1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 /// \brief Check whether the overloaded unary floating point function 108 /// corresponding to \a Ty is available. 109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 110 LibFunc DoubleFn, LibFunc FloatFn, 111 LibFunc LongDoubleFn) { 112 switch (Ty->getTypeID()) { 113 case Type::FloatTyID: 114 return TLI->has(FloatFn); 115 case Type::DoubleTyID: 116 return TLI->has(DoubleFn); 117 default: 118 return TLI->has(LongDoubleFn); 119 } 120 } 121 122 //===----------------------------------------------------------------------===// 123 // String and Memory Library Call Optimizations 124 //===----------------------------------------------------------------------===// 125 126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 127 // Extract some information from the instruction 128 Value *Dst = CI->getArgOperand(0); 129 Value *Src = CI->getArgOperand(1); 130 131 // See if we can get the length of the input string. 132 uint64_t Len = GetStringLength(Src); 133 if (Len == 0) 134 return nullptr; 135 --Len; // Unbias length. 136 137 // Handle the simple, do-nothing case: strcat(x, "") -> x 138 if (Len == 0) 139 return Dst; 140 141 return emitStrLenMemCpy(Src, Dst, Len, B); 142 } 143 144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 145 IRBuilder<> &B) { 146 // We need to find the end of the destination string. That's where the 147 // memory is to be moved to. We just generate a call to strlen. 148 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 149 if (!DstLen) 150 return nullptr; 151 152 // Now that we have the destination's length, we must index into the 153 // destination's pointer to get the actual memcpy destination (end of 154 // the string .. we're concatenating). 155 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 156 157 // We have enough information to now generate the memcpy call to do the 158 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 159 B.CreateMemCpy(CpyDst, Src, 160 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 161 1); 162 return Dst; 163 } 164 165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 166 // Extract some information from the instruction. 167 Value *Dst = CI->getArgOperand(0); 168 Value *Src = CI->getArgOperand(1); 169 uint64_t Len; 170 171 // We don't do anything if length is not constant. 172 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 173 Len = LengthArg->getZExtValue(); 174 else 175 return nullptr; 176 177 // See if we can get the length of the input string. 178 uint64_t SrcLen = GetStringLength(Src); 179 if (SrcLen == 0) 180 return nullptr; 181 --SrcLen; // Unbias length. 182 183 // Handle the simple, do-nothing cases: 184 // strncat(x, "", c) -> x 185 // strncat(x, c, 0) -> x 186 if (SrcLen == 0 || Len == 0) 187 return Dst; 188 189 // We don't optimize this case. 190 if (Len < SrcLen) 191 return nullptr; 192 193 // strncat(x, s, c) -> strcat(x, s) 194 // s is constant so the strcat can be optimized further. 195 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 196 } 197 198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 199 Function *Callee = CI->getCalledFunction(); 200 FunctionType *FT = Callee->getFunctionType(); 201 Value *SrcStr = CI->getArgOperand(0); 202 203 // If the second operand is non-constant, see if we can compute the length 204 // of the input string and turn this into memchr. 205 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 206 if (!CharC) { 207 uint64_t Len = GetStringLength(SrcStr); 208 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 209 return nullptr; 210 211 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 212 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 213 B, DL, TLI); 214 } 215 216 // Otherwise, the character is a constant, see if the first argument is 217 // a string literal. If so, we can constant fold. 218 StringRef Str; 219 if (!getConstantStringInfo(SrcStr, Str)) { 220 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 221 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 222 "strchr"); 223 return nullptr; 224 } 225 226 // Compute the offset, make sure to handle the case when we're searching for 227 // zero (a weird way to spell strlen). 228 size_t I = (0xFF & CharC->getSExtValue()) == 0 229 ? Str.size() 230 : Str.find(CharC->getSExtValue()); 231 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 232 return Constant::getNullValue(CI->getType()); 233 234 // strchr(s+n,c) -> gep(s+n+i,c) 235 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 236 } 237 238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 239 Value *SrcStr = CI->getArgOperand(0); 240 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 241 242 // Cannot fold anything if we're not looking for a constant. 243 if (!CharC) 244 return nullptr; 245 246 StringRef Str; 247 if (!getConstantStringInfo(SrcStr, Str)) { 248 // strrchr(s, 0) -> strchr(s, 0) 249 if (CharC->isZero()) 250 return emitStrChr(SrcStr, '\0', B, TLI); 251 return nullptr; 252 } 253 254 // Compute the offset. 255 size_t I = (0xFF & CharC->getSExtValue()) == 0 256 ? Str.size() 257 : Str.rfind(CharC->getSExtValue()); 258 if (I == StringRef::npos) // Didn't find the char. Return null. 259 return Constant::getNullValue(CI->getType()); 260 261 // strrchr(s+n,c) -> gep(s+n+i,c) 262 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 263 } 264 265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 266 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 267 if (Str1P == Str2P) // strcmp(x,x) -> 0 268 return ConstantInt::get(CI->getType(), 0); 269 270 StringRef Str1, Str2; 271 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 272 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 273 274 // strcmp(x, y) -> cnst (if both x and y are constant strings) 275 if (HasStr1 && HasStr2) 276 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 277 278 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 279 return B.CreateNeg( 280 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 281 282 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 283 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 284 285 // strcmp(P, "x") -> memcmp(P, "x", 2) 286 uint64_t Len1 = GetStringLength(Str1P); 287 uint64_t Len2 = GetStringLength(Str2P); 288 if (Len1 && Len2) { 289 return emitMemCmp(Str1P, Str2P, 290 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 291 std::min(Len1, Len2)), 292 B, DL, TLI); 293 } 294 295 return nullptr; 296 } 297 298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 299 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 300 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 301 return ConstantInt::get(CI->getType(), 0); 302 303 // Get the length argument if it is constant. 304 uint64_t Length; 305 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 306 Length = LengthArg->getZExtValue(); 307 else 308 return nullptr; 309 310 if (Length == 0) // strncmp(x,y,0) -> 0 311 return ConstantInt::get(CI->getType(), 0); 312 313 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 314 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 315 316 StringRef Str1, Str2; 317 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 318 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 319 320 // strncmp(x, y) -> cnst (if both x and y are constant strings) 321 if (HasStr1 && HasStr2) { 322 StringRef SubStr1 = Str1.substr(0, Length); 323 StringRef SubStr2 = Str2.substr(0, Length); 324 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 325 } 326 327 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 328 return B.CreateNeg( 329 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 330 331 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 332 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 333 334 return nullptr; 335 } 336 337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 339 if (Dst == Src) // strcpy(x,x) -> x 340 return Src; 341 342 // See if we can get the length of the input string. 343 uint64_t Len = GetStringLength(Src); 344 if (Len == 0) 345 return nullptr; 346 347 // We have enough information to now generate the memcpy call to do the 348 // copy for us. Make a memcpy to copy the nul byte with align = 1. 349 B.CreateMemCpy(Dst, Src, 350 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 351 return Dst; 352 } 353 354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 355 Function *Callee = CI->getCalledFunction(); 356 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 357 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 358 Value *StrLen = emitStrLen(Src, B, DL, TLI); 359 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 360 } 361 362 // See if we can get the length of the input string. 363 uint64_t Len = GetStringLength(Src); 364 if (Len == 0) 365 return nullptr; 366 367 Type *PT = Callee->getFunctionType()->getParamType(0); 368 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 369 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 370 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 371 372 // We have enough information to now generate the memcpy call to do the 373 // copy for us. Make a memcpy to copy the nul byte with align = 1. 374 B.CreateMemCpy(Dst, Src, LenV, 1); 375 return DstEnd; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 379 Function *Callee = CI->getCalledFunction(); 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 Value *LenOp = CI->getArgOperand(2); 383 384 // See if we can get the length of the input string. 385 uint64_t SrcLen = GetStringLength(Src); 386 if (SrcLen == 0) 387 return nullptr; 388 --SrcLen; 389 390 if (SrcLen == 0) { 391 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 392 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 393 return Dst; 394 } 395 396 uint64_t Len; 397 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 398 Len = LengthArg->getZExtValue(); 399 else 400 return nullptr; 401 402 if (Len == 0) 403 return Dst; // strncpy(x, y, 0) -> x 404 405 // Let strncpy handle the zero padding 406 if (Len > SrcLen + 1) 407 return nullptr; 408 409 Type *PT = Callee->getFunctionType()->getParamType(0); 410 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 411 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 412 413 return Dst; 414 } 415 416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 417 unsigned CharSize) { 418 Value *Src = CI->getArgOperand(0); 419 420 // Constant folding: strlen("xyz") -> 3 421 if (uint64_t Len = GetStringLength(Src, CharSize)) 422 return ConstantInt::get(CI->getType(), Len - 1); 423 424 // If s is a constant pointer pointing to a string literal, we can fold 425 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 426 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 427 // We only try to simplify strlen when the pointer s points to an array 428 // of i8. Otherwise, we would need to scale the offset x before doing the 429 // subtraction. This will make the optimization more complex, and it's not 430 // very useful because calling strlen for a pointer of other types is 431 // very uncommon. 