1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/Allocator.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 static cl::opt<bool>
41     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
42                    cl::desc("Treat error-reporting calls as cold"));
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc::Func Func) {
56   return Func == LibFunc::abs || Func == LibFunc::labs ||
57          Func == LibFunc::llabs || Func == LibFunc::strlen;
58 }
59 
60 /// Return true if it only matters that the value is equal or not-equal to zero.
61 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
62   for (User *U : V->users()) {
63     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
64       if (IC->isEquality())
65         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
66           if (C->isNullValue())
67             continue;
68     // Unknown instruction.
69     return false;
70   }
71   return true;
72 }
73 
74 /// Return true if it is only used in equality comparisons with With.
75 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
76   for (User *U : V->users()) {
77     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
78       if (IC->isEquality() && IC->getOperand(1) == With)
79         continue;
80     // Unknown instruction.
81     return false;
82   }
83   return true;
84 }
85 
86 static bool callHasFloatingPointArgument(const CallInst *CI) {
87   return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) {
88     return OI->getType()->isFloatingPointTy();
89   });
90 }
91 
92 /// \brief Check whether the overloaded unary floating point function
93 /// corresponding to \a Ty is available.
94 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
95                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
96                             LibFunc::Func LongDoubleFn) {
97   switch (Ty->getTypeID()) {
98   case Type::FloatTyID:
99     return TLI->has(FloatFn);
100   case Type::DoubleTyID:
101     return TLI->has(DoubleFn);
102   default:
103     return TLI->has(LongDoubleFn);
104   }
105 }
106 
107 /// \brief Returns whether \p F matches the signature expected for the
108 /// string/memory copying library function \p Func.
109 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
110 /// Their fortified (_chk) counterparts are also accepted.
111 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
112   const DataLayout &DL = F->getParent()->getDataLayout();
113   FunctionType *FT = F->getFunctionType();
114   LLVMContext &Context = F->getContext();
115   Type *PCharTy = Type::getInt8PtrTy(Context);
116   Type *SizeTTy = DL.getIntPtrType(Context);
117   unsigned NumParams = FT->getNumParams();
118 
119   // All string libfuncs return the same type as the first parameter.
120   if (FT->getReturnType() != FT->getParamType(0))
121     return false;
122 
123   switch (Func) {
124   default:
125     llvm_unreachable("Can't check signature for non-string-copy libfunc.");
126   case LibFunc::stpncpy_chk:
127   case LibFunc::strncpy_chk:
128     --NumParams; // fallthrough
129   case LibFunc::stpncpy:
130   case LibFunc::strncpy: {
131     if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
132         FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
133       return false;
134     break;
135   }
136   case LibFunc::strcpy_chk:
137   case LibFunc::stpcpy_chk:
138     --NumParams; // fallthrough
139   case LibFunc::stpcpy:
140   case LibFunc::strcpy: {
141     if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
142         FT->getParamType(0) != PCharTy)
143       return false;
144     break;
145   }
146   case LibFunc::memmove_chk:
147   case LibFunc::memcpy_chk:
148     --NumParams; // fallthrough
149   case LibFunc::memmove:
150   case LibFunc::memcpy: {
151     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
152         !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
153       return false;
154     break;
155   }
156   case LibFunc::memset_chk:
157     --NumParams; // fallthrough
158   case LibFunc::memset: {
159     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
160         !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
161       return false;
162     break;
163   }
164   }
165   // If this is a fortified libcall, the last parameter is a size_t.
166   if (NumParams == FT->getNumParams() - 1)
167     return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
168   return true;
169 }
170 
171 //===----------------------------------------------------------------------===//
172 // String and Memory Library Call Optimizations
173 //===----------------------------------------------------------------------===//
174 
175 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
176   Function *Callee = CI->getCalledFunction();
177   // Verify the "strcat" function prototype.
178   FunctionType *FT = Callee->getFunctionType();
179   if (FT->getNumParams() != 2||
180       FT->getReturnType() != B.getInt8PtrTy() ||
181       FT->getParamType(0) != FT->getReturnType() ||
182       FT->getParamType(1) != FT->getReturnType())
183     return nullptr;
184 
185   // Extract some information from the instruction
186   Value *Dst = CI->getArgOperand(0);
187   Value *Src = CI->getArgOperand(1);
188 
189   // See if we can get the length of the input string.
190   uint64_t Len = GetStringLength(Src);
191   if (Len == 0)
192     return nullptr;
193   --Len; // Unbias length.
194 
195   // Handle the simple, do-nothing case: strcat(x, "") -> x
196   if (Len == 0)
197     return Dst;
198 
199   return emitStrLenMemCpy(Src, Dst, Len, B);
200 }
201 
202 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
203                                            IRBuilder<> &B) {
204   // We need to find the end of the destination string.  That's where the
205   // memory is to be moved to. We just generate a call to strlen.
206   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
207   if (!DstLen)
208     return nullptr;
209 
210   // Now that we have the destination's length, we must index into the
211   // destination's pointer to get the actual memcpy destination (end of
212   // the string .. we're concatenating).
213   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
214 
215   // We have enough information to now generate the memcpy call to do the
216   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
217   B.CreateMemCpy(CpyDst, Src,
218                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
219                  1);
220   return Dst;
221 }
222 
223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
224   Function *Callee = CI->getCalledFunction();
225   // Verify the "strncat" function prototype.
226   FunctionType *FT = Callee->getFunctionType();
227   if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
228       FT->getParamType(0) != FT->getReturnType() ||
229       FT->getParamType(1) != FT->getReturnType() ||
230       !FT->getParamType(2)->isIntegerTy())
231     return nullptr;
232 
233   // Extract some information from the instruction.
234   Value *Dst = CI->getArgOperand(0);
235   Value *Src = CI->getArgOperand(1);
236   uint64_t Len;
237 
238   // We don't do anything if length is not constant.
239   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
240     Len = LengthArg->getZExtValue();
241   else
242     return nullptr;
243 
244   // See if we can get the length of the input string.
245   uint64_t SrcLen = GetStringLength(Src);
246   if (SrcLen == 0)
247     return nullptr;
248   --SrcLen; // Unbias length.
249 
250   // Handle the simple, do-nothing cases:
251   // strncat(x, "", c) -> x
252   // strncat(x,  c, 0) -> x
253   if (SrcLen == 0 || Len == 0)
254     return Dst;
255 
256   // We don't optimize this case.
257   if (Len < SrcLen)
258     return nullptr;
259 
260   // strncat(x, s, c) -> strcat(x, s)
261   // s is constant so the strcat can be optimized further.
262   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
263 }
264 
265 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
266   Function *Callee = CI->getCalledFunction();
267   // Verify the "strchr" function prototype.
268   FunctionType *FT = Callee->getFunctionType();
269   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
270       FT->getParamType(0) != FT->getReturnType() ||
271       !FT->getParamType(1)->isIntegerTy(32))
272     return nullptr;
273 
274   Value *SrcStr = CI->getArgOperand(0);
275 
276   // If the second operand is non-constant, see if we can compute the length
277   // of the input string and turn this into memchr.
278   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
279   if (!CharC) {
280     uint64_t Len = GetStringLength(SrcStr);
281     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
282       return nullptr;
283 
284     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
285                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
286                       B, DL, TLI);
287   }
288 
289   // Otherwise, the character is a constant, see if the first argument is
290   // a string literal.  If so, we can constant fold.
291   StringRef Str;
292   if (!getConstantStringInfo(SrcStr, Str)) {
293     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
294       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
295                          "strchr");
296     return nullptr;
297   }
298 
299   // Compute the offset, make sure to handle the case when we're searching for
300   // zero (a weird way to spell strlen).
301   size_t I = (0xFF & CharC->getSExtValue()) == 0
302                  ? Str.size()
303                  : Str.find(CharC->getSExtValue());
304   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
305     return Constant::getNullValue(CI->getType());
306 
307   // strchr(s+n,c)  -> gep(s+n+i,c)
308   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
309 }
310 
311 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
312   Function *Callee = CI->getCalledFunction();
313   // Verify the "strrchr" function prototype.
314   FunctionType *FT = Callee->getFunctionType();
315   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
316       FT->getParamType(0) != FT->getReturnType() ||
317       !FT->getParamType(1)->isIntegerTy(32))
318     return nullptr;
319 
320   Value *SrcStr = CI->getArgOperand(0);
321   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
322 
323   // Cannot fold anything if we're not looking for a constant.
324   if (!CharC)
325     return nullptr;
326 
327   StringRef Str;
328   if (!getConstantStringInfo(SrcStr, Str)) {
329     // strrchr(s, 0) -> strchr(s, 0)
330     if (CharC->isZero())
331       return emitStrChr(SrcStr, '\0', B, TLI);
332     return nullptr;
333   }
334 
335   // Compute the offset.
336   size_t I = (0xFF & CharC->getSExtValue()) == 0
337                  ? Str.size()
338                  : Str.rfind(CharC->getSExtValue());
339   if (I == StringRef::npos) // Didn't find the char. Return null.
340     return Constant::getNullValue(CI->getType());
341 
342   // strrchr(s+n,c) -> gep(s+n+i,c)
343   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
344 }
345 
346 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
347   Function *Callee = CI->getCalledFunction();
348   // Verify the "strcmp" function prototype.
