1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 38 STATISTIC( 39 NumSimplifiedSDiv, 40 "Number of IV signed division operations converted to unsigned division"); 41 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 42 43 namespace { 44 /// This is a utility for simplifying induction variables 45 /// based on ScalarEvolution. It is the primary instrument of the 46 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 47 /// other loop passes that preserve SCEV. 48 class SimplifyIndvar { 49 Loop *L; 50 LoopInfo *LI; 51 ScalarEvolution *SE; 52 DominatorTree *DT; 53 54 SmallVectorImpl<WeakVH> &DeadInsts; 55 56 bool Changed; 57 58 public: 59 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 60 LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead) 61 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { 62 assert(LI && "IV simplification requires LoopInfo"); 63 } 64 65 bool hasChanged() const { return Changed; } 66 67 /// Iteratively perform simplification on a worklist of users of the 68 /// specified induction variable. This is the top-level driver that applies 69 /// all simplifications to users of an IV. 70 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 71 72 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 73 74 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 75 76 bool eliminateOverflowIntrinsic(CallInst *CI); 77 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 78 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 79 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 80 bool IsSigned); 81 bool eliminateSDiv(BinaryOperator *SDiv); 82 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 83 }; 84 } 85 86 /// Fold an IV operand into its use. This removes increments of an 87 /// aligned IV when used by a instruction that ignores the low bits. 88 /// 89 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 90 /// 91 /// Return the operand of IVOperand for this induction variable if IVOperand can 92 /// be folded (in case more folding opportunities have been exposed). 93 /// Otherwise return null. 94 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 95 Value *IVSrc = nullptr; 96 unsigned OperIdx = 0; 97 const SCEV *FoldedExpr = nullptr; 98 switch (UseInst->getOpcode()) { 99 default: 100 return nullptr; 101 case Instruction::UDiv: 102 case Instruction::LShr: 103 // We're only interested in the case where we know something about 104 // the numerator and have a constant denominator. 105 if (IVOperand != UseInst->getOperand(OperIdx) || 106 !isa<ConstantInt>(UseInst->getOperand(1))) 107 return nullptr; 108 109 // Attempt to fold a binary operator with constant operand. 110 // e.g. ((I + 1) >> 2) => I >> 2 111 if (!isa<BinaryOperator>(IVOperand) 112 || !isa<ConstantInt>(IVOperand->getOperand(1))) 113 return nullptr; 114 115 IVSrc = IVOperand->getOperand(0); 116 // IVSrc must be the (SCEVable) IV, since the other operand is const. 117 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 118 119 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 120 if (UseInst->getOpcode() == Instruction::LShr) { 121 // Get a constant for the divisor. See createSCEV. 122 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 123 if (D->getValue().uge(BitWidth)) 124 return nullptr; 125 126 D = ConstantInt::get(UseInst->getContext(), 127 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 128 } 129 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 130 } 131 // We have something that might fold it's operand. Compare SCEVs. 132 if (!SE->isSCEVable(UseInst->getType())) 133 return nullptr; 134 135 // Bypass the operand if SCEV can prove it has no effect. 136 if (SE->getSCEV(UseInst) != FoldedExpr) 137 return nullptr; 138 139 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 140 << " -> " << *UseInst << '\n'); 141 142 UseInst->setOperand(OperIdx, IVSrc); 143 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 144 145 ++NumElimOperand; 146 Changed = true; 147 if (IVOperand->use_empty()) 148 DeadInsts.emplace_back(IVOperand); 149 return IVSrc; 150 } 151 152 /// SimplifyIVUsers helper for eliminating useless 153 /// comparisons against an induction variable. 154 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 155 unsigned IVOperIdx = 0; 156 ICmpInst::Predicate Pred = ICmp->getPredicate(); 157 if (IVOperand != ICmp->getOperand(0)) { 158 // Swapped 159 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 160 IVOperIdx = 1; 161 Pred = ICmpInst::getSwappedPredicate(Pred); 162 } 163 164 // Get the SCEVs for the ICmp operands. 