432 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 433 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 434 return nullptr; 435 436 ConstantDataArraySlice Slice; 437 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 438 uint64_t NullTermIdx; 439 if (Slice.Array == nullptr) { 440 NullTermIdx = 0; 441 } else { 442 NullTermIdx = ~((uint64_t)0); 443 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 444 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 445 NullTermIdx = I; 446 break; 447 } 448 } 449 // If the string does not have '\0', leave it to strlen to compute 450 // its length. 451 if (NullTermIdx == ~((uint64_t)0)) 452 return nullptr; 453 } 454 455 Value *Offset = GEP->getOperand(2); 456 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 457 Known.Zero.flipAllBits(); 458 uint64_t ArrSize = 459 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 460 461 // KnownZero's bits are flipped, so zeros in KnownZero now represent 462 // bits known to be zeros in Offset, and ones in KnowZero represent 463 // bits unknown in Offset. Therefore, Offset is known to be in range 464 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 465 // unsigned-less-than NullTermIdx. 466 // 467 // If Offset is not provably in the range [0, NullTermIdx], we can still 468 // optimize if we can prove that the program has undefined behavior when 469 // Offset is outside that range. That is the case when GEP->getOperand(0) 470 // is a pointer to an object whose memory extent is NullTermIdx+1. 471 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 472 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 473 NullTermIdx == ArrSize - 1)) { 474 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 475 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 476 Offset); 477 } 478 } 479 480 return nullptr; 481 } 482 483 // strlen(x?"foo":"bars") --> x ? 3 : 4 484 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 485 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 486 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 487 if (LenTrue && LenFalse) { 488 ORE.emit(OptimizationRemark("instcombine", "simplify-libcalls", CI) 489 << "folded strlen(select) to select of constants"); 490 return B.CreateSelect(SI->getCondition(), 491 ConstantInt::get(CI->getType(), LenTrue - 1), 492 ConstantInt::get(CI->getType(), LenFalse - 1)); 493 } 494 } 495 496 // strlen(x) != 0 --> *x != 0 497 // strlen(x) == 0 --> *x == 0 498 if (isOnlyUsedInZeroEqualityComparison(CI)) 499 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 500 501 return nullptr; 502 } 503 504 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 505 return optimizeStringLength(CI, B, 8); 506 } 507 508 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 509 Module &M = *CI->getParent()->getParent()->getParent(); 510 unsigned WCharSize = TLI->getWCharSize(M) * 8; 511 512 return optimizeStringLength(CI, B, WCharSize); 513 } 514 515 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 516 StringRef S1, S2; 517 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 518 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 519 520 // strpbrk(s, "") -> nullptr 521 // strpbrk("", s) -> nullptr 522 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 523 return Constant::getNullValue(CI->getType()); 524 525 // Constant folding. 526 if (HasS1 && HasS2) { 527 size_t I = S1.find_first_of(S2); 528 if (I == StringRef::npos) // No match. 529 return Constant::getNullValue(CI->getType()); 530 531 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 532 "strpbrk"); 533 } 534 535 // strpbrk(s, "a") -> strchr(s, 'a') 536 if (HasS2 && S2.size() == 1) 537 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 538 539 return nullptr; 540 } 541 542 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 543 Value *EndPtr = CI->getArgOperand(1); 544 if (isa<ConstantPointerNull>(EndPtr)) { 545 // With a null EndPtr, this function won't capture the main argument. 546 // It would be readonly too, except that it still may write to errno. 547 CI->addParamAttr(0, Attribute::NoCapture); 548 } 549 550 return nullptr; 551 } 552 553 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 554 StringRef S1, S2; 555 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 556 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 557 558 // strspn(s, "") -> 0 559 // strspn("", s) -> 0 560 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 561 return Constant::getNullValue(CI->getType()); 562 563 // Constant folding. 564 if (HasS1 && HasS2) { 565 size_t Pos = S1.find_first_not_of(S2); 566 if (Pos == StringRef::npos) 567 Pos = S1.size(); 568 return ConstantInt::get(CI->getType(), Pos); 569 } 570 571 return nullptr; 572 } 573 574 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 575 StringRef S1, S2; 576 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 577 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 578 579 // strcspn("", s) -> 0 580 if (HasS1 && S1.empty()) 581 return Constant::getNullValue(CI->getType()); 582 583 // Constant folding. 584 if (HasS1 && HasS2) { 585 size_t Pos = S1.find_first_of(S2); 586 if (Pos == StringRef::npos) 587 Pos = S1.size(); 588 return ConstantInt::get(CI->getType(), Pos); 589 } 590 591 // strcspn(s, "") -> strlen(s) 592 if (HasS2 && S2.empty()) 593 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 594 595 return nullptr; 596 } 597 598 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 599 // fold strstr(x, x) -> x. 600 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 601 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 602 603 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 604 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 605 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 606 if (!StrLen) 607 return nullptr; 608 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 609 StrLen, B, DL, TLI); 610 if (!StrNCmp) 611 return nullptr; 612 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 613 ICmpInst *Old = cast<ICmpInst>(*UI++); 614 Value *Cmp = 615 B.CreateICmp(Old->getPredicate(), StrNCmp, 616 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 617 replaceAllUsesWith(Old, Cmp); 618 } 619 return CI; 620 } 621 622 // See if either input string is a constant string. 623 StringRef SearchStr, ToFindStr; 624 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 625 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 626 627 // fold strstr(x, "") -> x. 628 if (HasStr2 && ToFindStr.empty()) 629 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 630 631 // If both strings are known, constant fold it. 632 if (HasStr1 && HasStr2) { 633 size_t Offset = SearchStr.find(ToFindStr); 634 635 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 636 return Constant::getNullValue(CI->getType()); 637 638 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 639 Value *Result = castToCStr(CI->getArgOperand(0), B); 640 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 641 return B.CreateBitCast(Result, CI->getType()); 642 } 643 644 // fold strstr(x, "y") -> strchr(x, 'y'). 645 if (HasStr2 && ToFindStr.size() == 1) { 646 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 647 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 648 } 649 return nullptr; 650 } 651 652 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 653 Value *SrcStr = CI->getArgOperand(0); 654 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 655 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 656 657 // memchr(x, y, 0) -> null 658 if (LenC && LenC->isZero()) 659 return Constant::getNullValue(CI->getType()); 660 661 // From now on we need at least constant length and string. 662 StringRef Str; 663 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 664 return nullptr; 665 666 // Truncate the string to LenC. If Str is smaller than LenC we will still only 667 // scan the string, as reading past the end of it is undefined and we can just 668 // return null if we don't find the char. 669 Str = Str.substr(0, LenC->getZExtValue()); 670 671 // If the char is variable but the input str and length are not we can turn 672 // this memchr call into a simple bit field test. Of course this only works 673 // when the return value is only checked against null. 674 // 675 // It would be really nice to reuse switch lowering here but we can't change 676 // the CFG at this point. 677 // 678 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 679 // after bounds check. 680 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 681 unsigned char Max = 682 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 683 reinterpret_cast<const unsigned char *>(Str.end())); 684 685 // Make sure the bit field we're about to create fits in a register on the 686 // target. 687 // FIXME: On a 64 bit architecture this prevents us from using the 688 // interesting range of alpha ascii chars. We could do better by emitting 689 // two bitfields or shifting the range by 64 if no lower chars are used. 690 if (!DL.fitsInLegalInteger(Max + 1)) 691 return nullptr; 692 693 // For the bit field use a power-of-2 type with at least 8 bits to avoid 694 // creating unnecessary illegal types. 695 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 696 697 // Now build the bit field. 698 APInt Bitfield(Width, 0); 699 for (char C : Str) 700 Bitfield.setBit((unsigned char)C); 701 Value *BitfieldC = B.getInt(Bitfield); 702 703 // First check that the bit field access is within bounds. 704 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 705 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 706 "memchr.bounds"); 707 708 // Create code that checks if the given bit is set in the field. 