1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "indvars"
32 
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(
38     NumSimplifiedSDiv,
39     "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41     NumSimplifiedSRem,
42     "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
44 
45 namespace {
46   /// This is a utility for simplifying induction variables
47   /// based on ScalarEvolution. It is the primary instrument of the
48   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49   /// other loop passes that preserve SCEV.
50   class SimplifyIndvar {
51     Loop             *L;
52     LoopInfo         *LI;
53     ScalarEvolution  *SE;
54     DominatorTree    *DT;
55     const TargetTransformInfo *TTI;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed = false;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, const TargetTransformInfo *TTI,
64                    SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67           DeadInsts(Dead) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82 
83     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
84     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
85     bool eliminateTrunc(TruncInst *TI);
86     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
87     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
88     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
89     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
90                              bool IsSigned);
91     void replaceRemWithNumerator(BinaryOperator *Rem);
92     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
93     void replaceSRemWithURem(BinaryOperator *Rem);
94     bool eliminateSDiv(BinaryOperator *SDiv);
95     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
96     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
97   };
98 }
99 
100 /// Find a point in code which dominates all given instructions. We can safely
101 /// assume that, whatever fact we can prove at the found point, this fact is
102 /// also true for each of the given instructions.
103 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
104                                         DominatorTree &DT) {
105   Instruction *CommonDom = nullptr;
106   for (auto *Insn : Instructions)
107     if (!CommonDom || DT.dominates(Insn, CommonDom))
108       CommonDom = Insn;
109     else if (!DT.dominates(CommonDom, Insn))
110       // If there is no dominance relation, use common dominator.
111       CommonDom =
112           DT.findNearestCommonDominator(CommonDom->getParent(),
113                                         Insn->getParent())->getTerminator();
114   assert(CommonDom && "Common dominator not found?");
115   return CommonDom;
116 }
117 
118 /// Fold an IV operand into its use.  This removes increments of an
119 /// aligned IV when used by a instruction that ignores the low bits.
120 ///
121 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
122 ///
123 /// Return the operand of IVOperand for this induction variable if IVOperand can
124 /// be folded (in case more folding opportunities have been exposed).
125 /// Otherwise return null.
126 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
127   Value *IVSrc = nullptr;
128   const unsigned OperIdx = 0;
129   const SCEV *FoldedExpr = nullptr;
130   bool MustDropExactFlag = false;
131   switch (UseInst->getOpcode()) {
132   default:
133     return nullptr;
134   case Instruction::UDiv:
135   case Instruction::LShr:
136     // We're only interested in the case where we know something about
137     // the numerator and have a constant denominator.
138     if (IVOperand != UseInst->getOperand(OperIdx) ||
139         !isa<ConstantInt>(UseInst->getOperand(1)))
140       return nullptr;
141 
142     // Attempt to fold a binary operator with constant operand.
143     // e.g. ((I + 1) >> 2) => I >> 2
144     if (!isa<BinaryOperator>(IVOperand)
145         || !isa<ConstantInt>(IVOperand->getOperand(1)))
146       return nullptr;
147 
148     IVSrc = IVOperand->getOperand(0);
149     // IVSrc must be the (SCEVable) IV, since the other operand is const.
150     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
151 
152     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
153     if (UseInst->getOpcode() == Instruction::LShr) {
154       // Get a constant for the divisor. See createSCEV.
155       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
156       if (D->getValue().uge(BitWidth))
157         return nullptr;
158 
159       D = ConstantInt::get(UseInst->getContext(),
160                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
161     }
162     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
163     // We might have 'exact' flag set at this point which will no longer be
164     // correct after we make the replacement.
165     if (UseInst->isExact() &&
166         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
167       MustDropExactFlag = true;
168   }
169   // We have something that might fold it's operand. Compare SCEVs.
170   if (!SE->isSCEVable(UseInst->getType()))
171     return nullptr;
172 
173   // Bypass the operand if SCEV can prove it has no effect.
174   if (SE->getSCEV(UseInst) != FoldedExpr)
175     return nullptr;
176 
177   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
178                     << " -> " << *UseInst << '\n');
179 
180   UseInst->setOperand(OperIdx, IVSrc);
181   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
182 
183   if (MustDropExactFlag)
184     UseInst->dropPoisonGeneratingFlags();
185 
186   ++NumElimOperand;
187   Changed = true;
188   if (IVOperand->use_empty())
189     DeadInsts.emplace_back(IVOperand);
190   return IVSrc;
191 }
192 
193 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
194                                                Value *IVOperand) {
195   unsigned IVOperIdx = 0;
196   ICmpInst::Predicate Pred = ICmp->getPredicate();
197   if (IVOperand != ICmp->getOperand(0)) {
198     // Swapped
199     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
200     IVOperIdx = 1;
201     Pred = ICmpInst::getSwappedPredicate(Pred);
202   }
203 
204   // Get the SCEVs for the ICmp operands (in the specific context of the
205   // current loop)
206   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
207   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
208   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
209 
210   auto *PN = dyn_cast<PHINode>(IVOperand);
211   if (!PN)
212     return false;
213   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
214   if (!LIP)
215     return false;
216   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
217   const SCEV *InvariantLHS = LIP->LHS;
218   const SCEV *InvariantRHS = LIP->RHS;
219 
220   // Rewrite the comparison to a loop invariant comparison if it can be done
221   // cheaply, where cheaply means "we don't need to emit any new
222   // instructions".