349   FunctionType *FT = Callee->getFunctionType();
350   if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
351       FT->getParamType(0) != FT->getParamType(1) ||
352       FT->getParamType(0) != B.getInt8PtrTy())
353     return nullptr;
354 
355   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
356   if (Str1P == Str2P) // strcmp(x,x)  -> 0
357     return ConstantInt::get(CI->getType(), 0);
358 
359   StringRef Str1, Str2;
360   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
361   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
362 
363   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
364   if (HasStr1 && HasStr2)
365     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
366 
367   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
368     return B.CreateNeg(
369         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
370 
371   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
372     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
373 
374   // strcmp(P, "x") -> memcmp(P, "x", 2)
375   uint64_t Len1 = GetStringLength(Str1P);
376   uint64_t Len2 = GetStringLength(Str2P);
377   if (Len1 && Len2) {
378     return emitMemCmp(Str1P, Str2P,
379                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
380                                        std::min(Len1, Len2)),
381                       B, DL, TLI);
382   }
383 
384   return nullptr;
385 }
386 
387 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
388   Function *Callee = CI->getCalledFunction();
389   // Verify the "strncmp" function prototype.
390   FunctionType *FT = Callee->getFunctionType();
391   if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
392       FT->getParamType(0) != FT->getParamType(1) ||
393       FT->getParamType(0) != B.getInt8PtrTy() ||
394       !FT->getParamType(2)->isIntegerTy())
395     return nullptr;
396 
397   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
398   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
399     return ConstantInt::get(CI->getType(), 0);
400 
401   // Get the length argument if it is constant.
402   uint64_t Length;
403   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
404     Length = LengthArg->getZExtValue();
405   else
406     return nullptr;
407 
408   if (Length == 0) // strncmp(x,y,0)   -> 0
409     return ConstantInt::get(CI->getType(), 0);
410 
411   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
412     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
413 
414   StringRef Str1, Str2;
415   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
416   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
417 
418   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
419   if (HasStr1 && HasStr2) {
420     StringRef SubStr1 = Str1.substr(0, Length);
421     StringRef SubStr2 = Str2.substr(0, Length);
422     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
423   }
424 
425   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
426     return B.CreateNeg(
427         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
428 
429   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
430     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
431 
432   return nullptr;
433 }
434 
435 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
436   Function *Callee = CI->getCalledFunction();
437 
438   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
439     return nullptr;
440 
441   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
442   if (Dst == Src) // strcpy(x,x)  -> x
443     return Src;
444 
445   // See if we can get the length of the input string.
446   uint64_t Len = GetStringLength(Src);
447   if (Len == 0)
448     return nullptr;
449 
450   // We have enough information to now generate the memcpy call to do the
451   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
452   B.CreateMemCpy(Dst, Src,
453                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
454   return Dst;
455 }
456 
457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
458   Function *Callee = CI->getCalledFunction();
459   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
460     return nullptr;
461 
462   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
463   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
464     Value *StrLen = emitStrLen(Src, B, DL, TLI);
465     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
466   }
467 
468   // See if we can get the length of the input string.
469   uint64_t Len = GetStringLength(Src);
470   if (Len == 0)
471     return nullptr;
472 
473   Type *PT = Callee->getFunctionType()->getParamType(0);
474   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
475   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
476                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
477 
478   // We have enough information to now generate the memcpy call to do the
479   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
480   B.CreateMemCpy(Dst, Src, LenV, 1);
481   return DstEnd;
482 }
483 
484 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
485   Function *Callee = CI->getCalledFunction();
486   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
487     return nullptr;
488 
489   Value *Dst = CI->getArgOperand(0);
490   Value *Src = CI->getArgOperand(1);
491   Value *LenOp = CI->getArgOperand(2);
492 
493   // See if we can get the length of the input string.
494   uint64_t SrcLen = GetStringLength(Src);
495   if (SrcLen == 0)
496     return nullptr;
497   --SrcLen;
498 
499   if (SrcLen == 0) {
500     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
501     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
502     return Dst;
503   }
504 
505   uint64_t Len;
506   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
507     Len = LengthArg->getZExtValue();
508   else
509     return nullptr;
510 
511   if (Len == 0)
512     return Dst; // strncpy(x, y, 0) -> x
513 
514   // Let strncpy handle the zero padding
515   if (Len > SrcLen + 1)
516     return nullptr;
517 
518   Type *PT = Callee->getFunctionType()->getParamType(0);
519   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
520   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
521 
522   return Dst;
523 }
524 
525 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
526   Function *Callee = CI->getCalledFunction();
527   FunctionType *FT = Callee->getFunctionType();
528   if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
529       !FT->getReturnType()->isIntegerTy())
530     return nullptr;
531 
532   Value *Src = CI->getArgOperand(0);
533 
534   // Constant folding: strlen("xyz") -> 3
535   if (uint64_t Len = GetStringLength(Src))
536     return ConstantInt::get(CI->getType(), Len - 1);
537 
538   // strlen(x?"foo":"bars") --> x ? 3 : 4
539   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
540     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
541     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
542     if (LenTrue && LenFalse) {
543       Function *Caller = CI->getParent()->getParent();
544       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
545                              SI->getDebugLoc(),
546                              "folded strlen(select) to select of constants");
547       return B.CreateSelect(SI->getCondition(),
548                             ConstantInt::get(CI->getType(), LenTrue - 1),
549                             ConstantInt::get(CI->getType(), LenFalse - 1));
550     }
551   }
552 
553   // strlen(x) != 0 --> *x != 0
554   // strlen(x) == 0 --> *x == 0
555   if (isOnlyUsedInZeroEqualityComparison(CI))
556     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
557 
558   return nullptr;
559 }
560 
561 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
562   Function *Callee = CI->getCalledFunction();
563   FunctionType *FT = Callee->getFunctionType();
564   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
565       FT->getParamType(1) != FT->getParamType(0) ||
566       FT->getReturnType() != FT->getParamType(0))
567     return nullptr;
568 
569   StringRef S1, S2;
570   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
571   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
572 
573   // strpbrk(s, "") -> nullptr
574   // strpbrk("", s) -> nullptr
575   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
576     return Constant::getNullValue(CI->getType());
577 
578   // Constant folding.
579   if (HasS1 && HasS2) {
580     size_t I = S1.find_first_of(S2);
581     if (I == StringRef::npos) // No match.
582       return Constant::getNullValue(CI->getType());
583 
584     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
585                        "strpbrk");
586   }
587 
588   // strpbrk(s, "a") -> strchr(s, 'a')
589   if (HasS2 && S2.size() == 1)
590     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
591 
592   return nullptr;
593 }
594 
595 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
596   Function *Callee = CI->getCalledFunction();
597   FunctionType *FT = Callee->getFunctionType();
598   if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
599       !FT->getParamType(0)->isPointerTy() ||
600       !FT->getParamType(1)->isPointerTy())
601     return nullptr;
602 
603   Value *EndPtr = CI->getArgOperand(1);
604   if (isa<ConstantPointerNull>(EndPtr)) {
605     // With a null EndPtr, this function won't capture the main argument.
606     // It would be readonly too, except that it still may write to errno.
607     CI->addAttribute(1, Attribute::NoCapture);
608   }
609 
610   return nullptr;
611 }
612 
613 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
614   Function *Callee = CI->getCalledFunction();
615   FunctionType *FT = Callee->getFunctionType();
616   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
617       FT->getParamType(1) != FT->getParamType(0) ||
618       !FT->getReturnType()->isIntegerTy())
619     return nullptr;
620 
621   StringRef S1, S2;
622   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
623   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
624 
625   // strspn(s, "") -> 0
626   // strspn("", s) -> 0
627   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
628     return Constant::getNullValue(CI->getType());
629 
630   // Constant folding.
631   if (HasS1 && HasS2) {
632     size_t Pos = S1.find_first_not_of(S2);
633     if (Pos == StringRef::npos)
634       Pos = S1.size();
635     return ConstantInt::get(CI->getType(), Pos);
636   }
637 
638   return nullptr;
639 }
640 
641 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
642   Function *Callee = CI->getCalledFunction();
643   FunctionType *FT = Callee->getFunctionType();
644   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
645       FT->getParamType(1) != FT->getParamType(0) ||
646       !FT->getReturnType()->isIntegerTy())
647     return nullptr;
648 
649   StringRef S1, S2;
650   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
651   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
652 
653   // strcspn("", s) -> 0
654   if (HasS1 && S1.empty())
655     return Constant::getNullValue(CI->getType());
656 
657   // Constant folding.
658   if (HasS1 && HasS2) {
659     size_t Pos = S1.find_first_of(S2);
660     if (Pos == StringRef::npos)
661       Pos = S1.size();
662     return ConstantInt::get(CI->getType(), Pos);
663   }
664 
665   // strcspn(s, "") -> strlen(s)
666   if (HasS2 && S2.empty())
667     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
668 
669   return nullptr;
670 }
671 
672 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
673   Function *Callee = CI->getCalledFunction();
674   FunctionType *FT = Callee->getFunctionType();
675   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
676       !FT->getParamType(1)->isPointerTy() ||
677       !FT->getReturnType()->isPointerTy())
678     return nullptr;
679 
680   // fold strstr(x, x) -> x.
681   if (CI->getArgOperand(0) == CI->getArgOperand(1))
682     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
683 
684   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
685   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
686     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
687     if (!StrLen)
688       return nullptr;
689     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
690                                  StrLen, B, DL, TLI);
691     if (!StrNCmp)
692       return nullptr;
693     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
694       ICmpInst *Old = cast<ICmpInst>(*UI++);
695       Value *Cmp =
696           B.CreateICmp(Old->getPredicate(), StrNCmp,
697                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
698       replaceAllUsesWith(Old, Cmp);
699     }
700     return CI;
701   }
702 
703   // See if either input string is a constant string.
704   StringRef SearchStr, ToFindStr;
705   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
706   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
707 
708   // fold strstr(x, "") -> x.
709   if (HasStr2 && ToFindStr.empty())
710     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
711 
712   // If both strings are known, constant fold it.