709 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 710 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 711 712 // Finally merge both checks and cast to pointer type. The inttoptr 713 // implicitly zexts the i1 to intptr type. 714 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 715 } 716 717 // Check if all arguments are constants. If so, we can constant fold. 718 if (!CharC) 719 return nullptr; 720 721 // Compute the offset. 722 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 723 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 724 return Constant::getNullValue(CI->getType()); 725 726 // memchr(s+n,c,l) -> gep(s+n+i,c) 727 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 728 } 729 730 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 731 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 732 733 if (LHS == RHS) // memcmp(s,s,x) -> 0 734 return Constant::getNullValue(CI->getType()); 735 736 // Make sure we have a constant length. 737 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 738 if (!LenC) 739 return nullptr; 740 741 uint64_t Len = LenC->getZExtValue(); 742 if (Len == 0) // memcmp(s1,s2,0) -> 0 743 return Constant::getNullValue(CI->getType()); 744 745 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 746 if (Len == 1) { 747 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 748 CI->getType(), "lhsv"); 749 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 750 CI->getType(), "rhsv"); 751 return B.CreateSub(LHSV, RHSV, "chardiff"); 752 } 753 754 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 755 // TODO: The case where both inputs are constants does not need to be limited 756 // to legal integers or equality comparison. See block below this. 757 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 758 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 759 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 760 761 // First, see if we can fold either argument to a constant. 762 Value *LHSV = nullptr; 763 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 764 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 765 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 766 } 767 Value *RHSV = nullptr; 768 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 769 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 770 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 771 } 772 773 // Don't generate unaligned loads. If either source is constant data, 774 // alignment doesn't matter for that source because there is no load. 775 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 776 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 777 if (!LHSV) { 778 Type *LHSPtrTy = 779 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 780 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 781 } 782 if (!RHSV) { 783 Type *RHSPtrTy = 784 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 785 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 786 } 787 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 788 } 789 } 790 791 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 792 // TODO: This is limited to i8 arrays. 793 StringRef LHSStr, RHSStr; 794 if (getConstantStringInfo(LHS, LHSStr) && 795 getConstantStringInfo(RHS, RHSStr)) { 796 // Make sure we're not reading out-of-bounds memory. 797 if (Len > LHSStr.size() || Len > RHSStr.size()) 798 return nullptr; 799 // Fold the memcmp and normalize the result. This way we get consistent 800 // results across multiple platforms. 801 uint64_t Ret = 0; 802 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 803 if (Cmp < 0) 804 Ret = -1; 805 else if (Cmp > 0) 806 Ret = 1; 807 return ConstantInt::get(CI->getType(), Ret); 808 } 809 810 return nullptr; 811 } 812 813 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 814 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 815 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 816 CI->getArgOperand(2), 1); 817 return CI->getArgOperand(0); 818 } 819 820 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 821 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 822 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 823 CI->getArgOperand(2), 1); 824 return CI->getArgOperand(0); 825 } 826 827 // TODO: Does this belong in BuildLibCalls or should all of those similar 828 // functions be moved here? 829 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 830 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 831 LibFunc Func; 832 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 833 return nullptr; 834 835 Module *M = B.GetInsertBlock()->getModule(); 836 const DataLayout &DL = M->getDataLayout(); 837 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 838 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 839 PtrType, PtrType); 840 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 841 842 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 843 CI->setCallingConv(F->getCallingConv()); 844 845 return CI; 846 } 847 848 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 849 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 850 const TargetLibraryInfo &TLI) { 851 // This has to be a memset of zeros (bzero). 852 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 853 if (!FillValue || FillValue->getZExtValue() != 0) 854 return nullptr; 855 856 // TODO: We should handle the case where the malloc has more than one use. 857 // This is necessary to optimize common patterns such as when the result of 858 // the malloc is checked against null or when a memset intrinsic is used in 859 // place of a memset library call. 860 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 861 if (!Malloc || !Malloc->hasOneUse()) 862 return nullptr; 863 864 // Is the inner call really malloc()? 865 Function *InnerCallee = Malloc->getCalledFunction(); 866 if (!InnerCallee) 867 return nullptr; 868 869 LibFunc Func; 870 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 871 Func != LibFunc_malloc) 872 return nullptr; 873 874 // The memset must cover the same number of bytes that are malloc'd. 875 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 876 return nullptr; 877 878 // Replace the malloc with a calloc. We need the data layout to know what the 879 // actual size of a 'size_t' parameter is. 880 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 881 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 882 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 883 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 884 Malloc->getArgOperand(0), Malloc->getAttributes(), 885 B, TLI); 886 if (!Calloc) 887 return nullptr; 888 889 Malloc->replaceAllUsesWith(Calloc); 890 Malloc->eraseFromParent(); 891 892 return Calloc; 893 } 894 895 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 896 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 897 return Calloc; 898 899 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 900 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 901 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 902 return CI->getArgOperand(0); 903 } 904 905 //===----------------------------------------------------------------------===// 906 // Math Library Optimizations 907 //===----------------------------------------------------------------------===// 908 909 /// Return a variant of Val with float type. 910 /// Currently this works in two cases: If Val is an FPExtension of a float 911 /// value to something bigger, simply return the operand. 912 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 913 /// loss of precision do so. 914 static Value *valueHasFloatPrecision(Value *Val) { 915 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 916 Value *Op = Cast->getOperand(0); 917 if (Op->getType()->isFloatTy()) 918 return Op; 919 } 920 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 921 APFloat F = Const->getValueAPF(); 922 bool losesInfo; 923 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 924 &losesInfo); 925 if (!losesInfo) 926 return ConstantFP::get(Const->getContext(), F); 927 } 928 return nullptr; 929 } 930 931 /// Shrink double -> float for unary functions like 'floor'. 932 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 933 bool CheckRetType) { 934 Function *Callee = CI->getCalledFunction(); 935 // We know this libcall has a valid prototype, but we don't know which. 936 if (!CI->getType()->isDoubleTy()) 937 return nullptr; 938 939 if (CheckRetType) { 940 // Check if all the uses for function like 'sin' are converted to float. 941 for (User *U : CI->users()) { 942 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 943 if (!Cast || !Cast->getType()->isFloatTy()) 944 return nullptr; 945 } 946 } 947 948 // If this is something like 'floor((double)floatval)', convert to floorf. 949 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 950 if (V == nullptr) 951 return nullptr; 952 953 // If call isn't an intrinsic, check that it isn't within a function with the 954 // same name as the float version of this call. 955 // 956 // e.g. inline float expf(float val) { return (float) exp((double) val); } 957 // 958 // A similar such definition exists in the MinGW-w64 math.h header file which 959 // when compiled with -O2 -ffast-math causes the generation of infinite loops 960 // where expf is called. 961 if (!Callee->isIntrinsic()) { 962 const Function *F = CI->getFunction(); 963 StringRef FName = F->getName(); 964 StringRef CalleeName = Callee->getName(); 965 if ((FName.size() == (CalleeName.size() + 1)) && 966 (FName.back() == 'f') && 967 FName.startswith(CalleeName)) 968 return nullptr; 969 } 970 971 // Propagate fast-math flags from the existing call to the new call. 972 IRBuilder<>::FastMathFlagGuard Guard(B); 973 B.setFastMathFlags(CI->getFastMathFlags()); 974 975 // floor((double)floatval) -> (double)floorf(floatval) 976 if (Callee->isIntrinsic()) { 977 Module *M = CI->getModule(); 978 Intrinsic::ID IID = Callee->getIntrinsicID(); 979 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 980 V = B.CreateCall(F, V); 981 } else { 982 // The call is a library call rather than an intrinsic. 983 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 984 } 985 986 return B.CreateFPExt(V, B.getDoubleTy()); 987 } 988 989 // Replace a libcall \p CI with a call to intrinsic \p IID 990 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 991 // Propagate fast-math flags from the existing call to the new call. 992 IRBuilder<>::FastMathFlagGuard Guard(B); 993 B.setFastMathFlags(CI->getFastMathFlags()); 994 995 Module *M = CI->getModule(); 996 Value *V = CI->getArgOperand(0); 997 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 998 CallInst *NewCall = B.CreateCall(F, V); 999 NewCall->takeName(CI); 1000 return NewCall; 1001 } 1002 1003 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1004 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1005 Function *Callee = CI->getCalledFunction(); 1006 // We know this libcall has a valid prototype, but we don't know which. 