1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 38 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 39 40 namespace { 41 /// This is a utility for simplifying induction variables 42 /// based on ScalarEvolution. It is the primary instrument of the 43 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 44 /// other loop passes that preserve SCEV. 45 class SimplifyIndvar { 46 Loop *L; 47 LoopInfo *LI; 48 ScalarEvolution *SE; 49 DominatorTree *DT; 50 51 SmallVectorImpl<WeakVH> &DeadInsts; 52 53 bool Changed; 54 55 public: 56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 57 LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead) 58 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { 59 assert(LI && "IV simplification requires LoopInfo"); 60 } 61 62 bool hasChanged() const { return Changed; } 63 64 /// Iteratively perform simplification on a worklist of users of the 65 /// specified induction variable. This is the top-level driver that applies 66 /// all simplifications to users of an IV. 67 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 68 69 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 70 71 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 72 73 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 74 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 75 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 76 bool IsSigned); 77 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 78 79 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 80 const DominatorTree *DT); 81 }; 82 } 83 84 /// Fold an IV operand into its use. This removes increments of an 85 /// aligned IV when used by a instruction that ignores the low bits. 86 /// 87 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 88 /// 89 /// Return the operand of IVOperand for this induction variable if IVOperand can 90 /// be folded (in case more folding opportunities have been exposed). 91 /// Otherwise return null. 92 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 93 Value *IVSrc = nullptr; 94 unsigned OperIdx = 0; 95 const SCEV *FoldedExpr = nullptr; 96 switch (UseInst->getOpcode()) { 97 default: 98 return nullptr; 99 case Instruction::UDiv: 100 case Instruction::LShr: 101 // We're only interested in the case where we know something about 102 // the numerator and have a constant denominator. 103 if (IVOperand != UseInst->getOperand(OperIdx) || 104 !isa<ConstantInt>(UseInst->getOperand(1))) 105 return nullptr; 106 107 // Attempt to fold a binary operator with constant operand. 108 // e.g. ((I + 1) >> 2) => I >> 2 109 if (!isa<BinaryOperator>(IVOperand) 110 || !isa<ConstantInt>(IVOperand->getOperand(1))) 111 return nullptr; 112 113 IVSrc = IVOperand->getOperand(0); 114 // IVSrc must be the (SCEVable) IV, since the other operand is const. 115 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 116 117 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 118 if (UseInst->getOpcode() == Instruction::LShr) { 119 // Get a constant for the divisor. See createSCEV. 120 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 121 if (D->getValue().uge(BitWidth)) 122 return nullptr; 123 124 D = ConstantInt::get(UseInst->getContext(), 125 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 126 } 127 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 128 } 129 // We have something that might fold it's operand. Compare SCEVs. 130 if (!SE->isSCEVable(UseInst->getType())) 131 return nullptr; 132 133 // Bypass the operand if SCEV can prove it has no effect. 134 if (SE->getSCEV(UseInst) != FoldedExpr) 135 return nullptr; 136 137 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 138 << " -> " << *UseInst << '\n'); 139 140 UseInst->setOperand(OperIdx, IVSrc); 141 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 142 143 ++NumElimOperand; 144 Changed = true; 145 if (IVOperand->use_empty()) 146 DeadInsts.emplace_back(IVOperand); 147 return IVSrc; 148 } 149 150 /// SimplifyIVUsers helper for eliminating useless 151 /// comparisons against an induction variable. 152 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 153 unsigned IVOperIdx = 0; 154 ICmpInst::Predicate Pred = ICmp->getPredicate(); 155 if (IVOperand != ICmp->getOperand(0)) { 156 // Swapped 157 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 158 IVOperIdx = 1; 159 Pred = ICmpInst::getSwappedPredicate(Pred); 160 } 161 162 // Get the SCEVs for the ICmp operands. 163 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 164 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 165 166 // Simplify unnecessary loops away. 167 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 168 S = SE->getSCEVAtScope(S, ICmpLoop); 169 X = SE->getSCEVAtScope(X, ICmpLoop); 170 171 ICmpInst::Predicate InvariantPredicate; 172 const SCEV *InvariantLHS, *InvariantRHS; 173 174 // If the condition is always true or always false, replace it with 175 // a constant value. 