if (!Pow->hasNoSignedZeros()) {
1703     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1704     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1705   }
1706 
1707   Sqrt = copyFlags(*Pow, Sqrt);
1708 
1709   // Handle non finite base by expanding to
1710   // (x == -infinity ? +infinity : sqrt(x)).
1711   if (!Pow->hasNoInfs()) {
1712     Value *PosInf = ConstantFP::getInfinity(Ty),
1713           *NegInf = ConstantFP::getInfinity(Ty, true);
1714     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1715     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1716   }
1717 
1718   // If the exponent is negative, then get the reciprocal.
1719   if (ExpoF->isNegative())
1720     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1721 
1722   return Sqrt;
1723 }
1724 
1725 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1726                                            IRBuilderBase &B) {
1727   Value *Args[] = {Base, Expo};
1728   Type *Types[] = {Base->getType(), Expo->getType()};
1729   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1730   return B.CreateCall(F, Args);
1731 }
1732 
1733 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1734   Value *Base = Pow->getArgOperand(0);
1735   Value *Expo = Pow->getArgOperand(1);
1736   Function *Callee = Pow->getCalledFunction();
1737   StringRef Name = Callee->getName();
1738   Type *Ty = Pow->getType();
1739   Module *M = Pow->getModule();
1740   bool AllowApprox = Pow->hasApproxFunc();
1741   bool Ignored;
1742 
1743   // Propagate the math semantics from the call to any created instructions.
1744   IRBuilderBase::FastMathFlagGuard Guard(B);
1745   B.setFastMathFlags(Pow->getFastMathFlags());
1746   // Evaluate special cases related to the base.
1747 
1748   // pow(1.0, x) -> 1.0
1749   if (match(Base, m_FPOne()))
1750     return Base;
1751 
1752   if (Value *Exp = replacePowWithExp(Pow, B))
1753     return Exp;
1754 
1755   // Evaluate special cases related to the exponent.
1756 
1757   // pow(x, -1.0) -> 1.0 / x
1758   if (match(Expo, m_SpecificFP(-1.0)))
1759     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1760 
1761   // pow(x, +/-0.0) -> 1.0
1762   if (match(Expo, m_AnyZeroFP()))
1763     return ConstantFP::get(Ty, 1.0);
1764 
1765   // pow(x, 1.0) -> x
1766   if (match(Expo, m_FPOne()))
1767     return Base;
1768 
1769   // pow(x, 2.0) -> x * x
1770   if (match(Expo, m_SpecificFP(2.0)))
1771     return B.CreateFMul(Base, Base, "square");
1772 
1773   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1774     return Sqrt;
1775 
1776   // pow(x, n) -> x * x * x * ...
1777   const APFloat *ExpoF;
1778   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1779       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1780     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1781     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1782     // additional fmul.
1783     // TODO: This whole transformation should be backend specific (e.g. some
1784     //       backends might prefer libcalls or the limit for the exponent might
1785     //       be different) and it should also consider optimizing for size.
1786     APFloat LimF(ExpoF->getSemantics(), 33),
1787             ExpoA(abs(*ExpoF));
1788     if (ExpoA < LimF) {
1789       // This transformation applies to integer or integer+0.5 exponents only.
1790       // For integer+0.5, we create a sqrt(Base) call.
1791       Value *Sqrt = nullptr;
1792       if (!ExpoA.isInteger()) {
1793         APFloat Expo2 = ExpoA;
1794         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1795         // is no floating point exception and the result is an integer, then
1796         // ExpoA == integer + 0.5
1797         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1798           return nullptr;
1799 
1800         if (!Expo2.isInteger())
1801           return nullptr;
1802 
1803         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1804                            Pow->doesNotAccessMemory(), M, B, TLI);
1805         if (!Sqrt)
1806           return nullptr;
1807       }
1808 
1809       // We will memoize intermediate products of the Addition Chain.
1810       Value *InnerChain[33] = {nullptr};
1811       InnerChain[1] = Base;
1812       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1813 
1814       // We cannot readily convert a non-double type (like float) to a double.
1815       // So we first convert it to something which could be converted to double.
1816       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1817       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1818 
1819       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1820       if (Sqrt)
1821         FMul = B.CreateFMul(FMul, Sqrt);
1822 
1823       // If the exponent is negative, then get the reciprocal.
1824       if (ExpoF->isNegative())
1825         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1826 
1827       return FMul;
1828     }
1829 
1830     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1831     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1832     if (ExpoF->isInteger() &&
1833         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1834             APFloat::opOK) {
1835       return copyFlags(
1836           *Pow,
1837           createPowWithIntegerExponent(
1838               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1839               M, B));
1840     }
1841   }
1842 
1843   // powf(x, itofp(y)) -> powi(x, y)
1844   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1845     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1846       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1847   }
1848 
1849   // Shrink pow() to powf() if the arguments are single precision,
1850   // unless the result is expected to be double precision.
1851   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1852       hasFloatVersion(Name)) {
1853     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1854       return Shrunk;
1855   }
1856 
1857   return nullptr;
1858 }
1859 
1860 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1861   Function *Callee = CI->getCalledFunction();
1862   AttributeList Attrs; // Attributes are only meaningful on the original call
1863   StringRef Name = Callee->getName();
1864   Value *Ret = nullptr;
1865   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1866       hasFloatVersion(Name))
1867     Ret = optimizeUnaryDoubleFP(CI, B, true);
1868 
1869   Type *Ty = CI->getType();
1870   Value *Op = CI->getArgOperand(0);
1871 
1872   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1873   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1874   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1875       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1876     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1877       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1878                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1879                                    B, Attrs);
1880   }
1881 
1882   return Ret;
1883 }
1884 
1885 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1886   // If we can shrink the call to a float function rather than a double
1887   // function, do that first.
1888   Function *Callee = CI->getCalledFunction();
1889   StringRef Name = Callee->getName();
1890   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1891     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1892       return Ret;
1893 
1894   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1895   // the intrinsics for improved optimization (for example, vectorization).
1896   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1897   // From the C standard draft WG14/N1256:
1898   // "Ideally, fmax would be sensitive to the sign of zero, for example
1899   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1900   // might be impractical."
1901   IRBuilderBase::FastMathFlagGuard Guard(B);
1902   FastMathFlags FMF = CI->getFastMathFlags();
1903   FMF.setNoSignedZeros();
1904   B.setFastMathFlags(FMF);
1905 
1906   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1907                                                            : Intrinsic::maxnum;
1908   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1909   return copyFlags(
1910       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
1911 }
1912 
1913 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1914   Function *LogFn = Log->getCalledFunction();
1915   AttributeList Attrs; // Attributes are only meaningful on the original call
1916   StringRef LogNm = LogFn->getName();
1917   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1918   Module *Mod = Log->getModule();
1919   Type *Ty = Log->getType();
1920   Value *Ret = nullptr;
1921 
1922   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1923     Ret = optimizeUnaryDoubleFP(Log, B, true);
1924 
1925   // The earlier call must also be 'fast' in order to do these transforms.
1926   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1927   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1928     return Ret;
1929 
1930   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1931 
1932   // This is only applicable to log(), log2(), log10().
