1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 /// \brief Check whether the overloaded unary floating point function
108 /// corresponding to \a Ty is available.
109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
110                             LibFunc DoubleFn, LibFunc FloatFn,
111                             LibFunc LongDoubleFn) {
112   switch (Ty->getTypeID()) {
113   case Type::FloatTyID:
114     return TLI->has(FloatFn);
115   case Type::DoubleTyID:
116     return TLI->has(DoubleFn);
117   default:
118     return TLI->has(LongDoubleFn);
119   }
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // String and Memory Library Call Optimizations
124 //===----------------------------------------------------------------------===//
125 
126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
127   // Extract some information from the instruction
128   Value *Dst = CI->getArgOperand(0);
129   Value *Src = CI->getArgOperand(1);
130 
131   // See if we can get the length of the input string.
132   uint64_t Len = GetStringLength(Src);
133   if (Len == 0)
134     return nullptr;
135   --Len; // Unbias length.
136 
137   // Handle the simple, do-nothing case: strcat(x, "") -> x
138   if (Len == 0)
139     return Dst;
140 
141   return emitStrLenMemCpy(Src, Dst, Len, B);
142 }
143 
144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
145                                            IRBuilder<> &B) {
146   // We need to find the end of the destination string.  That's where the
147   // memory is to be moved to. We just generate a call to strlen.
148   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
149   if (!DstLen)
150     return nullptr;
151 
152   // Now that we have the destination's length, we must index into the
153   // destination's pointer to get the actual memcpy destination (end of
154   // the string .. we're concatenating).
155   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
156 
157   // We have enough information to now generate the memcpy call to do the
158   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
159   B.CreateMemCpy(CpyDst, Src,
160                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
161                  1);
162   return Dst;
163 }
164 
165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
166   // Extract some information from the instruction.
167   Value *Dst = CI->getArgOperand(0);
168   Value *Src = CI->getArgOperand(1);
169   uint64_t Len;
170 
171   // We don't do anything if length is not constant.
172   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
173     Len = LengthArg->getZExtValue();
174   else
175     return nullptr;
176 
177   // See if we can get the length of the input string.
178   uint64_t SrcLen = GetStringLength(Src);
179   if (SrcLen == 0)
180     return nullptr;
181   --SrcLen; // Unbias length.
182 
183   // Handle the simple, do-nothing cases:
184   // strncat(x, "", c) -> x
185   // strncat(x,  c, 0) -> x
186   if (SrcLen == 0 || Len == 0)
187     return Dst;
188 
189   // We don't optimize this case.
190   if (Len < SrcLen)
191     return nullptr;
192 
193   // strncat(x, s, c) -> strcat(x, s)
194   // s is constant so the strcat can be optimized further.
195   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
196 }
197 
198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
199   Function *Callee = CI->getCalledFunction();
200   FunctionType *FT = Callee->getFunctionType();
201   Value *SrcStr = CI->getArgOperand(0);
202 
203   // If the second operand is non-constant, see if we can compute the length
204   // of the input string and turn this into memchr.
205   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
206   if (!CharC) {
207     uint64_t Len = GetStringLength(SrcStr);
208     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
209       return nullptr;
210 
211     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
212                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
213                       B, DL, TLI);
214   }
215 
216   // Otherwise, the character is a constant, see if the first argument is
217   // a string literal.  If so, we can constant fold.
218   StringRef Str;
219   if (!getConstantStringInfo(SrcStr, Str)) {
220     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
221       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
222                          "strchr");
223     return nullptr;
224   }
225 
226   // Compute the offset, make sure to handle the case when we're searching for
227   // zero (a weird way to spell strlen).
228   size_t I = (0xFF & CharC->getSExtValue()) == 0
229                  ? Str.size()
230                  : Str.find(CharC->getSExtValue());
231   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
232     return Constant::getNullValue(CI->getType());
233 
234   // strchr(s+n,c)  -> gep(s+n+i,c)
235   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
236 }
237 
238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
239   Value *SrcStr = CI->getArgOperand(0);
240   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
241 
242   // Cannot fold anything if we're not looking for a constant.
243   if (!CharC)
244     return nullptr;
245 
246   StringRef Str;
247   if (!getConstantStringInfo(SrcStr, Str)) {
248     // strrchr(s, 0) -> strchr(s, 0)
249     if (CharC->isZero())
250       return emitStrChr(SrcStr, '\0', B, TLI);
251     return nullptr;
252   }
253 
254   // Compute the offset.
255   size_t I = (0xFF & CharC->getSExtValue()) == 0
256                  ? Str.size()
257                  : Str.rfind(CharC->getSExtValue());
258   if (I == StringRef::npos) // Didn't find the char. Return null.
259     return Constant::getNullValue(CI->getType());
260 
261   // strrchr(s+n,c) -> gep(s+n+i,c)
262   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
263 }
264 
265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
266   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
267   if (Str1P == Str2P) // strcmp(x,x)  -> 0
268     return ConstantInt::get(CI->getType(), 0);
269 
270   StringRef Str1, Str2;
271   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
272   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
273 
274   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
275   if (HasStr1 && HasStr2)
276     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
277 
278   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
279     return B.CreateNeg(
280         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
281 
282   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
283     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
284 
285   // strcmp(P, "x") -> memcmp(P, "x", 2)
286   uint64_t Len1 = GetStringLength(Str1P);
287   uint64_t Len2 = GetStringLength(Str2P);
288   if (Len1 && Len2) {
289     return emitMemCmp(Str1P, Str2P,
290                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
291                                        std::min(Len1, Len2)),
292                       B, DL, TLI);
293   }
294 
295   return nullptr;
296 }
297 
298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
299   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
300   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
301     return ConstantInt::get(CI->getType(), 0);
302 
303   // Get the length argument if it is constant.
304   uint64_t Length;
305   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
306     Length = LengthArg->getZExtValue();
307   else
308     return nullptr;
309 
310   if (Length == 0) // strncmp(x,y,0)   -> 0
311     return ConstantInt::get(CI->getType(), 0);
312 
313   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
314     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
315 
316   StringRef Str1, Str2;
317   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
318   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
319 
320   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
321   if (HasStr1 && HasStr2) {
322     StringRef SubStr1 = Str1.substr(0, Length);
323     StringRef SubStr2 = Str2.substr(0, Length);
324     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
325   }
326 
327   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
328     return B.CreateNeg(
329         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
330 
331   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
332     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
333 
334   return nullptr;
335 }
336 
337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
338   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
339   if (Dst == Src) // strcpy(x,x)  -> x
340     return Src;
341 
342   // See if we can get the length of the input string.
343   uint64_t Len = GetStringLength(Src);
344   if (Len == 0)
345     return nullptr;
346 
347   // We have enough information to now generate the memcpy call to do the
348   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
349   B.CreateMemCpy(Dst, Src,
350                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
351   return Dst;
352 }
353 
354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
355   Function *Callee = CI->getCalledFunction();
356   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
357   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
358     Value *StrLen = emitStrLen(Src, B, DL, TLI);
359     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
360   }
361 
362   // See if we can get the length of the input string.
363   uint64_t Len = GetStringLength(Src);
364   if (Len == 0)
365     return nullptr;
366 
367   Type *PT = Callee->getFunctionType()->getParamType(0);
368   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
369   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
370                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
371 
372   // We have enough information to now generate the memcpy call to do the
373   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
374   B.CreateMemCpy(Dst, Src, LenV, 1);
375   return DstEnd;
376 }
377 
378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
379   Function *Callee = CI->getCalledFunction();
380   Value *Dst = CI->getArgOperand(0);
381   Value *Src = CI->getArgOperand(1);
382   Value *LenOp = CI->getArgOperand(2);
383 
384   // See if we can get the length of the input string.
385   uint64_t SrcLen = GetStringLength(Src);
386   if (SrcLen == 0)
387     return nullptr;
388   --SrcLen;
389 
390   if (SrcLen == 0) {
391     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
392     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
393     return Dst;
394   }
395 
396   uint64_t Len;
397   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
398     Len = LengthArg->getZExtValue();
399   else
400     return nullptr;
401 
402   if (Len == 0)
403     return Dst; // strncpy(x, y, 0) -> x
404 
405   // Let strncpy handle the zero padding
406   if (Len > SrcLen + 1)
407     return nullptr;
408 
409   Type *PT = Callee->getFunctionType()->getParamType(0);
410   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
411   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
412 
413   return Dst;
414 }
415 
416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
417                                                unsigned CharSize) {
418   Value *Src = CI->getArgOperand(0);
419 
420   // Constant folding: strlen("xyz") -> 3
421   if (uint64_t Len = GetStringLength(Src, CharSize))
422     return ConstantInt::get(CI->getType(), Len - 1);
423 
424   // If s is a constant pointer pointing to a string literal, we can fold
425   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
426   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
427   // We only try to simplify strlen when the pointer s points to an array
428   // of i8. Otherwise, we would need to scale the offset x before doing the
429   // subtraction. This will make the optimization more complex, and it's not
430   // very useful because calling strlen for a pointer of other types is
431   // very uncommon.