165 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 166 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 167 168 // Simplify unnecessary loops away. 169 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 170 S = SE->getSCEVAtScope(S, ICmpLoop); 171 X = SE->getSCEVAtScope(X, ICmpLoop); 172 173 ICmpInst::Predicate InvariantPredicate; 174 const SCEV *InvariantLHS, *InvariantRHS; 175 176 // If the condition is always true or always false, replace it with 177 // a constant value. 178 if (SE->isKnownPredicate(Pred, S, X)) { 179 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 180 DeadInsts.emplace_back(ICmp); 181 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 182 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 183 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 184 DeadInsts.emplace_back(ICmp); 185 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 186 } else if (isa<PHINode>(IVOperand) && 187 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 188 InvariantLHS, InvariantRHS)) { 189 190 // Rewrite the comparison to a loop invariant comparison if it can be done 191 // cheaply, where cheaply means "we don't need to emit any new 192 // instructions". 193 194 Value *NewLHS = nullptr, *NewRHS = nullptr; 195 196 if (S == InvariantLHS || X == InvariantLHS) 197 NewLHS = 198 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 199 200 if (S == InvariantRHS || X == InvariantRHS) 201 NewRHS = 202 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 203 204 auto *PN = cast<PHINode>(IVOperand); 205 for (unsigned i = 0, e = PN->getNumIncomingValues(); 206 i != e && (!NewLHS || !NewRHS); 207 ++i) { 208 209 // If this is a value incoming from the backedge, then it cannot be a loop 210 // invariant value (since we know that IVOperand is an induction variable). 211 if (L->contains(PN->getIncomingBlock(i))) 212 continue; 213 214 // NB! This following assert does not fundamentally have to be true, but 215 // it is true today given how SCEV analyzes induction variables. 216 // Specifically, today SCEV will *not* recognize %iv as an induction 217 // variable in the following case: 218 // 219 // define void @f(i32 %k) { 220 // entry: 221 // br i1 undef, label %r, label %l 222 // 223 // l: 224 // %k.inc.l = add i32 %k, 1 225 // br label %loop 226 // 227 // r: 228 // %k.inc.r = add i32 %k, 1 229 // br label %loop 230 // 231 // loop: 232 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] 233 // %iv.inc = add i32 %iv, 1 234 // br label %loop 235 // } 236 // 237 // but if it starts to, at some point, then the assertion below will have 238 // to be changed to a runtime check. 239 240 Value *Incoming = PN->getIncomingValue(i); 241 242 #ifndef NDEBUG 243 if (auto *I = dyn_cast<Instruction>(Incoming)) 244 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); 245 #endif 246 247 const SCEV *IncomingS = SE->getSCEV(Incoming); 248 249 if (!NewLHS && IncomingS == InvariantLHS) 250 NewLHS = Incoming; 251 if (!NewRHS && IncomingS == InvariantRHS) 252 NewRHS = Incoming; 253 } 254 255 if (!NewLHS || !NewRHS) 256 // We could not find an existing value to replace either LHS or RHS. 257 // Generating new instructions has subtler tradeoffs, so avoid doing that 258 // for now. 259 return; 260 261 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 262 ICmp->setPredicate(InvariantPredicate); 263 ICmp->setOperand(0, NewLHS); 264 ICmp->setOperand(1, NewRHS); 265 } else 266 return; 267 268 ++NumElimCmp; 269 Changed = true; 270 } 271 272 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 273 // Get the SCEVs for the ICmp operands. 274 auto *N = SE->getSCEV(SDiv->getOperand(0)); 275 auto *D = SE->getSCEV(SDiv->getOperand(1)); 276 277 // Simplify unnecessary loops away. 278 const Loop *L = LI->getLoopFor(SDiv->getParent()); 279 N = SE->getSCEVAtScope(N, L); 280 D = SE->getSCEVAtScope(D, L); 281 282 // Replace sdiv by udiv if both of the operands are non-negative 283 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 284 auto *UDiv = BinaryOperator::Create( 285 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 286 SDiv->getName() + ".udiv", SDiv); 287 UDiv->setIsExact(SDiv->isExact()); 288 SDiv->replaceAllUsesWith(UDiv); 289 DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 290 ++NumSimplifiedSDiv; 291 Changed = true; 292 DeadInsts.push_back(SDiv); 293 return true; 294 } 295 296 return false; 297 } 298 299 /// SimplifyIVUsers helper for eliminating useless 300 /// remainder operations operating on an induction variable. 