1933   if (TLI->getLibFunc(LogNm, LogLb))
1934     switch (LogLb) {
1935     case LibFunc_logf:
1936       LogID = Intrinsic::log;
1937       ExpLb = LibFunc_expf;
1938       Exp2Lb = LibFunc_exp2f;
1939       Exp10Lb = LibFunc_exp10f;
1940       PowLb = LibFunc_powf;
1941       break;
1942     case LibFunc_log:
1943       LogID = Intrinsic::log;
1944       ExpLb = LibFunc_exp;
1945       Exp2Lb = LibFunc_exp2;
1946       Exp10Lb = LibFunc_exp10;
1947       PowLb = LibFunc_pow;
1948       break;
1949     case LibFunc_logl:
1950       LogID = Intrinsic::log;
1951       ExpLb = LibFunc_expl;
1952       Exp2Lb = LibFunc_exp2l;
1953       Exp10Lb = LibFunc_exp10l;
1954       PowLb = LibFunc_powl;
1955       break;
1956     case LibFunc_log2f:
1957       LogID = Intrinsic::log2;
1958       ExpLb = LibFunc_expf;
1959       Exp2Lb = LibFunc_exp2f;
1960       Exp10Lb = LibFunc_exp10f;
1961       PowLb = LibFunc_powf;
1962       break;
1963     case LibFunc_log2:
1964       LogID = Intrinsic::log2;
1965       ExpLb = LibFunc_exp;
1966       Exp2Lb = LibFunc_exp2;
1967       Exp10Lb = LibFunc_exp10;
1968       PowLb = LibFunc_pow;
1969       break;
1970     case LibFunc_log2l:
1971       LogID = Intrinsic::log2;
1972       ExpLb = LibFunc_expl;
1973       Exp2Lb = LibFunc_exp2l;
1974       Exp10Lb = LibFunc_exp10l;
1975       PowLb = LibFunc_powl;
1976       break;
1977     case LibFunc_log10f:
1978       LogID = Intrinsic::log10;
1979       ExpLb = LibFunc_expf;
1980       Exp2Lb = LibFunc_exp2f;
1981       Exp10Lb = LibFunc_exp10f;
1982       PowLb = LibFunc_powf;
1983       break;
1984     case LibFunc_log10:
1985       LogID = Intrinsic::log10;
1986       ExpLb = LibFunc_exp;
1987       Exp2Lb = LibFunc_exp2;
1988       Exp10Lb = LibFunc_exp10;
1989       PowLb = LibFunc_pow;
1990       break;
1991     case LibFunc_log10l:
1992       LogID = Intrinsic::log10;
1993       ExpLb = LibFunc_expl;
1994       Exp2Lb = LibFunc_exp2l;
1995       Exp10Lb = LibFunc_exp10l;
1996       PowLb = LibFunc_powl;
1997       break;
1998     default:
1999       return Ret;
2000     }
2001   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2002            LogID == Intrinsic::log10) {
2003     if (Ty->getScalarType()->isFloatTy()) {
2004       ExpLb = LibFunc_expf;
2005       Exp2Lb = LibFunc_exp2f;
2006       Exp10Lb = LibFunc_exp10f;
2007       PowLb = LibFunc_powf;
2008     } else if (Ty->getScalarType()->isDoubleTy()) {
2009       ExpLb = LibFunc_exp;
2010       Exp2Lb = LibFunc_exp2;
2011       Exp10Lb = LibFunc_exp10;
2012       PowLb = LibFunc_pow;
2013     } else
2014       return Ret;
2015   } else
2016     return Ret;
2017 
2018   IRBuilderBase::FastMathFlagGuard Guard(B);
2019   B.setFastMathFlags(FastMathFlags::getFast());
2020 
2021   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2022   LibFunc ArgLb = NotLibFunc;
2023   TLI->getLibFunc(*Arg, ArgLb);
2024 
2025   // log(pow(x,y)) -> y*log(x)
2026   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2027     Value *LogX =
2028         Log->doesNotAccessMemory()
2029             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2030                            Arg->getOperand(0), "log")
2031             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
2032     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2033     // Since pow() may have side effects, e.g. errno,
2034     // dead code elimination may not be trusted to remove it.
2035     substituteInParent(Arg, MulY);
2036     return MulY;
2037   }
2038 
2039   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2040   // TODO: There is no exp10() intrinsic yet.
2041   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2042            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2043     Constant *Eul;
2044     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2045       // FIXME: Add more precise value of e for long double.
2046       Eul = ConstantFP::get(Log->getType(), numbers::e);
2047     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2048       Eul = ConstantFP::get(Log->getType(), 2.0);
2049     else
2050       Eul = ConstantFP::get(Log->getType(), 10.0);
2051     Value *LogE = Log->doesNotAccessMemory()
2052                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2053                                      Eul, "log")
2054                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
2055     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2056     // Since exp() may have side effects, e.g. errno,
2057     // dead code elimination may not be trusted to remove it.
2058     substituteInParent(Arg, MulY);
2059     return MulY;
2060   }
2061 
2062   return Ret;
2063 }
2064 
2065 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2066   Function *Callee = CI->getCalledFunction();
2067   Value *Ret = nullptr;
2068   // TODO: Once we have a way (other than checking for the existince of the
2069   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2070   // condition below.
2071   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2072                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2073     Ret = optimizeUnaryDoubleFP(CI, B, true);
2074 
2075   if (!CI->isFast())
2076     return Ret;
2077 
2078   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2079   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2080     return Ret;
2081 
2082   // We're looking for a repeated factor in a multiplication tree,
2083   // so we can do this fold: sqrt(x * x) -> fabs(x);
2084   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2085   Value *Op0 = I->getOperand(0);
2086   Value *Op1 = I->getOperand(1);
2087   Value *RepeatOp = nullptr;
2088   Value *OtherOp = nullptr;
2089   if (Op0 == Op1) {
2090     // Simple match: the operands of the multiply are identical.
2091     RepeatOp = Op0;
2092   } else {
2093     // Look for a more complicated pattern: one of the operands is itself
2094     // a multiply, so search for a common factor in that multiply.
2095     // Note: We don't bother looking any deeper than this first level or for
2096     // variations of this pattern because instcombine's visitFMUL and/or the
2097     // reassociation pass should give us this form.
2098     Value *OtherMul0, *OtherMul1;
2099     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2100       // Pattern: sqrt((x * y) * z)
2101       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2102         // Matched: sqrt((x * x) * z)
2103         RepeatOp = OtherMul0;
2104         OtherOp = Op1;
2105       }
2106     }
2107   }
2108   if (!RepeatOp)
2109     return Ret;
2110 
2111   // Fast math flags for any created instructions should match the sqrt
2112   // and multiply.
2113   IRBuilderBase::FastMathFlagGuard Guard(B);
2114   B.setFastMathFlags(I->getFastMathFlags());
2115 
2116   // If we found a repeated factor, hoist it out of the square root and
2117   // replace it with the fabs of that factor.
2118   Module *M = Callee->getParent();
2119   Type *ArgType = I->getType();
2120   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2121   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2122   if (OtherOp) {
2123     // If we found a non-repeated factor, we still need to get its square
2124     // root. We then multiply that by the value that was simplified out
2125     // of the square root calculation.
2126     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2127     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2128     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2129   }
2130   return copyFlags(*CI, FabsCall);
2131 }
2132 
2133 // TODO: Generalize to handle any trig function and its inverse.
2134 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2135   Function *Callee = CI->getCalledFunction();
2136   Value *Ret = nullptr;
2137   StringRef Name = Callee->getName();
2138   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2139     Ret = optimizeUnaryDoubleFP(CI, B, true);
2140 
2141   Value *Op1 = CI->getArgOperand(0);
2142   auto *OpC = dyn_cast<CallInst>(Op1);
2143   if (!OpC)
2144     return Ret;
2145 
2146   // Both calls must be 'fast' in order to remove them.
2147   if (!CI->isFast() || !OpC->isFast())
2148     return Ret;
2149 
2150   // tan(atan(x)) -> x
2151   // tanf(atanf(x)) -> x
2152   // tanl(atanl(x)) -> x
2153   LibFunc Func;
2154   Function *F = OpC->getCalledFunction();
2155   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2156       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2157        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2158        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2159     Ret = OpC->getArgOperand(0);
2160   return Ret;
2161 }
2162 
2163 static bool isTrigLibCall(CallInst *CI) {
2164   // We can only hope to do anything useful if we can ignore things like errno
2165   // and floating-point exceptions.