432   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
433     if (!isGEPBasedOnPointerToString(GEP, CharSize))
434       return nullptr;
435 
436     ConstantDataArraySlice Slice;
437     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
438       uint64_t NullTermIdx;
439       if (Slice.Array == nullptr) {
440         NullTermIdx = 0;
441       } else {
442         NullTermIdx = ~((uint64_t)0);
443         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
444           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
445             NullTermIdx = I;
446             break;
447           }
448         }
449         // If the string does not have '\0', leave it to strlen to compute
450         // its length.
451         if (NullTermIdx == ~((uint64_t)0))
452           return nullptr;
453       }
454 
455       Value *Offset = GEP->getOperand(2);
456       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
457       Known.Zero.flipAllBits();
458       uint64_t ArrSize =
459              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
460 
461       // KnownZero's bits are flipped, so zeros in KnownZero now represent
462       // bits known to be zeros in Offset, and ones in KnowZero represent
463       // bits unknown in Offset. Therefore, Offset is known to be in range
464       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
465       // unsigned-less-than NullTermIdx.
466       //
467       // If Offset is not provably in the range [0, NullTermIdx], we can still
468       // optimize if we can prove that the program has undefined behavior when
469       // Offset is outside that range. That is the case when GEP->getOperand(0)
470       // is a pointer to an object whose memory extent is NullTermIdx+1.
471       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
472           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
473            NullTermIdx == ArrSize - 1)) {
474         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
475         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
476                            Offset);
477       }
478     }
479 
480     return nullptr;
481   }
482 
483   // strlen(x?"foo":"bars") --> x ? 3 : 4
484   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
485     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
486     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
487     if (LenTrue && LenFalse) {
488       ORE.emit(OptimizationRemark("instcombine", "simplify-libcalls", CI)
489                << "folded strlen(select) to select of constants");
490       return B.CreateSelect(SI->getCondition(),
491                             ConstantInt::get(CI->getType(), LenTrue - 1),
492                             ConstantInt::get(CI->getType(), LenFalse - 1));
493     }
494   }
495 
496   // strlen(x) != 0 --> *x != 0
497   // strlen(x) == 0 --> *x == 0
498   if (isOnlyUsedInZeroEqualityComparison(CI))
499     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
500 
501   return nullptr;
502 }
503 
504 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
505   return optimizeStringLength(CI, B, 8);
506 }
507 
508 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
509   Module &M = *CI->getParent()->getParent()->getParent();
510   unsigned WCharSize = TLI->getWCharSize(M) * 8;
511 
512   return optimizeStringLength(CI, B, WCharSize);
513 }
514 
515 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
516   StringRef S1, S2;
517   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
518   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
519 
520   // strpbrk(s, "") -> nullptr
521   // strpbrk("", s) -> nullptr
522   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
523     return Constant::getNullValue(CI->getType());
524 
525   // Constant folding.
526   if (HasS1 && HasS2) {
527     size_t I = S1.find_first_of(S2);
528     if (I == StringRef::npos) // No match.
529       return Constant::getNullValue(CI->getType());
530 
531     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
532                        "strpbrk");
533   }
534 
535   // strpbrk(s, "a") -> strchr(s, 'a')
536   if (HasS2 && S2.size() == 1)
537     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
538 
539   return nullptr;
540 }
541 
542 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
543   Value *EndPtr = CI->getArgOperand(1);
544   if (isa<ConstantPointerNull>(EndPtr)) {
545     // With a null EndPtr, this function won't capture the main argument.
546     // It would be readonly too, except that it still may write to errno.
547     CI->addParamAttr(0, Attribute::NoCapture);
548   }
549 
550   return nullptr;
551 }
552 
553 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
554   StringRef S1, S2;
555   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
556   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
557 
558   // strspn(s, "") -> 0
559   // strspn("", s) -> 0
560   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
561     return Constant::getNullValue(CI->getType());
562 
563   // Constant folding.
564   if (HasS1 && HasS2) {
565     size_t Pos = S1.find_first_not_of(S2);
566     if (Pos == StringRef::npos)
567       Pos = S1.size();
568     return ConstantInt::get(CI->getType(), Pos);
569   }
570 
571   return nullptr;
572 }
573 
574 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
575   StringRef S1, S2;
576   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
577   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
578 
579   // strcspn("", s) -> 0
580   if (HasS1 && S1.empty())
581     return Constant::getNullValue(CI->getType());
582 
583   // Constant folding.
584   if (HasS1 && HasS2) {
585     size_t Pos = S1.find_first_of(S2);
586     if (Pos == StringRef::npos)
587       Pos = S1.size();
588     return ConstantInt::get(CI->getType(), Pos);
589   }
590 
591   // strcspn(s, "") -> strlen(s)
592   if (HasS2 && S2.empty())
593     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
594 
595   return nullptr;
596 }
597 
598 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
599   // fold strstr(x, x) -> x.
600   if (CI->getArgOperand(0) == CI->getArgOperand(1))
601     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
602 
603   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
604   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
605     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
606     if (!StrLen)
607       return nullptr;
608     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
609                                  StrLen, B, DL, TLI);
610     if (!StrNCmp)
611       return nullptr;
612     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
613       ICmpInst *Old = cast<ICmpInst>(*UI++);
614       Value *Cmp =
615           B.CreateICmp(Old->getPredicate(), StrNCmp,
616                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
617       replaceAllUsesWith(Old, Cmp);
618     }
619     return CI;
620   }
621 
622   // See if either input string is a constant string.
623   StringRef SearchStr, ToFindStr;
624   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
625   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
626 
627   // fold strstr(x, "") -> x.
628   if (HasStr2 && ToFindStr.empty())
629     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
630 
631   // If both strings are known, constant fold it.
632   if (HasStr1 && HasStr2) {
633     size_t Offset = SearchStr.find(ToFindStr);
634 
635     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
636       return Constant::getNullValue(CI->getType());
637 
638     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
639     Value *Result = castToCStr(CI->getArgOperand(0), B);
640     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
641     return B.CreateBitCast(Result, CI->getType());
642   }
643 
644   // fold strstr(x, "y") -> strchr(x, 'y').
645   if (HasStr2 && ToFindStr.size() == 1) {
646     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
647     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
648   }
649   return nullptr;
650 }
651 
652 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
653   Value *SrcStr = CI->getArgOperand(0);
654   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
655   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
656 
657   // memchr(x, y, 0) -> null
658   if (LenC && LenC->isZero())
659     return Constant::getNullValue(CI->getType());
660 
661   // From now on we need at least constant length and string.
662   StringRef Str;
663   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
664     return nullptr;
665 
666   // Truncate the string to LenC. If Str is smaller than LenC we will still only
667   // scan the string, as reading past the end of it is undefined and we can just
668   // return null if we don't find the char.
669   Str = Str.substr(0, LenC->getZExtValue());
670 
671   // If the char is variable but the input str and length are not we can turn
672   // this memchr call into a simple bit field test. Of course this only works
673   // when the return value is only checked against null.
674   //
675   // It would be really nice to reuse switch lowering here but we can't change
676   // the CFG at this point.
677   //
678   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
679   //   after bounds check.
680   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
681     unsigned char Max =
682         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
683                           reinterpret_cast<const unsigned char *>(Str.end()));
684 
685     // Make sure the bit field we're about to create fits in a register on the
686     // target.
687     // FIXME: On a 64 bit architecture this prevents us from using the
688     // interesting range of alpha ascii chars. We could do better by emitting
689     // two bitfields or shifting the range by 64 if no lower chars are used.
690     if (!DL.fitsInLegalInteger(Max + 1))
691       return nullptr;
692 
693     // For the bit field use a power-of-2 type with at least 8 bits to avoid
694     // creating unnecessary illegal types.
695     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
696 
697     // Now build the bit field.
698     APInt Bitfield(Width, 0);
699     for (char C : Str)
700       Bitfield.setBit((unsigned char)C);
701     Value *BitfieldC = B.getInt(Bitfield);
702 
703     // First check that the bit field access is within bounds.
704     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
705     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
706                                  "memchr.bounds");
707 
708     // Create code that checks if the given bit is set in the field.
709     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
710     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
711 
712     // Finally merge both checks and cast to pointer type. The inttoptr
713     // implicitly zexts the i1 to intptr type.
714     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
715   }
716 
717   // Check if all arguments are constants.  If so, we can constant fold.
718   if (!CharC)
719     return nullptr;
720 
721   // Compute the offset.
722   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
723   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
724     return Constant::getNullValue(CI->getType());
725 
726   // memchr(s+n,c,l) -> gep(s+n+i,c)
727   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
728 }
729 
730 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
731   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
732 
733   if (LHS == RHS) // memcmp(s,s,x) -> 0
734     return Constant::getNullValue(CI->getType());
735 
736   // Make sure we have a constant length.
737   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
738   if (!LenC)
739     return nullptr;
740 
741   uint64_t Len = LenC->getZExtValue();
742   if (Len == 0) // memcmp(s1,s2,0) -> 0
743     return Constant::getNullValue(CI->getType());
744 
745   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
746   if (Len == 1) {
747     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
748                                CI->getType(), "lhsv");
749     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
750                                CI->getType(), "rhsv");
751     return B.CreateSub(LHSV, RHSV, "chardiff");
752   }
753 
754   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
755   // TODO: The case where both inputs are constants does not need to be limited
756   // to legal integers or equality comparison. See block below this.