301 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 302 Value *IVOperand, 303 bool IsSigned) { 304 // We're only interested in the case where we know something about 305 // the numerator. 306 if (IVOperand != Rem->getOperand(0)) 307 return; 308 309 // Get the SCEVs for the ICmp operands. 310 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 311 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 312 313 // Simplify unnecessary loops away. 314 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 315 S = SE->getSCEVAtScope(S, ICmpLoop); 316 X = SE->getSCEVAtScope(X, ICmpLoop); 317 318 // i % n --> i if i is in [0,n). 319 if ((!IsSigned || SE->isKnownNonNegative(S)) && 320 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 321 S, X)) 322 Rem->replaceAllUsesWith(Rem->getOperand(0)); 323 else { 324 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 325 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 326 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 327 return; 328 329 if (!SE->isKnownPredicate(IsSigned ? 330 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 331 LessOne, X)) 332 return; 333 334 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 335 Rem->getOperand(0), Rem->getOperand(1)); 336 SelectInst *Sel = 337 SelectInst::Create(ICmp, 338 ConstantInt::get(Rem->getType(), 0), 339 Rem->getOperand(0), "tmp", Rem); 340 Rem->replaceAllUsesWith(Sel); 341 } 342 343 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 344 ++NumElimRem; 345 Changed = true; 346 DeadInsts.emplace_back(Rem); 347 } 348 349 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { 350 auto *F = CI->getCalledFunction(); 351 if (!F) 352 return false; 353 354 typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( 355 const SCEV *, const SCEV *, SCEV::NoWrapFlags); 356 typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( 357 const SCEV *, Type *); 358 359 OperationFunctionTy Operation; 360 ExtensionFunctionTy Extension; 361 362 Instruction::BinaryOps RawOp; 363 364 // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we 365 // have nuw. 366 bool NoSignedOverflow; 367 368 switch (F->getIntrinsicID()) { 369 default: 370 return false; 371 372 case Intrinsic::sadd_with_overflow: 373 Operation = &ScalarEvolution::getAddExpr; 374 Extension = &ScalarEvolution::getSignExtendExpr; 375 RawOp = Instruction::Add; 376 NoSignedOverflow = true; 377 break; 378 379 case Intrinsic::uadd_with_overflow: 380 Operation = &ScalarEvolution::getAddExpr; 381 Extension = &ScalarEvolution::getZeroExtendExpr; 382 RawOp = Instruction::Add; 383 NoSignedOverflow = false; 384 break; 385 386 case Intrinsic::ssub_with_overflow: 387 Operation = &ScalarEvolution::getMinusSCEV; 388 Extension = &ScalarEvolution::getSignExtendExpr; 389 RawOp = Instruction::Sub; 390 NoSignedOverflow = true; 391 break; 392 393 case Intrinsic::usub_with_overflow: 394 Operation = &ScalarEvolution::getMinusSCEV; 395 Extension = &ScalarEvolution::getZeroExtendExpr; 396 RawOp = Instruction::Sub; 397 NoSignedOverflow = false; 398 break; 399 } 400 401 const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); 402 const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); 403 404 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 405 auto *WideTy = 406 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 407 408 const SCEV *A = 409 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap), WideTy); 410 const SCEV *B = 411 (SE->*Operation)((SE->*Extension)(LHS, WideTy), 412 (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap); 413 414 if (A != B) 415 return false; 416 417 // Proved no overflow, nuke the overflow check and, if possible, the overflow 418 // intrinsic as well. 419 420 BinaryOperator *NewResult = BinaryOperator::Create( 421 RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); 422 423 if (NoSignedOverflow) 424 NewResult->setHasNoSignedWrap(true); 425 else 426 NewResult->setHasNoUnsignedWrap(true); 427 428 SmallVector<ExtractValueInst *, 4> ToDelete; 429 430 for (auto *U : CI->users()) { 431 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 432 if (EVI->getIndices()[0] == 1) 433 EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); 434 else { 435 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 436 EVI->replaceAllUsesWith(NewResult); 437 } 438 ToDelete.push_back(EVI); 439 } 440 } 441 442 for (auto *EVI : ToDelete) 443 EVI->eraseFromParent(); 444 445 if (CI->use_empty()) 446 CI->eraseFromParent(); 447 448 return true; 449 } 450 451 /// Eliminate an operation that consumes a simple IV and has no observable 452 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 453 /// but UseInst may not be. 454 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 455 Instruction *IVOperand) { 456 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 457 eliminateIVComparison(ICmp, IVOperand); 458 return true; 459 } 460 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 461 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 462 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 463 eliminateIVRemainder(Bin, IVOperand, IsSRem); 464 return true; 465 } 466 467 if (Bin->getOpcode() == Instruction::SDiv) 468 return eliminateSDiv(Bin); 469 } 470 471 if (auto *CI = dyn_cast<CallInst>(UseInst)) 472 if (eliminateOverflowIntrinsic(CI)) 473 return true; 474 475 if (eliminateIdentitySCEV(UseInst, IVOperand)) 476 return true; 477 478 return false; 479 } 480 481 /// Eliminate any operation that SCEV can prove is an identity function. 482 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 483 Instruction *IVOperand) { 484 if (!SE->isSCEVable(UseInst->getType()) || 485 (UseInst->getType() != IVOperand->getType()) || 486 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 487 return false; 488 489 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 490 // dominator tree, even if X is an operand to Y. For instance, in 491 // 492 // %iv = phi i32 {0,+,1} 493 // br %cond, label %left, label %merge 494 // 495 // left: 496 // %X = add i32 %iv, 0 497 // br label %merge 498 // 499 // merge: 500 // %M = phi (%X, %iv) 501 // 502 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 503 // %M.replaceAllUsesWith(%X) would be incorrect. 504 505 if (isa<PHINode>(UseInst)) 506 // If UseInst is not a PHI node then we know that IVOperand dominates 507 // UseInst directly from the legality of SSA. 508 if (!DT || !DT->dominates(IVOperand, UseInst)) 509 return false; 510 511 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 512 return false; 513 514 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 515 516 UseInst->replaceAllUsesWith(IVOperand); 517 ++NumElimIdentity; 518 Changed = true; 519 DeadInsts.emplace_back(UseInst); 520 return true; 521 } 522 523 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 524 /// unsigned-overflow. Returns true if anything changed, false otherwise. 525 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 526 Value *IVOperand) { 527 528 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 529 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 530 return false; 531 532 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 533 SCEV::NoWrapFlags); 534 535 switch (BO->getOpcode()) { 536 default: 537 return false; 538 539 case Instruction::Add: 540 GetExprForBO = &ScalarEvolution::getAddExpr; 541 break; 542 543 case Instruction::Sub: 544 GetExprForBO = &ScalarEvolution::getMinusSCEV; 545 break; 546 547 case Instruction::Mul: 548 GetExprForBO = &ScalarEvolution::getMulExpr; 549 break; 550 } 551 552 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 553 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 554 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 555 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 556 557 bool Changed = false; 558 559 if (!BO->hasNoUnsignedWrap()) { 560 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 561 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 562 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 563 SCEV::FlagAnyWrap); 564 if (ExtendAfterOp == OpAfterExtend) { 565 BO->setHasNoUnsignedWrap(); 566 SE->forgetValue(BO); 567 Changed = true; 568 } 569 } 570 571 if (!BO->hasNoSignedWrap()) { 572 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 573 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 574 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 575 SCEV::FlagAnyWrap); 576 if (ExtendAfterOp == OpAfterExtend) { 577 BO->setHasNoSignedWrap(); 578 SE->forgetValue(BO); 579 Changed = true; 580 } 581 } 582 583 return Changed; 584 } 585 586 /// Add all uses of Def to the current IV's worklist. 587 static void pushIVUsers( 588 Instruction *Def, 589 SmallPtrSet<Instruction*,16> &Simplified, 590 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 591 592 for (User *U : Def->users()) { 593 Instruction *UI = cast<Instruction>(U); 594 595 // Avoid infinite or exponential worklist processing. 