1007 if (!CI->getType()->isDoubleTy()) 1008 return nullptr; 1009 1010 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1011 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1012 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1013 if (V1 == nullptr) 1014 return nullptr; 1015 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1016 if (V2 == nullptr) 1017 return nullptr; 1018 1019 // Propagate fast-math flags from the existing call to the new call. 1020 IRBuilder<>::FastMathFlagGuard Guard(B); 1021 B.setFastMathFlags(CI->getFastMathFlags()); 1022 1023 // fmin((double)floatval1, (double)floatval2) 1024 // -> (double)fminf(floatval1, floatval2) 1025 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1026 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1027 Callee->getAttributes()); 1028 return B.CreateFPExt(V, B.getDoubleTy()); 1029 } 1030 1031 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1032 Function *Callee = CI->getCalledFunction(); 1033 Value *Ret = nullptr; 1034 StringRef Name = Callee->getName(); 1035 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1036 Ret = optimizeUnaryDoubleFP(CI, B, true); 1037 1038 // cos(-x) -> cos(x) 1039 Value *Op1 = CI->getArgOperand(0); 1040 if (BinaryOperator::isFNeg(Op1)) { 1041 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1042 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1043 } 1044 return Ret; 1045 } 1046 1047 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1048 // Multiplications calculated using Addition Chains. 1049 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1050 1051 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1052 1053 if (InnerChain[Exp]) 1054 return InnerChain[Exp]; 1055 1056 static const unsigned AddChain[33][2] = { 1057 {0, 0}, // Unused. 1058 {0, 0}, // Unused (base case = pow1). 1059 {1, 1}, // Unused (pre-computed). 1060 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1061 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1062 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1063 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1064 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1065 }; 1066 1067 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1068 getPow(InnerChain, AddChain[Exp][1], B)); 1069 return InnerChain[Exp]; 1070 } 1071 1072 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1073 Function *Callee = CI->getCalledFunction(); 1074 Value *Ret = nullptr; 1075 StringRef Name = Callee->getName(); 1076 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1077 Ret = optimizeUnaryDoubleFP(CI, B, true); 1078 1079 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1080 1081 // pow(1.0, x) -> 1.0 1082 if (match(Op1, m_SpecificFP(1.0))) 1083 return Op1; 1084 // pow(2.0, x) -> llvm.exp2(x) 1085 if (match(Op1, m_SpecificFP(2.0))) { 1086 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1087 CI->getType()); 1088 return B.CreateCall(Exp2, Op2, "exp2"); 1089 } 1090 1091 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1092 // be one. 1093 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1094 // pow(10.0, x) -> exp10(x) 1095 if (Op1C->isExactlyValue(10.0) && 1096 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1097 LibFunc_exp10l)) 1098 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1099 Callee->getAttributes()); 1100 } 1101 1102 // pow(exp(x), y) -> exp(x * y) 1103 // pow(exp2(x), y) -> exp2(x * y) 1104 // We enable these only with fast-math. Besides rounding differences, the 1105 // transformation changes overflow and underflow behavior quite dramatically. 1106 // Example: x = 1000, y = 0.001. 1107 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1108 auto *OpC = dyn_cast<CallInst>(Op1); 1109 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1110 LibFunc Func; 1111 Function *OpCCallee = OpC->getCalledFunction(); 1112 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1113 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1114 IRBuilder<>::FastMathFlagGuard Guard(B); 1115 B.setFastMathFlags(CI->getFastMathFlags()); 1116 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1117 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1118 OpCCallee->getAttributes()); 1119 } 1120 } 1121 1122 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1123 if (!Op2C) 1124 return Ret; 1125 1126 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1127 return ConstantFP::get(CI->getType(), 1.0); 1128 1129 if (Op2C->isExactlyValue(-0.5) && 1130 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1131 LibFunc_sqrtl)) { 1132 // If -ffast-math: 1133 // pow(x, -0.5) -> 1.0 / sqrt(x) 1134 if (CI->hasUnsafeAlgebra()) { 1135 IRBuilder<>::FastMathFlagGuard Guard(B); 1136 B.setFastMathFlags(CI->getFastMathFlags()); 1137 1138 // TODO: If the pow call is an intrinsic, we should lower to the sqrt 1139 // intrinsic, so we match errno semantics. We also should check that the 1140 // target can in fact lower the sqrt intrinsic -- we currently have no way 1141 // to ask this question other than asking whether the target has a sqrt 1142 // libcall, which is a sufficient but not necessary condition. 1143 Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1144 Callee->getAttributes()); 1145 1146 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); 1147 } 1148 } 1149 1150 if (Op2C->isExactlyValue(0.5) && 1151 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1152 LibFunc_sqrtl)) { 1153 1154 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1155 if (CI->hasUnsafeAlgebra()) { 1156 IRBuilder<>::FastMathFlagGuard Guard(B); 1157 B.setFastMathFlags(CI->getFastMathFlags()); 1158 1159 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1160 // intrinsic, to match errno semantics. 1161 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1162 Callee->getAttributes()); 1163 } 1164 1165 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1166 // This is faster than calling pow, and still handles negative zero 1167 // and negative infinity correctly. 1168 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1169 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1170 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1171 1172 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1173 // intrinsic, to match errno semantics. 1174 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1175 1176 Module *M = Callee->getParent(); 1177 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1178 CI->getType()); 1179 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1180 1181 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1182 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1183 return Sel; 1184 } 1185 1186 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1187 return Op1; 1188 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1189 return B.CreateFMul(Op1, Op1, "pow2"); 1190 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1191 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1192 1193 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1194 if (CI->hasUnsafeAlgebra()) { 1195 APFloat V = abs(Op2C->getValueAPF()); 1196 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1197 // This transformation applies to integer exponents only. 1198 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1199 !V.isInteger()) 1200 return nullptr; 1201 1202 // Propagate fast math flags. 1203 IRBuilder<>::FastMathFlagGuard Guard(B); 1204 B.setFastMathFlags(CI->getFastMathFlags()); 1205 1206 // We will memoize intermediate products of the Addition Chain. 1207 Value *InnerChain[33] = {nullptr}; 1208 InnerChain[1] = Op1; 1209 InnerChain[2] = B.CreateFMul(Op1, Op1); 1210 1211 // We cannot readily convert a non-double type (like float) to a double. 1212 // So we first convert V to something which could be converted to double. 1213 bool ignored; 1214 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored); 1215 1216 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1217 // For negative exponents simply compute the reciprocal. 1218 if (Op2C->isNegative()) 1219 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1220 return FMul; 1221 } 1222 1223 return nullptr; 1224 } 1225 1226 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1227 Function *Callee = CI->getCalledFunction(); 1228 Value *Ret = nullptr; 1229 StringRef Name = Callee->getName(); 1230 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1231 Ret = optimizeUnaryDoubleFP(CI, B, true); 1232 1233 Value *Op = CI->getArgOperand(0); 1234 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1235 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1236 LibFunc LdExp = LibFunc_ldexpl; 1237 if (Op->getType()->isFloatTy()) 1238 LdExp = LibFunc_ldexpf; 1239 else if (Op->getType()->isDoubleTy()) 1240 LdExp = LibFunc_ldexp; 1241 1242 if (TLI->has(LdExp)) { 1243 Value *LdExpArg = nullptr; 1244 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1245 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1246 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1247 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1248 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1249 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1250 } 1251 1252 if (LdExpArg) { 1253 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1254 if (!Op->getType()->isFloatTy()) 1255 One = ConstantExpr::getFPExtend(One, Op->getType()); 1256 1257 Module *M = CI->getModule(); 1258 Value *NewCallee = 1259 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1260 Op->getType(), B.getInt32Ty()); 1261 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1262 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1263 CI->setCallingConv(F->getCallingConv()); 1264 1265 return CI; 1266 } 1267 } 1268 return Ret; 1269 } 1270 1271 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1272 Function *Callee = CI->getCalledFunction(); 1273 // If we can shrink the call to a float function rather than a double 1274 // function, do that first. 