757   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
758     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
759     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
760 
761     // First, see if we can fold either argument to a constant.
762     Value *LHSV = nullptr;
763     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
764       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
765       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
766     }
767     Value *RHSV = nullptr;
768     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
769       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
770       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
771     }
772 
773     // Don't generate unaligned loads. If either source is constant data,
774     // alignment doesn't matter for that source because there is no load.
775     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
776         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
777       if (!LHSV) {
778         Type *LHSPtrTy =
779             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
780         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
781       }
782       if (!RHSV) {
783         Type *RHSPtrTy =
784             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
785         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
786       }
787       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
788     }
789   }
790 
791   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
792   // TODO: This is limited to i8 arrays.
793   StringRef LHSStr, RHSStr;
794   if (getConstantStringInfo(LHS, LHSStr) &&
795       getConstantStringInfo(RHS, RHSStr)) {
796     // Make sure we're not reading out-of-bounds memory.
797     if (Len > LHSStr.size() || Len > RHSStr.size())
798       return nullptr;
799     // Fold the memcmp and normalize the result.  This way we get consistent
800     // results across multiple platforms.
801     uint64_t Ret = 0;
802     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
803     if (Cmp < 0)
804       Ret = -1;
805     else if (Cmp > 0)
806       Ret = 1;
807     return ConstantInt::get(CI->getType(), Ret);
808   }
809 
810   return nullptr;
811 }
812 
813 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
814   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
815   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
816                  CI->getArgOperand(2), 1);
817   return CI->getArgOperand(0);
818 }
819 
820 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
821   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
822   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
823                   CI->getArgOperand(2), 1);
824   return CI->getArgOperand(0);
825 }
826 
827 // TODO: Does this belong in BuildLibCalls or should all of those similar
828 // functions be moved here?
829 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
830                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
831   LibFunc Func;
832   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
833     return nullptr;
834 
835   Module *M = B.GetInsertBlock()->getModule();
836   const DataLayout &DL = M->getDataLayout();
837   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
838   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
839                                          PtrType, PtrType);
840   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
841 
842   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
843     CI->setCallingConv(F->getCallingConv());
844 
845   return CI;
846 }
847 
848 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
849 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
850                                const TargetLibraryInfo &TLI) {
851   // This has to be a memset of zeros (bzero).
852   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
853   if (!FillValue || FillValue->getZExtValue() != 0)
854     return nullptr;
855 
856   // TODO: We should handle the case where the malloc has more than one use.
857   // This is necessary to optimize common patterns such as when the result of
858   // the malloc is checked against null or when a memset intrinsic is used in
859   // place of a memset library call.
860   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
861   if (!Malloc || !Malloc->hasOneUse())
862     return nullptr;
863 
864   // Is the inner call really malloc()?
865   Function *InnerCallee = Malloc->getCalledFunction();
866   if (!InnerCallee)
867     return nullptr;
868 
869   LibFunc Func;
870   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
871       Func != LibFunc_malloc)
872     return nullptr;
873 
874   // The memset must cover the same number of bytes that are malloc'd.
875   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
876     return nullptr;
877 
878   // Replace the malloc with a calloc. We need the data layout to know what the
879   // actual size of a 'size_t' parameter is.
880   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
881   const DataLayout &DL = Malloc->getModule()->getDataLayout();
882   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
883   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
884                              Malloc->getArgOperand(0), Malloc->getAttributes(),
885                              B, TLI);
886   if (!Calloc)
887     return nullptr;
888 
889   Malloc->replaceAllUsesWith(Calloc);
890   Malloc->eraseFromParent();
891 
892   return Calloc;
893 }
894 
895 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
896   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
897     return Calloc;
898 
899   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
900   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
901   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
902   return CI->getArgOperand(0);
903 }
904 
905 //===----------------------------------------------------------------------===//
906 // Math Library Optimizations
907 //===----------------------------------------------------------------------===//
908 
909 /// Return a variant of Val with float type.
910 /// Currently this works in two cases: If Val is an FPExtension of a float
911 /// value to something bigger, simply return the operand.
912 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
913 /// loss of precision do so.
914 static Value *valueHasFloatPrecision(Value *Val) {
915   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
916     Value *Op = Cast->getOperand(0);
917     if (Op->getType()->isFloatTy())
918       return Op;
919   }
920   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
921     APFloat F = Const->getValueAPF();
922     bool losesInfo;
923     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
924                     &losesInfo);
925     if (!losesInfo)
926       return ConstantFP::get(Const->getContext(), F);
927   }
928   return nullptr;
929 }
930 
931 /// Shrink double -> float for unary functions like 'floor'.
932 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
933                                     bool CheckRetType) {
934   Function *Callee = CI->getCalledFunction();
935   // We know this libcall has a valid prototype, but we don't know which.
936   if (!CI->getType()->isDoubleTy())
937     return nullptr;
938 
939   if (CheckRetType) {
940     // Check if all the uses for function like 'sin' are converted to float.
941     for (User *U : CI->users()) {
942       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
943       if (!Cast || !Cast->getType()->isFloatTy())
944         return nullptr;
945     }
946   }
947 
948   // If this is something like 'floor((double)floatval)', convert to floorf.
949   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
950   if (V == nullptr)
951     return nullptr;
952 
953   // If call isn't an intrinsic, check that it isn't within a function with the
954   // same name as the float version of this call.
955   //
956   // e.g. inline float expf(float val) { return (float) exp((double) val); }
957   //
958   // A similar such definition exists in the MinGW-w64 math.h header file which
959   // when compiled with -O2 -ffast-math causes the generation of infinite loops
960   // where expf is called.
961   if (!Callee->isIntrinsic()) {
962     const Function *F = CI->getFunction();
963     StringRef FName = F->getName();
964     StringRef CalleeName = Callee->getName();
965     if ((FName.size() == (CalleeName.size() + 1)) &&
966         (FName.back() == 'f') &&
967         FName.startswith(CalleeName))
968       return nullptr;
969   }
970 
971   // Propagate fast-math flags from the existing call to the new call.
972   IRBuilder<>::FastMathFlagGuard Guard(B);
973   B.setFastMathFlags(CI->getFastMathFlags());
974 
975   // floor((double)floatval) -> (double)floorf(floatval)
976   if (Callee->isIntrinsic()) {
977     Module *M = CI->getModule();
978     Intrinsic::ID IID = Callee->getIntrinsicID();
979     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
980     V = B.CreateCall(F, V);
981   } else {
982     // The call is a library call rather than an intrinsic.
983     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
984   }
985 
986   return B.CreateFPExt(V, B.getDoubleTy());
987 }
988 
989 // Replace a libcall \p CI with a call to intrinsic \p IID
990 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
991   // Propagate fast-math flags from the existing call to the new call.
992   IRBuilder<>::FastMathFlagGuard Guard(B);
993   B.setFastMathFlags(CI->getFastMathFlags());
994 
995   Module *M = CI->getModule();
996   Value *V = CI->getArgOperand(0);
997   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
998   CallInst *NewCall = B.CreateCall(F, V);
999   NewCall->takeName(CI);
1000   return NewCall;
1001 }
1002 
1003 /// Shrink double -> float for binary functions like 'fmin/fmax'.
1004 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
1005   Function *Callee = CI->getCalledFunction();
1006   // We know this libcall has a valid prototype, but we don't know which.
1007   if (!CI->getType()->isDoubleTy())
1008     return nullptr;
1009 
1010   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1011   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1012   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1013   if (V1 == nullptr)
1014     return nullptr;
1015   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1016   if (V2 == nullptr)
1017     return nullptr;
1018 
1019   // Propagate fast-math flags from the existing call to the new call.
1020   IRBuilder<>::FastMathFlagGuard Guard(B);
1021   B.setFastMathFlags(CI->getFastMathFlags());
1022 
1023   // fmin((double)floatval1, (double)floatval2)
1024   //                      -> (double)fminf(floatval1, floatval2)
1025   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1026   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1027                                    Callee->getAttributes());
1028   return B.CreateFPExt(V, B.getDoubleTy());
1029 }
1030 
1031 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1032   Function *Callee = CI->getCalledFunction();
1033   Value *Ret = nullptr;
1034   StringRef Name = Callee->getName();
1035   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1036     Ret = optimizeUnaryDoubleFP(CI, B, true);
1037 
1038   // cos(-x) -> cos(x)
1039   Value *Op1 = CI->getArgOperand(0);
1040   if (BinaryOperator::isFNeg(Op1)) {
1041     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1042     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1043   }
1044   return Ret;
1045 }
1046 
1047 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1048   // Multiplications calculated using Addition Chains.
1049   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1050 
1051   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1052 
1053   if (InnerChain[Exp])
1054     return InnerChain[Exp];
1055 
1056   static const unsigned AddChain[33][2] = {
1057       {0, 0}, // Unused.
1058       {0, 0}, // Unused (base case = pow1).
1059       {1, 1}, // Unused (pre-computed).