2166   // We already checked the prototype.
2167   return CI->hasFnAttr(Attribute::NoUnwind) &&
2168          CI->hasFnAttr(Attribute::ReadNone);
2169 }
2170 
2171 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2172                              bool UseFloat, Value *&Sin, Value *&Cos,
2173                              Value *&SinCos) {
2174   Type *ArgTy = Arg->getType();
2175   Type *ResTy;
2176   StringRef Name;
2177 
2178   Triple T(OrigCallee->getParent()->getTargetTriple());
2179   if (UseFloat) {
2180     Name = "__sincospif_stret";
2181 
2182     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2183     // x86_64 can't use {float, float} since that would be returned in both
2184     // xmm0 and xmm1, which isn't what a real struct would do.
2185     ResTy = T.getArch() == Triple::x86_64
2186                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2187                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2188   } else {
2189     Name = "__sincospi_stret";
2190     ResTy = StructType::get(ArgTy, ArgTy);
2191   }
2192 
2193   Module *M = OrigCallee->getParent();
2194   FunctionCallee Callee =
2195       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2196 
2197   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2198     // If the argument is an instruction, it must dominate all uses so put our
2199     // sincos call there.
2200     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2201   } else {
2202     // Otherwise (e.g. for a constant) the beginning of the function is as
2203     // good a place as any.
2204     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2205     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2206   }
2207 
2208   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2209 
2210   if (SinCos->getType()->isStructTy()) {
2211     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2212     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2213   } else {
2214     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2215                                  "sinpi");
2216     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2217                                  "cospi");
2218   }
2219 }
2220 
2221 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2222   // Make sure the prototype is as expected, otherwise the rest of the
2223   // function is probably invalid and likely to abort.
2224   if (!isTrigLibCall(CI))
2225     return nullptr;
2226 
2227   Value *Arg = CI->getArgOperand(0);
2228   SmallVector<CallInst *, 1> SinCalls;
2229   SmallVector<CallInst *, 1> CosCalls;
2230   SmallVector<CallInst *, 1> SinCosCalls;
2231 
2232   bool IsFloat = Arg->getType()->isFloatTy();
2233 
2234   // Look for all compatible sinpi, cospi and sincospi calls with the same
2235   // argument. If there are enough (in some sense) we can make the
2236   // substitution.
2237   Function *F = CI->getFunction();
2238   for (User *U : Arg->users())
2239     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2240 
2241   // It's only worthwhile if both sinpi and cospi are actually used.
2242   if (SinCalls.empty() || CosCalls.empty())
2243     return nullptr;
2244 
2245   Value *Sin, *Cos, *SinCos;
2246   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2247 
2248   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2249                                  Value *Res) {
2250     for (CallInst *C : Calls)
2251       replaceAllUsesWith(C, Res);
2252   };
2253 
2254   replaceTrigInsts(SinCalls, Sin);
2255   replaceTrigInsts(CosCalls, Cos);
2256   replaceTrigInsts(SinCosCalls, SinCos);
2257 
2258   return nullptr;
2259 }
2260 
2261 void LibCallSimplifier::classifyArgUse(
2262     Value *Val, Function *F, bool IsFloat,
2263     SmallVectorImpl<CallInst *> &SinCalls,
2264     SmallVectorImpl<CallInst *> &CosCalls,
2265     SmallVectorImpl<CallInst *> &SinCosCalls) {
2266   CallInst *CI = dyn_cast<CallInst>(Val);
2267 
2268   if (!CI || CI->use_empty())
2269     return;
2270 
2271   // Don't consider calls in other functions.
2272   if (CI->getFunction() != F)
2273     return;
2274 
2275   Function *Callee = CI->getCalledFunction();
2276   LibFunc Func;
2277   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2278       !isTrigLibCall(CI))
2279     return;
2280 
2281   if (IsFloat) {
2282     if (Func == LibFunc_sinpif)
2283       SinCalls.push_back(CI);
2284     else if (Func == LibFunc_cospif)
2285       CosCalls.push_back(CI);
2286     else if (Func == LibFunc_sincospif_stret)
2287       SinCosCalls.push_back(CI);
2288   } else {
2289     if (Func == LibFunc_sinpi)
2290       SinCalls.push_back(CI);
2291     else if (Func == LibFunc_cospi)
2292       CosCalls.push_back(CI);
2293     else if (Func == LibFunc_sincospi_stret)
2294       SinCosCalls.push_back(CI);
2295   }
2296 }
2297 
2298 //===----------------------------------------------------------------------===//
2299 // Integer Library Call Optimizations
2300 //===----------------------------------------------------------------------===//
2301 
2302 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2303   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2304   Value *Op = CI->getArgOperand(0);
2305   Type *ArgType = Op->getType();
2306   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2307                                           Intrinsic::cttz, ArgType);
2308   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2309   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2310   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2311 
2312   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2313   return B.CreateSelect(Cond, V, B.getInt32(0));
2314 }
2315 
2316 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2317   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2318   Value *Op = CI->getArgOperand(0);
2319   Type *ArgType = Op->getType();
2320   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2321                                           Intrinsic::ctlz, ArgType);
2322   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2323   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2324                   V);
2325   return B.CreateIntCast(V, CI->getType(), false);
2326 }
2327 
2328 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2329   // abs(x) -> x <s 0 ? -x : x
2330   // The negation has 'nsw' because abs of INT_MIN is undefined.
2331   Value *X = CI->getArgOperand(0);
2332   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2333   Value *NegX = B.CreateNSWNeg(X, "neg");
2334   return B.CreateSelect(IsNeg, NegX, X);
2335 }
2336 
2337 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2338   // isdigit(c) -> (c-'0') <u 10
2339   Value *Op = CI->getArgOperand(0);
2340   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2341   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2342   return B.CreateZExt(Op, CI->getType());
2343 }
2344 
2345 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2346   // isascii(c) -> c <u 128
2347   Value *Op = CI->getArgOperand(0);
2348   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2349   return B.CreateZExt(Op, CI->getType());
2350 }
2351 
2352 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2353   // toascii(c) -> c & 0x7f
2354   return B.CreateAnd(CI->getArgOperand(0),
2355                      ConstantInt::get(CI->getType(), 0x7F));
2356 }
2357 
2358 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2359   StringRef Str;
2360   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2361     return nullptr;
2362 
2363   return convertStrToNumber(CI, Str, 10);
2364 }
2365 
2366 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2367   StringRef Str;
2368   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2369     return nullptr;
2370 
2371   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2372     return nullptr;
2373 
2374   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2375     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2376   }
2377 
2378   return nullptr;
2379 }
2380 
2381 //===----------------------------------------------------------------------===//
2382 // Formatting and IO Library Call Optimizations
2383 //===----------------------------------------------------------------------===//
2384 
2385 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2386 
2387 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2388                                                  int StreamArg) {
2389   Function *Callee = CI->getCalledFunction();
2390   // Error reporting calls should be cold, mark them as such.
2391   // This applies even to non-builtin calls: it is only a hint and applies to
2392   // functions that the frontend might not understand as builtins.
2393 
2394   // This heuristic was suggested in:
2395   // Improving Static Branch Prediction in a Compiler
2396   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2397   // Proceedings of PACT'98, Oct. 1998, IEEE
2398   if (!CI->hasFnAttr(Attribute::Cold) &&
2399       isReportingError(Callee, CI, StreamArg)) {
2400     CI->addFnAttr(Attribute::Cold);
2401   }
2402 
2403   return nullptr;
2404 }
2405 
2406 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2407   if (!Callee || !Callee->isDeclaration())
2408     return false;
2409 
2410   if (StreamArg < 0)
2411     return true;
2412 
2413   // These functions might be considered cold, but only if their stream
2414   // argument is stderr.