713   if (HasStr1 && HasStr2) {
714     size_t Offset = SearchStr.find(ToFindStr);
715 
716     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
717       return Constant::getNullValue(CI->getType());
718 
719     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
720     Value *Result = castToCStr(CI->getArgOperand(0), B);
721     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
722     return B.CreateBitCast(Result, CI->getType());
723   }
724 
725   // fold strstr(x, "y") -> strchr(x, 'y').
726   if (HasStr2 && ToFindStr.size() == 1) {
727     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
728     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
729   }
730   return nullptr;
731 }
732 
733 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
734   Function *Callee = CI->getCalledFunction();
735   FunctionType *FT = Callee->getFunctionType();
736   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
737       !FT->getParamType(1)->isIntegerTy(32) ||
738       !FT->getParamType(2)->isIntegerTy() ||
739       !FT->getReturnType()->isPointerTy())
740     return nullptr;
741 
742   Value *SrcStr = CI->getArgOperand(0);
743   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
744   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
745 
746   // memchr(x, y, 0) -> null
747   if (LenC && LenC->isNullValue())
748     return Constant::getNullValue(CI->getType());
749 
750   // From now on we need at least constant length and string.
751   StringRef Str;
752   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
753     return nullptr;
754 
755   // Truncate the string to LenC. If Str is smaller than LenC we will still only
756   // scan the string, as reading past the end of it is undefined and we can just
757   // return null if we don't find the char.
758   Str = Str.substr(0, LenC->getZExtValue());
759 
760   // If the char is variable but the input str and length are not we can turn
761   // this memchr call into a simple bit field test. Of course this only works
762   // when the return value is only checked against null.
763   //
764   // It would be really nice to reuse switch lowering here but we can't change
765   // the CFG at this point.
766   //
767   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
768   //   after bounds check.
769   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
770     unsigned char Max =
771         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
772                           reinterpret_cast<const unsigned char *>(Str.end()));
773 
774     // Make sure the bit field we're about to create fits in a register on the
775     // target.
776     // FIXME: On a 64 bit architecture this prevents us from using the
777     // interesting range of alpha ascii chars. We could do better by emitting
778     // two bitfields or shifting the range by 64 if no lower chars are used.
779     if (!DL.fitsInLegalInteger(Max + 1))
780       return nullptr;
781 
782     // For the bit field use a power-of-2 type with at least 8 bits to avoid
783     // creating unnecessary illegal types.
784     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
785 
786     // Now build the bit field.
787     APInt Bitfield(Width, 0);
788     for (char C : Str)
789       Bitfield.setBit((unsigned char)C);
790     Value *BitfieldC = B.getInt(Bitfield);
791 
792     // First check that the bit field access is within bounds.
793     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
794     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
795                                  "memchr.bounds");
796 
797     // Create code that checks if the given bit is set in the field.
798     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
799     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
800 
801     // Finally merge both checks and cast to pointer type. The inttoptr
802     // implicitly zexts the i1 to intptr type.
803     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
804   }
805 
806   // Check if all arguments are constants.  If so, we can constant fold.
807   if (!CharC)
808     return nullptr;
809 
810   // Compute the offset.
811   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
812   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
813     return Constant::getNullValue(CI->getType());
814 
815   // memchr(s+n,c,l) -> gep(s+n+i,c)
816   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
817 }
818 
819 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
820   Function *Callee = CI->getCalledFunction();
821   FunctionType *FT = Callee->getFunctionType();
822   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
823       !FT->getParamType(1)->isPointerTy() ||
824       !FT->getReturnType()->isIntegerTy(32))
825     return nullptr;
826 
827   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
828 
829   if (LHS == RHS) // memcmp(s,s,x) -> 0
830     return Constant::getNullValue(CI->getType());
831 
832   // Make sure we have a constant length.
833   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
834   if (!LenC)
835     return nullptr;
836   uint64_t Len = LenC->getZExtValue();
837 
838   if (Len == 0) // memcmp(s1,s2,0) -> 0
839     return Constant::getNullValue(CI->getType());
840 
841   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
842   if (Len == 1) {
843     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
844                                CI->getType(), "lhsv");
845     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
846                                CI->getType(), "rhsv");
847     return B.CreateSub(LHSV, RHSV, "chardiff");
848   }
849 
850   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
851   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
852 
853     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
854     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
855 
856     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
857         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
858 
859       Type *LHSPtrTy =
860           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
861       Type *RHSPtrTy =
862           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
863 
864       Value *LHSV =
865           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
866       Value *RHSV =
867           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
868 
869       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
870     }
871   }
872 
873   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
874   StringRef LHSStr, RHSStr;
875   if (getConstantStringInfo(LHS, LHSStr) &&
876       getConstantStringInfo(RHS, RHSStr)) {
877     // Make sure we're not reading out-of-bounds memory.
878     if (Len > LHSStr.size() || Len > RHSStr.size())
879       return nullptr;
880     // Fold the memcmp and normalize the result.  This way we get consistent
881     // results across multiple platforms.
882     uint64_t Ret = 0;
883     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
884     if (Cmp < 0)
885       Ret = -1;
886     else if (Cmp > 0)
887       Ret = 1;
888     return ConstantInt::get(CI->getType(), Ret);
889   }
890 
891   return nullptr;
892 }
893 
894 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
895   Function *Callee = CI->getCalledFunction();
896 
897   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
898     return nullptr;
899 
900   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
901   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
902                  CI->getArgOperand(2), 1);
903   return CI->getArgOperand(0);
904 }
905 
906 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
907   Function *Callee = CI->getCalledFunction();
908 
909   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
910     return nullptr;
911 
912   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
913   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
914                   CI->getArgOperand(2), 1);
915   return CI->getArgOperand(0);
916 }
917 
918 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
919   Function *Callee = CI->getCalledFunction();
920 
921   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
922     return nullptr;
923 
924   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
925   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
926   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
927   return CI->getArgOperand(0);
928 }
929 
930 //===----------------------------------------------------------------------===//
931 // Math Library Optimizations
932 //===----------------------------------------------------------------------===//
933 
934 /// Return a variant of Val with float type.
935 /// Currently this works in two cases: If Val is an FPExtension of a float
936 /// value to something bigger, simply return the operand.
937 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
938 /// loss of precision do so.
939 static Value *valueHasFloatPrecision(Value *Val) {
940   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
941     Value *Op = Cast->getOperand(0);
942     if (Op->getType()->isFloatTy())
943       return Op;
944   }
945   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
946     APFloat F = Const->getValueAPF();
947     bool losesInfo;
948     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
949                     &losesInfo);
950     if (!losesInfo)
951       return ConstantFP::get(Const->getContext(), F);
952   }
953   return nullptr;
954 }
955 
956 /// Any floating-point library function that we're trying to simplify will have
957 /// a signature of the form: fptype foo(fptype param1, fptype param2, ...).
958 /// CheckDoubleTy indicates that 'fptype' must be 'double'.
959 static bool matchesFPLibFunctionSignature(const Function *F, unsigned NumParams,
960                                           bool CheckDoubleTy) {
961   FunctionType *FT = F->getFunctionType();
962   if (FT->getNumParams() != NumParams)
963     return false;
964 
965   // The return type must match what we're looking for.
966   Type *RetTy = FT->getReturnType();
967   if (CheckDoubleTy ? !RetTy->isDoubleTy() : !RetTy->isFloatingPointTy())
968     return false;
969 
970   // Each parameter must match the return type, and therefore, match every other
971   // parameter too.
972   for (const Type *ParamTy : FT->params())
973     if (ParamTy != RetTy)
974       return false;
975 
976   return true;
977 }
978 
979 /// Shrink double -> float for unary functions like 'floor'.
980 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
981                                     bool CheckRetType) {
982   Function *Callee = CI->getCalledFunction();
983   if (!matchesFPLibFunctionSignature(Callee, 1, true))
984     return nullptr;
985 
986   if (CheckRetType) {
987     // Check if all the uses for function like 'sin' are converted to float.
988     for (User *U : CI->users()) {
989       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
990       if (!Cast || !Cast->getType()->isFloatTy())
991         return nullptr;
992     }
993   }
994 
995   // If this is something like 'floor((double)floatval)', convert to floorf.
996   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
997   if (V == nullptr)
998     return nullptr;
999 
1000   // Propagate fast-math flags from the existing call to the new call.
1001   IRBuilder<>::FastMathFlagGuard Guard(B);
1002   B.setFastMathFlags(CI->getFastMathFlags());
1003 
1004   // floor((double)floatval) -> (double)floorf(floatval)
1005   if (Callee->isIntrinsic()) {
1006     Module *M = CI->getModule();
1007     Intrinsic::ID IID = Callee->getIntrinsicID();
1008     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1009     V = B.CreateCall(F, V);
1010   } else {
1011     // The call is a library call rather than an intrinsic.
1012     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
1013   }
1014 
1015   return B.CreateFPExt(V, B.getDoubleTy());
1016 }
1017 
1018 /// Shrink double -> float for binary functions like 'fmin/fmax'.
1019 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
1020   Function *Callee = CI->getCalledFunction();
1021   if (!matchesFPLibFunctionSignature(Callee, 2, true))
1022     return nullptr;
1023 
1024   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1025   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1026   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1027   if (V1 == nullptr)
1028     return nullptr;
1029   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1030   if (V2 == nullptr)
1031     return nullptr;
1032 
1033   // Propagate fast-math flags from the existing call to the new call.