223 
224   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
225   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
226   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
227 
228   // TODO: Support multiple entry loops?  (We currently bail out of these in
229   // the IndVarSimplify pass)
230   if (auto *BB = L->getLoopPredecessor()) {
231     const int Idx = PN->getBasicBlockIndex(BB);
232     if (Idx >= 0) {
233       Value *Incoming = PN->getIncomingValue(Idx);
234       const SCEV *IncomingS = SE->getSCEV(Incoming);
235       CheapExpansions[IncomingS] = Incoming;
236     }
237   }
238   Value *NewLHS = CheapExpansions[InvariantLHS];
239   Value *NewRHS = CheapExpansions[InvariantRHS];
240 
241   if (!NewLHS)
242     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
243       NewLHS = ConstLHS->getValue();
244   if (!NewRHS)
245     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
246       NewRHS = ConstRHS->getValue();
247 
248   if (!NewLHS || !NewRHS)
249     // We could not find an existing value to replace either LHS or RHS.
250     // Generating new instructions has subtler tradeoffs, so avoid doing that
251     // for now.
252     return false;
253 
254   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
255   ICmp->setPredicate(InvariantPredicate);
256   ICmp->setOperand(0, NewLHS);
257   ICmp->setOperand(1, NewRHS);
258   return true;
259 }
260 
261 /// SimplifyIVUsers helper for eliminating useless
262 /// comparisons against an induction variable.
263 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
264   unsigned IVOperIdx = 0;
265   ICmpInst::Predicate Pred = ICmp->getPredicate();
266   ICmpInst::Predicate OriginalPred = Pred;
267   if (IVOperand != ICmp->getOperand(0)) {
268     // Swapped
269     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
270     IVOperIdx = 1;
271     Pred = ICmpInst::getSwappedPredicate(Pred);
272   }
273 
274   // Get the SCEVs for the ICmp operands (in the specific context of the
275   // current loop)
276   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
277   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
278   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
279 
280   // If the condition is always true or always false in the given context,
281   // replace it with a constant value.
282   SmallVector<Instruction *, 4> Users;
283   for (auto *U : ICmp->users())
284     Users.push_back(cast<Instruction>(U));
285   const Instruction *CtxI = findCommonDominator(Users, *DT);
286   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
287     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
288     DeadInsts.emplace_back(ICmp);
289     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
290   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
291     // fallthrough to end of function
292   } else if (ICmpInst::isSigned(OriginalPred) &&
293              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
294     // If we were unable to make anything above, all we can is to canonicalize
295     // the comparison hoping that it will open the doors for other
296     // optimizations. If we find out that we compare two non-negative values,
297     // we turn the instruction's predicate to its unsigned version. Note that
298     // we cannot rely on Pred here unless we check if we have swapped it.
299     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
300     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
301                       << '\n');
302     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
303   } else
304     return;
305 
306   ++NumElimCmp;
307   Changed = true;
308 }
309 
310 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
311   // Get the SCEVs for the ICmp operands.
312   auto *N = SE->getSCEV(SDiv->getOperand(0));
313   auto *D = SE->getSCEV(SDiv->getOperand(1));
314 
315   // Simplify unnecessary loops away.
316   const Loop *L = LI->getLoopFor(SDiv->getParent());
317   N = SE->getSCEVAtScope(N, L);
318   D = SE->getSCEVAtScope(D, L);
319 
320   // Replace sdiv by udiv if both of the operands are non-negative
321   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
322     auto *UDiv = BinaryOperator::Create(
323         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
324         SDiv->getName() + ".udiv", SDiv);
325     UDiv->setIsExact(SDiv->isExact());
326     SDiv->replaceAllUsesWith(UDiv);
327     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
328     ++NumSimplifiedSDiv;
329     Changed = true;
330     DeadInsts.push_back(SDiv);
331     return true;
332   }
333 
334   return false;
335 }
336 
337 // i %s n -> i %u n if i >= 0 and n >= 0
338 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
339   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
340   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
341                                       Rem->getName() + ".urem", Rem);
342   Rem->replaceAllUsesWith(URem);
343   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
344   ++NumSimplifiedSRem;
345   Changed = true;
346   DeadInsts.emplace_back(Rem);
347 }
348 
349 // i % n  -->  i  if i is in [0,n).
350 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
351   Rem->replaceAllUsesWith(Rem->getOperand(0));
352   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
353   ++NumElimRem;
354   Changed = true;
355   DeadInsts.emplace_back(Rem);
356 }
357 
358 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
359 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
360   auto *T = Rem->getType();
361   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
362   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
363   SelectInst *Sel =
364       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
365   Rem->replaceAllUsesWith(Sel);
366   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
367   ++NumElimRem;
368   Changed = true;
369   DeadInsts.emplace_back(Rem);
370 }
371 
372 /// SimplifyIVUsers helper for eliminating useless remainder operations
373 /// operating on an induction variable or replacing srem by urem.
374 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
375                                          bool IsSigned) {
376   auto *NValue = Rem->getOperand(0);
377   auto *DValue = Rem->getOperand(1);
378   // We're only interested in the case where we know something about
379   // the numerator, unless it is a srem, because we want to replace srem by urem
380   // in general.
381   bool UsedAsNumerator = IVOperand == NValue;
382   if (!UsedAsNumerator && !IsSigned)
383     return;
384 
385   const SCEV *N = SE->getSCEV(NValue);
386 
387   // Simplify unnecessary loops away.
388   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
389   N = SE->getSCEVAtScope(N, ICmpLoop);
390 
391   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
392 
393   // Do not proceed if the Numerator may be negative
394   if (!IsNumeratorNonNegative)
395     return;
396 
397   const SCEV *D = SE->getSCEV(DValue);
398   D = SE->getSCEVAtScope(D, ICmpLoop);
399 
400   if (UsedAsNumerator) {
401     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
402     if (SE->isKnownPredicate(LT, N, D)) {
403       replaceRemWithNumerator(Rem);
404       return;
405     }
406 
407     auto *T = Rem->getType();
408     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
409     if (SE->isKnownPredicate(LT, NLessOne, D)) {
410       replaceRemWithNumeratorOrZero(Rem);
411       return;
412     }
413   }
414 
415   // Try to replace SRem with URem, if both N and D are known non-negative.