2415 
2416   if (StreamArg >= (int)CI->arg_size())
2417     return false;
2418   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2419   if (!LI)
2420     return false;
2421   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2422   if (!GV || !GV->isDeclaration())
2423     return false;
2424   return GV->getName() == "stderr";
2425 }
2426 
2427 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2428   // Check for a fixed format string.
2429   StringRef FormatStr;
2430   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2431     return nullptr;
2432 
2433   // Empty format string -> noop.
2434   if (FormatStr.empty()) // Tolerate printf's declared void.
2435     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2436 
2437   // Do not do any of the following transformations if the printf return value
2438   // is used, in general the printf return value is not compatible with either
2439   // putchar() or puts().
2440   if (!CI->use_empty())
2441     return nullptr;
2442 
2443   // printf("x") -> putchar('x'), even for "%" and "%%".
2444   if (FormatStr.size() == 1 || FormatStr == "%%")
2445     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2446 
2447   // Try to remove call or emit putchar/puts.
2448   if (FormatStr == "%s" && CI->arg_size() > 1) {
2449     StringRef OperandStr;
2450     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2451       return nullptr;
2452     // printf("%s", "") --> NOP
2453     if (OperandStr.empty())
2454       return (Value *)CI;
2455     // printf("%s", "a") --> putchar('a')
2456     if (OperandStr.size() == 1)
2457       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2458     // printf("%s", str"\n") --> puts(str)
2459     if (OperandStr.back() == '\n') {
2460       OperandStr = OperandStr.drop_back();
2461       Value *GV = B.CreateGlobalString(OperandStr, "str");
2462       return copyFlags(*CI, emitPutS(GV, B, TLI));
2463     }
2464     return nullptr;
2465   }
2466 
2467   // printf("foo\n") --> puts("foo")
2468   if (FormatStr.back() == '\n' &&
2469       !FormatStr.contains('%')) { // No format characters.
2470     // Create a string literal with no \n on it.  We expect the constant merge
2471     // pass to be run after this pass, to merge duplicate strings.
2472     FormatStr = FormatStr.drop_back();
2473     Value *GV = B.CreateGlobalString(FormatStr, "str");
2474     return copyFlags(*CI, emitPutS(GV, B, TLI));
2475   }
2476 
2477   // Optimize specific format strings.
2478   // printf("%c", chr) --> putchar(chr)
2479   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2480       CI->getArgOperand(1)->getType()->isIntegerTy())
2481     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2482 
2483   // printf("%s\n", str) --> puts(str)
2484   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2485       CI->getArgOperand(1)->getType()->isPointerTy())
2486     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2487   return nullptr;
2488 }
2489 
2490 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2491 
2492   Function *Callee = CI->getCalledFunction();
2493   FunctionType *FT = Callee->getFunctionType();
2494   if (Value *V = optimizePrintFString(CI, B)) {
2495     return V;
2496   }
2497 
2498   // printf(format, ...) -> iprintf(format, ...) if no floating point
2499   // arguments.
2500   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2501     Module *M = B.GetInsertBlock()->getParent()->getParent();
2502     FunctionCallee IPrintFFn =
2503         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2504     CallInst *New = cast<CallInst>(CI->clone());
2505     New->setCalledFunction(IPrintFFn);
2506     B.Insert(New);
2507     return New;
2508   }
2509 
2510   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2511   // arguments.
2512   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2513     Module *M = B.GetInsertBlock()->getParent()->getParent();
2514     auto SmallPrintFFn =
2515         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2516                                FT, Callee->getAttributes());
2517     CallInst *New = cast<CallInst>(CI->clone());
2518     New->setCalledFunction(SmallPrintFFn);
2519     B.Insert(New);
2520     return New;
2521   }
2522 
2523   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2524   return nullptr;
2525 }
2526 
2527 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2528                                                 IRBuilderBase &B) {
2529   // Check for a fixed format string.
2530   StringRef FormatStr;
2531   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2532     return nullptr;
2533 
2534   // If we just have a format string (nothing else crazy) transform it.
2535   Value *Dest = CI->getArgOperand(0);
2536   if (CI->arg_size() == 2) {
2537     // Make sure there's no % in the constant array.  We could try to handle
2538     // %% -> % in the future if we cared.
2539     if (FormatStr.contains('%'))
2540       return nullptr; // we found a format specifier, bail out.
2541 
2542     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2543     B.CreateMemCpy(
2544         Dest, Align(1), CI->getArgOperand(1), Align(1),
2545         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2546                          FormatStr.size() + 1)); // Copy the null byte.
2547     return ConstantInt::get(CI->getType(), FormatStr.size());
2548   }
2549 
2550   // The remaining optimizations require the format string to be "%s" or "%c"
2551   // and have an extra operand.
2552   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2553     return nullptr;
2554 
2555   // Decode the second character of the format string.
2556   if (FormatStr[1] == 'c') {
2557     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2558     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2559       return nullptr;
2560     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2561     Value *Ptr = castToCStr(Dest, B);
2562     B.CreateStore(V, Ptr);
2563     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2564     B.CreateStore(B.getInt8(0), Ptr);
2565 
2566     return ConstantInt::get(CI->getType(), 1);
2567   }
2568 
2569   if (FormatStr[1] == 's') {
2570     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2571     // strlen(str)+1)
2572     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2573       return nullptr;
2574 
2575     if (CI->use_empty())
2576       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2577       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2578 
2579     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2580     if (SrcLen) {
2581       B.CreateMemCpy(
2582           Dest, Align(1), CI->getArgOperand(2), Align(1),
2583           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2584       // Returns total number of characters written without null-character.
2585       return ConstantInt::get(CI->getType(), SrcLen - 1);
2586     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2587       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2588       // Handle mismatched pointer types (goes away with typeless pointers?).
2589       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2590       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2591       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2592       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2593     }
2594 
2595     bool OptForSize = CI->getFunction()->hasOptSize() ||
2596                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2597                                                   PGSOQueryType::IRPass);
2598     if (OptForSize)
2599       return nullptr;
2600 
2601     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2602     if (!Len)
2603       return nullptr;
2604     Value *IncLen =
2605         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2606     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2607 
2608     // The sprintf result is the unincremented number of bytes in the string.
2609     return B.CreateIntCast(Len, CI->getType(), false);
2610   }
2611   return nullptr;
2612 }
2613 
2614 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2615   Function *Callee = CI->getCalledFunction();
2616   FunctionType *FT = Callee->getFunctionType();
2617   if (Value *V = optimizeSPrintFString(CI, B)) {
2618     return V;
2619   }
2620 
2621   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2622   // point arguments.
2623   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2624     Module *M = B.GetInsertBlock()->getParent()->getParent();
2625     FunctionCallee SIPrintFFn =
2626         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2627     CallInst *New = cast<CallInst>(CI->clone());
2628     New->setCalledFunction(SIPrintFFn);
2629     B.Insert(New);
2630     return New;
2631   }
2632 
2633   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2634   // floating point arguments.
2635   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2636     Module *M = B.GetInsertBlock()->getParent()->getParent();
2637     auto SmallSPrintFFn =
2638         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2639                                FT, Callee->getAttributes());
2640     CallInst *New = cast<CallInst>(CI->clone());
2641     New->setCalledFunction(SmallSPrintFFn);
2642     B.Insert(New);
2643     return New;
2644   }
2645 
2646   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2647   return nullptr;
2648 }
2649 
2650 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2651                                                  IRBuilderBase &B) {
2652   // Check for size
2653   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2654   if (!Size)
2655     return nullptr;
2656 
2657   uint64_t N = Size->getZExtValue();
2658   // Check for a fixed format string.
2659   StringRef FormatStr;
2660   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2661     return nullptr;
2662 
2663   // If we just have a format string (nothing else crazy) transform it.
2664   if (CI->arg_size() == 3) {
2665     // Make sure there's no % in the constant array.  We could try to handle
2666     // %% -> % in the future if we cared.