176 if (SE->isKnownPredicate(Pred, S, X)) { 177 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 178 DeadInsts.emplace_back(ICmp); 179 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 180 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 181 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 182 DeadInsts.emplace_back(ICmp); 183 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 184 } else if (isa<PHINode>(IVOperand) && 185 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 186 InvariantLHS, InvariantRHS)) { 187 188 // Rewrite the comparison to a loop invariant comparison if it can be done 189 // cheaply, where cheaply means "we don't need to emit any new 190 // instructions". 191 192 Value *NewLHS = nullptr, *NewRHS = nullptr; 193 194 if (S == InvariantLHS || X == InvariantLHS) 195 NewLHS = 196 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 197 198 if (S == InvariantRHS || X == InvariantRHS) 199 NewRHS = 200 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 201 202 auto *PN = cast<PHINode>(IVOperand); 203 for (unsigned i = 0, e = PN->getNumIncomingValues(); 204 i != e && (!NewLHS || !NewRHS); 205 ++i) { 206 207 // If this is a value incoming from the backedge, then it cannot be a loop 208 // invariant value (since we know that IVOperand is an induction variable). 209 if (L->contains(PN->getIncomingBlock(i))) 210 continue; 211 212 // NB! This following assert does not fundamentally have to be true, but 213 // it is true today given how SCEV analyzes induction variables. 214 // Specifically, today SCEV will *not* recognize %iv as an induction 215 // variable in the following case: 216 // 217 // define void @f(i32 %k) { 218 // entry: 219 // br i1 undef, label %r, label %l 220 // 221 // l: 222 // %k.inc.l = add i32 %k, 1 223 // br label %loop 224 // 225 // r: 226 // %k.inc.r = add i32 %k, 1 227 // br label %loop 228 // 229 // loop: 230 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] 231 // %iv.inc = add i32 %iv, 1 232 // br label %loop 233 // } 234 // 235 // but if it starts to, at some point, then the assertion below will have 236 // to be changed to a runtime check. 237 238 Value *Incoming = PN->getIncomingValue(i); 239 240 #ifndef NDEBUG 241 if (auto *I = dyn_cast<Instruction>(Incoming)) 242 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); 243 #endif 244 245 const SCEV *IncomingS = SE->getSCEV(Incoming); 246 247 if (!NewLHS && IncomingS == InvariantLHS) 248 NewLHS = Incoming; 249 if (!NewRHS && IncomingS == InvariantRHS) 250 NewRHS = Incoming; 251 } 252 253 if (!NewLHS || !NewRHS) 254 // We could not find an existing value to replace either LHS or RHS. 255 // Generating new instructions has subtler tradeoffs, so avoid doing that 256 // for now. 257 return; 258 259 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 260 ICmp->setPredicate(InvariantPredicate); 261 ICmp->setOperand(0, NewLHS); 262 ICmp->setOperand(1, NewRHS); 263 } else 264 return; 265 266 ++NumElimCmp; 267 Changed = true; 268 } 269 270 /// SimplifyIVUsers helper for eliminating useless 271 /// remainder operations operating on an induction variable. 272 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 273 Value *IVOperand, 274 bool IsSigned) { 275 // We're only interested in the case where we know something about 276 // the numerator. 277 if (IVOperand != Rem->getOperand(0)) 278 return; 279 280 // Get the SCEVs for the ICmp operands. 281 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 282 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 283 284 // Simplify unnecessary loops away. 285 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 286 S = SE->getSCEVAtScope(S, ICmpLoop); 287 X = SE->getSCEVAtScope(X, ICmpLoop); 288 289 // i % n --> i if i is in [0,n). 290 if ((!IsSigned || SE->isKnownNonNegative(S)) && 291 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 292 S, X)) 293 Rem->replaceAllUsesWith(Rem->getOperand(0)); 294 else { 295 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 296 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 297 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 298 return; 299 300 if (!SE->isKnownPredicate(IsSigned ? 301 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 302 LessOne, X)) 303 return; 304 305 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 306 Rem->getOperand(0), Rem->getOperand(1)); 307 SelectInst *Sel = 308 SelectInst::Create(ICmp, 309 ConstantInt::get(Rem->getType(), 0), 310 Rem->getOperand(0), "tmp", Rem); 311 Rem->replaceAllUsesWith(Sel); 312 } 313 314 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 315 ++NumElimRem; 316 Changed = true; 317 DeadInsts.emplace_back(Rem); 318 } 319 320 /// Eliminate an operation that consumes a simple IV and has no observable 321 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 322 /// but UseInst may not be. 323 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 324 Instruction *IVOperand) { 325 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 326 eliminateIVComparison(ICmp, IVOperand); 327 return true; 328 } 329 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 330 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 331 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 332 eliminateIVRemainder(Rem, IVOperand, IsSigned); 333 return true; 334 } 335 } 336 337 if (eliminateIdentitySCEV(UseInst, IVOperand)) 338 return true; 339 340 return false; 341 } 342 343 /// Eliminate any operation that SCEV can prove is an identity function. 