416   // Since we had already check N, we only need to check D now
417   if (!IsSigned || !SE->isKnownNonNegative(D))
418     return;
419 
420   replaceSRemWithURem(Rem);
421 }
422 
423 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
424   const SCEV *LHS = SE->getSCEV(WO->getLHS());
425   const SCEV *RHS = SE->getSCEV(WO->getRHS());
426   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
427     return false;
428 
429   // Proved no overflow, nuke the overflow check and, if possible, the overflow
430   // intrinsic as well.
431 
432   BinaryOperator *NewResult = BinaryOperator::Create(
433       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
434 
435   if (WO->isSigned())
436     NewResult->setHasNoSignedWrap(true);
437   else
438     NewResult->setHasNoUnsignedWrap(true);
439 
440   SmallVector<ExtractValueInst *, 4> ToDelete;
441 
442   for (auto *U : WO->users()) {
443     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
444       if (EVI->getIndices()[0] == 1)
445         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
446       else {
447         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
448         EVI->replaceAllUsesWith(NewResult);
449       }
450       ToDelete.push_back(EVI);
451     }
452   }
453 
454   for (auto *EVI : ToDelete)
455     EVI->eraseFromParent();
456 
457   if (WO->use_empty())
458     WO->eraseFromParent();
459 
460   Changed = true;
461   return true;
462 }
463 
464 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
465   const SCEV *LHS = SE->getSCEV(SI->getLHS());
466   const SCEV *RHS = SE->getSCEV(SI->getRHS());
467   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
468     return false;
469 
470   BinaryOperator *BO = BinaryOperator::Create(
471       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
472   if (SI->isSigned())
473     BO->setHasNoSignedWrap();
474   else
475     BO->setHasNoUnsignedWrap();
476 
477   SI->replaceAllUsesWith(BO);
478   DeadInsts.emplace_back(SI);
479   Changed = true;
480   return true;
481 }
482 
483 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
484   // It is always legal to replace
485   //   icmp <pred> i32 trunc(iv), n
486   // with
487   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
488   // Or with
489   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
490   // Or with either of these if pred is an equality predicate.
491   //
492   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
493   // every comparison which uses trunc, it means that we can replace each of
494   // them with comparison of iv against sext/zext(n). We no longer need trunc
495   // after that.
496   //
497   // TODO: Should we do this if we can widen *some* comparisons, but not all
498   // of them? Sometimes it is enough to enable other optimizations, but the
499   // trunc instruction will stay in the loop.
500   Value *IV = TI->getOperand(0);
501   Type *IVTy = IV->getType();
502   const SCEV *IVSCEV = SE->getSCEV(IV);
503   const SCEV *TISCEV = SE->getSCEV(TI);
504 
505   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
506   // get rid of trunc
507   bool DoesSExtCollapse = false;
508   bool DoesZExtCollapse = false;
509   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
510     DoesSExtCollapse = true;
511   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
512     DoesZExtCollapse = true;
513 
514   // If neither sext nor zext does collapse, it is not profitable to do any
515   // transform. Bail.
516   if (!DoesSExtCollapse && !DoesZExtCollapse)
517     return false;
518 
519   // Collect users of the trunc that look like comparisons against invariants.
520   // Bail if we find something different.
521   SmallVector<ICmpInst *, 4> ICmpUsers;
522   for (auto *U : TI->users()) {
523     // We don't care about users in unreachable blocks.
524     if (isa<Instruction>(U) &&
525         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
526       continue;
527     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
528     if (!ICI) return false;
529     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
530     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
531         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
532       return false;
533     // If we cannot get rid of trunc, bail.
534     if (ICI->isSigned() && !DoesSExtCollapse)
535       return false;
536     if (ICI->isUnsigned() && !DoesZExtCollapse)
537       return false;
538     // For equality, either signed or unsigned works.
539     ICmpUsers.push_back(ICI);
540   }
541 
542   auto CanUseZExt = [&](ICmpInst *ICI) {
543     // Unsigned comparison can be widened as unsigned.
544     if (ICI->isUnsigned())
545       return true;
546     // Is it profitable to do zext?
547     if (!DoesZExtCollapse)
548       return false;
549     // For equality, we can safely zext both parts.
550     if (ICI->isEquality())
551       return true;
552     // Otherwise we can only use zext when comparing two non-negative or two
553     // negative values. But in practice, we will never pass DoesZExtCollapse
554     // check for a negative value, because zext(trunc(x)) is non-negative. So
555     // it only make sense to check for non-negativity here.
556     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
557     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
558     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
559   };
560   // Replace all comparisons against trunc with comparisons against IV.
561   for (auto *ICI : ICmpUsers) {
562     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
563     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
564     Instruction *Ext = nullptr;
565     // For signed/unsigned predicate, replace the old comparison with comparison
566     // of immediate IV against sext/zext of the invariant argument. If we can
567     // use either sext or zext (i.e. we are dealing with equality predicate),
568     // then prefer zext as a more canonical form.
569     // TODO: If we see a signed comparison which can be turned into unsigned,
570     // we can do it here for canonicalization purposes.
571     ICmpInst::Predicate Pred = ICI->getPredicate();
572     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
573     if (CanUseZExt(ICI)) {
574       assert(DoesZExtCollapse && "Unprofitable zext?");
575       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
576       Pred = ICmpInst::getUnsignedPredicate(Pred);
577     } else {
578       assert(DoesSExtCollapse && "Unprofitable sext?");
579       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
580       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
581     }
582     bool Changed;
583     L->makeLoopInvariant(Ext, Changed);
584     (void)Changed;
585     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
586     ICI->replaceAllUsesWith(NewICI);
587     DeadInsts.emplace_back(ICI);
588   }
589 
590   // Trunc no longer needed.