1275 StringRef Name = Callee->getName(); 1276 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1277 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1278 return Ret; 1279 1280 IRBuilder<>::FastMathFlagGuard Guard(B); 1281 FastMathFlags FMF; 1282 if (CI->hasUnsafeAlgebra()) { 1283 // Unsafe algebra sets all fast-math-flags to true. 1284 FMF.setUnsafeAlgebra(); 1285 } else { 1286 // At a minimum, no-nans-fp-math must be true. 1287 if (!CI->hasNoNaNs()) 1288 return nullptr; 1289 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1290 // "Ideally, fmax would be sensitive to the sign of zero, for example 1291 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1292 // might be impractical." 1293 FMF.setNoSignedZeros(); 1294 FMF.setNoNaNs(); 1295 } 1296 B.setFastMathFlags(FMF); 1297 1298 // We have a relaxed floating-point environment. We can ignore NaN-handling 1299 // and transform to a compare and select. We do not have to consider errno or 1300 // exceptions, because fmin/fmax do not have those. 1301 Value *Op0 = CI->getArgOperand(0); 1302 Value *Op1 = CI->getArgOperand(1); 1303 Value *Cmp = Callee->getName().startswith("fmin") ? 1304 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1305 return B.CreateSelect(Cmp, Op0, Op1); 1306 } 1307 1308 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1309 Function *Callee = CI->getCalledFunction(); 1310 Value *Ret = nullptr; 1311 StringRef Name = Callee->getName(); 1312 if (UnsafeFPShrink && hasFloatVersion(Name)) 1313 Ret = optimizeUnaryDoubleFP(CI, B, true); 1314 1315 if (!CI->hasUnsafeAlgebra()) 1316 return Ret; 1317 Value *Op1 = CI->getArgOperand(0); 1318 auto *OpC = dyn_cast<CallInst>(Op1); 1319 1320 // The earlier call must also be unsafe in order to do these transforms. 1321 if (!OpC || !OpC->hasUnsafeAlgebra()) 1322 return Ret; 1323 1324 // log(pow(x,y)) -> y*log(x) 1325 // This is only applicable to log, log2, log10. 1326 if (Name != "log" && Name != "log2" && Name != "log10") 1327 return Ret; 1328 1329 IRBuilder<>::FastMathFlagGuard Guard(B); 1330 FastMathFlags FMF; 1331 FMF.setUnsafeAlgebra(); 1332 B.setFastMathFlags(FMF); 1333 1334 LibFunc Func; 1335 Function *F = OpC->getCalledFunction(); 1336 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1337 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1338 return B.CreateFMul(OpC->getArgOperand(1), 1339 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1340 Callee->getAttributes()), "mul"); 1341 1342 // log(exp2(y)) -> y*log(2) 1343 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1344 TLI->has(Func) && Func == LibFunc_exp2) 1345 return B.CreateFMul( 1346 OpC->getArgOperand(0), 1347 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1348 Callee->getName(), B, Callee->getAttributes()), 1349 "logmul"); 1350 return Ret; 1351 } 1352 1353 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1354 Function *Callee = CI->getCalledFunction(); 1355 Value *Ret = nullptr; 1356 // TODO: Once we have a way (other than checking for the existince of the 1357 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1358 // condition below. 1359 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1360 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1361 Ret = optimizeUnaryDoubleFP(CI, B, true); 1362 1363 if (!CI->hasUnsafeAlgebra()) 1364 return Ret; 1365 1366 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1367 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1368 return Ret; 1369 1370 // We're looking for a repeated factor in a multiplication tree, 1371 // so we can do this fold: sqrt(x * x) -> fabs(x); 1372 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1373 Value *Op0 = I->getOperand(0); 1374 Value *Op1 = I->getOperand(1); 1375 Value *RepeatOp = nullptr; 1376 Value *OtherOp = nullptr; 1377 if (Op0 == Op1) { 1378 // Simple match: the operands of the multiply are identical. 1379 RepeatOp = Op0; 1380 } else { 1381 // Look for a more complicated pattern: one of the operands is itself 1382 // a multiply, so search for a common factor in that multiply. 1383 // Note: We don't bother looking any deeper than this first level or for 1384 // variations of this pattern because instcombine's visitFMUL and/or the 1385 // reassociation pass should give us this form. 1386 Value *OtherMul0, *OtherMul1; 1387 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1388 // Pattern: sqrt((x * y) * z) 1389 if (OtherMul0 == OtherMul1 && 1390 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1391 // Matched: sqrt((x * x) * z) 1392 RepeatOp = OtherMul0; 1393 OtherOp = Op1; 1394 } 1395 } 1396 } 1397 if (!RepeatOp) 1398 return Ret; 1399 1400 // Fast math flags for any created instructions should match the sqrt 1401 // and multiply. 1402 IRBuilder<>::FastMathFlagGuard Guard(B); 1403 B.setFastMathFlags(I->getFastMathFlags()); 1404 1405 // If we found a repeated factor, hoist it out of the square root and 1406 // replace it with the fabs of that factor. 1407 Module *M = Callee->getParent(); 1408 Type *ArgType = I->getType(); 1409 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1410 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1411 if (OtherOp) { 1412 // If we found a non-repeated factor, we still need to get its square 1413 // root. We then multiply that by the value that was simplified out 1414 // of the square root calculation. 1415 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1416 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1417 return B.CreateFMul(FabsCall, SqrtCall); 1418 } 1419 return FabsCall; 1420 } 1421 1422 // TODO: Generalize to handle any trig function and its inverse. 1423 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1424 Function *Callee = CI->getCalledFunction(); 1425 Value *Ret = nullptr; 1426 StringRef Name = Callee->getName(); 1427 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1428 Ret = optimizeUnaryDoubleFP(CI, B, true); 1429 1430 Value *Op1 = CI->getArgOperand(0); 1431 auto *OpC = dyn_cast<CallInst>(Op1); 1432 if (!OpC) 1433 return Ret; 1434 1435 // Both calls must allow unsafe optimizations in order to remove them. 1436 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1437 return Ret; 1438 1439 // tan(atan(x)) -> x 1440 // tanf(atanf(x)) -> x 1441 // tanl(atanl(x)) -> x 1442 LibFunc Func; 1443 Function *F = OpC->getCalledFunction(); 1444 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1445 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1446 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1447 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1448 Ret = OpC->getArgOperand(0); 1449 return Ret; 1450 } 1451 1452 static bool isTrigLibCall(CallInst *CI) { 1453 // We can only hope to do anything useful if we can ignore things like errno 1454 // and floating-point exceptions. 1455 // We already checked the prototype. 1456 return CI->hasFnAttr(Attribute::NoUnwind) && 1457 CI->hasFnAttr(Attribute::ReadNone); 1458 } 1459 1460 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1461 bool UseFloat, Value *&Sin, Value *&Cos, 1462 Value *&SinCos) { 1463 Type *ArgTy = Arg->getType(); 1464 Type *ResTy; 1465 StringRef Name; 1466 1467 Triple T(OrigCallee->getParent()->getTargetTriple()); 1468 if (UseFloat) { 1469 Name = "__sincospif_stret"; 1470 1471 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1472 // x86_64 can't use {float, float} since that would be returned in both 1473 // xmm0 and xmm1, which isn't what a real struct would do. 1474 ResTy = T.getArch() == Triple::x86_64 1475 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1476 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1477 } else { 1478 Name = "__sincospi_stret"; 1479 ResTy = StructType::get(ArgTy, ArgTy); 1480 } 1481 1482 Module *M = OrigCallee->getParent(); 1483 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1484 ResTy, ArgTy); 1485 1486 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1487 // If the argument is an instruction, it must dominate all uses so put our 1488 // sincos call there. 1489 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1490 } else { 1491 // Otherwise (e.g. for a constant) the beginning of the function is as 1492 // good a place as any. 1493 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1494 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1495 } 1496 1497 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1498 1499 if (SinCos->getType()->isStructTy()) { 1500 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1501 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1502 } else { 1503 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1504 "sinpi"); 1505 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1506 "cospi"); 1507 } 1508 } 1509 1510 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1511 // Make sure the prototype is as expected, otherwise the rest of the 1512 // function is probably invalid and likely to abort. 1513 if (!isTrigLibCall(CI)) 1514 return nullptr; 1515 1516 Value *Arg = CI->getArgOperand(0); 1517 SmallVector<CallInst *, 1> SinCalls; 1518 SmallVector<CallInst *, 1> CosCalls; 1519 SmallVector<CallInst *, 1> SinCosCalls; 1520 1521 bool IsFloat = Arg->getType()->isFloatTy(); 1522 1523 // Look for all compatible sinpi, cospi and sincospi calls with the same 1524 // argument. If there are enough (in some sense) we can make the 1525 // substitution. 1526 Function *F = CI->getFunction(); 1527 for (User *U : Arg->users()) 1528 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1529 1530 // It's only worthwhile if both sinpi and cospi are actually used. 1531 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1532 return nullptr; 1533 1534 Value *Sin, *Cos, *SinCos; 1535 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1536 1537 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1538 Value *Res) { 1539 for (CallInst *C : Calls) 1540 replaceAllUsesWith(C, Res); 1541 }; 1542 1543 replaceTrigInsts(SinCalls, Sin); 1544 replaceTrigInsts(CosCalls, Cos); 1545 replaceTrigInsts(SinCosCalls, SinCos); 1546 1547 return nullptr; 1548 } 1549 1550 void LibCallSimplifier::classifyArgUse( 1551 Value *Val, Function *F, bool IsFloat, 1552 SmallVectorImpl<CallInst *> &SinCalls, 1553 SmallVectorImpl<CallInst *> &CosCalls, 1554 SmallVectorImpl<CallInst *> &SinCosCalls) { 1555 CallInst *CI = dyn_cast<CallInst>(Val); 1556 1557 if (!CI) 1558 return; 1559 1560 // Don't consider calls in other functions. 