1060       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1061       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1062       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1063       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1064       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1065   };
1066 
1067   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1068                                  getPow(InnerChain, AddChain[Exp][1], B));
1069   return InnerChain[Exp];
1070 }
1071 
1072 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1073   Function *Callee = CI->getCalledFunction();
1074   Value *Ret = nullptr;
1075   StringRef Name = Callee->getName();
1076   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1077     Ret = optimizeUnaryDoubleFP(CI, B, true);
1078 
1079   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1080 
1081   // pow(1.0, x) -> 1.0
1082   if (match(Op1, m_SpecificFP(1.0)))
1083     return Op1;
1084   // pow(2.0, x) -> llvm.exp2(x)
1085   if (match(Op1, m_SpecificFP(2.0))) {
1086     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1087                                             CI->getType());
1088     return B.CreateCall(Exp2, Op2, "exp2");
1089   }
1090 
1091   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1092   // be one.
1093   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1094     // pow(10.0, x) -> exp10(x)
1095     if (Op1C->isExactlyValue(10.0) &&
1096         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1097                         LibFunc_exp10l))
1098       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1099                                   Callee->getAttributes());
1100   }
1101 
1102   // pow(exp(x), y) -> exp(x * y)
1103   // pow(exp2(x), y) -> exp2(x * y)
1104   // We enable these only with fast-math. Besides rounding differences, the
1105   // transformation changes overflow and underflow behavior quite dramatically.
1106   // Example: x = 1000, y = 0.001.
1107   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1108   auto *OpC = dyn_cast<CallInst>(Op1);
1109   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1110     LibFunc Func;
1111     Function *OpCCallee = OpC->getCalledFunction();
1112     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1113         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1114       IRBuilder<>::FastMathFlagGuard Guard(B);
1115       B.setFastMathFlags(CI->getFastMathFlags());
1116       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1117       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1118                                   OpCCallee->getAttributes());
1119     }
1120   }
1121 
1122   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1123   if (!Op2C)
1124     return Ret;
1125 
1126   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1127     return ConstantFP::get(CI->getType(), 1.0);
1128 
1129   if (Op2C->isExactlyValue(-0.5) &&
1130       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1131                       LibFunc_sqrtl)) {
1132     // If -ffast-math:
1133     // pow(x, -0.5) -> 1.0 / sqrt(x)
1134     if (CI->hasUnsafeAlgebra()) {
1135       IRBuilder<>::FastMathFlagGuard Guard(B);
1136       B.setFastMathFlags(CI->getFastMathFlags());
1137 
1138       // TODO: If the pow call is an intrinsic, we should lower to the sqrt
1139       // intrinsic, so we match errno semantics.  We also should check that the
1140       // target can in fact lower the sqrt intrinsic -- we currently have no way
1141       // to ask this question other than asking whether the target has a sqrt
1142       // libcall, which is a sufficient but not necessary condition.
1143       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1144                                          Callee->getAttributes());
1145 
1146       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
1147     }
1148   }
1149 
1150   if (Op2C->isExactlyValue(0.5) &&
1151       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1152                       LibFunc_sqrtl)) {
1153 
1154     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1155     if (CI->hasUnsafeAlgebra()) {
1156       IRBuilder<>::FastMathFlagGuard Guard(B);
1157       B.setFastMathFlags(CI->getFastMathFlags());
1158 
1159       // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1160       // intrinsic, to match errno semantics.
1161       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1162                                   Callee->getAttributes());
1163     }
1164 
1165     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1166     // This is faster than calling pow, and still handles negative zero
1167     // and negative infinity correctly.
1168     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1169     Value *Inf = ConstantFP::getInfinity(CI->getType());
1170     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1171 
1172     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1173     // intrinsic, to match errno semantics.
1174     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1175 
1176     Module *M = Callee->getParent();
1177     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1178                                                 CI->getType());
1179     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1180 
1181     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1182     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1183     return Sel;
1184   }
1185 
1186   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1187     return Op1;
1188   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1189     return B.CreateFMul(Op1, Op1, "pow2");
1190   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1191     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1192 
1193   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1194   if (CI->hasUnsafeAlgebra()) {
1195     APFloat V = abs(Op2C->getValueAPF());
1196     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1197     // This transformation applies to integer exponents only.
1198     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1199         !V.isInteger())
1200       return nullptr;
1201 
1202     // Propagate fast math flags.
1203     IRBuilder<>::FastMathFlagGuard Guard(B);
1204     B.setFastMathFlags(CI->getFastMathFlags());
1205 
1206     // We will memoize intermediate products of the Addition Chain.
1207     Value *InnerChain[33] = {nullptr};
1208     InnerChain[1] = Op1;
1209     InnerChain[2] = B.CreateFMul(Op1, Op1);
1210 
1211     // We cannot readily convert a non-double type (like float) to a double.
1212     // So we first convert V to something which could be converted to double.
1213     bool ignored;
1214     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1215 
1216     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1217     // For negative exponents simply compute the reciprocal.
1218     if (Op2C->isNegative())
1219       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1220     return FMul;
1221   }
1222 
1223   return nullptr;
1224 }
1225 
1226 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1227   Function *Callee = CI->getCalledFunction();
1228   Value *Ret = nullptr;
1229   StringRef Name = Callee->getName();
1230   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1231     Ret = optimizeUnaryDoubleFP(CI, B, true);
1232 
1233   Value *Op = CI->getArgOperand(0);
1234   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1235   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1236   LibFunc LdExp = LibFunc_ldexpl;
1237   if (Op->getType()->isFloatTy())
1238     LdExp = LibFunc_ldexpf;
1239   else if (Op->getType()->isDoubleTy())
1240     LdExp = LibFunc_ldexp;
1241 
1242   if (TLI->has(LdExp)) {
1243     Value *LdExpArg = nullptr;
1244     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1245       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1246         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1247     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1248       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1249         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1250     }
1251 
1252     if (LdExpArg) {
1253       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1254       if (!Op->getType()->isFloatTy())
1255         One = ConstantExpr::getFPExtend(One, Op->getType());
1256 
1257       Module *M = CI->getModule();
1258       Value *NewCallee =
1259           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1260                                  Op->getType(), B.getInt32Ty());
1261       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1262       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1263         CI->setCallingConv(F->getCallingConv());
1264 
1265       return CI;
1266     }
1267   }
1268   return Ret;
1269 }
1270 
1271 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1272   Function *Callee = CI->getCalledFunction();
1273   // If we can shrink the call to a float function rather than a double
1274   // function, do that first.
1275   StringRef Name = Callee->getName();
1276   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1277     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1278       return Ret;
1279 
1280   IRBuilder<>::FastMathFlagGuard Guard(B);
1281   FastMathFlags FMF;
1282   if (CI->hasUnsafeAlgebra()) {
1283     // Unsafe algebra sets all fast-math-flags to true.
1284     FMF.setUnsafeAlgebra();
1285   } else {
1286     // At a minimum, no-nans-fp-math must be true.
1287     if (!CI->hasNoNaNs())
1288       return nullptr;
1289     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1290     // "Ideally, fmax would be sensitive to the sign of zero, for example
1291     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1292     // might be impractical."
1293     FMF.setNoSignedZeros();
1294     FMF.setNoNaNs();
1295   }
1296   B.setFastMathFlags(FMF);
1297 
1298   // We have a relaxed floating-point environment. We can ignore NaN-handling
1299   // and transform to a compare and select. We do not have to consider errno or
1300   // exceptions, because fmin/fmax do not have those.
1301   Value *Op0 = CI->getArgOperand(0);
1302   Value *Op1 = CI->getArgOperand(1);
1303   Value *Cmp = Callee->getName().startswith("fmin") ?
1304     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1305   return B.CreateSelect(Cmp, Op0, Op1);
1306 }
1307 
1308 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1309   Function *Callee = CI->getCalledFunction();
1310   Value *Ret = nullptr;
1311   StringRef Name = Callee->getName();
1312   if (UnsafeFPShrink && hasFloatVersion(Name))
1313     Ret = optimizeUnaryDoubleFP(CI, B, true);
1314 
1315   if (!CI->hasUnsafeAlgebra())
1316     return Ret;
1317   Value *Op1 = CI->getArgOperand(0);
1318   auto *OpC = dyn_cast<CallInst>(Op1);
1319 
1320   // The earlier call must also be unsafe in order to do these transforms.
1321   if (!OpC || !OpC->hasUnsafeAlgebra())
1322     return Ret;
1323 
1324   // log(pow(x,y)) -> y*log(x)
1325   // This is only applicable to log, log2, log10.
1326   if (Name != "log" && Name != "log2" && Name != "log10")
1327     return Ret;
1328 
1329   IRBuilder<>::FastMathFlagGuard Guard(B);
1330   FastMathFlags FMF;
1331   FMF.setUnsafeAlgebra();
1332   B.setFastMathFlags(FMF);
1333 
1334   LibFunc Func;
1335   Function *F = OpC->getCalledFunction();
1336   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1337       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1338     return B.CreateFMul(OpC->getArgOperand(1),
1339       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1340                            Callee->getAttributes()), "mul");
1341 
1342   // log(exp2(y)) -> y*log(2)
1343   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1344       TLI->has(Func) && Func == LibFunc_exp2)
1345     return B.CreateFMul(
1346         OpC->getArgOperand(0),
1347         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1348                              Callee->getName(), B, Callee->getAttributes()),
1349         "logmul");
1350   return Ret;
1351 }
1352 
1353 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1354   Function *Callee = CI->getCalledFunction();
1355   Value *Ret = nullptr;
1356   // TODO: Once we have a way (other than checking for the existince of the
1357   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1358   // condition below.