591   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
592   DeadInsts.emplace_back(TI);
593   return true;
594 }
595 
596 /// Eliminate an operation that consumes a simple IV and has no observable
597 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
598 /// but UseInst may not be.
599 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
600                                      Instruction *IVOperand) {
601   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
602     eliminateIVComparison(ICmp, IVOperand);
603     return true;
604   }
605   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
606     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
607     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
608       simplifyIVRemainder(Bin, IVOperand, IsSRem);
609       return true;
610     }
611 
612     if (Bin->getOpcode() == Instruction::SDiv)
613       return eliminateSDiv(Bin);
614   }
615 
616   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
617     if (eliminateOverflowIntrinsic(WO))
618       return true;
619 
620   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
621     if (eliminateSaturatingIntrinsic(SI))
622       return true;
623 
624   if (auto *TI = dyn_cast<TruncInst>(UseInst))
625     if (eliminateTrunc(TI))
626       return true;
627 
628   if (eliminateIdentitySCEV(UseInst, IVOperand))
629     return true;
630 
631   return false;
632 }
633 
634 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
635   if (auto *BB = L->getLoopPreheader())
636     return BB->getTerminator();
637 
638   return Hint;
639 }
640 
641 /// Replace the UseInst with a loop invariant expression if it is safe.
642 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
643   if (!SE->isSCEVable(I->getType()))
644     return false;
645 
646   // Get the symbolic expression for this instruction.
647   const SCEV *S = SE->getSCEV(I);
648 
649   if (!SE->isLoopInvariant(S, L))
650     return false;
651 
652   // Do not generate something ridiculous even if S is loop invariant.
653   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
654     return false;
655 
656   auto *IP = GetLoopInvariantInsertPosition(L, I);
657 
658   if (!isSafeToExpandAt(S, IP, *SE)) {
659     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
660                       << " with non-speculable loop invariant: " << *S << '\n');
661     return false;
662   }
663 
664   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
665 
666   I->replaceAllUsesWith(Invariant);
667   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
668                     << " with loop invariant: " << *S << '\n');
669   ++NumFoldedUser;
670   Changed = true;
671   DeadInsts.emplace_back(I);
672   return true;
673 }
674 
675 /// Eliminate any operation that SCEV can prove is an identity function.
676 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
677                                            Instruction *IVOperand) {
678   if (!SE->isSCEVable(UseInst->getType()) ||
679       (UseInst->getType() != IVOperand->getType()) ||
680       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
681     return false;
682 
683   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
684   // dominator tree, even if X is an operand to Y.  For instance, in
685   //
686   //     %iv = phi i32 {0,+,1}
687   //     br %cond, label %left, label %merge
688   //
689   //   left:
690   //     %X = add i32 %iv, 0
691   //     br label %merge
692   //
693   //   merge:
694   //     %M = phi (%X, %iv)
695   //
696   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
697   // %M.replaceAllUsesWith(%X) would be incorrect.
698 
699   if (isa<PHINode>(UseInst))
700     // If UseInst is not a PHI node then we know that IVOperand dominates
701     // UseInst directly from the legality of SSA.
702     if (!DT || !DT->dominates(IVOperand, UseInst))
703       return false;
704 
705   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
706     return false;
707 
708   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
709 
710   UseInst->replaceAllUsesWith(IVOperand);
711   ++NumElimIdentity;
712   Changed = true;
713   DeadInsts.emplace_back(UseInst);
714   return true;
715 }
716 
717 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
718 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
719 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
720                                                     Value *IVOperand) {
721   SCEV::NoWrapFlags Flags;
722   bool Deduced;
723   std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
724       cast<OverflowingBinaryOperator>(BO));
725 
726   if (!Deduced)
727     return Deduced;
728 
729   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
730                            SCEV::FlagNUW);
731   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
732                          SCEV::FlagNSW);
733 
734   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
735   // flags on addrecs while performing zero/sign extensions. We could call
736   // forgetValue() here to make sure those flags also propagate to any other
737   // SCEV expressions based on the addrec. However, this can have pathological
738   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
739   return Deduced;
740 }
741 
742 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
743 /// information from the IV's range. Returns true if anything changed, false
744 /// otherwise.
745 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
746                                           Value *IVOperand) {
747   using namespace llvm::PatternMatch;
748 
749   if (BO->getOpcode() == Instruction::Shl) {
750     bool Changed = false;
751     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
752     for (auto *U : BO->users()) {
753       const APInt *C;
754       if (match(U,
755                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
756           match(U,
757                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
758         BinaryOperator *Shr = cast<BinaryOperator>(U);
759         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
760           Shr->setIsExact(true);
761           Changed = true;
762         }
763       }
764     }
765     return Changed;
766   }
767 
768   return false;
769 }
770 
771 /// Add all uses of Def to the current IV's worklist.
772 static void pushIVUsers(
773   Instruction *Def, Loop *L,
774   SmallPtrSet<Instruction*,16> &Simplified,
775   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
776 
777   for (User *U : Def->users()) {
778     Instruction *UI = cast<Instruction>(U);
779 
780     // Avoid infinite or exponential worklist processing.
781     // Also ensure unique worklist users.
782     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
783     // self edges first.
784     if (UI == Def)
785       continue;
786 
787     // Only change the current Loop, do not change the other parts (e.g. other
788     // Loops).
789     if (!L->contains(UI))
790       continue;
791 
792     // Do not push the same instruction more than once.