344 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 345 Instruction *IVOperand) { 346 if (!SE->isSCEVable(UseInst->getType()) || 347 (UseInst->getType() != IVOperand->getType()) || 348 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 349 return false; 350 351 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 352 // dominator tree, even if X is an operand to Y. For instance, in 353 // 354 // %iv = phi i32 {0,+,1} 355 // br %cond, label %left, label %merge 356 // 357 // left: 358 // %X = add i32 %iv, 0 359 // br label %merge 360 // 361 // merge: 362 // %M = phi (%X, %iv) 363 // 364 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 365 // %M.replaceAllUsesWith(%X) would be incorrect. 366 367 if (isa<PHINode>(UseInst)) 368 // If UseInst is not a PHI node then we know that IVOperand dominates 369 // UseInst directly from the legality of SSA. 370 if (!DT || !DT->dominates(IVOperand, UseInst)) 371 return false; 372 373 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 374 return false; 375 376 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 377 378 UseInst->replaceAllUsesWith(IVOperand); 379 ++NumElimIdentity; 380 Changed = true; 381 DeadInsts.emplace_back(UseInst); 382 return true; 383 } 384 385 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 386 /// unsigned-overflow. Returns true if anything changed, false otherwise. 387 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 388 Value *IVOperand) { 389 390 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 391 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 392 return false; 393 394 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 395 SCEV::NoWrapFlags); 396 397 switch (BO->getOpcode()) { 398 default: 399 return false; 400 401 case Instruction::Add: 402 GetExprForBO = &ScalarEvolution::getAddExpr; 403 break; 404 405 case Instruction::Sub: 406 GetExprForBO = &ScalarEvolution::getMinusSCEV; 407 break; 408 409 case Instruction::Mul: 410 GetExprForBO = &ScalarEvolution::getMulExpr; 411 break; 412 } 413 414 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 415 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 416 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 417 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 418 419 bool Changed = false; 420 421 if (!BO->hasNoUnsignedWrap()) { 422 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 423 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 424 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 425 SCEV::FlagAnyWrap); 426 if (ExtendAfterOp == OpAfterExtend) { 427 BO->setHasNoUnsignedWrap(); 428 SE->forgetValue(BO); 429 Changed = true; 430 } 431 } 432 433 if (!BO->hasNoSignedWrap()) { 434 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 435 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 436 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 437 SCEV::FlagAnyWrap); 438 if (ExtendAfterOp == OpAfterExtend) { 439 BO->setHasNoSignedWrap(); 440 SE->forgetValue(BO); 441 Changed = true; 442 } 443 } 444 445 return Changed; 446 } 447 448 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 449 /// analysis and optimization. 450 /// 451 /// \return A new value representing the non-overflowing add if possible, 452 /// otherwise return the original value. 453 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 454 const DominatorTree *DT) { 455 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 456 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 457 return IVUser; 458 459 // Find a branch guarded by the overflow check. 460 BranchInst *Branch = nullptr; 461 Instruction *AddVal = nullptr; 462 for (User *U : II->users()) { 463 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 464 if (ExtractInst->getNumIndices() != 1) 465 continue; 466 if (ExtractInst->getIndices()[0] == 0) 467 AddVal = ExtractInst; 468 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 469 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 470 } 471 } 472 if (!AddVal || !Branch) 473 return IVUser; 474 475 BasicBlock *ContinueBB = Branch->getSuccessor(1); 476 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 477 return IVUser; 478 479 // Check if all users of the add are provably NSW. 480 bool AllNSW = true; 481 for (Use &U : AddVal->uses()) { 482 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 483 BasicBlock *UseBB = UseInst->getParent(); 484 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 485 UseBB = PHI->getIncomingBlock(U); 486 if (!DT->dominates(ContinueBB, UseBB)) { 487 AllNSW = false; 488 break; 489 } 490 } 491 } 492 if (!AllNSW) 493 return IVUser; 494 495 // Go for it... 496 IRBuilder<> Builder(IVUser); 497 Instruction *AddInst = dyn_cast<Instruction>( 498 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 499 500 // The caller expects the new add to have the same form as the intrinsic. The 501 // IV operand position must be the same. 502 assert((AddInst->getOpcode() == Instruction::Add && 503 AddInst->getOperand(0) == II->getOperand(0)) && 504 "Bad add instruction created from overflow intrinsic."); 505 506 AddVal->replaceAllUsesWith(AddInst); 507 DeadInsts.emplace_back(AddVal); 508 return AddInst; 509 } 510 511 /// Add all uses of Def to the current IV's worklist. 