1359   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1360                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1361     Ret = optimizeUnaryDoubleFP(CI, B, true);
1362 
1363   if (!CI->hasUnsafeAlgebra())
1364     return Ret;
1365 
1366   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1367   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1368     return Ret;
1369 
1370   // We're looking for a repeated factor in a multiplication tree,
1371   // so we can do this fold: sqrt(x * x) -> fabs(x);
1372   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1373   Value *Op0 = I->getOperand(0);
1374   Value *Op1 = I->getOperand(1);
1375   Value *RepeatOp = nullptr;
1376   Value *OtherOp = nullptr;
1377   if (Op0 == Op1) {
1378     // Simple match: the operands of the multiply are identical.
1379     RepeatOp = Op0;
1380   } else {
1381     // Look for a more complicated pattern: one of the operands is itself
1382     // a multiply, so search for a common factor in that multiply.
1383     // Note: We don't bother looking any deeper than this first level or for
1384     // variations of this pattern because instcombine's visitFMUL and/or the
1385     // reassociation pass should give us this form.
1386     Value *OtherMul0, *OtherMul1;
1387     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1388       // Pattern: sqrt((x * y) * z)
1389       if (OtherMul0 == OtherMul1 &&
1390           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1391         // Matched: sqrt((x * x) * z)
1392         RepeatOp = OtherMul0;
1393         OtherOp = Op1;
1394       }
1395     }
1396   }
1397   if (!RepeatOp)
1398     return Ret;
1399 
1400   // Fast math flags for any created instructions should match the sqrt
1401   // and multiply.
1402   IRBuilder<>::FastMathFlagGuard Guard(B);
1403   B.setFastMathFlags(I->getFastMathFlags());
1404 
1405   // If we found a repeated factor, hoist it out of the square root and
1406   // replace it with the fabs of that factor.
1407   Module *M = Callee->getParent();
1408   Type *ArgType = I->getType();
1409   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1410   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1411   if (OtherOp) {
1412     // If we found a non-repeated factor, we still need to get its square
1413     // root. We then multiply that by the value that was simplified out
1414     // of the square root calculation.
1415     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1416     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1417     return B.CreateFMul(FabsCall, SqrtCall);
1418   }
1419   return FabsCall;
1420 }
1421 
1422 // TODO: Generalize to handle any trig function and its inverse.
1423 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1424   Function *Callee = CI->getCalledFunction();
1425   Value *Ret = nullptr;
1426   StringRef Name = Callee->getName();
1427   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1428     Ret = optimizeUnaryDoubleFP(CI, B, true);
1429 
1430   Value *Op1 = CI->getArgOperand(0);
1431   auto *OpC = dyn_cast<CallInst>(Op1);
1432   if (!OpC)
1433     return Ret;
1434 
1435   // Both calls must allow unsafe optimizations in order to remove them.
1436   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1437     return Ret;
1438 
1439   // tan(atan(x)) -> x
1440   // tanf(atanf(x)) -> x
1441   // tanl(atanl(x)) -> x
1442   LibFunc Func;
1443   Function *F = OpC->getCalledFunction();
1444   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1445       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1446        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1447        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1448     Ret = OpC->getArgOperand(0);
1449   return Ret;
1450 }
1451 
1452 static bool isTrigLibCall(CallInst *CI) {
1453   // We can only hope to do anything useful if we can ignore things like errno
1454   // and floating-point exceptions.
1455   // We already checked the prototype.
1456   return CI->hasFnAttr(Attribute::NoUnwind) &&
1457          CI->hasFnAttr(Attribute::ReadNone);
1458 }
1459 
1460 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1461                              bool UseFloat, Value *&Sin, Value *&Cos,
1462                              Value *&SinCos) {
1463   Type *ArgTy = Arg->getType();
1464   Type *ResTy;
1465   StringRef Name;
1466 
1467   Triple T(OrigCallee->getParent()->getTargetTriple());
1468   if (UseFloat) {
1469     Name = "__sincospif_stret";
1470 
1471     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1472     // x86_64 can't use {float, float} since that would be returned in both
1473     // xmm0 and xmm1, which isn't what a real struct would do.
1474     ResTy = T.getArch() == Triple::x86_64
1475                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1476                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1477   } else {
1478     Name = "__sincospi_stret";
1479     ResTy = StructType::get(ArgTy, ArgTy);
1480   }
1481 
1482   Module *M = OrigCallee->getParent();
1483   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1484                                          ResTy, ArgTy);
1485 
1486   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1487     // If the argument is an instruction, it must dominate all uses so put our
1488     // sincos call there.
1489     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1490   } else {
1491     // Otherwise (e.g. for a constant) the beginning of the function is as
1492     // good a place as any.
1493     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1494     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1495   }
1496 
1497   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1498 
1499   if (SinCos->getType()->isStructTy()) {
1500     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1501     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1502   } else {
1503     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1504                                  "sinpi");
1505     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1506                                  "cospi");
1507   }
1508 }
1509 
1510 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1511   // Make sure the prototype is as expected, otherwise the rest of the
1512   // function is probably invalid and likely to abort.
1513   if (!isTrigLibCall(CI))
1514     return nullptr;
1515 
1516   Value *Arg = CI->getArgOperand(0);
1517   SmallVector<CallInst *, 1> SinCalls;
1518   SmallVector<CallInst *, 1> CosCalls;
1519   SmallVector<CallInst *, 1> SinCosCalls;
1520 
1521   bool IsFloat = Arg->getType()->isFloatTy();
1522 
1523   // Look for all compatible sinpi, cospi and sincospi calls with the same
1524   // argument. If there are enough (in some sense) we can make the
1525   // substitution.
1526   Function *F = CI->getFunction();
1527   for (User *U : Arg->users())
1528     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1529 
1530   // It's only worthwhile if both sinpi and cospi are actually used.
1531   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1532     return nullptr;
1533 
1534   Value *Sin, *Cos, *SinCos;
1535   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1536 
1537   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1538                                  Value *Res) {
1539     for (CallInst *C : Calls)
1540       replaceAllUsesWith(C, Res);
1541   };
1542 
1543   replaceTrigInsts(SinCalls, Sin);
1544   replaceTrigInsts(CosCalls, Cos);
1545   replaceTrigInsts(SinCosCalls, SinCos);
1546 
1547   return nullptr;
1548 }
1549 
1550 void LibCallSimplifier::classifyArgUse(
1551     Value *Val, Function *F, bool IsFloat,
1552     SmallVectorImpl<CallInst *> &SinCalls,
1553     SmallVectorImpl<CallInst *> &CosCalls,
1554     SmallVectorImpl<CallInst *> &SinCosCalls) {
1555   CallInst *CI = dyn_cast<CallInst>(Val);
1556 
1557   if (!CI)
1558     return;
1559 
1560   // Don't consider calls in other functions.
1561   if (CI->getFunction() != F)
1562     return;
1563 
1564   Function *Callee = CI->getCalledFunction();
1565   LibFunc Func;
1566   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1567       !isTrigLibCall(CI))
1568     return;
1569 
1570   if (IsFloat) {
1571     if (Func == LibFunc_sinpif)
1572       SinCalls.push_back(CI);
1573     else if (Func == LibFunc_cospif)
1574       CosCalls.push_back(CI);
1575     else if (Func == LibFunc_sincospif_stret)
1576       SinCosCalls.push_back(CI);
1577   } else {
1578     if (Func == LibFunc_sinpi)
1579       SinCalls.push_back(CI);
1580     else if (Func == LibFunc_cospi)
1581       CosCalls.push_back(CI);
1582     else if (Func == LibFunc_sincospi_stret)
1583       SinCosCalls.push_back(CI);
1584   }
1585 }
1586 
1587 //===----------------------------------------------------------------------===//
1588 // Integer Library Call Optimizations
1589 //===----------------------------------------------------------------------===//
1590 
1591 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1592   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1593   Value *Op = CI->getArgOperand(0);
1594   Type *ArgType = Op->getType();
1595   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1596                                        Intrinsic::cttz, ArgType);
1597   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1598   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1599   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1600 
1601   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1602   return B.CreateSelect(Cond, V, B.getInt32(0));
1603 }
1604 
1605 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1606   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1607   Value *Op = CI->getArgOperand(0);
1608   Type *ArgType = Op->getType();
1609   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1610                                        Intrinsic::ctlz, ArgType);
1611   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1612   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1613                   V);
1614   return B.CreateIntCast(V, CI->getType(), false);
1615 }
1616 
1617 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1618   // abs(x) -> x >s -1 ? x : -x
1619   Value *Op = CI->getArgOperand(0);
1620   Value *Pos =
1621       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1622   Value *Neg = B.CreateNeg(Op, "neg");
1623   return B.CreateSelect(Pos, Op, Neg);
1624 }
1625 
1626 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1627   // isdigit(c) -> (c-'0') <u 10
1628   Value *Op = CI->getArgOperand(0);
1629   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1630   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1631   return B.CreateZExt(Op, CI->getType());
1632 }
1633 
1634 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1635   // isascii(c) -> c <u 128
1636   Value *Op = CI->getArgOperand(0);
1637   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1638   return B.CreateZExt(Op, CI->getType());
1639 }
1640 
1641 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1642   // toascii(c) -> c & 0x7f
1643   return B.CreateAnd(CI->getArgOperand(0),
1644                      ConstantInt::get(CI->getType(), 0x7F));
1645 }
1646 
1647 //===----------------------------------------------------------------------===//
1648 // Formatting and IO Library Call Optimizations
1649 //===----------------------------------------------------------------------===//
1650 
1651 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1652 
1653 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1654                                                  int StreamArg) {
1655   Function *Callee = CI->getCalledFunction();
1656   // Error reporting calls should be cold, mark them as such.