793     if (!Simplified.insert(UI).second)
794       continue;
795 
796     SimpleIVUsers.push_back(std::make_pair(UI, Def));
797   }
798 }
799 
800 /// Return true if this instruction generates a simple SCEV
801 /// expression in terms of that IV.
802 ///
803 /// This is similar to IVUsers' isInteresting() but processes each instruction
804 /// non-recursively when the operand is already known to be a simpleIVUser.
805 ///
806 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
807   if (!SE->isSCEVable(I->getType()))
808     return false;
809 
810   // Get the symbolic expression for this instruction.
811   const SCEV *S = SE->getSCEV(I);
812 
813   // Only consider affine recurrences.
814   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
815   if (AR && AR->getLoop() == L)
816     return true;
817 
818   return false;
819 }
820 
821 /// Iteratively perform simplification on a worklist of users
822 /// of the specified induction variable. Each successive simplification may push
823 /// more users which may themselves be candidates for simplification.
824 ///
825 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
826 /// instructions in-place during analysis. Rather than rewriting induction
827 /// variables bottom-up from their users, it transforms a chain of IVUsers
828 /// top-down, updating the IR only when it encounters a clear optimization
829 /// opportunity.
830 ///
831 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
832 ///
833 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
834   if (!SE->isSCEVable(CurrIV->getType()))
835     return;
836 
837   // Instructions processed by SimplifyIndvar for CurrIV.
838   SmallPtrSet<Instruction*,16> Simplified;
839 
840   // Use-def pairs if IV users waiting to be processed for CurrIV.
841   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
842 
843   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
844   // called multiple times for the same LoopPhi. This is the proper thing to
845   // do for loop header phis that use each other.
846   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
847 
848   while (!SimpleIVUsers.empty()) {
849     std::pair<Instruction*, Instruction*> UseOper =
850       SimpleIVUsers.pop_back_val();
851     Instruction *UseInst = UseOper.first;
852 
853     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
854     // rather than try to do some complex analysis or transformation (such as
855     // widening) basing on it.
856     // TODO: Propagate TLI and pass it here to handle more cases.
857     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
858       DeadInsts.emplace_back(UseInst);
859       continue;
860     }
861 
862     // Bypass back edges to avoid extra work.
863     if (UseInst == CurrIV) continue;
864 
865     // Try to replace UseInst with a loop invariant before any other
866     // simplifications.
867     if (replaceIVUserWithLoopInvariant(UseInst))
868       continue;
869 
870     Instruction *IVOperand = UseOper.second;
871     for (unsigned N = 0; IVOperand; ++N) {
872       assert(N <= Simplified.size() && "runaway iteration");
873 
874       Value *NewOper = foldIVUser(UseInst, IVOperand);
875       if (!NewOper)
876         break; // done folding
877       IVOperand = dyn_cast<Instruction>(NewOper);
878     }
879     if (!IVOperand)
880       continue;
881 
882     if (eliminateIVUser(UseInst, IVOperand)) {
883       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
884       continue;
885     }
886 
887     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
888       if ((isa<OverflowingBinaryOperator>(BO) &&
889            strengthenOverflowingOperation(BO, IVOperand)) ||
890           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
891         // re-queue uses of the now modified binary operator and fall
892         // through to the checks that remain.
893         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
894       }
895     }
896 
897     CastInst *Cast = dyn_cast<CastInst>(UseInst);
898     if (V && Cast) {
899       V->visitCast(Cast);
900       continue;
901     }
902     if (isSimpleIVUser(UseInst, L, SE)) {
903       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
904     }
905   }
906 }
907 
908 namespace llvm {
909 
910 void IVVisitor::anchor() { }
911 
912 /// Simplify instructions that use this induction variable
913 /// by using ScalarEvolution to analyze the IV's recurrence.
914 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
915                        LoopInfo *LI, const TargetTransformInfo *TTI,
916                        SmallVectorImpl<WeakTrackingVH> &Dead,
917                        SCEVExpander &Rewriter, IVVisitor *V) {
918   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
919                      Rewriter, Dead);
920   SIV.simplifyUsers(CurrIV, V);
921   return SIV.hasChanged();
922 }
923 
924 /// Simplify users of induction variables within this
925 /// loop. This does not actually change or add IVs.
926 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
927                      LoopInfo *LI, const TargetTransformInfo *TTI,
928                      SmallVectorImpl<WeakTrackingVH> &Dead) {
929   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
930 #ifndef NDEBUG
931   Rewriter.setDebugType(DEBUG_TYPE);
932 #endif
933   bool Changed = false;
934   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
935     Changed |=
936         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
937   }
938   return Changed;
939 }
940 
941 } // namespace llvm
942 
943 namespace {
944 //===----------------------------------------------------------------------===//
945 // Widen Induction Variables - Extend the width of an IV to cover its
946 // widest uses.
947 //===----------------------------------------------------------------------===//
948 
949 class WidenIV {
950   // Parameters
951   PHINode *OrigPhi;
952   Type *WideType;
953 
954   // Context
955   LoopInfo        *LI;
956   Loop            *L;
957   ScalarEvolution *SE;
958   DominatorTree   *DT;
959 
960   // Does the module have any calls to the llvm.experimental.guard intrinsic
961   // at all? If not we can avoid scanning instructions looking for guards.
962   bool HasGuards;
963 
964   bool UsePostIncrementRanges;
965 
966   // Statistics
967   unsigned NumElimExt = 0;
968   unsigned NumWidened = 0;
969 
970   // Result
971   PHINode *WidePhi = nullptr;
972   Instruction *WideInc = nullptr;
973   const SCEV *WideIncExpr = nullptr;
974   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
975 
976   SmallPtrSet<Instruction *,16> Widened;
977 
978   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
979 
980   // A map tracking the kind of extension used to widen each narrow IV
981   // and narrow IV user.