2667     if (FormatStr.contains('%'))
2668       return nullptr; // we found a format specifier, bail out.
2669 
2670     if (N == 0)
2671       return ConstantInt::get(CI->getType(), FormatStr.size());
2672     else if (N < FormatStr.size() + 1)
2673       return nullptr;
2674 
2675     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2676     // strlen(fmt)+1)
2677     copyFlags(
2678         *CI,
2679         B.CreateMemCpy(
2680             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2681             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2682                              FormatStr.size() + 1))); // Copy the null byte.
2683     return ConstantInt::get(CI->getType(), FormatStr.size());
2684   }
2685 
2686   // The remaining optimizations require the format string to be "%s" or "%c"
2687   // and have an extra operand.
2688   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2689 
2690     // Decode the second character of the format string.
2691     if (FormatStr[1] == 'c') {
2692       if (N == 0)
2693         return ConstantInt::get(CI->getType(), 1);
2694       else if (N == 1)
2695         return nullptr;
2696 
2697       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2698       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2699         return nullptr;
2700       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2701       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2702       B.CreateStore(V, Ptr);
2703       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2704       B.CreateStore(B.getInt8(0), Ptr);
2705 
2706       return ConstantInt::get(CI->getType(), 1);
2707     }
2708 
2709     if (FormatStr[1] == 's') {
2710       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2711       StringRef Str;
2712       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2713         return nullptr;
2714 
2715       if (N == 0)
2716         return ConstantInt::get(CI->getType(), Str.size());
2717       else if (N < Str.size() + 1)
2718         return nullptr;
2719 
2720       copyFlags(
2721           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2722                               CI->getArgOperand(3), Align(1),
2723                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2724 
2725       // The snprintf result is the unincremented number of bytes in the string.
2726       return ConstantInt::get(CI->getType(), Str.size());
2727     }
2728   }
2729   return nullptr;
2730 }
2731 
2732 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2733   if (Value *V = optimizeSnPrintFString(CI, B)) {
2734     return V;
2735   }
2736 
2737   if (isKnownNonZero(CI->getOperand(1), DL))
2738     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2739   return nullptr;
2740 }
2741 
2742 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2743                                                 IRBuilderBase &B) {
2744   optimizeErrorReporting(CI, B, 0);
2745 
2746   // All the optimizations depend on the format string.
2747   StringRef FormatStr;
2748   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2749     return nullptr;
2750 
2751   // Do not do any of the following transformations if the fprintf return
2752   // value is used, in general the fprintf return value is not compatible
2753   // with fwrite(), fputc() or fputs().
2754   if (!CI->use_empty())
2755     return nullptr;
2756 
2757   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2758   if (CI->arg_size() == 2) {
2759     // Could handle %% -> % if we cared.
2760     if (FormatStr.contains('%'))
2761       return nullptr; // We found a format specifier.
2762 
2763     return copyFlags(
2764         *CI, emitFWrite(CI->getArgOperand(1),
2765                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2766                                          FormatStr.size()),
2767                         CI->getArgOperand(0), B, DL, TLI));
2768   }
2769 
2770   // The remaining optimizations require the format string to be "%s" or "%c"
2771   // and have an extra operand.
2772   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2773     return nullptr;
2774 
2775   // Decode the second character of the format string.
2776   if (FormatStr[1] == 'c') {
2777     // fprintf(F, "%c", chr) --> fputc(chr, F)
2778     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2779       return nullptr;
2780     return copyFlags(
2781         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2782   }
2783 
2784   if (FormatStr[1] == 's') {
2785     // fprintf(F, "%s", str) --> fputs(str, F)
2786     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2787       return nullptr;
2788     return copyFlags(
2789         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2790   }
2791   return nullptr;
2792 }
2793 
2794 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2795   Function *Callee = CI->getCalledFunction();
2796   FunctionType *FT = Callee->getFunctionType();
2797   if (Value *V = optimizeFPrintFString(CI, B)) {
2798     return V;
2799   }
2800 
2801   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2802   // floating point arguments.
2803   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2804     Module *M = B.GetInsertBlock()->getParent()->getParent();
2805     FunctionCallee FIPrintFFn =
2806         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2807     CallInst *New = cast<CallInst>(CI->clone());
2808     New->setCalledFunction(FIPrintFFn);
2809     B.Insert(New);
2810     return New;
2811   }
2812 
2813   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2814   // 128-bit floating point arguments.
2815   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2816     Module *M = B.GetInsertBlock()->getParent()->getParent();
2817     auto SmallFPrintFFn =
2818         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2819                                FT, Callee->getAttributes());
2820     CallInst *New = cast<CallInst>(CI->clone());
2821     New->setCalledFunction(SmallFPrintFFn);
2822     B.Insert(New);
2823     return New;
2824   }
2825 
2826   return nullptr;
2827 }
2828 
2829 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2830   optimizeErrorReporting(CI, B, 3);
2831 
2832   // Get the element size and count.
2833   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2834   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2835   if (SizeC && CountC) {
2836     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2837 
2838     // If this is writing zero records, remove the call (it's a noop).
2839     if (Bytes == 0)
2840       return ConstantInt::get(CI->getType(), 0);
2841 
2842     // If this is writing one byte, turn it into fputc.
2843     // This optimisation is only valid, if the return value is unused.
2844     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2845       Value *Char = B.CreateLoad(B.getInt8Ty(),
2846                                  castToCStr(CI->getArgOperand(0), B), "char");
2847       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2848       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2849     }
2850   }
2851 
2852   return nullptr;
2853 }
2854 
2855 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2856   optimizeErrorReporting(CI, B, 1);
2857 
2858   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2859   // requires more arguments and thus extra MOVs are required.
2860   bool OptForSize = CI->getFunction()->hasOptSize() ||
2861                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2862                                                 PGSOQueryType::IRPass);
2863   if (OptForSize)
2864     return nullptr;
2865 
2866   // We can't optimize if return value is used.
2867   if (!CI->use_empty())
2868     return nullptr;
2869 
2870   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2871   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2872   if (!Len)
2873     return nullptr;
2874 
2875   // Known to have no uses (see above).
2876   return copyFlags(
2877       *CI,
2878       emitFWrite(CI->getArgOperand(0),
2879                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2880                  CI->getArgOperand(1), B, DL, TLI));
2881 }
2882 
2883 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2884   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2885   if (!CI->use_empty())
2886     return nullptr;
2887 
2888   // Check for a constant string.
2889   // puts("") -> putchar('\n')
2890   StringRef Str;
2891   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2892     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
2893 
2894   return nullptr;
2895 }
2896 
2897 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2898   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2899   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
2900                                         CI->getArgOperand(0), Align(1),
2901                                         CI->getArgOperand(2)));
2902 }
2903 
2904 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2905   LibFunc Func;
2906   SmallString<20> FloatFuncName = FuncName;
2907   FloatFuncName += 'f';
2908   if (TLI->getLibFunc(FloatFuncName, Func))
2909     return TLI->has(Func);
2910   return false;
2911 }
2912 
2913 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2914                                                       IRBuilderBase &Builder) {
2915   LibFunc Func;
2916   Function *Callee = CI->getCalledFunction();
2917   // Check for string/memory library functions.
2918   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2919     // Make sure we never change the calling convention.