1034   IRBuilder<>::FastMathFlagGuard Guard(B);
1035   B.setFastMathFlags(CI->getFastMathFlags());
1036 
1037   // fmin((double)floatval1, (double)floatval2)
1038   //                      -> (double)fminf(floatval1, floatval2)
1039   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1040   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1041                                    Callee->getAttributes());
1042   return B.CreateFPExt(V, B.getDoubleTy());
1043 }
1044 
1045 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1046   Function *Callee = CI->getCalledFunction();
1047   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1048     return nullptr;
1049 
1050   Value *Ret = nullptr;
1051   StringRef Name = Callee->getName();
1052   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1053     Ret = optimizeUnaryDoubleFP(CI, B, true);
1054 
1055   // cos(-x) -> cos(x)
1056   Value *Op1 = CI->getArgOperand(0);
1057   if (BinaryOperator::isFNeg(Op1)) {
1058     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1059     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1060   }
1061   return Ret;
1062 }
1063 
1064 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1065   // Multiplications calculated using Addition Chains.
1066   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1067 
1068   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1069 
1070   if (InnerChain[Exp])
1071     return InnerChain[Exp];
1072 
1073   static const unsigned AddChain[33][2] = {
1074       {0, 0}, // Unused.
1075       {0, 0}, // Unused (base case = pow1).
1076       {1, 1}, // Unused (pre-computed).
1077       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1078       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1079       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1080       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1081       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1082   };
1083 
1084   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1085                                  getPow(InnerChain, AddChain[Exp][1], B));
1086   return InnerChain[Exp];
1087 }
1088 
1089 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1090   Function *Callee = CI->getCalledFunction();
1091   if (!matchesFPLibFunctionSignature(Callee, 2, false))
1092     return nullptr;
1093 
1094   Value *Ret = nullptr;
1095   StringRef Name = Callee->getName();
1096   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1097     Ret = optimizeUnaryDoubleFP(CI, B, true);
1098 
1099   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1100   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1101     // pow(1.0, x) -> 1.0
1102     if (Op1C->isExactlyValue(1.0))
1103       return Op1C;
1104     // pow(2.0, x) -> exp2(x)
1105     if (Op1C->isExactlyValue(2.0) &&
1106         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
1107                         LibFunc::exp2l))
1108       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B,
1109                                   Callee->getAttributes());
1110     // pow(10.0, x) -> exp10(x)
1111     if (Op1C->isExactlyValue(10.0) &&
1112         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1113                         LibFunc::exp10l))
1114       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1115                                   Callee->getAttributes());
1116   }
1117 
1118   // pow(exp(x), y) -> exp(x * y)
1119   // pow(exp2(x), y) -> exp2(x * y)
1120   // We enable these only with fast-math. Besides rounding differences, the
1121   // transformation changes overflow and underflow behavior quite dramatically.
1122   // Example: x = 1000, y = 0.001.
1123   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1124   auto *OpC = dyn_cast<CallInst>(Op1);
1125   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1126     LibFunc::Func Func;
1127     Function *OpCCallee = OpC->getCalledFunction();
1128     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1129         TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
1130       IRBuilder<>::FastMathFlagGuard Guard(B);
1131       B.setFastMathFlags(CI->getFastMathFlags());
1132       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1133       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1134                                   OpCCallee->getAttributes());
1135     }
1136   }
1137 
1138   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1139   if (!Op2C)
1140     return Ret;
1141 
1142   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1143     return ConstantFP::get(CI->getType(), 1.0);
1144 
1145   if (Op2C->isExactlyValue(0.5) &&
1146       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1147                       LibFunc::sqrtl) &&
1148       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1149                       LibFunc::fabsl)) {
1150 
1151     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1152     if (CI->hasUnsafeAlgebra()) {
1153       IRBuilder<>::FastMathFlagGuard Guard(B);
1154       B.setFastMathFlags(CI->getFastMathFlags());
1155       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1156                                   Callee->getAttributes());
1157     }
1158 
1159     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1160     // This is faster than calling pow, and still handles negative zero
1161     // and negative infinity correctly.
1162     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1163     Value *Inf = ConstantFP::getInfinity(CI->getType());
1164     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1165     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1166     Value *FAbs =
1167         emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1168     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1169     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1170     return Sel;
1171   }
1172 
1173   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1174     return Op1;
1175   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1176     return B.CreateFMul(Op1, Op1, "pow2");
1177   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1178     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1179 
1180   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1181   if (CI->hasUnsafeAlgebra()) {
1182     APFloat V = abs(Op2C->getValueAPF());
1183     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1184     // This transformation applies to integer exponents only.
1185     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1186         !V.isInteger())
1187       return nullptr;
1188 
1189     // We will memoize intermediate products of the Addition Chain.
1190     Value *InnerChain[33] = {nullptr};
1191     InnerChain[1] = Op1;
1192     InnerChain[2] = B.CreateFMul(Op1, Op1);
1193 
1194     // We cannot readily convert a non-double type (like float) to a double.
1195     // So we first convert V to something which could be converted to double.
1196     bool ignored;
1197     V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
1198 
1199     // TODO: Should the new instructions propagate the 'fast' flag of the pow()?
1200     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1201     // For negative exponents simply compute the reciprocal.
1202     if (Op2C->isNegative())
1203       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1204     return FMul;
1205   }
1206 
1207   return nullptr;
1208 }
1209 
1210 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1211   Function *Callee = CI->getCalledFunction();
1212   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1213     return nullptr;
1214 
1215   Value *Ret = nullptr;
1216   StringRef Name = Callee->getName();
1217   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1218     Ret = optimizeUnaryDoubleFP(CI, B, true);
1219 
1220   Value *Op = CI->getArgOperand(0);
1221   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1222   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1223   LibFunc::Func LdExp = LibFunc::ldexpl;
1224   if (Op->getType()->isFloatTy())
1225     LdExp = LibFunc::ldexpf;
1226   else if (Op->getType()->isDoubleTy())
1227     LdExp = LibFunc::ldexp;
1228 
1229   if (TLI->has(LdExp)) {
1230     Value *LdExpArg = nullptr;
1231     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1232       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1233         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1234     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1235       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1236         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1237     }
1238 
1239     if (LdExpArg) {
1240       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1241       if (!Op->getType()->isFloatTy())
1242         One = ConstantExpr::getFPExtend(One, Op->getType());
1243 
1244       Module *M = CI->getModule();
1245       Value *NewCallee =
1246           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1247                                  Op->getType(), B.getInt32Ty(), nullptr);
1248       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1249       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1250         CI->setCallingConv(F->getCallingConv());
1251 
1252       return CI;
1253     }
1254   }
1255   return Ret;
1256 }
1257 
1258 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1259   Function *Callee = CI->getCalledFunction();
1260   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1261     return nullptr;
1262 
1263   Value *Ret = nullptr;
1264   StringRef Name = Callee->getName();
1265   if (Name == "fabs" && hasFloatVersion(Name))
1266     Ret = optimizeUnaryDoubleFP(CI, B, false);
1267 
1268   Value *Op = CI->getArgOperand(0);
1269   if (Instruction *I = dyn_cast<Instruction>(Op)) {
1270     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
1271     if (I->getOpcode() == Instruction::FMul)
1272       if (I->getOperand(0) == I->getOperand(1))
1273         return Op;
1274   }
1275   return Ret;
1276 }
1277 
1278 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1279   Function *Callee = CI->getCalledFunction();
1280   if (!matchesFPLibFunctionSignature(Callee, 2, false))
1281     return nullptr;
1282 
1283   // If we can shrink the call to a float function rather than a double
1284   // function, do that first.
1285   StringRef Name = Callee->getName();
1286   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1287     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1288       return Ret;
1289 
1290   IRBuilder<>::FastMathFlagGuard Guard(B);
1291   FastMathFlags FMF;
1292   if (CI->hasUnsafeAlgebra()) {
1293     // Unsafe algebra sets all fast-math-flags to true.
1294     FMF.setUnsafeAlgebra();
1295   } else {
1296     // At a minimum, no-nans-fp-math must be true.
1297     if (!CI->hasNoNaNs())
1298       return nullptr;
1299     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1300     // "Ideally, fmax would be sensitive to the sign of zero, for example
1301     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1302     // might be impractical."
1303     FMF.setNoSignedZeros();
1304     FMF.setNoNaNs();
1305   }
1306   B.setFastMathFlags(FMF);
1307 
1308   // We have a relaxed floating-point environment. We can ignore NaN-handling
1309   // and transform to a compare and select. We do not have to consider errno or
1310   // exceptions, because fmin/fmax do not have those.
1311   Value *Op0 = CI->getArgOperand(0);
1312   Value *Op1 = CI->getArgOperand(1);
1313   Value *Cmp = Callee->getName().startswith("fmin") ?
1314     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1315   return B.CreateSelect(Cmp, Op0, Op1);
1316 }
1317 
1318 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1319   Function *Callee = CI->getCalledFunction();
1320   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1321     return nullptr;
1322 
1323   Value *Ret = nullptr;
1324   StringRef Name = Callee->getName();
1325   if (UnsafeFPShrink && hasFloatVersion(Name))
1326     Ret = optimizeUnaryDoubleFP(CI, B, true);
1327 
1328   if (!CI->hasUnsafeAlgebra())
1329     return Ret;
1330   Value *Op1 = CI->getArgOperand(0);
1331   auto *OpC = dyn_cast<CallInst>(Op1);
1332 
1333   // The earlier call must also be unsafe in order to do these transforms.
1334   if (!OpC || !OpC->hasUnsafeAlgebra())
1335     return Ret;
1336 
1337   // log(pow(x,y)) -> y*log(x)
1338   // This is only applicable to log, log2, log10.