1657   // This applies even to non-builtin calls: it is only a hint and applies to
1658   // functions that the frontend might not understand as builtins.
1659 
1660   // This heuristic was suggested in:
1661   // Improving Static Branch Prediction in a Compiler
1662   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1663   // Proceedings of PACT'98, Oct. 1998, IEEE
1664   if (!CI->hasFnAttr(Attribute::Cold) &&
1665       isReportingError(Callee, CI, StreamArg)) {
1666     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1667   }
1668 
1669   return nullptr;
1670 }
1671 
1672 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1673   if (!Callee || !Callee->isDeclaration())
1674     return false;
1675 
1676   if (StreamArg < 0)
1677     return true;
1678 
1679   // These functions might be considered cold, but only if their stream
1680   // argument is stderr.
1681 
1682   if (StreamArg >= (int)CI->getNumArgOperands())
1683     return false;
1684   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1685   if (!LI)
1686     return false;
1687   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1688   if (!GV || !GV->isDeclaration())
1689     return false;
1690   return GV->getName() == "stderr";
1691 }
1692 
1693 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1694   // Check for a fixed format string.
1695   StringRef FormatStr;
1696   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1697     return nullptr;
1698 
1699   // Empty format string -> noop.
1700   if (FormatStr.empty()) // Tolerate printf's declared void.
1701     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1702 
1703   // Do not do any of the following transformations if the printf return value
1704   // is used, in general the printf return value is not compatible with either
1705   // putchar() or puts().
1706   if (!CI->use_empty())
1707     return nullptr;
1708 
1709   // printf("x") -> putchar('x'), even for "%" and "%%".
1710   if (FormatStr.size() == 1 || FormatStr == "%%")
1711     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1712 
1713   // printf("%s", "a") --> putchar('a')
1714   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1715     StringRef ChrStr;
1716     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1717       return nullptr;
1718     if (ChrStr.size() != 1)
1719       return nullptr;
1720     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1721   }
1722 
1723   // printf("foo\n") --> puts("foo")
1724   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1725       FormatStr.find('%') == StringRef::npos) { // No format characters.
1726     // Create a string literal with no \n on it.  We expect the constant merge
1727     // pass to be run after this pass, to merge duplicate strings.
1728     FormatStr = FormatStr.drop_back();
1729     Value *GV = B.CreateGlobalString(FormatStr, "str");
1730     return emitPutS(GV, B, TLI);
1731   }
1732 
1733   // Optimize specific format strings.
1734   // printf("%c", chr) --> putchar(chr)
1735   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1736       CI->getArgOperand(1)->getType()->isIntegerTy())
1737     return emitPutChar(CI->getArgOperand(1), B, TLI);
1738 
1739   // printf("%s\n", str) --> puts(str)
1740   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1741       CI->getArgOperand(1)->getType()->isPointerTy())
1742     return emitPutS(CI->getArgOperand(1), B, TLI);
1743   return nullptr;
1744 }
1745 
1746 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1747 
1748   Function *Callee = CI->getCalledFunction();
1749   FunctionType *FT = Callee->getFunctionType();
1750   if (Value *V = optimizePrintFString(CI, B)) {
1751     return V;
1752   }
1753 
1754   // printf(format, ...) -> iprintf(format, ...) if no floating point
1755   // arguments.
1756   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1757     Module *M = B.GetInsertBlock()->getParent()->getParent();
1758     Constant *IPrintFFn =
1759         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1760     CallInst *New = cast<CallInst>(CI->clone());
1761     New->setCalledFunction(IPrintFFn);
1762     B.Insert(New);
1763     return New;
1764   }
1765   return nullptr;
1766 }
1767 
1768 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1769   // Check for a fixed format string.
1770   StringRef FormatStr;
1771   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1772     return nullptr;
1773 
1774   // If we just have a format string (nothing else crazy) transform it.
1775   if (CI->getNumArgOperands() == 2) {
1776     // Make sure there's no % in the constant array.  We could try to handle
1777     // %% -> % in the future if we cared.
1778     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1779       if (FormatStr[i] == '%')
1780         return nullptr; // we found a format specifier, bail out.
1781 
1782     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1783     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1784                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1785                                     FormatStr.size() + 1),
1786                    1); // Copy the null byte.
1787     return ConstantInt::get(CI->getType(), FormatStr.size());
1788   }
1789 
1790   // The remaining optimizations require the format string to be "%s" or "%c"
1791   // and have an extra operand.
1792   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1793       CI->getNumArgOperands() < 3)
1794     return nullptr;
1795 
1796   // Decode the second character of the format string.
1797   if (FormatStr[1] == 'c') {
1798     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1799     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1800       return nullptr;
1801     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1802     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1803     B.CreateStore(V, Ptr);
1804     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1805     B.CreateStore(B.getInt8(0), Ptr);
1806 
1807     return ConstantInt::get(CI->getType(), 1);
1808   }
1809 
1810   if (FormatStr[1] == 's') {
1811     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1812     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1813       return nullptr;
1814 
1815     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1816     if (!Len)
1817       return nullptr;
1818     Value *IncLen =
1819         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1820     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1821 
1822     // The sprintf result is the unincremented number of bytes in the string.
1823     return B.CreateIntCast(Len, CI->getType(), false);
1824   }
1825   return nullptr;
1826 }
1827 
1828 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1829   Function *Callee = CI->getCalledFunction();
1830   FunctionType *FT = Callee->getFunctionType();
1831   if (Value *V = optimizeSPrintFString(CI, B)) {
1832     return V;
1833   }
1834 
1835   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1836   // point arguments.
1837   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1838     Module *M = B.GetInsertBlock()->getParent()->getParent();
1839     Constant *SIPrintFFn =
1840         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1841     CallInst *New = cast<CallInst>(CI->clone());
1842     New->setCalledFunction(SIPrintFFn);
1843     B.Insert(New);
1844     return New;
1845   }
1846   return nullptr;
1847 }
1848 
1849 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1850   optimizeErrorReporting(CI, B, 0);
1851 
1852   // All the optimizations depend on the format string.
1853   StringRef FormatStr;
1854   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1855     return nullptr;
1856 
1857   // Do not do any of the following transformations if the fprintf return
1858   // value is used, in general the fprintf return value is not compatible
1859   // with fwrite(), fputc() or fputs().
1860   if (!CI->use_empty())
1861     return nullptr;
1862 
1863   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1864   if (CI->getNumArgOperands() == 2) {
1865     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1866       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1867         return nullptr;        // We found a format specifier.
1868 
1869     return emitFWrite(
1870         CI->getArgOperand(1),
1871         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1872         CI->getArgOperand(0), B, DL, TLI);
1873   }
1874 
1875   // The remaining optimizations require the format string to be "%s" or "%c"
1876   // and have an extra operand.
1877   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1878       CI->getNumArgOperands() < 3)
1879     return nullptr;
1880 
1881   // Decode the second character of the format string.
1882   if (FormatStr[1] == 'c') {
1883     // fprintf(F, "%c", chr) --> fputc(chr, F)
1884     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1885       return nullptr;
1886     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1887   }
1888 
1889   if (FormatStr[1] == 's') {
1890     // fprintf(F, "%s", str) --> fputs(str, F)
1891     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1892       return nullptr;
1893     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1894   }
1895   return nullptr;
1896 }
1897 
1898 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1899   Function *Callee = CI->getCalledFunction();
1900   FunctionType *FT = Callee->getFunctionType();
1901   if (Value *V = optimizeFPrintFString(CI, B)) {
1902     return V;
1903   }
1904 
1905   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1906   // floating point arguments.
1907   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1908     Module *M = B.GetInsertBlock()->getParent()->getParent();
1909     Constant *FIPrintFFn =
1910         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1911     CallInst *New = cast<CallInst>(CI->clone());
1912     New->setCalledFunction(FIPrintFFn);
1913     B.Insert(New);
1914     return New;
1915   }
1916   return nullptr;
1917 }
1918 
1919 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1920   optimizeErrorReporting(CI, B, 3);
1921 
1922   // Get the element size and count.