2920     assert(
2921         (ignoreCallingConv(Func) ||
2922          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2923         "Optimizing string/memory libcall would change the calling convention");
2924     switch (Func) {
2925     case LibFunc_strcat:
2926       return optimizeStrCat(CI, Builder);
2927     case LibFunc_strncat:
2928       return optimizeStrNCat(CI, Builder);
2929     case LibFunc_strchr:
2930       return optimizeStrChr(CI, Builder);
2931     case LibFunc_strrchr:
2932       return optimizeStrRChr(CI, Builder);
2933     case LibFunc_strcmp:
2934       return optimizeStrCmp(CI, Builder);
2935     case LibFunc_strncmp:
2936       return optimizeStrNCmp(CI, Builder);
2937     case LibFunc_strcpy:
2938       return optimizeStrCpy(CI, Builder);
2939     case LibFunc_stpcpy:
2940       return optimizeStpCpy(CI, Builder);
2941     case LibFunc_strncpy:
2942       return optimizeStrNCpy(CI, Builder);
2943     case LibFunc_strlen:
2944       return optimizeStrLen(CI, Builder);
2945     case LibFunc_strnlen:
2946       return optimizeStrNLen(CI, Builder);
2947     case LibFunc_strpbrk:
2948       return optimizeStrPBrk(CI, Builder);
2949     case LibFunc_strndup:
2950       return optimizeStrNDup(CI, Builder);
2951     case LibFunc_strtol:
2952     case LibFunc_strtod:
2953     case LibFunc_strtof:
2954     case LibFunc_strtoul:
2955     case LibFunc_strtoll:
2956     case LibFunc_strtold:
2957     case LibFunc_strtoull:
2958       return optimizeStrTo(CI, Builder);
2959     case LibFunc_strspn:
2960       return optimizeStrSpn(CI, Builder);
2961     case LibFunc_strcspn:
2962       return optimizeStrCSpn(CI, Builder);
2963     case LibFunc_strstr:
2964       return optimizeStrStr(CI, Builder);
2965     case LibFunc_memchr:
2966       return optimizeMemChr(CI, Builder);
2967     case LibFunc_memrchr:
2968       return optimizeMemRChr(CI, Builder);
2969     case LibFunc_bcmp:
2970       return optimizeBCmp(CI, Builder);
2971     case LibFunc_memcmp:
2972       return optimizeMemCmp(CI, Builder);
2973     case LibFunc_memcpy:
2974       return optimizeMemCpy(CI, Builder);
2975     case LibFunc_memccpy:
2976       return optimizeMemCCpy(CI, Builder);
2977     case LibFunc_mempcpy:
2978       return optimizeMemPCpy(CI, Builder);
2979     case LibFunc_memmove:
2980       return optimizeMemMove(CI, Builder);
2981     case LibFunc_memset:
2982       return optimizeMemSet(CI, Builder);
2983     case LibFunc_realloc:
2984       return optimizeRealloc(CI, Builder);
2985     case LibFunc_wcslen:
2986       return optimizeWcslen(CI, Builder);
2987     case LibFunc_bcopy:
2988       return optimizeBCopy(CI, Builder);
2989     default:
2990       break;
2991     }
2992   }
2993   return nullptr;
2994 }
2995 
2996 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2997                                                        LibFunc Func,
2998                                                        IRBuilderBase &Builder) {
2999   // Don't optimize calls that require strict floating point semantics.
3000   if (CI->isStrictFP())
3001     return nullptr;
3002 
3003   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3004     return V;
3005 
3006   switch (Func) {
3007   case LibFunc_sinpif:
3008   case LibFunc_sinpi:
3009   case LibFunc_cospif:
3010   case LibFunc_cospi:
3011     return optimizeSinCosPi(CI, Builder);
3012   case LibFunc_powf:
3013   case LibFunc_pow:
3014   case LibFunc_powl:
3015     return optimizePow(CI, Builder);
3016   case LibFunc_exp2l:
3017   case LibFunc_exp2:
3018   case LibFunc_exp2f:
3019     return optimizeExp2(CI, Builder);
3020   case LibFunc_fabsf:
3021   case LibFunc_fabs:
3022   case LibFunc_fabsl:
3023     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3024   case LibFunc_sqrtf:
3025   case LibFunc_sqrt:
3026   case LibFunc_sqrtl:
3027     return optimizeSqrt(CI, Builder);
3028   case LibFunc_logf:
3029   case LibFunc_log:
3030   case LibFunc_logl:
3031   case LibFunc_log10f:
3032   case LibFunc_log10:
3033   case LibFunc_log10l:
3034   case LibFunc_log1pf:
3035   case LibFunc_log1p:
3036   case LibFunc_log1pl:
3037   case LibFunc_log2f:
3038   case LibFunc_log2:
3039   case LibFunc_log2l:
3040   case LibFunc_logbf:
3041   case LibFunc_logb:
3042   case LibFunc_logbl:
3043     return optimizeLog(CI, Builder);
3044   case LibFunc_tan:
3045   case LibFunc_tanf:
3046   case LibFunc_tanl:
3047     return optimizeTan(CI, Builder);
3048   case LibFunc_ceil:
3049     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3050   case LibFunc_floor:
3051     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3052   case LibFunc_round:
3053     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3054   case LibFunc_roundeven:
3055     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3056   case LibFunc_nearbyint:
3057     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3058   case LibFunc_rint:
3059     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3060   case LibFunc_trunc:
3061     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3062   case LibFunc_acos:
3063   case LibFunc_acosh:
3064   case LibFunc_asin:
3065   case LibFunc_asinh:
3066   case LibFunc_atan:
3067   case LibFunc_atanh:
3068   case LibFunc_cbrt:
3069   case LibFunc_cosh:
3070   case LibFunc_exp:
3071   case LibFunc_exp10:
3072   case LibFunc_expm1:
3073   case LibFunc_cos:
3074   case LibFunc_sin:
3075   case LibFunc_sinh:
3076   case LibFunc_tanh:
3077     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3078       return optimizeUnaryDoubleFP(CI, Builder, true);
3079     return nullptr;
3080   case LibFunc_copysign:
3081     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3082       return optimizeBinaryDoubleFP(CI, Builder);
3083     return nullptr;
3084   case LibFunc_fminf:
3085   case LibFunc_fmin:
3086   case LibFunc_fminl:
3087   case LibFunc_fmaxf:
3088   case LibFunc_fmax:
3089   case LibFunc_fmaxl:
3090     return optimizeFMinFMax(CI, Builder);
3091   case LibFunc_cabs:
3092   case LibFunc_cabsf:
3093   case LibFunc_cabsl:
3094     return optimizeCAbs(CI, Builder);
3095   default:
3096     return nullptr;
3097   }
3098 }
3099 
3100 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3101   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3102 
3103   // TODO: Split out the code below that operates on FP calls so that
3104   //       we can all non-FP calls with the StrictFP attribute to be
3105   //       optimized.
3106   if (CI->isNoBuiltin())
3107     return nullptr;
3108 
3109   LibFunc Func;
3110   Function *Callee = CI->getCalledFunction();
3111   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3112 
3113   SmallVector<OperandBundleDef, 2> OpBundles;
3114   CI->getOperandBundlesAsDefs(OpBundles);
3115 
3116   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3117   Builder.setDefaultOperandBundles(OpBundles);
3118 
3119   // Command-line parameter overrides instruction attribute.
3120   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3121   // used by the intrinsic optimizations.
3122   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3123     UnsafeFPShrink = EnableUnsafeFPShrink;
3124   else if (isa<FPMathOperator>(CI) && CI->isFast())
3125     UnsafeFPShrink = true;
3126 
3127   // First, check for intrinsics.
3128   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3129     if (!IsCallingConvC)
3130       return nullptr;
3131     // The FP intrinsics have corresponding constrained versions so we don't
3132     // need to check for the StrictFP attribute here.
3133     switch (II->getIntrinsicID()) {
3134     case Intrinsic::pow:
3135       return optimizePow(CI, Builder);
3136     case Intrinsic::exp2:
3137       return optimizeExp2(CI, Builder);
3138     case Intrinsic::log:
3139     case Intrinsic::log2:
3140     case Intrinsic::log10:
3141       return optimizeLog(CI, Builder);
3142     case Intrinsic::sqrt:
3143       return optimizeSqrt(CI, Builder);
3144     case Intrinsic::memset:
3145       return optimizeMemSet(CI, Builder);
3146     case Intrinsic::memcpy:
3147       return optimizeMemCpy(CI, Builder);
3148     case Intrinsic::memmove:
3149       return optimizeMemMove(CI, Builder);
3150     default:
3151       return nullptr;
3152     }
3153   }
3154 
3155   // Also try to simplify calls to fortified library functions.