512 static void pushIVUsers( 513 Instruction *Def, 514 SmallPtrSet<Instruction*,16> &Simplified, 515 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 516 517 for (User *U : Def->users()) { 518 Instruction *UI = cast<Instruction>(U); 519 520 // Avoid infinite or exponential worklist processing. 521 // Also ensure unique worklist users. 522 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 523 // self edges first. 524 if (UI != Def && Simplified.insert(UI).second) 525 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 526 } 527 } 528 529 /// Return true if this instruction generates a simple SCEV 530 /// expression in terms of that IV. 531 /// 532 /// This is similar to IVUsers' isInteresting() but processes each instruction 533 /// non-recursively when the operand is already known to be a simpleIVUser. 534 /// 535 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 536 if (!SE->isSCEVable(I->getType())) 537 return false; 538 539 // Get the symbolic expression for this instruction. 540 const SCEV *S = SE->getSCEV(I); 541 542 // Only consider affine recurrences. 543 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 544 if (AR && AR->getLoop() == L) 545 return true; 546 547 return false; 548 } 549 550 /// Iteratively perform simplification on a worklist of users 551 /// of the specified induction variable. Each successive simplification may push 552 /// more users which may themselves be candidates for simplification. 553 /// 554 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 555 /// instructions in-place during analysis. Rather than rewriting induction 556 /// variables bottom-up from their users, it transforms a chain of IVUsers 557 /// top-down, updating the IR only when it encounters a clear optimization 558 /// opportunity. 559 /// 560 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 561 /// 562 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 563 if (!SE->isSCEVable(CurrIV->getType())) 564 return; 565 566 // Instructions processed by SimplifyIndvar for CurrIV. 567 SmallPtrSet<Instruction*,16> Simplified; 568 569 // Use-def pairs if IV users waiting to be processed for CurrIV. 570 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 571 572 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 573 // called multiple times for the same LoopPhi. This is the proper thing to 574 // do for loop header phis that use each other. 575 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 576 577 while (!SimpleIVUsers.empty()) { 578 std::pair<Instruction*, Instruction*> UseOper = 579 SimpleIVUsers.pop_back_val(); 580 Instruction *UseInst = UseOper.first; 581 582 // Bypass back edges to avoid extra work. 583 if (UseInst == CurrIV) continue; 584 585 if (V && V->shouldSplitOverflowInstrinsics()) { 586 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 587 if (!UseInst) 588 continue; 589 } 590 591 Instruction *IVOperand = UseOper.second; 592 for (unsigned N = 0; IVOperand; ++N) { 593 assert(N <= Simplified.size() && "runaway iteration"); 594 595 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 596 if (!NewOper) 597 break; // done folding 598 IVOperand = dyn_cast<Instruction>(NewOper); 599 } 600 if (!IVOperand) 601 continue; 602 603 if (eliminateIVUser(UseOper.first, IVOperand)) { 604 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 605 continue; 606 } 607 608 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 609 if (isa<OverflowingBinaryOperator>(BO) && 610 strengthenOverflowingOperation(BO, IVOperand)) { 611 // re-queue uses of the now modified binary operator and fall 612 // through to the checks that remain. 613 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 614 } 615 } 616 617 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 618 if (V && Cast) { 619 V->visitCast(Cast); 620 continue; 621 } 622 if (isSimpleIVUser(UseOper.first, L, SE)) { 623 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 624 } 625 } 626 } 627 628 namespace llvm { 629 630 void IVVisitor::anchor() { } 631 632 /// Simplify instructions that use this induction variable 633 /// by using ScalarEvolution to analyze the IV's recurrence. 634 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 635 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead, 636 IVVisitor *V) { 637 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); 638 SIV.simplifyUsers(CurrIV, V); 639 return SIV.hasChanged(); 640 } 641 642 /// Simplify users of induction variables within this 643 /// loop. This does not actually change or add IVs. 644 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 645 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) { 646 bool Changed = false; 647 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 648 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); 649 } 650 return Changed; 651 } 652 653 } // namespace llvm 654