982   // Key: pointer to a narrow IV or IV user.
983   // Value: the kind of extension used to widen this Instruction.
984   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
985 
986   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
987 
988   // A map with control-dependent ranges for post increment IV uses. The key is
989   // a pair of IV def and a use of this def denoting the context. The value is
990   // a ConstantRange representing possible values of the def at the given
991   // context.
992   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
993 
994   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
995                                               Instruction *UseI) {
996     DefUserPair Key(Def, UseI);
997     auto It = PostIncRangeInfos.find(Key);
998     return It == PostIncRangeInfos.end()
999                ? Optional<ConstantRange>(None)
1000                : Optional<ConstantRange>(It->second);
1001   }
1002 
1003   void calculatePostIncRanges(PHINode *OrigPhi);
1004   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1005 
1006   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1007     DefUserPair Key(Def, UseI);
1008     auto It = PostIncRangeInfos.find(Key);
1009     if (It == PostIncRangeInfos.end())
1010       PostIncRangeInfos.insert({Key, R});
1011     else
1012       It->second = R.intersectWith(It->second);
1013   }
1014 
1015 public:
1016   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1017   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1018   /// pointers.
1019   struct NarrowIVDefUse {
1020     Instruction *NarrowDef = nullptr;
1021     Instruction *NarrowUse = nullptr;
1022     Instruction *WideDef = nullptr;
1023 
1024     // True if the narrow def is never negative.  Tracking this information lets
1025     // us use a sign extension instead of a zero extension or vice versa, when
1026     // profitable and legal.
1027     bool NeverNegative = false;
1028 
1029     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1030                    bool NeverNegative)
1031         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1032           NeverNegative(NeverNegative) {}
1033   };
1034 
1035   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1036           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1037           bool HasGuards, bool UsePostIncrementRanges = true);
1038 
1039   PHINode *createWideIV(SCEVExpander &Rewriter);
1040 
1041   unsigned getNumElimExt() { return NumElimExt; };
1042   unsigned getNumWidened() { return NumWidened; };
1043 
1044 protected:
1045   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1046                           Instruction *Use);
1047 
1048   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1049   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1050                                      const SCEVAddRecExpr *WideAR);
1051   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1052 
1053   ExtendKind getExtendKind(Instruction *I);
1054 
1055   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1056 
1057   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1058 
1059   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1060 
1061   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1062                               unsigned OpCode) const;
1063 
1064   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1065 
1066   bool widenLoopCompare(NarrowIVDefUse DU);
1067   bool widenWithVariantUse(NarrowIVDefUse DU);
1068 
1069   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1070 
1071 private:
1072   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1073 };
1074 } // namespace
1075 
1076 /// Determine the insertion point for this user. By default, insert immediately
1077 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1078 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1079 /// common dominator for the incoming blocks. A nullptr can be returned if no
1080 /// viable location is found: it may happen if User is a PHI and Def only comes
1081 /// to this PHI from unreachable blocks.
1082 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1083                                           DominatorTree *DT, LoopInfo *LI) {
1084   PHINode *PHI = dyn_cast<PHINode>(User);
1085   if (!PHI)
1086     return User;
1087 
1088   Instruction *InsertPt = nullptr;
1089   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1090     if (PHI->getIncomingValue(i) != Def)
1091       continue;
1092 
1093     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1094 
1095     if (!DT->isReachableFromEntry(InsertBB))
1096       continue;
1097 
1098     if (!InsertPt) {
1099       InsertPt = InsertBB->getTerminator();
1100       continue;
1101     }
1102     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1103     InsertPt = InsertBB->getTerminator();
1104   }
1105 
1106   // If we have skipped all inputs, it means that Def only comes to Phi from
1107   // unreachable blocks.
1108   if (!InsertPt)
1109     return nullptr;
1110 
1111   auto *DefI = dyn_cast<Instruction>(Def);
1112   if (!DefI)
1113     return InsertPt;
1114 
1115   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1116 
1117   auto *L = LI->getLoopFor(DefI->getParent());
1118   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1119 
1120   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1121     if (LI->getLoopFor(DTN->getBlock()) == L)
1122       return DTN->getBlock()->getTerminator();
1123 
1124   llvm_unreachable("DefI dominates InsertPt!");
1125 }
1126 
1127 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1128           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1129           bool HasGuards, bool UsePostIncrementRanges)
1130       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1131         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1132         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1133         DeadInsts(DI) {
1134     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1135     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1136 }
1137 
1138 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1139                                  bool IsSigned, Instruction *Use) {
1140   // Set the debug location and conservative insertion point.
1141   IRBuilder<> Builder(Use);
1142   // Hoist the insertion point into loop preheaders as far as possible.
1143   for (const Loop *L = LI->getLoopFor(Use->getParent());
1144        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1145        L = L->getParentLoop())
1146     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1147 
1148   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1149                     Builder.CreateZExt(NarrowOper, WideType);
1150 }
1151 
1152 /// Instantiate a wide operation to replace a narrow operation. This only needs
1153 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1154 /// 0 for any operation we decide not to clone.
1155 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1156                                   const SCEVAddRecExpr *WideAR) {
1157   unsigned Opcode = DU.NarrowUse->getOpcode();
1158   switch (Opcode) {
1159   default:
1160     return nullptr;
1161   case Instruction::Add:
1162   case Instruction::Mul:
1163   case Instruction::UDiv:
1164   case Instruction::Sub:
1165     return cloneArithmeticIVUser(DU, WideAR);
1166 
1167   case Instruction::And:
1168   case Instruction::Or:
1169   case Instruction::Xor:
1170   case Instruction::Shl:
1171   case Instruction::LShr:
1172   case Instruction::AShr:
1173     return cloneBitwiseIVUser(DU);
1174   }
1175 }
1176 
1177 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1178   Instruction *NarrowUse = DU.NarrowUse;
1179   Instruction *NarrowDef = DU.NarrowDef;
1180   Instruction *WideDef = DU.WideDef;
1181 
1182   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1183 
1184   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1185   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1186   // invariant and will be folded or hoisted. If it actually comes from a
1187   // widened IV, it should be removed during a future call to widenIVUse.