3156   if (Value *SimplifiedFortifiedCI =
3157           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3158     // Try to further simplify the result.
3159     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3160     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3161       // Ensure that SimplifiedCI's uses are complete, since some calls have
3162       // their uses analyzed.
3163       replaceAllUsesWith(CI, SimplifiedCI);
3164 
3165       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3166       // we might replace later on.
3167       IRBuilderBase::InsertPointGuard Guard(Builder);
3168       Builder.SetInsertPoint(SimplifiedCI);
3169       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3170         // If we were able to further simplify, remove the now redundant call.
3171         substituteInParent(SimplifiedCI, V);
3172         return V;
3173       }
3174     }
3175     return SimplifiedFortifiedCI;
3176   }
3177 
3178   // Then check for known library functions.
3179   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3180     // We never change the calling convention.
3181     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3182       return nullptr;
3183     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3184       return V;
3185     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3186       return V;
3187     switch (Func) {
3188     case LibFunc_ffs:
3189     case LibFunc_ffsl:
3190     case LibFunc_ffsll:
3191       return optimizeFFS(CI, Builder);
3192     case LibFunc_fls:
3193     case LibFunc_flsl:
3194     case LibFunc_flsll:
3195       return optimizeFls(CI, Builder);
3196     case LibFunc_abs:
3197     case LibFunc_labs:
3198     case LibFunc_llabs:
3199       return optimizeAbs(CI, Builder);
3200     case LibFunc_isdigit:
3201       return optimizeIsDigit(CI, Builder);
3202     case LibFunc_isascii:
3203       return optimizeIsAscii(CI, Builder);
3204     case LibFunc_toascii:
3205       return optimizeToAscii(CI, Builder);
3206     case LibFunc_atoi:
3207     case LibFunc_atol:
3208     case LibFunc_atoll:
3209       return optimizeAtoi(CI, Builder);
3210     case LibFunc_strtol:
3211     case LibFunc_strtoll:
3212       return optimizeStrtol(CI, Builder);
3213     case LibFunc_printf:
3214       return optimizePrintF(CI, Builder);
3215     case LibFunc_sprintf:
3216       return optimizeSPrintF(CI, Builder);
3217     case LibFunc_snprintf:
3218       return optimizeSnPrintF(CI, Builder);
3219     case LibFunc_fprintf:
3220       return optimizeFPrintF(CI, Builder);
3221     case LibFunc_fwrite:
3222       return optimizeFWrite(CI, Builder);
3223     case LibFunc_fputs:
3224       return optimizeFPuts(CI, Builder);
3225     case LibFunc_puts:
3226       return optimizePuts(CI, Builder);
3227     case LibFunc_perror:
3228       return optimizeErrorReporting(CI, Builder);
3229     case LibFunc_vfprintf:
3230     case LibFunc_fiprintf:
3231       return optimizeErrorReporting(CI, Builder, 0);
3232     default:
3233       return nullptr;
3234     }
3235   }
3236   return nullptr;
3237 }
3238 
3239 LibCallSimplifier::LibCallSimplifier(
3240     const DataLayout &DL, const TargetLibraryInfo *TLI,
3241     OptimizationRemarkEmitter &ORE,
3242     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3243     function_ref<void(Instruction *, Value *)> Replacer,
3244     function_ref<void(Instruction *)> Eraser)
3245     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3246       Replacer(Replacer), Eraser(Eraser) {}
3247 
3248 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3249   // Indirect through the replacer used in this instance.
3250   Replacer(I, With);
3251 }
3252 
3253 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3254   Eraser(I);
3255 }
3256 
3257 // TODO:
3258 //   Additional cases that we need to add to this file:
3259 //
3260 // cbrt:
3261 //   * cbrt(expN(X))  -> expN(x/3)
3262 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3263 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3264 //
3265 // exp, expf, expl:
3266 //   * exp(log(x))  -> x
3267 //
3268 // log, logf, logl:
3269 //   * log(exp(x))   -> x
3270 //   * log(exp(y))   -> y*log(e)
3271 //   * log(exp10(y)) -> y*log(10)
3272 //   * log(sqrt(x))  -> 0.5*log(x)
3273 //
3274 // pow, powf, powl:
3275 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3276 //   * pow(pow(x,y),z)-> pow(x,y*z)
3277 //
3278 // signbit:
3279 //   * signbit(cnst) -> cnst'
3280 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3281 //
3282 // sqrt, sqrtf, sqrtl:
3283 //   * sqrt(expN(x))  -> expN(x*0.5)
3284 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3285 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3286 //
3287 
3288 //===----------------------------------------------------------------------===//
3289 // Fortified Library Call Optimizations
3290 //===----------------------------------------------------------------------===//
3291 
3292 bool
3293 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3294                                                     unsigned ObjSizeOp,
3295                                                     Optional<unsigned> SizeOp,
3296                                                     Optional<unsigned> StrOp,
3297                                                     Optional<unsigned> FlagOp) {
3298   // If this function takes a flag argument, the implementation may use it to
3299   // perform extra checks. Don't fold into the non-checking variant.
3300   if (FlagOp) {
3301     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3302     if (!Flag || !Flag->isZero())
3303       return false;
3304   }
3305 
3306   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3307     return true;
3308 
3309   if (ConstantInt *ObjSizeCI =
3310           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3311     if (ObjSizeCI->isMinusOne())
3312       return true;
3313     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3314     if (OnlyLowerUnknownSize)
3315       return false;
3316     if (StrOp) {
3317       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3318       // If the length is 0 we don't know how long it is and so we can't
3319       // remove the check.
3320       if (Len)
3321         annotateDereferenceableBytes(CI, *StrOp, Len);
3322       else
3323         return false;
3324       return ObjSizeCI->getZExtValue() >= Len;
3325     }
3326 
3327     if (SizeOp) {
3328       if (ConstantInt *SizeCI =
3329               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3330         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3331     }
3332   }
3333   return false;
3334 }
3335 
3336 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3337                                                      IRBuilderBase &B) {
3338   if (isFortifiedCallFoldable(CI, 3, 2)) {
3339     CallInst *NewCI =
3340         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3341                        Align(1), CI->getArgOperand(2));
3342     NewCI->setAttributes(CI->getAttributes());
3343     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3344     copyFlags(*CI, NewCI);
3345     return CI->getArgOperand(0);
3346   }
3347   return nullptr;
3348 }
3349 
3350 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3351                                                       IRBuilderBase &B) {
3352   if (isFortifiedCallFoldable(CI, 3, 2)) {
3353     CallInst *NewCI =
3354         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3355                         Align(1), CI->getArgOperand(2));
3356     NewCI->setAttributes(CI->getAttributes());
3357     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3358     copyFlags(*CI, NewCI);
3359     return CI->getArgOperand(0);
3360   }
3361   return nullptr;
3362 }
3363 
3364 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3365                                                      IRBuilderBase &B) {
3366   if (isFortifiedCallFoldable(CI, 3, 2)) {
3367     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3368     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3369                                      CI->getArgOperand(2), Align(1));
3370     NewCI->setAttributes(CI->getAttributes());
3371     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3372     copyFlags(*CI, NewCI);
3373     return CI->getArgOperand(0);
3374   }
3375   return nullptr;
3376 }
3377 
3378 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3379                                                       IRBuilderBase &B) {
3380   const DataLayout &DL = CI->getModule()->getDataLayout();
3381   if (isFortifiedCallFoldable(CI, 3, 2))
3382     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3383                                   CI->getArgOperand(2), B, DL, TLI)) {
3384       CallInst *NewCI = cast<CallInst>(Call);
3385       NewCI->setAttributes(CI->getAttributes());
3386       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3387       return copyFlags(*CI, NewCI);
3388     }
3389   return nullptr;
3390 }
3391 
3392 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3393                                                       IRBuilderBase &B,
3394                                                       LibFunc Func) {
3395   const DataLayout &DL = CI->getModule()->getDataLayout();
3396   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3397         *ObjSize = CI->getArgOperand(2);
3398 
3399   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3400   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3401     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3402     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3403   }
3404 
3405   // If a) we don't have any length information, or b) we know this will
3406   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3407   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3408   // TODO: It might be nice to get a maximum length out of the possible
3409   // string lengths for varying.