1339   if (Name != "log" && Name != "log2" && Name != "log10")
1340     return Ret;
1341 
1342   IRBuilder<>::FastMathFlagGuard Guard(B);
1343   FastMathFlags FMF;
1344   FMF.setUnsafeAlgebra();
1345   B.setFastMathFlags(FMF);
1346 
1347   LibFunc::Func Func;
1348   Function *F = OpC->getCalledFunction();
1349   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1350       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
1351     return B.CreateFMul(OpC->getArgOperand(1),
1352       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1353                            Callee->getAttributes()), "mul");
1354 
1355   // log(exp2(y)) -> y*log(2)
1356   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1357       TLI->has(Func) && Func == LibFunc::exp2)
1358     return B.CreateFMul(
1359         OpC->getArgOperand(0),
1360         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1361                              Callee->getName(), B, Callee->getAttributes()),
1362         "logmul");
1363   return Ret;
1364 }
1365 
1366 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1367   Function *Callee = CI->getCalledFunction();
1368   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1369     return nullptr;
1370 
1371   Value *Ret = nullptr;
1372   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1373                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
1374     Ret = optimizeUnaryDoubleFP(CI, B, true);
1375 
1376   if (!CI->hasUnsafeAlgebra())
1377     return Ret;
1378 
1379   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1380   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1381     return Ret;
1382 
1383   // We're looking for a repeated factor in a multiplication tree,
1384   // so we can do this fold: sqrt(x * x) -> fabs(x);
1385   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1386   Value *Op0 = I->getOperand(0);
1387   Value *Op1 = I->getOperand(1);
1388   Value *RepeatOp = nullptr;
1389   Value *OtherOp = nullptr;
1390   if (Op0 == Op1) {
1391     // Simple match: the operands of the multiply are identical.
1392     RepeatOp = Op0;
1393   } else {
1394     // Look for a more complicated pattern: one of the operands is itself
1395     // a multiply, so search for a common factor in that multiply.
1396     // Note: We don't bother looking any deeper than this first level or for
1397     // variations of this pattern because instcombine's visitFMUL and/or the
1398     // reassociation pass should give us this form.
1399     Value *OtherMul0, *OtherMul1;
1400     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1401       // Pattern: sqrt((x * y) * z)
1402       if (OtherMul0 == OtherMul1 &&
1403           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1404         // Matched: sqrt((x * x) * z)
1405         RepeatOp = OtherMul0;
1406         OtherOp = Op1;
1407       }
1408     }
1409   }
1410   if (!RepeatOp)
1411     return Ret;
1412 
1413   // Fast math flags for any created instructions should match the sqrt
1414   // and multiply.
1415   IRBuilder<>::FastMathFlagGuard Guard(B);
1416   B.setFastMathFlags(I->getFastMathFlags());
1417 
1418   // If we found a repeated factor, hoist it out of the square root and
1419   // replace it with the fabs of that factor.
1420   Module *M = Callee->getParent();
1421   Type *ArgType = I->getType();
1422   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1423   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1424   if (OtherOp) {
1425     // If we found a non-repeated factor, we still need to get its square
1426     // root. We then multiply that by the value that was simplified out
1427     // of the square root calculation.
1428     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1429     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1430     return B.CreateFMul(FabsCall, SqrtCall);
1431   }
1432   return FabsCall;
1433 }
1434 
1435 // TODO: Generalize to handle any trig function and its inverse.
1436 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1437   Function *Callee = CI->getCalledFunction();
1438   if (!matchesFPLibFunctionSignature(Callee, 1, false))
1439     return nullptr;
1440 
1441   Value *Ret = nullptr;
1442   StringRef Name = Callee->getName();
1443   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1444     Ret = optimizeUnaryDoubleFP(CI, B, true);
1445 
1446   Value *Op1 = CI->getArgOperand(0);
1447   auto *OpC = dyn_cast<CallInst>(Op1);
1448   if (!OpC)
1449     return Ret;
1450 
1451   // Both calls must allow unsafe optimizations in order to remove them.
1452   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1453     return Ret;
1454 
1455   // tan(atan(x)) -> x
1456   // tanf(atanf(x)) -> x
1457   // tanl(atanl(x)) -> x
1458   LibFunc::Func Func;
1459   Function *F = OpC->getCalledFunction();
1460   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1461       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
1462        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
1463        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
1464     Ret = OpC->getArgOperand(0);
1465   return Ret;
1466 }
1467 
1468 static bool isTrigLibCall(CallInst *CI) {
1469   Function *Callee = CI->getCalledFunction();
1470   FunctionType *FT = Callee->getFunctionType();
1471 
1472   // We can only hope to do anything useful if we can ignore things like errno
1473   // and floating-point exceptions.
1474   bool AttributesSafe =
1475   CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
1476 
1477   // Other than that we need float(float) or double(double)
1478   return AttributesSafe && FT->getNumParams() == 1 &&
1479   FT->getReturnType() == FT->getParamType(0) &&
1480   (FT->getParamType(0)->isFloatTy() ||
1481    FT->getParamType(0)->isDoubleTy());
1482 }
1483 
1484 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1485                              bool UseFloat, Value *&Sin, Value *&Cos,
1486                              Value *&SinCos) {
1487   Type *ArgTy = Arg->getType();
1488   Type *ResTy;
1489   StringRef Name;
1490 
1491   Triple T(OrigCallee->getParent()->getTargetTriple());
1492   if (UseFloat) {
1493     Name = "__sincospif_stret";
1494 
1495     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1496     // x86_64 can't use {float, float} since that would be returned in both
1497     // xmm0 and xmm1, which isn't what a real struct would do.
1498     ResTy = T.getArch() == Triple::x86_64
1499     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1500     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1501   } else {
1502     Name = "__sincospi_stret";
1503     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1504   }
1505 
1506   Module *M = OrigCallee->getParent();
1507   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1508                                          ResTy, ArgTy, nullptr);
1509 
1510   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1511     // If the argument is an instruction, it must dominate all uses so put our
1512     // sincos call there.
1513     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1514   } else {
1515     // Otherwise (e.g. for a constant) the beginning of the function is as
1516     // good a place as any.
1517     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1518     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1519   }
1520 
1521   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1522 
1523   if (SinCos->getType()->isStructTy()) {
1524     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1525     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1526   } else {
1527     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1528                                  "sinpi");
1529     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1530                                  "cospi");
1531   }
1532 }
1533 
1534 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1535   // Make sure the prototype is as expected, otherwise the rest of the
1536   // function is probably invalid and likely to abort.
1537   if (!isTrigLibCall(CI))
1538     return nullptr;
1539 
1540   Value *Arg = CI->getArgOperand(0);
1541   SmallVector<CallInst *, 1> SinCalls;
1542   SmallVector<CallInst *, 1> CosCalls;
1543   SmallVector<CallInst *, 1> SinCosCalls;
1544 
1545   bool IsFloat = Arg->getType()->isFloatTy();
1546 
1547   // Look for all compatible sinpi, cospi and sincospi calls with the same
1548   // argument. If there are enough (in some sense) we can make the
1549   // substitution.
1550   for (User *U : Arg->users())
1551     classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
1552                    SinCosCalls);
1553 
1554   // It's only worthwhile if both sinpi and cospi are actually used.
1555   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1556     return nullptr;
1557 
1558   Value *Sin, *Cos, *SinCos;
1559   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1560 
1561   replaceTrigInsts(SinCalls, Sin);
1562   replaceTrigInsts(CosCalls, Cos);
1563   replaceTrigInsts(SinCosCalls, SinCos);
1564 
1565   return nullptr;
1566 }
1567 
1568 void
1569 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
1570                                   SmallVectorImpl<CallInst *> &SinCalls,
1571                                   SmallVectorImpl<CallInst *> &CosCalls,
1572                                   SmallVectorImpl<CallInst *> &SinCosCalls) {
1573   CallInst *CI = dyn_cast<CallInst>(Val);
1574 
1575   if (!CI)
1576     return;
1577 
1578   Function *Callee = CI->getCalledFunction();
1579   LibFunc::Func Func;
1580   if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) ||
1581       !isTrigLibCall(CI))
1582     return;
1583 
1584   if (IsFloat) {
1585     if (Func == LibFunc::sinpif)
1586       SinCalls.push_back(CI);
1587     else if (Func == LibFunc::cospif)
1588       CosCalls.push_back(CI);
1589     else if (Func == LibFunc::sincospif_stret)
1590       SinCosCalls.push_back(CI);
1591   } else {
1592     if (Func == LibFunc::sinpi)
1593       SinCalls.push_back(CI);
1594     else if (Func == LibFunc::cospi)
1595       CosCalls.push_back(CI);
1596     else if (Func == LibFunc::sincospi_stret)
1597       SinCosCalls.push_back(CI);
1598   }
1599 }
1600 
1601 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
1602                                          Value *Res) {
1603   for (CallInst *C : Calls)
1604     replaceAllUsesWith(C, Res);
1605 }
1606 
1607 //===----------------------------------------------------------------------===//
1608 // Integer Library Call Optimizations
1609 //===----------------------------------------------------------------------===//
1610 
1611 static bool checkIntUnaryReturnAndParam(Function *Callee) {
1612   FunctionType *FT = Callee->getFunctionType();
1613   return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) &&
1614     FT->getParamType(0)->isIntegerTy();
1615 }
1616 
1617 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1618   Function *Callee = CI->getCalledFunction();
1619   if (!checkIntUnaryReturnAndParam(Callee))
1620     return nullptr;
1621   Value *Op = CI->getArgOperand(0);
1622 
1623   // Constant fold.
1624   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1625     if (CI->isZero()) // ffs(0) -> 0.
1626       return B.getInt32(0);
1627     // ffs(c) -> cttz(c)+1
1628     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1629   }
1630 
1631   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1632   Type *ArgType = Op->getType();
1633   Value *F =
1634       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
1635   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1636   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1637   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1638 
1639   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1640   return B.CreateSelect(Cond, V, B.getInt32(0));
1641 }
1642 
1643 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1644   Function *Callee = CI->getCalledFunction();
1645   FunctionType *FT = Callee->getFunctionType();
1646   // We require integer(integer) where the types agree.