1923   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1924   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1925   if (!SizeC || !CountC)
1926     return nullptr;
1927   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1928 
1929   // If this is writing zero records, remove the call (it's a noop).
1930   if (Bytes == 0)
1931     return ConstantInt::get(CI->getType(), 0);
1932 
1933   // If this is writing one byte, turn it into fputc.
1934   // This optimisation is only valid, if the return value is unused.
1935   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1936     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1937     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1938     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1939   }
1940 
1941   return nullptr;
1942 }
1943 
1944 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1945   optimizeErrorReporting(CI, B, 1);
1946 
1947   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1948   // requires more arguments and thus extra MOVs are required.
1949   if (CI->getParent()->getParent()->optForSize())
1950     return nullptr;
1951 
1952   // We can't optimize if return value is used.
1953   if (!CI->use_empty())
1954     return nullptr;
1955 
1956   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1957   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1958   if (!Len)
1959     return nullptr;
1960 
1961   // Known to have no uses (see above).
1962   return emitFWrite(
1963       CI->getArgOperand(0),
1964       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1965       CI->getArgOperand(1), B, DL, TLI);
1966 }
1967 
1968 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1969   // Check for a constant string.
1970   StringRef Str;
1971   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1972     return nullptr;
1973 
1974   if (Str.empty() && CI->use_empty()) {
1975     // puts("") -> putchar('\n')
1976     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1977     if (CI->use_empty() || !Res)
1978       return Res;
1979     return B.CreateIntCast(Res, CI->getType(), true);
1980   }
1981 
1982   return nullptr;
1983 }
1984 
1985 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1986   LibFunc Func;
1987   SmallString<20> FloatFuncName = FuncName;
1988   FloatFuncName += 'f';
1989   if (TLI->getLibFunc(FloatFuncName, Func))
1990     return TLI->has(Func);
1991   return false;
1992 }
1993 
1994 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1995                                                       IRBuilder<> &Builder) {
1996   LibFunc Func;
1997   Function *Callee = CI->getCalledFunction();
1998   // Check for string/memory library functions.
1999   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2000     // Make sure we never change the calling convention.
2001     assert((ignoreCallingConv(Func) ||
2002             isCallingConvCCompatible(CI)) &&
2003       "Optimizing string/memory libcall would change the calling convention");
2004     switch (Func) {
2005     case LibFunc_strcat:
2006       return optimizeStrCat(CI, Builder);
2007     case LibFunc_strncat:
2008       return optimizeStrNCat(CI, Builder);
2009     case LibFunc_strchr:
2010       return optimizeStrChr(CI, Builder);
2011     case LibFunc_strrchr:
2012       return optimizeStrRChr(CI, Builder);
2013     case LibFunc_strcmp:
2014       return optimizeStrCmp(CI, Builder);
2015     case LibFunc_strncmp:
2016       return optimizeStrNCmp(CI, Builder);
2017     case LibFunc_strcpy:
2018       return optimizeStrCpy(CI, Builder);
2019     case LibFunc_stpcpy:
2020       return optimizeStpCpy(CI, Builder);
2021     case LibFunc_strncpy:
2022       return optimizeStrNCpy(CI, Builder);
2023     case LibFunc_strlen:
2024       return optimizeStrLen(CI, Builder);
2025     case LibFunc_strpbrk:
2026       return optimizeStrPBrk(CI, Builder);
2027     case LibFunc_strtol:
2028     case LibFunc_strtod:
2029     case LibFunc_strtof:
2030     case LibFunc_strtoul:
2031     case LibFunc_strtoll:
2032     case LibFunc_strtold:
2033     case LibFunc_strtoull:
2034       return optimizeStrTo(CI, Builder);
2035     case LibFunc_strspn:
2036       return optimizeStrSpn(CI, Builder);
2037     case LibFunc_strcspn:
2038       return optimizeStrCSpn(CI, Builder);
2039     case LibFunc_strstr:
2040       return optimizeStrStr(CI, Builder);
2041     case LibFunc_memchr:
2042       return optimizeMemChr(CI, Builder);
2043     case LibFunc_memcmp:
2044       return optimizeMemCmp(CI, Builder);
2045     case LibFunc_memcpy:
2046       return optimizeMemCpy(CI, Builder);
2047     case LibFunc_memmove:
2048       return optimizeMemMove(CI, Builder);
2049     case LibFunc_memset:
2050       return optimizeMemSet(CI, Builder);
2051     case LibFunc_wcslen:
2052       return optimizeWcslen(CI, Builder);
2053     default:
2054       break;
2055     }
2056   }
2057   return nullptr;
2058 }
2059 
2060 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2061                                                        LibFunc Func,
2062                                                        IRBuilder<> &Builder) {
2063   // Don't optimize calls that require strict floating point semantics.
2064   if (CI->isStrictFP())
2065     return nullptr;
2066 
2067   switch (Func) {
2068   case LibFunc_cosf:
2069   case LibFunc_cos:
2070   case LibFunc_cosl:
2071     return optimizeCos(CI, Builder);
2072   case LibFunc_sinpif:
2073   case LibFunc_sinpi:
2074   case LibFunc_cospif:
2075   case LibFunc_cospi:
2076     return optimizeSinCosPi(CI, Builder);
2077   case LibFunc_powf:
2078   case LibFunc_pow:
2079   case LibFunc_powl:
2080     return optimizePow(CI, Builder);
2081   case LibFunc_exp2l:
2082   case LibFunc_exp2:
2083   case LibFunc_exp2f:
2084     return optimizeExp2(CI, Builder);
2085   case LibFunc_fabsf:
2086   case LibFunc_fabs:
2087   case LibFunc_fabsl:
2088     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2089   case LibFunc_sqrtf:
2090   case LibFunc_sqrt:
2091   case LibFunc_sqrtl:
2092     return optimizeSqrt(CI, Builder);
2093   case LibFunc_log:
2094   case LibFunc_log10:
2095   case LibFunc_log1p:
2096   case LibFunc_log2:
2097   case LibFunc_logb:
2098     return optimizeLog(CI, Builder);
2099   case LibFunc_tan:
2100   case LibFunc_tanf:
2101   case LibFunc_tanl:
2102     return optimizeTan(CI, Builder);
2103   case LibFunc_ceil:
2104     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2105   case LibFunc_floor:
2106     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2107   case LibFunc_round:
2108     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2109   case LibFunc_nearbyint:
2110     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2111   case LibFunc_rint:
2112     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2113   case LibFunc_trunc:
2114     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2115   case LibFunc_acos:
2116   case LibFunc_acosh:
2117   case LibFunc_asin:
2118   case LibFunc_asinh:
2119   case LibFunc_atan:
2120   case LibFunc_atanh:
2121   case LibFunc_cbrt:
2122   case LibFunc_cosh:
2123   case LibFunc_exp:
2124   case LibFunc_exp10:
2125   case LibFunc_expm1:
2126   case LibFunc_sin:
2127   case LibFunc_sinh:
2128   case LibFunc_tanh:
2129     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2130       return optimizeUnaryDoubleFP(CI, Builder, true);
2131     return nullptr;
2132   case LibFunc_copysign:
2133     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2134       return optimizeBinaryDoubleFP(CI, Builder);
2135     return nullptr;
2136   case LibFunc_fminf:
2137   case LibFunc_fmin:
2138   case LibFunc_fminl:
2139   case LibFunc_fmaxf:
2140   case LibFunc_fmax:
2141   case LibFunc_fmaxl:
2142     return optimizeFMinFMax(CI, Builder);
2143   default:
2144     return nullptr;
2145   }
2146 }
2147 
2148 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2149   // TODO: Split out the code below that operates on FP calls so that
2150   //       we can all non-FP calls with the StrictFP attribute to be
2151   //       optimized.
2152   if (CI->isNoBuiltin())
2153     return nullptr;
2154 
2155   LibFunc Func;
2156   Function *Callee = CI->getCalledFunction();
2157 
2158   SmallVector<OperandBundleDef, 2> OpBundles;
2159   CI->getOperandBundlesAsDefs(OpBundles);
2160   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2161   bool isCallingConvC = isCallingConvCCompatible(CI);
2162 
2163   // Command-line parameter overrides instruction attribute.
2164   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2165   // used by the intrinsic optimizations.
2166   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2167     UnsafeFPShrink = EnableUnsafeFPShrink;
2168   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2169     UnsafeFPShrink = true;
2170 
2171   // First, check for intrinsics.
2172   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2173     if (!isCallingConvC)
2174       return nullptr;
2175     // The FP intrinsics have corresponding constrained versions so we don't
2176     // need to check for the StrictFP attribute here.
2177     switch (II->getIntrinsicID()) {
2178     case Intrinsic::pow:
2179       return optimizePow(CI, Builder);
2180     case Intrinsic::exp2:
2181       return optimizeExp2(CI, Builder);
2182     case Intrinsic::log:
2183       return optimizeLog(CI, Builder);
2184     case Intrinsic::sqrt:
2185       return optimizeSqrt(CI, Builder);
2186     // TODO: Use foldMallocMemset() with memset intrinsic.