1188   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1189   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1190                    ? WideDef
1191                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1192                                       IsSigned, NarrowUse);
1193   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1194                    ? WideDef
1195                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1196                                       IsSigned, NarrowUse);
1197 
1198   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1199   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1200                                         NarrowBO->getName());
1201   IRBuilder<> Builder(NarrowUse);
1202   Builder.Insert(WideBO);
1203   WideBO->copyIRFlags(NarrowBO);
1204   return WideBO;
1205 }
1206 
1207 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1208                                             const SCEVAddRecExpr *WideAR) {
1209   Instruction *NarrowUse = DU.NarrowUse;
1210   Instruction *NarrowDef = DU.NarrowDef;
1211   Instruction *WideDef = DU.WideDef;
1212 
1213   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1214 
1215   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1216 
1217   // We're trying to find X such that
1218   //
1219   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1220   //
1221   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1222   // and check using SCEV if any of them are correct.
1223 
1224   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1225   // correct solution to X.
1226   auto GuessNonIVOperand = [&](bool SignExt) {
1227     const SCEV *WideLHS;
1228     const SCEV *WideRHS;
1229 
1230     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1231       if (SignExt)
1232         return SE->getSignExtendExpr(S, Ty);
1233       return SE->getZeroExtendExpr(S, Ty);
1234     };
1235 
1236     if (IVOpIdx == 0) {
1237       WideLHS = SE->getSCEV(WideDef);
1238       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1239       WideRHS = GetExtend(NarrowRHS, WideType);
1240     } else {
1241       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1242       WideLHS = GetExtend(NarrowLHS, WideType);
1243       WideRHS = SE->getSCEV(WideDef);
1244     }
1245 
1246     // WideUse is "WideDef `op.wide` X" as described in the comment.
1247     const SCEV *WideUse =
1248       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1249 
1250     return WideUse == WideAR;
1251   };
1252 
1253   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1254   if (!GuessNonIVOperand(SignExtend)) {
1255     SignExtend = !SignExtend;
1256     if (!GuessNonIVOperand(SignExtend))
1257       return nullptr;
1258   }
1259 
1260   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1261                    ? WideDef
1262                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1263                                       SignExtend, NarrowUse);
1264   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1265                    ? WideDef
1266                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1267                                       SignExtend, NarrowUse);
1268 
1269   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1270   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1271                                         NarrowBO->getName());
1272 
1273   IRBuilder<> Builder(NarrowUse);
1274   Builder.Insert(WideBO);
1275   WideBO->copyIRFlags(NarrowBO);
1276   return WideBO;
1277 }
1278 
1279 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1280   auto It = ExtendKindMap.find(I);
1281   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1282   return It->second;
1283 }
1284 
1285 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1286                                      unsigned OpCode) const {
1287   switch (OpCode) {
1288   case Instruction::Add:
1289     return SE->getAddExpr(LHS, RHS);
1290   case Instruction::Sub:
1291     return SE->getMinusSCEV(LHS, RHS);
1292   case Instruction::Mul:
1293     return SE->getMulExpr(LHS, RHS);
1294   case Instruction::UDiv:
1295     return SE->getUDivExpr(LHS, RHS);
1296   default:
1297     llvm_unreachable("Unsupported opcode.");
1298   };
1299 }
1300 
1301 /// No-wrap operations can transfer sign extension of their result to their
1302 /// operands. Generate the SCEV value for the widened operation without
1303 /// actually modifying the IR yet. If the expression after extending the
1304 /// operands is an AddRec for this loop, return the AddRec and the kind of
1305 /// extension used.
1306 WidenIV::WidenedRecTy
1307 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1308   // Handle the common case of add<nsw/nuw>
1309   const unsigned OpCode = DU.NarrowUse->getOpcode();
1310   // Only Add/Sub/Mul instructions supported yet.
1311   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1312       OpCode != Instruction::Mul)
1313     return {nullptr, Unknown};
1314 
1315   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1316   // if extending the other will lead to a recurrence.
1317   const unsigned ExtendOperIdx =
1318       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1319   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1320 
1321   const SCEV *ExtendOperExpr = nullptr;
1322   const OverflowingBinaryOperator *OBO =
1323     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1324   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1325   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1326     ExtendOperExpr = SE->getSignExtendExpr(
1327       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1328   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1329     ExtendOperExpr = SE->getZeroExtendExpr(
1330       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1331   else
1332     return {nullptr, Unknown};
1333 
1334   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1335   // flags. This instruction may be guarded by control flow that the no-wrap
1336   // behavior depends on. Non-control-equivalent instructions can be mapped to
1337   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1338   // semantics to those operations.
1339   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1340   const SCEV *rhs = ExtendOperExpr;
1341 
1342   // Let's swap operands to the initial order for the case of non-commutative
1343   // operations, like SUB. See PR21014.
1344   if (ExtendOperIdx == 0)
1345     std::swap(lhs, rhs);
1346   const SCEVAddRecExpr *AddRec =
1347       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1348 
1349   if (!AddRec || AddRec->getLoop() != L)
1350     return {nullptr, Unknown};
1351 
1352   return {AddRec, ExtKind};
1353 }
1354 
1355 /// Is this instruction potentially interesting for further simplification after
1356 /// widening it's type? In other words, can the extend be safely hoisted out of
1357 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1358 /// so, return the extended recurrence and the kind of extension used. Otherwise
1359 /// return {nullptr, Unknown}.