1647   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1648       FT->getParamType(0) != FT->getReturnType())
1649     return nullptr;
1650 
1651   // abs(x) -> x >s -1 ? x : -x
1652   Value *Op = CI->getArgOperand(0);
1653   Value *Pos =
1654       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1655   Value *Neg = B.CreateNeg(Op, "neg");
1656   return B.CreateSelect(Pos, Op, Neg);
1657 }
1658 
1659 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1660   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1661     return nullptr;
1662 
1663   // isdigit(c) -> (c-'0') <u 10
1664   Value *Op = CI->getArgOperand(0);
1665   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1666   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1667   return B.CreateZExt(Op, CI->getType());
1668 }
1669 
1670 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1671   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1672     return nullptr;
1673 
1674   // isascii(c) -> c <u 128
1675   Value *Op = CI->getArgOperand(0);
1676   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1677   return B.CreateZExt(Op, CI->getType());
1678 }
1679 
1680 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1681   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1682     return nullptr;
1683 
1684   // toascii(c) -> c & 0x7f
1685   return B.CreateAnd(CI->getArgOperand(0),
1686                      ConstantInt::get(CI->getType(), 0x7F));
1687 }
1688 
1689 //===----------------------------------------------------------------------===//
1690 // Formatting and IO Library Call Optimizations
1691 //===----------------------------------------------------------------------===//
1692 
1693 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1694 
1695 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1696                                                  int StreamArg) {
1697   // Error reporting calls should be cold, mark them as such.
1698   // This applies even to non-builtin calls: it is only a hint and applies to
1699   // functions that the frontend might not understand as builtins.
1700 
1701   // This heuristic was suggested in:
1702   // Improving Static Branch Prediction in a Compiler
1703   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1704   // Proceedings of PACT'98, Oct. 1998, IEEE
1705   Function *Callee = CI->getCalledFunction();
1706 
1707   if (!CI->hasFnAttr(Attribute::Cold) &&
1708       isReportingError(Callee, CI, StreamArg)) {
1709     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1710   }
1711 
1712   return nullptr;
1713 }
1714 
1715 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1716   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1717     return false;
1718 
1719   if (StreamArg < 0)
1720     return true;
1721 
1722   // These functions might be considered cold, but only if their stream
1723   // argument is stderr.
1724 
1725   if (StreamArg >= (int)CI->getNumArgOperands())
1726     return false;
1727   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1728   if (!LI)
1729     return false;
1730   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1731   if (!GV || !GV->isDeclaration())
1732     return false;
1733   return GV->getName() == "stderr";
1734 }
1735 
1736 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1737   // Check for a fixed format string.
1738   StringRef FormatStr;
1739   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1740     return nullptr;
1741 
1742   // Empty format string -> noop.
1743   if (FormatStr.empty()) // Tolerate printf's declared void.
1744     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1745 
1746   // Do not do any of the following transformations if the printf return value
1747   // is used, in general the printf return value is not compatible with either
1748   // putchar() or puts().
1749   if (!CI->use_empty())
1750     return nullptr;
1751 
1752   // printf("x") -> putchar('x'), even for '%'.
1753   if (FormatStr.size() == 1) {
1754     Value *Res = emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1755     if (CI->use_empty() || !Res)
1756       return Res;
1757     return B.CreateIntCast(Res, CI->getType(), true);
1758   }
1759 
1760   // printf("foo\n") --> puts("foo")
1761   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1762       FormatStr.find('%') == StringRef::npos) { // No format characters.
1763     // Create a string literal with no \n on it.  We expect the constant merge
1764     // pass to be run after this pass, to merge duplicate strings.
1765     FormatStr = FormatStr.drop_back();
1766     Value *GV = B.CreateGlobalString(FormatStr, "str");
1767     Value *NewCI = emitPutS(GV, B, TLI);
1768     return (CI->use_empty() || !NewCI)
1769                ? NewCI
1770                : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
1771   }
1772 
1773   // Optimize specific format strings.
1774   // printf("%c", chr) --> putchar(chr)
1775   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1776       CI->getArgOperand(1)->getType()->isIntegerTy()) {
1777     Value *Res = emitPutChar(CI->getArgOperand(1), B, TLI);
1778 
1779     if (CI->use_empty() || !Res)
1780       return Res;
1781     return B.CreateIntCast(Res, CI->getType(), true);
1782   }
1783 
1784   // printf("%s\n", str) --> puts(str)
1785   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1786       CI->getArgOperand(1)->getType()->isPointerTy()) {
1787     return emitPutS(CI->getArgOperand(1), B, TLI);
1788   }
1789   return nullptr;
1790 }
1791 
1792 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1793 
1794   Function *Callee = CI->getCalledFunction();
1795   // Require one fixed pointer argument and an integer/void result.
1796   FunctionType *FT = Callee->getFunctionType();
1797   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1798       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1799     return nullptr;
1800 
1801   if (Value *V = optimizePrintFString(CI, B)) {
1802     return V;
1803   }
1804 
1805   // printf(format, ...) -> iprintf(format, ...) if no floating point
1806   // arguments.
1807   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1808     Module *M = B.GetInsertBlock()->getParent()->getParent();
1809     Constant *IPrintFFn =
1810         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1811     CallInst *New = cast<CallInst>(CI->clone());
1812     New->setCalledFunction(IPrintFFn);
1813     B.Insert(New);
1814     return New;
1815   }
1816   return nullptr;
1817 }
1818 
1819 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1820   // Check for a fixed format string.
1821   StringRef FormatStr;
1822   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1823     return nullptr;
1824 
1825   // If we just have a format string (nothing else crazy) transform it.
1826   if (CI->getNumArgOperands() == 2) {
1827     // Make sure there's no % in the constant array.  We could try to handle
1828     // %% -> % in the future if we cared.
1829     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1830       if (FormatStr[i] == '%')
1831         return nullptr; // we found a format specifier, bail out.
1832 
1833     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1834     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1835                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1836                                     FormatStr.size() + 1),
1837                    1); // Copy the null byte.
1838     return ConstantInt::get(CI->getType(), FormatStr.size());
1839   }
1840 
1841   // The remaining optimizations require the format string to be "%s" or "%c"
1842   // and have an extra operand.
1843   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1844       CI->getNumArgOperands() < 3)
1845     return nullptr;
1846 
1847   // Decode the second character of the format string.
1848   if (FormatStr[1] == 'c') {
1849     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1850     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1851       return nullptr;
1852     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1853     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1854     B.CreateStore(V, Ptr);
1855     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1856     B.CreateStore(B.getInt8(0), Ptr);
1857 
1858     return ConstantInt::get(CI->getType(), 1);
1859   }
1860 
1861   if (FormatStr[1] == 's') {
1862     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1863     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1864       return nullptr;
1865 
1866     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1867     if (!Len)
1868       return nullptr;
1869     Value *IncLen =
1870         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1871     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1872 
1873     // The sprintf result is the unincremented number of bytes in the string.
1874     return B.CreateIntCast(Len, CI->getType(), false);
1875   }
1876   return nullptr;
1877 }
1878 
1879 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1880   Function *Callee = CI->getCalledFunction();
1881   // Require two fixed pointer arguments and an integer result.
1882   FunctionType *FT = Callee->getFunctionType();
1883   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1884       !FT->getParamType(1)->isPointerTy() ||
1885       !FT->getReturnType()->isIntegerTy())
1886     return nullptr;
1887 
1888   if (Value *V = optimizeSPrintFString(CI, B)) {
1889     return V;
1890   }
1891 
1892   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1893   // point arguments.
1894   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1895     Module *M = B.GetInsertBlock()->getParent()->getParent();
1896     Constant *SIPrintFFn =
1897         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1898     CallInst *New = cast<CallInst>(CI->clone());
1899     New->setCalledFunction(SIPrintFFn);
1900     B.Insert(New);
1901     return New;
1902   }
1903   return nullptr;
1904 }
1905 
1906 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1907   optimizeErrorReporting(CI, B, 0);
1908 
1909   // All the optimizations depend on the format string.
1910   StringRef FormatStr;
1911   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1912     return nullptr;
1913 
1914   // Do not do any of the following transformations if the fprintf return
1915   // value is used, in general the fprintf return value is not compatible
1916   // with fwrite(), fputc() or fputs().
1917   if (!CI->use_empty())
1918     return nullptr;
1919 
1920   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1921   if (CI->getNumArgOperands() == 2) {
1922     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1923       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1924         return nullptr;        // We found a format specifier.
1925 
1926     return emitFWrite(
1927         CI->getArgOperand(1),
1928         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1929         CI->getArgOperand(0), B, DL, TLI);
1930   }
1931 
1932   // The remaining optimizations require the format string to be "%s" or "%c"
1933   // and have an extra operand.
1934   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1935       CI->getNumArgOperands() < 3)
1936     return nullptr;
1937 
1938   // Decode the second character of the format string.
1939   if (FormatStr[1] == 'c') {
1940     // fprintf(F, "%c", chr) --> fputc(chr, F)
1941     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1942       return nullptr;
1943     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1944   }
1945 
1946   if (FormatStr[1] == 's') {
1947     // fprintf(F, "%s", str) --> fputs(str, F)
1948     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1949       return nullptr;
1950     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1951   }
1952   return nullptr;
1953 }
1954 
1955 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1956   Function *Callee = CI->getCalledFunction();
1957   // Require two fixed paramters as pointers and integer result.
1958   FunctionType *FT = Callee->getFunctionType();
1959   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1960       !FT->getParamType(1)->isPointerTy() ||
1961       !FT->getReturnType()->isIntegerTy())
1962     return nullptr;
1963 
1964   if (Value *V = optimizeFPrintFString(CI, B)) {
1965     return V;
1966   }
1967 
1968   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1969   // floating point arguments.