2187     default:
2188       return nullptr;
2189     }
2190   }
2191 
2192   // Also try to simplify calls to fortified library functions.
2193   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2194     // Try to further simplify the result.
2195     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2196     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2197       // Use an IR Builder from SimplifiedCI if available instead of CI
2198       // to guarantee we reach all uses we might replace later on.
2199       IRBuilder<> TmpBuilder(SimplifiedCI);
2200       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2201         // If we were able to further simplify, remove the now redundant call.
2202         SimplifiedCI->replaceAllUsesWith(V);
2203         SimplifiedCI->eraseFromParent();
2204         return V;
2205       }
2206     }
2207     return SimplifiedFortifiedCI;
2208   }
2209 
2210   // Then check for known library functions.
2211   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2212     // We never change the calling convention.
2213     if (!ignoreCallingConv(Func) && !isCallingConvC)
2214       return nullptr;
2215     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2216       return V;
2217     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2218       return V;
2219     switch (Func) {
2220     case LibFunc_ffs:
2221     case LibFunc_ffsl:
2222     case LibFunc_ffsll:
2223       return optimizeFFS(CI, Builder);
2224     case LibFunc_fls:
2225     case LibFunc_flsl:
2226     case LibFunc_flsll:
2227       return optimizeFls(CI, Builder);
2228     case LibFunc_abs:
2229     case LibFunc_labs:
2230     case LibFunc_llabs:
2231       return optimizeAbs(CI, Builder);
2232     case LibFunc_isdigit:
2233       return optimizeIsDigit(CI, Builder);
2234     case LibFunc_isascii:
2235       return optimizeIsAscii(CI, Builder);
2236     case LibFunc_toascii:
2237       return optimizeToAscii(CI, Builder);
2238     case LibFunc_printf:
2239       return optimizePrintF(CI, Builder);
2240     case LibFunc_sprintf:
2241       return optimizeSPrintF(CI, Builder);
2242     case LibFunc_fprintf:
2243       return optimizeFPrintF(CI, Builder);
2244     case LibFunc_fwrite:
2245       return optimizeFWrite(CI, Builder);
2246     case LibFunc_fputs:
2247       return optimizeFPuts(CI, Builder);
2248     case LibFunc_puts:
2249       return optimizePuts(CI, Builder);
2250     case LibFunc_perror:
2251       return optimizeErrorReporting(CI, Builder);
2252     case LibFunc_vfprintf:
2253     case LibFunc_fiprintf:
2254       return optimizeErrorReporting(CI, Builder, 0);
2255     case LibFunc_fputc:
2256       return optimizeErrorReporting(CI, Builder, 1);
2257     default:
2258       return nullptr;
2259     }
2260   }
2261   return nullptr;
2262 }
2263 
2264 LibCallSimplifier::LibCallSimplifier(
2265     const DataLayout &DL, const TargetLibraryInfo *TLI,
2266     OptimizationRemarkEmitter &ORE,
2267     function_ref<void(Instruction *, Value *)> Replacer)
2268     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2269       UnsafeFPShrink(false), Replacer(Replacer) {}
2270 
2271 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2272   // Indirect through the replacer used in this instance.
2273   Replacer(I, With);
2274 }
2275 
2276 // TODO:
2277 //   Additional cases that we need to add to this file:
2278 //
2279 // cbrt:
2280 //   * cbrt(expN(X))  -> expN(x/3)
2281 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2282 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2283 //
2284 // exp, expf, expl:
2285 //   * exp(log(x))  -> x
2286 //
2287 // log, logf, logl:
2288 //   * log(exp(x))   -> x
2289 //   * log(exp(y))   -> y*log(e)
2290 //   * log(exp10(y)) -> y*log(10)
2291 //   * log(sqrt(x))  -> 0.5*log(x)
2292 //
2293 // pow, powf, powl:
2294 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2295 //   * pow(pow(x,y),z)-> pow(x,y*z)
2296 //
2297 // signbit:
2298 //   * signbit(cnst) -> cnst'
2299 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2300 //
2301 // sqrt, sqrtf, sqrtl:
2302 //   * sqrt(expN(x))  -> expN(x*0.5)
2303 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2304 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2305 //
2306 
2307 //===----------------------------------------------------------------------===//
2308 // Fortified Library Call Optimizations
2309 //===----------------------------------------------------------------------===//
2310 
2311 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2312                                                          unsigned ObjSizeOp,
2313                                                          unsigned SizeOp,
2314                                                          bool isString) {
2315   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2316     return true;
2317   if (ConstantInt *ObjSizeCI =
2318           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2319     if (ObjSizeCI->isMinusOne())
2320       return true;
2321     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2322     if (OnlyLowerUnknownSize)
2323       return false;
2324     if (isString) {
2325       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2326       // If the length is 0 we don't know how long it is and so we can't
2327       // remove the check.
2328       if (Len == 0)
2329         return false;
2330       return ObjSizeCI->getZExtValue() >= Len;
2331     }
2332     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2333       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2334   }
2335   return false;
2336 }
2337 
2338 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2339                                                      IRBuilder<> &B) {
2340   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2341     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2342                    CI->getArgOperand(2), 1);
2343     return CI->getArgOperand(0);
2344   }
2345   return nullptr;
2346 }
2347 
2348 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2349                                                       IRBuilder<> &B) {
2350   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2351     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2352                     CI->getArgOperand(2), 1);
2353     return CI->getArgOperand(0);
2354   }
2355   return nullptr;
2356 }
2357 
2358 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2359                                                      IRBuilder<> &B) {
2360   // TODO: Try foldMallocMemset() here.
2361 
2362   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2363     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2364     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2365     return CI->getArgOperand(0);
2366   }
2367   return nullptr;
2368 }
2369 
2370 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2371                                                       IRBuilder<> &B,
2372                                                       LibFunc Func) {
2373   Function *Callee = CI->getCalledFunction();
2374   StringRef Name = Callee->getName();
2375   const DataLayout &DL = CI->getModule()->getDataLayout();
2376   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2377         *ObjSize = CI->getArgOperand(2);
2378 
2379   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2380   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2381     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2382     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2383   }
2384 
2385   // If a) we don't have any length information, or b) we know this will
2386   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2387   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2388   // TODO: It might be nice to get a maximum length out of the possible
2389   // string lengths for varying.
2390   if (isFortifiedCallFoldable(CI, 2, 1, true))
2391     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2392 
2393   if (OnlyLowerUnknownSize)
2394     return nullptr;
2395 
2396   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2397   uint64_t Len = GetStringLength(Src);
2398   if (Len == 0)
2399     return nullptr;
2400 
2401   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2402   Value *LenV = ConstantInt::get(SizeTTy, Len);
2403   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2404   // If the function was an __stpcpy_chk, and we were able to fold it into
2405   // a __memcpy_chk, we still need to return the correct end pointer.
2406   if (Ret && Func == LibFunc_stpcpy_chk)
2407     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2408   return Ret;
2409 }
2410 
2411 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2412                                                        IRBuilder<> &B,
2413                                                        LibFunc Func) {
2414   Function *Callee = CI->getCalledFunction();
2415   StringRef Name = Callee->getName();
2416   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2417     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2418                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2419     return Ret;
2420   }
2421   return nullptr;
2422 }
2423 
2424 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2425   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2426   // Some clang users checked for _chk libcall availability using:
2427   //   __has_builtin(__builtin___memcpy_chk)
2428   // When compiling with -fno-builtin, this is always true.
2429   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2430   // end up with fortified libcalls, which isn't acceptable in a freestanding
2431   // environment which only provides their non-fortified counterparts.
2432   //
2433   // Until we change clang and/or teach external users to check for availability
2434   // differently, disregard the "nobuiltin" attribute and TLI::has.
2435   //
2436   // PR23093.
2437 
2438   LibFunc Func;
2439   Function *Callee = CI->getCalledFunction();
2440 
2441   SmallVector<OperandBundleDef, 2> OpBundles;
2442   CI->getOperandBundlesAsDefs(OpBundles);
2443   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2444   bool isCallingConvC = isCallingConvCCompatible(CI);
2445 
2446   // First, check that this is a known library functions and that the prototype
2447   // is correct.
2448   if (!TLI->getLibFunc(*Callee, Func))
2449     return nullptr;
2450 
2451   // We never change the calling convention.
2452   if (!ignoreCallingConv(Func) && !isCallingConvC)
2453     return nullptr;
2454 
2455   switch (Func) {
2456   case LibFunc_memcpy_chk:
2457     return optimizeMemCpyChk(CI, Builder);
2458   case LibFunc_memmove_chk:
2459     return optimizeMemMoveChk(CI, Builder);
2460   case LibFunc_memset_chk:
2461     return optimizeMemSetChk(CI, Builder);
2462   case LibFunc_stpcpy_chk:
2463   case LibFunc_strcpy_chk:
2464     return optimizeStrpCpyChk(CI, Builder, Func);
2465   case LibFunc_stpncpy_chk:
2466   case LibFunc_strncpy_chk:
2467     return optimizeStrpNCpyChk(CI, Builder, Func);
2468   default:
2469     break;
2470   }
2471   return nullptr;
2472 }
2473 
2474 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2475     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2476     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2477