3410   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3411     if (Func == LibFunc_strcpy_chk)
3412       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3413     else
3414       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3415   }
3416 
3417   if (OnlyLowerUnknownSize)
3418     return nullptr;
3419 
3420   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3421   uint64_t Len = GetStringLength(Src);
3422   if (Len)
3423     annotateDereferenceableBytes(CI, 1, Len);
3424   else
3425     return nullptr;
3426 
3427   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3428   // sizeof(int*) for every target. So the assumption used here to derive the
3429   // SizeTBits based on the size of an integer pointer in address space zero
3430   // isn't always valid.
3431   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3432   Value *LenV = ConstantInt::get(SizeTTy, Len);
3433   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3434   // If the function was an __stpcpy_chk, and we were able to fold it into
3435   // a __memcpy_chk, we still need to return the correct end pointer.
3436   if (Ret && Func == LibFunc_stpcpy_chk)
3437     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3438   return copyFlags(*CI, cast<CallInst>(Ret));
3439 }
3440 
3441 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3442                                                      IRBuilderBase &B) {
3443   if (isFortifiedCallFoldable(CI, 1, None, 0))
3444     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3445                                      CI->getModule()->getDataLayout(), TLI));
3446   return nullptr;
3447 }
3448 
3449 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3450                                                        IRBuilderBase &B,
3451                                                        LibFunc Func) {
3452   if (isFortifiedCallFoldable(CI, 3, 2)) {
3453     if (Func == LibFunc_strncpy_chk)
3454       return copyFlags(*CI,
3455                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3456                                    CI->getArgOperand(2), B, TLI));
3457     else
3458       return copyFlags(*CI,
3459                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3460                                    CI->getArgOperand(2), B, TLI));
3461   }
3462 
3463   return nullptr;
3464 }
3465 
3466 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3467                                                       IRBuilderBase &B) {
3468   if (isFortifiedCallFoldable(CI, 4, 3))
3469     return copyFlags(
3470         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3471                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3472 
3473   return nullptr;
3474 }
3475 
3476 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3477                                                        IRBuilderBase &B) {
3478   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3479     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3480     return copyFlags(*CI,
3481                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3482                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3483   }
3484 
3485   return nullptr;
3486 }
3487 
3488 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3489                                                       IRBuilderBase &B) {
3490   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3491     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3492     return copyFlags(*CI,
3493                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3494                                  VariadicArgs, B, TLI));
3495   }
3496 
3497   return nullptr;
3498 }
3499 
3500 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3501                                                      IRBuilderBase &B) {
3502   if (isFortifiedCallFoldable(CI, 2))
3503     return copyFlags(
3504         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3505 
3506   return nullptr;
3507 }
3508 
3509 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3510                                                    IRBuilderBase &B) {
3511   if (isFortifiedCallFoldable(CI, 3))
3512     return copyFlags(*CI,
3513                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3514                                  CI->getArgOperand(2), B, TLI));
3515 
3516   return nullptr;
3517 }
3518 
3519 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3520                                                       IRBuilderBase &B) {
3521   if (isFortifiedCallFoldable(CI, 3))
3522     return copyFlags(*CI,
3523                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3524                                  CI->getArgOperand(2), B, TLI));
3525 
3526   return nullptr;
3527 }
3528 
3529 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3530                                                       IRBuilderBase &B) {
3531   if (isFortifiedCallFoldable(CI, 3))
3532     return copyFlags(*CI,
3533                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3534                                  CI->getArgOperand(2), B, TLI));
3535 
3536   return nullptr;
3537 }
3538 
3539 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3540                                                         IRBuilderBase &B) {
3541   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3542     return copyFlags(
3543         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3544                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3545 
3546   return nullptr;
3547 }
3548 
3549 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3550                                                        IRBuilderBase &B) {
3551   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3552     return copyFlags(*CI,
3553                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3554                                   CI->getArgOperand(4), B, TLI));
3555 
3556   return nullptr;
3557 }
3558 
3559 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3560                                                 IRBuilderBase &Builder) {
3561   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3562   // Some clang users checked for _chk libcall availability using:
3563   //   __has_builtin(__builtin___memcpy_chk)
3564   // When compiling with -fno-builtin, this is always true.
3565   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3566   // end up with fortified libcalls, which isn't acceptable in a freestanding
3567   // environment which only provides their non-fortified counterparts.
3568   //
3569   // Until we change clang and/or teach external users to check for availability
3570   // differently, disregard the "nobuiltin" attribute and TLI::has.
3571   //
3572   // PR23093.
3573 
3574   LibFunc Func;
3575   Function *Callee = CI->getCalledFunction();
3576   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3577 
3578   SmallVector<OperandBundleDef, 2> OpBundles;
3579   CI->getOperandBundlesAsDefs(OpBundles);
3580 
3581   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3582   Builder.setDefaultOperandBundles(OpBundles);
3583 
3584   // First, check that this is a known library functions and that the prototype
3585   // is correct.
3586   if (!TLI->getLibFunc(*Callee, Func))
3587     return nullptr;
3588 
3589   // We never change the calling convention.
3590   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3591     return nullptr;
3592 
3593   switch (Func) {
3594   case LibFunc_memcpy_chk:
3595     return optimizeMemCpyChk(CI, Builder);
3596   case LibFunc_mempcpy_chk:
3597     return optimizeMemPCpyChk(CI, Builder);
3598   case LibFunc_memmove_chk:
3599     return optimizeMemMoveChk(CI, Builder);
3600   case LibFunc_memset_chk:
3601     return optimizeMemSetChk(CI, Builder);
3602   case LibFunc_stpcpy_chk:
3603   case LibFunc_strcpy_chk:
3604     return optimizeStrpCpyChk(CI, Builder, Func);
3605   case LibFunc_strlen_chk:
3606     return optimizeStrLenChk(CI, Builder);
3607   case LibFunc_stpncpy_chk:
3608   case LibFunc_strncpy_chk:
3609     return optimizeStrpNCpyChk(CI, Builder, Func);
3610   case LibFunc_memccpy_chk:
3611     return optimizeMemCCpyChk(CI, Builder);
3612   case LibFunc_snprintf_chk:
3613     return optimizeSNPrintfChk(CI, Builder);
3614   case LibFunc_sprintf_chk:
3615     return optimizeSPrintfChk(CI, Builder);
3616   case LibFunc_strcat_chk:
3617     return optimizeStrCatChk(CI, Builder);
3618   case LibFunc_strlcat_chk:
3619     return optimizeStrLCat(CI, Builder);
3620   case LibFunc_strncat_chk:
3621     return optimizeStrNCatChk(CI, Builder);
3622   case LibFunc_strlcpy_chk:
3623     return optimizeStrLCpyChk(CI, Builder);
3624   case LibFunc_vsnprintf_chk:
3625     return optimizeVSNPrintfChk(CI, Builder);
3626   case LibFunc_vsprintf_chk:
3627     return optimizeVSPrintfChk(CI, Builder);
3628   default:
3629     break;
3630   }
3631   return nullptr;
3632 }
3633 
3634 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3635     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3636     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3637