1970   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1971     Module *M = B.GetInsertBlock()->getParent()->getParent();
1972     Constant *FIPrintFFn =
1973         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1974     CallInst *New = cast<CallInst>(CI->clone());
1975     New->setCalledFunction(FIPrintFFn);
1976     B.Insert(New);
1977     return New;
1978   }
1979   return nullptr;
1980 }
1981 
1982 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1983   optimizeErrorReporting(CI, B, 3);
1984 
1985   Function *Callee = CI->getCalledFunction();
1986   // Require a pointer, an integer, an integer, a pointer, returning integer.
1987   FunctionType *FT = Callee->getFunctionType();
1988   if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1989       !FT->getParamType(1)->isIntegerTy() ||
1990       !FT->getParamType(2)->isIntegerTy() ||
1991       !FT->getParamType(3)->isPointerTy() ||
1992       !FT->getReturnType()->isIntegerTy())
1993     return nullptr;
1994 
1995   // Get the element size and count.
1996   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1997   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1998   if (!SizeC || !CountC)
1999     return nullptr;
2000   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2001 
2002   // If this is writing zero records, remove the call (it's a noop).
2003   if (Bytes == 0)
2004     return ConstantInt::get(CI->getType(), 0);
2005 
2006   // If this is writing one byte, turn it into fputc.
2007   // This optimisation is only valid, if the return value is unused.
2008   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2009     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2010     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2011     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2012   }
2013 
2014   return nullptr;
2015 }
2016 
2017 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2018   optimizeErrorReporting(CI, B, 1);
2019 
2020   Function *Callee = CI->getCalledFunction();
2021 
2022   // Require two pointers.  Also, we can't optimize if return value is used.
2023   FunctionType *FT = Callee->getFunctionType();
2024   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
2025       !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
2026     return nullptr;
2027 
2028   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2029   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2030   if (!Len)
2031     return nullptr;
2032 
2033   // Known to have no uses (see above).
2034   return emitFWrite(
2035       CI->getArgOperand(0),
2036       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2037       CI->getArgOperand(1), B, DL, TLI);
2038 }
2039 
2040 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2041   Function *Callee = CI->getCalledFunction();
2042   // Require one fixed pointer argument and an integer/void result.
2043   FunctionType *FT = Callee->getFunctionType();
2044   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
2045       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
2046     return nullptr;
2047 
2048   // Check for a constant string.
2049   StringRef Str;
2050   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2051     return nullptr;
2052 
2053   if (Str.empty() && CI->use_empty()) {
2054     // puts("") -> putchar('\n')
2055     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2056     if (CI->use_empty() || !Res)
2057       return Res;
2058     return B.CreateIntCast(Res, CI->getType(), true);
2059   }
2060 
2061   return nullptr;
2062 }
2063 
2064 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2065   LibFunc::Func Func;
2066   SmallString<20> FloatFuncName = FuncName;
2067   FloatFuncName += 'f';
2068   if (TLI->getLibFunc(FloatFuncName, Func))
2069     return TLI->has(Func);
2070   return false;
2071 }
2072 
2073 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2074                                                       IRBuilder<> &Builder) {
2075   LibFunc::Func Func;
2076   Function *Callee = CI->getCalledFunction();
2077   StringRef FuncName = Callee->getName();
2078 
2079   // Check for string/memory library functions.
2080   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2081     // Make sure we never change the calling convention.
2082     assert((ignoreCallingConv(Func) ||
2083             CI->getCallingConv() == llvm::CallingConv::C) &&
2084       "Optimizing string/memory libcall would change the calling convention");
2085     switch (Func) {
2086     case LibFunc::strcat:
2087       return optimizeStrCat(CI, Builder);
2088     case LibFunc::strncat:
2089       return optimizeStrNCat(CI, Builder);
2090     case LibFunc::strchr:
2091       return optimizeStrChr(CI, Builder);
2092     case LibFunc::strrchr:
2093       return optimizeStrRChr(CI, Builder);
2094     case LibFunc::strcmp:
2095       return optimizeStrCmp(CI, Builder);
2096     case LibFunc::strncmp:
2097       return optimizeStrNCmp(CI, Builder);
2098     case LibFunc::strcpy:
2099       return optimizeStrCpy(CI, Builder);
2100     case LibFunc::stpcpy:
2101       return optimizeStpCpy(CI, Builder);
2102     case LibFunc::strncpy:
2103       return optimizeStrNCpy(CI, Builder);
2104     case LibFunc::strlen:
2105       return optimizeStrLen(CI, Builder);
2106     case LibFunc::strpbrk:
2107       return optimizeStrPBrk(CI, Builder);
2108     case LibFunc::strtol:
2109     case LibFunc::strtod:
2110     case LibFunc::strtof:
2111     case LibFunc::strtoul:
2112     case LibFunc::strtoll:
2113     case LibFunc::strtold:
2114     case LibFunc::strtoull:
2115       return optimizeStrTo(CI, Builder);
2116     case LibFunc::strspn:
2117       return optimizeStrSpn(CI, Builder);
2118     case LibFunc::strcspn:
2119       return optimizeStrCSpn(CI, Builder);
2120     case LibFunc::strstr:
2121       return optimizeStrStr(CI, Builder);
2122     case LibFunc::memchr:
2123       return optimizeMemChr(CI, Builder);
2124     case LibFunc::memcmp:
2125       return optimizeMemCmp(CI, Builder);
2126     case LibFunc::memcpy:
2127       return optimizeMemCpy(CI, Builder);
2128     case LibFunc::memmove:
2129       return optimizeMemMove(CI, Builder);
2130     case LibFunc::memset:
2131       return optimizeMemSet(CI, Builder);
2132     default:
2133       break;
2134     }
2135   }
2136   return nullptr;
2137 }
2138 
2139 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2140   if (CI->isNoBuiltin())
2141     return nullptr;
2142 
2143   LibFunc::Func Func;
2144   Function *Callee = CI->getCalledFunction();
2145   StringRef FuncName = Callee->getName();
2146 
2147   SmallVector<OperandBundleDef, 2> OpBundles;
2148   CI->getOperandBundlesAsDefs(OpBundles);
2149   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2150   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2151 
2152   // Command-line parameter overrides instruction attribute.
2153   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2154     UnsafeFPShrink = EnableUnsafeFPShrink;
2155   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2156     UnsafeFPShrink = true;
2157 
2158   // First, check for intrinsics.
2159   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2160     if (!isCallingConvC)
2161       return nullptr;
2162     switch (II->getIntrinsicID()) {
2163     case Intrinsic::pow:
2164       return optimizePow(CI, Builder);
2165     case Intrinsic::exp2:
2166       return optimizeExp2(CI, Builder);
2167     case Intrinsic::fabs:
2168       return optimizeFabs(CI, Builder);
2169     case Intrinsic::log:
2170       return optimizeLog(CI, Builder);
2171     case Intrinsic::sqrt:
2172       return optimizeSqrt(CI, Builder);
2173     default:
2174       return nullptr;
2175     }
2176   }
2177 
2178   // Also try to simplify calls to fortified library functions.
2179   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2180     // Try to further simplify the result.
2181     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2182     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2183       // Use an IR Builder from SimplifiedCI if available instead of CI
2184       // to guarantee we reach all uses we might replace later on.
2185       IRBuilder<> TmpBuilder(SimplifiedCI);
2186       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2187         // If we were able to further simplify, remove the now redundant call.
2188         SimplifiedCI->replaceAllUsesWith(V);
2189         SimplifiedCI->eraseFromParent();
2190         return V;
2191       }
2192     }
2193     return SimplifiedFortifiedCI;
2194   }
2195 
2196   // Then check for known library functions.
2197   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2198     // We never change the calling convention.