1561 if (CI->getFunction() != F) 1562 return; 1563 1564 Function *Callee = CI->getCalledFunction(); 1565 LibFunc Func; 1566 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1567 !isTrigLibCall(CI)) 1568 return; 1569 1570 if (IsFloat) { 1571 if (Func == LibFunc_sinpif) 1572 SinCalls.push_back(CI); 1573 else if (Func == LibFunc_cospif) 1574 CosCalls.push_back(CI); 1575 else if (Func == LibFunc_sincospif_stret) 1576 SinCosCalls.push_back(CI); 1577 } else { 1578 if (Func == LibFunc_sinpi) 1579 SinCalls.push_back(CI); 1580 else if (Func == LibFunc_cospi) 1581 CosCalls.push_back(CI); 1582 else if (Func == LibFunc_sincospi_stret) 1583 SinCosCalls.push_back(CI); 1584 } 1585 } 1586 1587 //===----------------------------------------------------------------------===// 1588 // Integer Library Call Optimizations 1589 //===----------------------------------------------------------------------===// 1590 1591 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1592 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1593 Value *Op = CI->getArgOperand(0); 1594 Type *ArgType = Op->getType(); 1595 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1596 Intrinsic::cttz, ArgType); 1597 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1598 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1599 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1600 1601 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1602 return B.CreateSelect(Cond, V, B.getInt32(0)); 1603 } 1604 1605 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1606 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1607 Value *Op = CI->getArgOperand(0); 1608 Type *ArgType = Op->getType(); 1609 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1610 Intrinsic::ctlz, ArgType); 1611 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1612 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1613 V); 1614 return B.CreateIntCast(V, CI->getType(), false); 1615 } 1616 1617 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1618 // abs(x) -> x >s -1 ? x : -x 1619 Value *Op = CI->getArgOperand(0); 1620 Value *Pos = 1621 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1622 Value *Neg = B.CreateNeg(Op, "neg"); 1623 return B.CreateSelect(Pos, Op, Neg); 1624 } 1625 1626 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1627 // isdigit(c) -> (c-'0') <u 10 1628 Value *Op = CI->getArgOperand(0); 1629 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1630 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1631 return B.CreateZExt(Op, CI->getType()); 1632 } 1633 1634 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1635 // isascii(c) -> c <u 128 1636 Value *Op = CI->getArgOperand(0); 1637 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1638 return B.CreateZExt(Op, CI->getType()); 1639 } 1640 1641 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1642 // toascii(c) -> c & 0x7f 1643 return B.CreateAnd(CI->getArgOperand(0), 1644 ConstantInt::get(CI->getType(), 0x7F)); 1645 } 1646 1647 //===----------------------------------------------------------------------===// 1648 // Formatting and IO Library Call Optimizations 1649 //===----------------------------------------------------------------------===// 1650 1651 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1652 1653 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1654 int StreamArg) { 1655 Function *Callee = CI->getCalledFunction(); 1656 // Error reporting calls should be cold, mark them as such. 1657 // This applies even to non-builtin calls: it is only a hint and applies to 1658 // functions that the frontend might not understand as builtins. 1659 1660 // This heuristic was suggested in: 1661 // Improving Static Branch Prediction in a Compiler 1662 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1663 // Proceedings of PACT'98, Oct. 1998, IEEE 1664 if (!CI->hasFnAttr(Attribute::Cold) && 1665 isReportingError(Callee, CI, StreamArg)) { 1666 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1667 } 1668 1669 return nullptr; 1670 } 1671 1672 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1673 if (!Callee || !Callee->isDeclaration()) 1674 return false; 1675 1676 if (StreamArg < 0) 1677 return true; 1678 1679 // These functions might be considered cold, but only if their stream 1680 // argument is stderr. 1681 1682 if (StreamArg >= (int)CI->getNumArgOperands()) 1683 return false; 1684 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1685 if (!LI) 1686 return false; 1687 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1688 if (!GV || !GV->isDeclaration()) 1689 return false; 1690 return GV->getName() == "stderr"; 1691 } 1692 1693 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1694 // Check for a fixed format string. 1695 StringRef FormatStr; 1696 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1697 return nullptr; 1698 1699 // Empty format string -> noop. 1700 if (FormatStr.empty()) // Tolerate printf's declared void. 1701 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1702 1703 // Do not do any of the following transformations if the printf return value 1704 // is used, in general the printf return value is not compatible with either 1705 // putchar() or puts(). 1706 if (!CI->use_empty()) 1707 return nullptr; 1708 1709 // printf("x") -> putchar('x'), even for "%" and "%%". 1710 if (FormatStr.size() == 1 || FormatStr == "%%") 1711 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1712 1713 // printf("%s", "a") --> putchar('a') 1714 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1715 StringRef ChrStr; 1716 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1717 return nullptr; 1718 if (ChrStr.size() != 1) 1719 return nullptr; 1720 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1721 } 1722 1723 // printf("foo\n") --> puts("foo") 1724 if (FormatStr[FormatStr.size() - 1] == '\n' && 1725 FormatStr.find('%') == StringRef::npos) { // No format characters. 1726 // Create a string literal with no \n on it. We expect the constant merge 1727 // pass to be run after this pass, to merge duplicate strings. 1728 FormatStr = FormatStr.drop_back(); 1729 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1730 return emitPutS(GV, B, TLI); 1731 } 1732 1733 // Optimize specific format strings. 1734 // printf("%c", chr) --> putchar(chr) 1735 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1736 CI->getArgOperand(1)->getType()->isIntegerTy()) 1737 return emitPutChar(CI->getArgOperand(1), B, TLI); 1738 1739 // printf("%s\n", str) --> puts(str) 1740 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1741 CI->getArgOperand(1)->getType()->isPointerTy()) 1742 return emitPutS(CI->getArgOperand(1), B, TLI); 1743 return nullptr; 1744 } 1745 1746 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1747 1748 Function *Callee = CI->getCalledFunction(); 1749 FunctionType *FT = Callee->getFunctionType(); 1750 if (Value *V = optimizePrintFString(CI, B)) { 1751 return V; 1752 } 1753 1754 // printf(format, ...) -> iprintf(format, ...) if no floating point 1755 // arguments. 1756 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1757 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1758 Constant *IPrintFFn = 1759 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1760 CallInst *New = cast<CallInst>(CI->clone()); 1761 New->setCalledFunction(IPrintFFn); 1762 B.Insert(New); 1763 return New; 1764 } 1765 return nullptr; 1766 } 1767 1768 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1769 // Check for a fixed format string. 1770 StringRef FormatStr; 1771 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1772 return nullptr; 1773 1774 // If we just have a format string (nothing else crazy) transform it. 1775 if (CI->getNumArgOperands() == 2) { 1776 // Make sure there's no % in the constant array. We could try to handle 1777 // %% -> % in the future if we cared. 1778 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1779 if (FormatStr[i] == '%') 1780 return nullptr; // we found a format specifier, bail out. 1781 1782 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1783 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1784 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1785 FormatStr.size() + 1), 1786 1); // Copy the null byte. 1787 return ConstantInt::get(CI->getType(), FormatStr.size()); 1788 } 1789 1790 // The remaining optimizations require the format string to be "%s" or "%c" 1791 // and have an extra operand. 1792 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1793 CI->getNumArgOperands() < 3) 1794 return nullptr; 1795 1796 // Decode the second character of the format string. 1797 if (FormatStr[1] == 'c') { 1798 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1799 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1800 return nullptr; 1801 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1802 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1803 B.CreateStore(V, Ptr); 1804 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1805 B.CreateStore(B.getInt8(0), Ptr); 1806 1807 return ConstantInt::get(CI->getType(), 1); 1808 } 1809 1810 if (FormatStr[1] == 's') { 1811 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1812 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1813 return nullptr; 1814 1815 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1816 if (!Len) 1817 return nullptr; 1818 Value *IncLen = 1819 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1820 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1821 1822 // The sprintf result is the unincremented number of bytes in the string. 1823 return B.CreateIntCast(Len, CI->getType(), false); 1824 } 1825 return nullptr; 1826 } 1827 1828 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1829 Function *Callee = CI->getCalledFunction(); 1830 FunctionType *FT = Callee->getFunctionType(); 1831 if (Value *V = optimizeSPrintFString(CI, B)) { 1832 return V; 1833 } 1834 1835 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1836 // point arguments. 1837 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1838 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1839 Constant *SIPrintFFn = 1840 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1841 CallInst *New = cast<CallInst>(CI->clone()); 1842 New->setCalledFunction(SIPrintFFn); 1843 B.Insert(New); 1844 return New; 1845 } 1846 return nullptr; 1847 } 1848 1849 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1850 optimizeErrorReporting(CI, B, 0); 1851 1852 // All the optimizations depend on the format string. 