596 // Also ensure unique worklist users. 597 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 598 // self edges first. 599 if (UI != Def && Simplified.insert(UI).second) 600 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 601 } 602 } 603 604 /// Return true if this instruction generates a simple SCEV 605 /// expression in terms of that IV. 606 /// 607 /// This is similar to IVUsers' isInteresting() but processes each instruction 608 /// non-recursively when the operand is already known to be a simpleIVUser. 609 /// 610 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 611 if (!SE->isSCEVable(I->getType())) 612 return false; 613 614 // Get the symbolic expression for this instruction. 615 const SCEV *S = SE->getSCEV(I); 616 617 // Only consider affine recurrences. 618 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 619 if (AR && AR->getLoop() == L) 620 return true; 621 622 return false; 623 } 624 625 /// Iteratively perform simplification on a worklist of users 626 /// of the specified induction variable. Each successive simplification may push 627 /// more users which may themselves be candidates for simplification. 628 /// 629 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 630 /// instructions in-place during analysis. Rather than rewriting induction 631 /// variables bottom-up from their users, it transforms a chain of IVUsers 632 /// top-down, updating the IR only when it encounters a clear optimization 633 /// opportunity. 634 /// 635 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 636 /// 637 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 638 if (!SE->isSCEVable(CurrIV->getType())) 639 return; 640 641 // Instructions processed by SimplifyIndvar for CurrIV. 642 SmallPtrSet<Instruction*,16> Simplified; 643 644 // Use-def pairs if IV users waiting to be processed for CurrIV. 645 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 646 647 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 648 // called multiple times for the same LoopPhi. This is the proper thing to 649 // do for loop header phis that use each other. 650 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 651 652 while (!SimpleIVUsers.empty()) { 653 std::pair<Instruction*, Instruction*> UseOper = 654 SimpleIVUsers.pop_back_val(); 655 Instruction *UseInst = UseOper.first; 656 657 // Bypass back edges to avoid extra work. 658 if (UseInst == CurrIV) continue; 659 660 Instruction *IVOperand = UseOper.second; 661 for (unsigned N = 0; IVOperand; ++N) { 662 assert(N <= Simplified.size() && "runaway iteration"); 663 664 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 665 if (!NewOper) 666 break; // done folding 667 IVOperand = dyn_cast<Instruction>(NewOper); 668 } 669 if (!IVOperand) 670 continue; 671 672 if (eliminateIVUser(UseOper.first, IVOperand)) { 673 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 674 continue; 675 } 676 677 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 678 if (isa<OverflowingBinaryOperator>(BO) && 679 strengthenOverflowingOperation(BO, IVOperand)) { 680 // re-queue uses of the now modified binary operator and fall 681 // through to the checks that remain. 682 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 683 } 684 } 685 686 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 687 if (V && Cast) { 688 V->visitCast(Cast); 689 continue; 690 } 691 if (isSimpleIVUser(UseOper.first, L, SE)) { 692 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 693 } 694 } 695 } 696 697 namespace llvm { 698 699 void IVVisitor::anchor() { } 700 701 /// Simplify instructions that use this induction variable 702 /// by using ScalarEvolution to analyze the IV's recurrence. 703 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 704 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead, 705 IVVisitor *V) { 706 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); 707 SIV.simplifyUsers(CurrIV, V); 708 return SIV.hasChanged(); 709 } 710 711 /// Simplify users of induction variables within this 712 /// loop. This does not actually change or add IVs. 713 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 714 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) { 715 bool Changed = false; 716 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 717 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); 718 } 719 return Changed; 720 } 721 722 } // namespace llvm 723