2199     if (!ignoreCallingConv(Func) && !isCallingConvC)
2200       return nullptr;
2201     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2202       return V;
2203     switch (Func) {
2204     case LibFunc::cosf:
2205     case LibFunc::cos:
2206     case LibFunc::cosl:
2207       return optimizeCos(CI, Builder);
2208     case LibFunc::sinpif:
2209     case LibFunc::sinpi:
2210     case LibFunc::cospif:
2211     case LibFunc::cospi:
2212       return optimizeSinCosPi(CI, Builder);
2213     case LibFunc::powf:
2214     case LibFunc::pow:
2215     case LibFunc::powl:
2216       return optimizePow(CI, Builder);
2217     case LibFunc::exp2l:
2218     case LibFunc::exp2:
2219     case LibFunc::exp2f:
2220       return optimizeExp2(CI, Builder);
2221     case LibFunc::fabsf:
2222     case LibFunc::fabs:
2223     case LibFunc::fabsl:
2224       return optimizeFabs(CI, Builder);
2225     case LibFunc::sqrtf:
2226     case LibFunc::sqrt:
2227     case LibFunc::sqrtl:
2228       return optimizeSqrt(CI, Builder);
2229     case LibFunc::ffs:
2230     case LibFunc::ffsl:
2231     case LibFunc::ffsll:
2232       return optimizeFFS(CI, Builder);
2233     case LibFunc::abs:
2234     case LibFunc::labs:
2235     case LibFunc::llabs:
2236       return optimizeAbs(CI, Builder);
2237     case LibFunc::isdigit:
2238       return optimizeIsDigit(CI, Builder);
2239     case LibFunc::isascii:
2240       return optimizeIsAscii(CI, Builder);
2241     case LibFunc::toascii:
2242       return optimizeToAscii(CI, Builder);
2243     case LibFunc::printf:
2244       return optimizePrintF(CI, Builder);
2245     case LibFunc::sprintf:
2246       return optimizeSPrintF(CI, Builder);
2247     case LibFunc::fprintf:
2248       return optimizeFPrintF(CI, Builder);
2249     case LibFunc::fwrite:
2250       return optimizeFWrite(CI, Builder);
2251     case LibFunc::fputs:
2252       return optimizeFPuts(CI, Builder);
2253     case LibFunc::log:
2254     case LibFunc::log10:
2255     case LibFunc::log1p:
2256     case LibFunc::log2:
2257     case LibFunc::logb:
2258       return optimizeLog(CI, Builder);
2259     case LibFunc::puts:
2260       return optimizePuts(CI, Builder);
2261     case LibFunc::tan:
2262     case LibFunc::tanf:
2263     case LibFunc::tanl:
2264       return optimizeTan(CI, Builder);
2265     case LibFunc::perror:
2266       return optimizeErrorReporting(CI, Builder);
2267     case LibFunc::vfprintf:
2268     case LibFunc::fiprintf:
2269       return optimizeErrorReporting(CI, Builder, 0);
2270     case LibFunc::fputc:
2271       return optimizeErrorReporting(CI, Builder, 1);
2272     case LibFunc::ceil:
2273     case LibFunc::floor:
2274     case LibFunc::rint:
2275     case LibFunc::round:
2276     case LibFunc::nearbyint:
2277     case LibFunc::trunc:
2278       if (hasFloatVersion(FuncName))
2279         return optimizeUnaryDoubleFP(CI, Builder, false);
2280       return nullptr;
2281     case LibFunc::acos:
2282     case LibFunc::acosh:
2283     case LibFunc::asin:
2284     case LibFunc::asinh:
2285     case LibFunc::atan:
2286     case LibFunc::atanh:
2287     case LibFunc::cbrt:
2288     case LibFunc::cosh:
2289     case LibFunc::exp:
2290     case LibFunc::exp10:
2291     case LibFunc::expm1:
2292     case LibFunc::sin:
2293     case LibFunc::sinh:
2294     case LibFunc::tanh:
2295       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2296         return optimizeUnaryDoubleFP(CI, Builder, true);
2297       return nullptr;
2298     case LibFunc::copysign:
2299       if (hasFloatVersion(FuncName))
2300         return optimizeBinaryDoubleFP(CI, Builder);
2301       return nullptr;
2302     case LibFunc::fminf:
2303     case LibFunc::fmin:
2304     case LibFunc::fminl:
2305     case LibFunc::fmaxf:
2306     case LibFunc::fmax:
2307     case LibFunc::fmaxl:
2308       return optimizeFMinFMax(CI, Builder);
2309     default:
2310       return nullptr;
2311     }
2312   }
2313   return nullptr;
2314 }
2315 
2316 LibCallSimplifier::LibCallSimplifier(
2317     const DataLayout &DL, const TargetLibraryInfo *TLI,
2318     function_ref<void(Instruction *, Value *)> Replacer)
2319     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2320       Replacer(Replacer) {}
2321 
2322 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2323   // Indirect through the replacer used in this instance.
2324   Replacer(I, With);
2325 }
2326 
2327 // TODO:
2328 //   Additional cases that we need to add to this file:
2329 //
2330 // cbrt:
2331 //   * cbrt(expN(X))  -> expN(x/3)
2332 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2333 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2334 //
2335 // exp, expf, expl:
2336 //   * exp(log(x))  -> x
2337 //
2338 // log, logf, logl:
2339 //   * log(exp(x))   -> x
2340 //   * log(exp(y))   -> y*log(e)
2341 //   * log(exp10(y)) -> y*log(10)
2342 //   * log(sqrt(x))  -> 0.5*log(x)
2343 //
2344 // lround, lroundf, lroundl:
2345 //   * lround(cnst) -> cnst'
2346 //
2347 // pow, powf, powl:
2348 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2349 //   * pow(pow(x,y),z)-> pow(x,y*z)
2350 //
2351 // round, roundf, roundl:
2352 //   * round(cnst) -> cnst'
2353 //
2354 // signbit:
2355 //   * signbit(cnst) -> cnst'
2356 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2357 //
2358 // sqrt, sqrtf, sqrtl:
2359 //   * sqrt(expN(x))  -> expN(x*0.5)
2360 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2361 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2362 //
2363 // trunc, truncf, truncl:
2364 //   * trunc(cnst) -> cnst'
2365 //
2366 //
2367 
2368 //===----------------------------------------------------------------------===//
2369 // Fortified Library Call Optimizations
2370 //===----------------------------------------------------------------------===//
2371 
2372 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2373                                                          unsigned ObjSizeOp,
2374                                                          unsigned SizeOp,
2375                                                          bool isString) {
2376   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2377     return true;
2378   if (ConstantInt *ObjSizeCI =
2379           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2380     if (ObjSizeCI->isAllOnesValue())
2381       return true;
2382     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2383     if (OnlyLowerUnknownSize)
2384       return false;
2385     if (isString) {
2386       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2387       // If the length is 0 we don't know how long it is and so we can't
2388       // remove the check.
2389       if (Len == 0)
2390         return false;
2391       return ObjSizeCI->getZExtValue() >= Len;
2392     }
2393     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2394       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2395   }
2396   return false;
2397 }
2398 
2399 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2400                                                      IRBuilder<> &B) {
2401   Function *Callee = CI->getCalledFunction();
2402 
2403   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
2404     return nullptr;
2405 
2406   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2407     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2408                    CI->getArgOperand(2), 1);
2409     return CI->getArgOperand(0);
2410   }
2411   return nullptr;
2412 }
2413 
2414 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2415                                                       IRBuilder<> &B) {
2416   Function *Callee = CI->getCalledFunction();
2417 
2418   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
2419     return nullptr;
2420 
2421   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2422     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2423                     CI->getArgOperand(2), 1);
2424     return CI->getArgOperand(0);
2425   }
2426   return nullptr;
2427 }
2428 
2429 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2430                                                      IRBuilder<> &B) {
2431   Function *Callee = CI->getCalledFunction();
2432 
2433   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
2434     return nullptr;
2435 
2436   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2437     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2438     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2439     return CI->getArgOperand(0);
2440   }
2441   return nullptr;
2442 }
2443 
2444 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2445                                                       IRBuilder<> &B,
2446                                                       LibFunc::Func Func) {
2447   Function *Callee = CI->getCalledFunction();
2448   StringRef Name = Callee->getName();
2449   const DataLayout &DL = CI->getModule()->getDataLayout();
2450 
2451   if (!checkStringCopyLibFuncSignature(Callee, Func))
2452     return nullptr;
2453 
2454   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2455         *ObjSize = CI->getArgOperand(2);
2456 
2457   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2458   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2459     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2460     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2461   }
2462 
2463   // If a) we don't have any length information, or b) we know this will
2464   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2465   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2466   // TODO: It might be nice to get a maximum length out of the possible
2467   // string lengths for varying.
2468   if (isFortifiedCallFoldable(CI, 2, 1, true))
2469     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2470 
2471   if (OnlyLowerUnknownSize)
2472     return nullptr;
2473 
2474   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2475   uint64_t Len = GetStringLength(Src);
2476   if (Len == 0)
2477     return nullptr;
2478 
2479   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2480   Value *LenV = ConstantInt::get(SizeTTy, Len);
2481   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2482   // If the function was an __stpcpy_chk, and we were able to fold it into
2483   // a __memcpy_chk, we still need to return the correct end pointer.
2484   if (Ret && Func == LibFunc::stpcpy_chk)
2485     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2486   return Ret;
2487 }
2488 
2489 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2490                                                        IRBuilder<> &B,
2491                                                        LibFunc::Func Func) {
2492   Function *Callee = CI->getCalledFunction();
2493   StringRef Name = Callee->getName();
2494 
2495   if (!checkStringCopyLibFuncSignature(Callee, Func))
2496     return nullptr;
2497   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2498     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2499                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2500     return Ret;
2501   }
2502   return nullptr;
2503 }
2504 
2505 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2506   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2507   // Some clang users checked for _chk libcall availability using:
2508   //   __has_builtin(__builtin___memcpy_chk)
2509   // When compiling with -fno-builtin, this is always true.
2510   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2511   // end up with fortified libcalls, which isn't acceptable in a freestanding
2512   // environment which only provides their non-fortified counterparts.
2513   //
2514   // Until we change clang and/or teach external users to check for availability
2515   // differently, disregard the "nobuiltin" attribute and TLI::has.
2516   //
2517   // PR23093.
2518 
2519   LibFunc::Func Func;
2520   Function *Callee = CI->getCalledFunction();
2521   StringRef FuncName = Callee->getName();
2522 
2523   SmallVector<OperandBundleDef, 2> OpBundles;
2524   CI->getOperandBundlesAsDefs(OpBundles);
2525   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2526   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2527 
2528   // First, check that this is a known library functions.
2529   if (!TLI->getLibFunc(FuncName, Func))
2530     return nullptr;
2531 
2532   // We never change the calling convention.
2533   if (!ignoreCallingConv(Func) && !isCallingConvC)
2534     return nullptr;
2535 
2536   switch (Func) {
2537   case LibFunc::memcpy_chk:
2538     return optimizeMemCpyChk(CI, Builder);
2539   case LibFunc::memmove_chk:
2540     return optimizeMemMoveChk(CI, Builder);
2541   case LibFunc::memset_chk:
2542     return optimizeMemSetChk(CI, Builder);
2543   case LibFunc::stpcpy_chk:
2544   case LibFunc::strcpy_chk:
2545     return optimizeStrpCpyChk(CI, Builder, Func);
2546   case LibFunc::stpncpy_chk:
2547   case LibFunc::strncpy_chk:
2548     return optimizeStrpNCpyChk(CI, Builder, Func);
2549   default:
2550     break;
2551   }
2552   return nullptr;
2553 }
2554 
2555 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2556     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2557     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2558