1853 StringRef FormatStr; 1854 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1855 return nullptr; 1856 1857 // Do not do any of the following transformations if the fprintf return 1858 // value is used, in general the fprintf return value is not compatible 1859 // with fwrite(), fputc() or fputs(). 1860 if (!CI->use_empty()) 1861 return nullptr; 1862 1863 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1864 if (CI->getNumArgOperands() == 2) { 1865 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1866 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1867 return nullptr; // We found a format specifier. 1868 1869 return emitFWrite( 1870 CI->getArgOperand(1), 1871 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1872 CI->getArgOperand(0), B, DL, TLI); 1873 } 1874 1875 // The remaining optimizations require the format string to be "%s" or "%c" 1876 // and have an extra operand. 1877 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1878 CI->getNumArgOperands() < 3) 1879 return nullptr; 1880 1881 // Decode the second character of the format string. 1882 if (FormatStr[1] == 'c') { 1883 // fprintf(F, "%c", chr) --> fputc(chr, F) 1884 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1885 return nullptr; 1886 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1887 } 1888 1889 if (FormatStr[1] == 's') { 1890 // fprintf(F, "%s", str) --> fputs(str, F) 1891 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1892 return nullptr; 1893 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1894 } 1895 return nullptr; 1896 } 1897 1898 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1899 Function *Callee = CI->getCalledFunction(); 1900 FunctionType *FT = Callee->getFunctionType(); 1901 if (Value *V = optimizeFPrintFString(CI, B)) { 1902 return V; 1903 } 1904 1905 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1906 // floating point arguments. 1907 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1908 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1909 Constant *FIPrintFFn = 1910 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1911 CallInst *New = cast<CallInst>(CI->clone()); 1912 New->setCalledFunction(FIPrintFFn); 1913 B.Insert(New); 1914 return New; 1915 } 1916 return nullptr; 1917 } 1918 1919 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1920 optimizeErrorReporting(CI, B, 3); 1921 1922 // Get the element size and count. 1923 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1924 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1925 if (!SizeC || !CountC) 1926 return nullptr; 1927 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1928 1929 // If this is writing zero records, remove the call (it's a noop). 1930 if (Bytes == 0) 1931 return ConstantInt::get(CI->getType(), 0); 1932 1933 // If this is writing one byte, turn it into fputc. 1934 // This optimisation is only valid, if the return value is unused. 1935 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1936 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1937 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1938 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1939 } 1940 1941 return nullptr; 1942 } 1943 1944 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1945 optimizeErrorReporting(CI, B, 1); 1946 1947 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1948 // requires more arguments and thus extra MOVs are required. 1949 if (CI->getParent()->getParent()->optForSize()) 1950 return nullptr; 1951 1952 // We can't optimize if return value is used. 1953 if (!CI->use_empty()) 1954 return nullptr; 1955 1956 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1957 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1958 if (!Len) 1959 return nullptr; 1960 1961 // Known to have no uses (see above). 1962 return emitFWrite( 1963 CI->getArgOperand(0), 1964 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1965 CI->getArgOperand(1), B, DL, TLI); 1966 } 1967 1968 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1969 // Check for a constant string. 1970 StringRef Str; 1971 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1972 return nullptr; 1973 1974 if (Str.empty() && CI->use_empty()) { 1975 // puts("") -> putchar('\n') 1976 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1977 if (CI->use_empty() || !Res) 1978 return Res; 1979 return B.CreateIntCast(Res, CI->getType(), true); 1980 } 1981 1982 return nullptr; 1983 } 1984 1985 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1986 LibFunc Func; 1987 SmallString<20> FloatFuncName = FuncName; 1988 FloatFuncName += 'f'; 1989 if (TLI->getLibFunc(FloatFuncName, Func)) 1990 return TLI->has(Func); 1991 return false; 1992 } 1993 1994 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1995 IRBuilder<> &Builder) { 1996 LibFunc Func; 1997 Function *Callee = CI->getCalledFunction(); 1998 // Check for string/memory library functions. 1999 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2000 // Make sure we never change the calling convention. 2001 assert((ignoreCallingConv(Func) || 2002 isCallingConvCCompatible(CI)) && 2003 "Optimizing string/memory libcall would change the calling convention"); 2004 switch (Func) { 2005 case LibFunc_strcat: 2006 return optimizeStrCat(CI, Builder); 2007 case LibFunc_strncat: 2008 return optimizeStrNCat(CI, Builder); 2009 case LibFunc_strchr: 2010 return optimizeStrChr(CI, Builder); 2011 case LibFunc_strrchr: 2012 return optimizeStrRChr(CI, Builder); 2013 case LibFunc_strcmp: 2014 return optimizeStrCmp(CI, Builder); 2015 case LibFunc_strncmp: 2016 return optimizeStrNCmp(CI, Builder); 2017 case LibFunc_strcpy: 2018 return optimizeStrCpy(CI, Builder); 2019 case LibFunc_stpcpy: 2020 return optimizeStpCpy(CI, Builder); 2021 case LibFunc_strncpy: 2022 return optimizeStrNCpy(CI, Builder); 2023 case LibFunc_strlen: 2024 return optimizeStrLen(CI, Builder); 2025 case LibFunc_strpbrk: 2026 return optimizeStrPBrk(CI, Builder); 2027 case LibFunc_strtol: 2028 case LibFunc_strtod: 2029 case LibFunc_strtof: 2030 case LibFunc_strtoul: 2031 case LibFunc_strtoll: 2032 case LibFunc_strtold: 2033 case LibFunc_strtoull: 2034 return optimizeStrTo(CI, Builder); 2035 case LibFunc_strspn: 2036 return optimizeStrSpn(CI, Builder); 2037 case LibFunc_strcspn: 2038 return optimizeStrCSpn(CI, Builder); 2039 case LibFunc_strstr: 2040 return optimizeStrStr(CI, Builder); 2041 case LibFunc_memchr: 2042 return optimizeMemChr(CI, Builder); 2043 case LibFunc_memcmp: 2044 return optimizeMemCmp(CI, Builder); 2045 case LibFunc_memcpy: 2046 return optimizeMemCpy(CI, Builder); 2047 case LibFunc_memmove: 2048 return optimizeMemMove(CI, Builder); 2049 case LibFunc_memset: 2050 return optimizeMemSet(CI, Builder); 2051 case LibFunc_wcslen: 2052 return optimizeWcslen(CI, Builder); 2053 default: 2054 break; 2055 } 2056 } 2057 return nullptr; 2058 } 2059 2060 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2061 LibFunc Func, 2062 IRBuilder<> &Builder) { 2063 // Don't optimize calls that require strict floating point semantics. 2064 if (CI->isStrictFP()) 2065 return nullptr; 2066 2067 switch (Func) { 2068 case LibFunc_cosf: 2069 case LibFunc_cos: 2070 case LibFunc_cosl: 2071 return optimizeCos(CI, Builder); 2072 case LibFunc_sinpif: 2073 case LibFunc_sinpi: 2074 case LibFunc_cospif: 2075 case LibFunc_cospi: 2076 return optimizeSinCosPi(CI, Builder); 2077 case LibFunc_powf: 2078 case LibFunc_pow: 2079 case LibFunc_powl: 2080 return optimizePow(CI, Builder); 2081 case LibFunc_exp2l: 2082 case LibFunc_exp2: 2083 case LibFunc_exp2f: 2084 return optimizeExp2(CI, Builder); 2085 case LibFunc_fabsf: 2086 case LibFunc_fabs: 2087 case LibFunc_fabsl: 2088 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2089 case LibFunc_sqrtf: 2090 case LibFunc_sqrt: 2091 case LibFunc_sqrtl: 2092 return optimizeSqrt(CI, Builder); 2093 case LibFunc_log: 2094 case LibFunc_log10: 2095 case LibFunc_log1p: 2096 case LibFunc_log2: 2097 case LibFunc_logb: 2098 return optimizeLog(CI, Builder); 2099 case LibFunc_tan: 2100 case LibFunc_tanf: 2101 case LibFunc_tanl: 2102 return optimizeTan(CI, Builder); 2103 case LibFunc_ceil: 2104 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2105 case LibFunc_floor: 2106 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2107 case LibFunc_round: 2108 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2109 case LibFunc_nearbyint: 2110 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2111 case LibFunc_rint: 2112 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2113 case LibFunc_trunc: 2114 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2115 case LibFunc_acos: 2116 case LibFunc_acosh: 2117 case LibFunc_asin: 2118 case LibFunc_asinh: 2119 case LibFunc_atan: 2120 case LibFunc_atanh: 2121 case LibFunc_cbrt: 2122 case LibFunc_cosh: 2123 case LibFunc_exp: 2124 case LibFunc_exp10: 2125 case LibFunc_expm1: 2126 case LibFunc_sin: 2127 case LibFunc_sinh: 2128 case LibFunc_tanh: 2129 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2130 return optimizeUnaryDoubleFP(CI, Builder, true); 2131 return nullptr; 2132 case LibFunc_copysign: 2133 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2134 return optimizeBinaryDoubleFP(CI, Builder); 2135 return nullptr; 2136 case LibFunc_fminf: 2137 case LibFunc_fmin: 2138 case LibFunc_fminl: 2139 case LibFunc_fmaxf: 2140 case LibFunc_fmax: 2141 case LibFunc_fmaxl: 2142 return optimizeFMinFMax(CI, Builder); 2143 default: 2144 return nullptr; 2145 } 2146 } 2147 2148 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2149 // TODO: Split out the code below that operates on FP calls so that 2150 // we can all non-FP calls with the StrictFP attribute to be 2151 // optimized. 2152 if (CI->isNoBuiltin()) 2153 return nullptr; 2154 2155 LibFunc Func; 2156 Function *Callee = CI->getCalledFunction(); 2157 2158 SmallVector<OperandBundleDef, 2> OpBundles; 2159 CI->getOperandBundlesAsDefs(OpBundles); 2160 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2161 bool isCallingConvC = isCallingConvCCompatible(CI); 2162 2163 // Command-line parameter overrides instruction attribute. 2164 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2165 // used by the intrinsic optimizations. 2166 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2167 UnsafeFPShrink = EnableUnsafeFPShrink; 2168 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2169 UnsafeFPShrink = true; 2170 2171 // First, check for intrinsics. 2172 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2173 if (!isCallingConvC) 2174 return nullptr; 2175 // The FP intrinsics have corresponding constrained versions so we don't 2176 // need to check for the StrictFP attribute here. 2177 switch (II->getIntrinsicID()) { 2178 case Intrinsic::pow: 2179 return optimizePow(CI, Builder); 2180 case Intrinsic::exp2: 2181 return optimizeExp2(CI, Builder); 2182 case Intrinsic::log: 2183 return optimizeLog(CI, Builder); 2184 case Intrinsic::sqrt: 2185 return optimizeSqrt(CI, Builder); 2186 // TODO: Use foldMallocMemset() with memset intrinsic. 2187 default: 2188 return nullptr; 2189 } 2190 } 2191 2192 // Also try to simplify calls to fortified library functions. 2193 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2194 // Try to further simplify the result. 2195 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2196 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2197 // Use an IR Builder from SimplifiedCI if available instead of CI 2198 // to guarantee we reach all uses we might replace later on. 2199 IRBuilder<> TmpBuilder(SimplifiedCI); 2200 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2201 // If we were able to further simplify, remove the now redundant call. 2202 SimplifiedCI->replaceAllUsesWith(V); 2203 SimplifiedCI->eraseFromParent(); 2204 return V; 2205 } 2206 } 2207 return SimplifiedFortifiedCI; 2208 } 2209 2210 // Then check for known library functions. 2211 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2212 // We never change the calling convention. 2213 if (!ignoreCallingConv(Func) && !isCallingConvC) 2214 return nullptr; 2215 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2216 return V; 2217 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2218 return V; 2219 switch (Func) { 2220 case LibFunc_ffs: 2221 case LibFunc_ffsl: 2222 case LibFunc_ffsll: 2223 return optimizeFFS(CI, Builder); 2224 case LibFunc_fls: 2225 case LibFunc_flsl: 2226 case LibFunc_flsll: 2227 return optimizeFls(CI, Builder); 2228 case LibFunc_abs: 2229 case LibFunc_labs: 2230 case LibFunc_llabs: 2231 return optimizeAbs(CI, Builder); 2232 case LibFunc_isdigit: 2233 return optimizeIsDigit(CI, Builder); 2234 case LibFunc_isascii: 2235 return optimizeIsAscii(CI, Builder); 2236 case LibFunc_toascii: 2237 return optimizeToAscii(CI, Builder); 2238 case LibFunc_printf: 2239 return optimizePrintF(CI, Builder); 2240 case LibFunc_sprintf: 2241 return optimizeSPrintF(CI, Builder); 2242 case LibFunc_fprintf: 2243 return optimizeFPrintF(CI, Builder); 2244 case LibFunc_fwrite: 2245 return optimizeFWrite(CI, Builder); 2246 case LibFunc_fputs: 2247 return optimizeFPuts(CI, Builder); 2248 case LibFunc_puts: 2249 return optimizePuts(CI, Builder); 2250 case LibFunc_perror: 2251 return optimizeErrorReporting(CI, Builder); 2252 case LibFunc_vfprintf: 2253 case LibFunc_fiprintf: 2254 return optimizeErrorReporting(CI, Builder, 0); 2255 case LibFunc_fputc: 2256 return optimizeErrorReporting(CI, Builder, 1); 2257 default: 2258 return nullptr; 2259 } 2260 } 2261 return nullptr; 2262 } 2263 2264 LibCallSimplifier::LibCallSimplifier( 2265 const DataLayout &DL, const TargetLibraryInfo *TLI, 2266 OptimizationRemarkEmitter &ORE, 2267 function_ref<void(Instruction *, Value *)> Replacer) 2268 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2269 UnsafeFPShrink(false), Replacer(Replacer) {} 2270 2271 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2272 // Indirect through the replacer used in this instance. 2273 Replacer(I, With); 2274 } 2275 2276 // TODO: 2277 // Additional cases that we need to add to this file: 2278 // 2279 // cbrt: 2280 // * cbrt(expN(X)) -> expN(x/3) 2281 // * cbrt(sqrt(x)) -> pow(x,1/6) 2282 // * cbrt(cbrt(x)) -> pow(x,1/9) 2283 // 2284 // exp, expf, expl: 2285 // * exp(log(x)) -> x 2286 // 2287 // log, logf, logl: 2288 // * log(exp(x)) -> x 2289 // * log(exp(y)) -> y*log(e) 2290 // * log(exp10(y)) -> y*log(10) 2291 // * log(sqrt(x)) -> 0.5*log(x) 2292 // 2293 // pow, powf, powl: 2294 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2295 // * pow(pow(x,y),z)-> pow(x,y*z) 2296 // 2297 // signbit: 2298 // * signbit(cnst) -> cnst' 2299 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2300 // 2301 // sqrt, sqrtf, sqrtl: 2302 // * sqrt(expN(x)) -> expN(x*0.5) 2303 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2304 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2305 // 2306 2307 //===----------------------------------------------------------------------===// 2308 // Fortified Library Call Optimizations 2309 //===----------------------------------------------------------------------===// 2310 2311 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2312 unsigned ObjSizeOp, 2313 unsigned SizeOp, 2314 bool isString) { 2315 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2316 return true; 2317 if (ConstantInt *ObjSizeCI = 2318 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2319 if (ObjSizeCI->isMinusOne()) 2320 return true; 2321 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2322 if (OnlyLowerUnknownSize) 2323 return false; 2324 if (isString) { 2325 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2326 // If the length is 0 we don't know how long it is and so we can't 2327 // remove the check. 2328 if (Len == 0) 2329 return false; 2330 return ObjSizeCI->getZExtValue() >= Len; 2331 } 2332 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2333 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2334 } 2335 return false; 2336 } 2337 2338 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2339 IRBuilder<> &B) { 2340 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2341 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2342 CI->getArgOperand(2), 1); 2343 return CI->getArgOperand(0); 2344 } 2345 return nullptr; 2346 } 2347 2348 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2349 IRBuilder<> &B) { 2350 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2351 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2352 CI->getArgOperand(2), 1); 2353 return CI->getArgOperand(0); 2354 } 2355 return nullptr; 2356 } 2357 2358 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2359 IRBuilder<> &B) { 2360 // TODO: Try foldMallocMemset() here. 2361 2362 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2363 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2364 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2365 return CI->getArgOperand(0); 2366 } 2367 return nullptr; 2368 } 2369 2370 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2371 IRBuilder<> &B, 2372 LibFunc Func) { 2373 Function *Callee = CI->getCalledFunction(); 2374 StringRef Name = Callee->getName(); 2375 const DataLayout &DL = CI->getModule()->getDataLayout(); 2376 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2377 *ObjSize = CI->getArgOperand(2); 2378 2379 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2380 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2381 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2382 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2383 } 2384 2385 // If a) we don't have any length information, or b) we know this will 2386 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2387 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2388 // TODO: It might be nice to get a maximum length out of the possible 2389 // string lengths for varying. 2390 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2391 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2392 2393 if (OnlyLowerUnknownSize) 2394 return nullptr; 2395 2396 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2397 uint64_t Len = GetStringLength(Src); 2398 if (Len == 0) 2399 return nullptr; 2400 2401 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2402 Value *LenV = ConstantInt::get(SizeTTy, Len); 2403 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2404 // If the function was an __stpcpy_chk, and we were able to fold it into 2405 // a __memcpy_chk, we still need to return the correct end pointer. 2406 if (Ret && Func == LibFunc_stpcpy_chk) 2407 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2408 return Ret; 2409 } 2410 2411 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2412 IRBuilder<> &B, 2413 LibFunc Func) { 2414 Function *Callee = CI->getCalledFunction(); 2415 StringRef Name = Callee->getName(); 2416 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2417 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2418 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2419 return Ret; 2420 } 2421 return nullptr; 2422 } 2423 2424 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2425 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2426 // Some clang users checked for _chk libcall availability using: 2427 // __has_builtin(__builtin___memcpy_chk) 2428 // When compiling with -fno-builtin, this is always true. 2429 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2430 // end up with fortified libcalls, which isn't acceptable in a freestanding 2431 // environment which only provides their non-fortified counterparts. 2432 // 2433 // Until we change clang and/or teach external users to check for availability 2434 // differently, disregard the "nobuiltin" attribute and TLI::has. 2435 // 2436 // PR23093. 2437 2438 LibFunc Func; 2439 Function *Callee = CI->getCalledFunction(); 2440 2441 SmallVector<OperandBundleDef, 2> OpBundles; 2442 CI->getOperandBundlesAsDefs(OpBundles); 2443 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2444 bool isCallingConvC = isCallingConvCCompatible(CI); 2445 2446 // First, check that this is a known library functions and that the prototype 2447 // is correct. 2448 if (!TLI->getLibFunc(*Callee, Func)) 2449 return nullptr; 2450 2451 // We never change the calling convention. 2452 if (!ignoreCallingConv(Func) && !isCallingConvC) 2453 return nullptr; 2454 2455 switch (Func) { 2456 case LibFunc_memcpy_chk: 2457 return optimizeMemCpyChk(CI, Builder); 2458 case LibFunc_memmove_chk: 2459 return optimizeMemMoveChk(CI, Builder); 2460 case LibFunc_memset_chk: 2461 return optimizeMemSetChk(CI, Builder); 2462 case LibFunc_stpcpy_chk: 2463 case LibFunc_strcpy_chk: 2464 return optimizeStrpCpyChk(CI, Builder, Func); 2465 case LibFunc_stpncpy_chk: 2466 case LibFunc_strncpy_chk: 2467 return optimizeStrpNCpyChk(CI, Builder, Func); 2468 default: 2469 break; 2470 } 2471 return nullptr; 2472 } 2473 2474 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2475 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2476 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2477