1360 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1361   if (!DU.NarrowUse->getType()->isIntegerTy())
1362     return {nullptr, Unknown};
1363 
1364   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1365   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1366       SE->getTypeSizeInBits(WideType)) {
1367     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1368     // index. So don't follow this use.
1369     return {nullptr, Unknown};
1370   }
1371 
1372   const SCEV *WideExpr;
1373   ExtendKind ExtKind;
1374   if (DU.NeverNegative) {
1375     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1376     if (isa<SCEVAddRecExpr>(WideExpr))
1377       ExtKind = SignExtended;
1378     else {
1379       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1380       ExtKind = ZeroExtended;
1381     }
1382   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1383     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1384     ExtKind = SignExtended;
1385   } else {
1386     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1387     ExtKind = ZeroExtended;
1388   }
1389   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1390   if (!AddRec || AddRec->getLoop() != L)
1391     return {nullptr, Unknown};
1392   return {AddRec, ExtKind};
1393 }
1394 
1395 /// This IV user cannot be widened. Replace this use of the original narrow IV
1396 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1397 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1398                           LoopInfo *LI) {
1399   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1400   if (!InsertPt)
1401     return;
1402   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1403                     << *DU.NarrowUse << "\n");
1404   IRBuilder<> Builder(InsertPt);
1405   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1406   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1407 }
1408 
1409 /// If the narrow use is a compare instruction, then widen the compare
1410 //  (and possibly the other operand).  The extend operation is hoisted into the
1411 // loop preheader as far as possible.
1412 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1413   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1414   if (!Cmp)
1415     return false;
1416 
1417   // We can legally widen the comparison in the following two cases:
1418   //
1419   //  - The signedness of the IV extension and comparison match
1420   //
1421   //  - The narrow IV is always positive (and thus its sign extension is equal
1422   //    to its zero extension).  For instance, let's say we're zero extending
1423   //    %narrow for the following use
1424   //
1425   //      icmp slt i32 %narrow, %val   ... (A)
1426   //
1427   //    and %narrow is always positive.  Then
1428   //
1429   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1430   //          == icmp slt i32 zext(%narrow), sext(%val)
1431   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1432   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1433     return false;
1434 
1435   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1436   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1437   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1438   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1439 
1440   // Widen the compare instruction.
1441   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1442   if (!InsertPt)
1443     return false;
1444   IRBuilder<> Builder(InsertPt);
1445   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1446 
1447   // Widen the other operand of the compare, if necessary.
1448   if (CastWidth < IVWidth) {
1449     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1450     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1451   }
1452   return true;
1453 }
1454 
1455 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1456 // will not work when:
1457 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1458 // expand, eg. add %indvar, (load %addr)
1459 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1460 // While SCEV fails to avoid trunc, we can still try to use instruction
1461 // combining approach to prove trunc is not required. This can be further
1462 // extended with other instruction combining checks, but for now we handle the
1463 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1464 //
1465 // Src:
1466 //   %c = sub nsw %b, %indvar
1467 //   %d = sext %c to i64
1468 // Dst:
1469 //   %indvar.ext1 = sext %indvar to i64
1470 //   %m = sext %b to i64
1471 //   %d = sub nsw i64 %m, %indvar.ext1
1472 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1473 // trunc is required regardless of how %b is generated. This pattern is common
1474 // when calculating address in 64 bit architecture
1475 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1476   Instruction *NarrowUse = DU.NarrowUse;
1477   Instruction *NarrowDef = DU.NarrowDef;
1478   Instruction *WideDef = DU.WideDef;
1479 
1480   // Handle the common case of add<nsw/nuw>
1481   const unsigned OpCode = NarrowUse->getOpcode();
1482   // Only Add/Sub/Mul instructions are supported.
1483   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1484       OpCode != Instruction::Mul)
1485     return false;
1486 
1487   // The operand that is not defined by NarrowDef of DU. Let's call it the
1488   // other operand.
1489   assert((NarrowUse->getOperand(0) == NarrowDef ||
1490           NarrowUse->getOperand(1) == NarrowDef) &&
1491          "bad DU");
1492 
1493   const OverflowingBinaryOperator *OBO =
1494     cast<OverflowingBinaryOperator>(NarrowUse);
1495   ExtendKind ExtKind = getExtendKind(NarrowDef);
1496   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1497   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1498   auto AnotherOpExtKind = ExtKind;
1499 
1500   // Check that all uses are either:
1501   // - narrow def (in case of we are widening the IV increment);
1502   // - single-input LCSSA Phis;
1503   // - comparison of the chosen type;
1504   // - extend of the chosen type (raison d'etre).
1505   SmallVector<Instruction *, 4> ExtUsers;
1506   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1507   SmallVector<ICmpInst *, 4> ICmpUsers;
1508   for (Use &U : NarrowUse->uses()) {
1509     Instruction *User = cast<Instruction>(U.getUser());
1510     if (User == NarrowDef)
1511       continue;
1512     if (!L->contains(User)) {
1513       auto *LCSSAPhi = cast<PHINode>(User);
1514       // Make sure there is only 1 input, so that we don't have to split
1515       // critical edges.
1516       if (LCSSAPhi->getNumOperands() != 1)
1517         return false;
1518       LCSSAPhiUsers.push_back(LCSSAPhi);
1519       continue;
1520     }
1521     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1522       auto Pred = ICmp->getPredicate();
1523       // We have 3 types of predicates: signed, unsigned and equality
1524       // predicates. For equality, it's legal to widen icmp for either sign and
1525       // zero extend. For sign extend, we can also do so for signed predicates,
1526       // likeweise for zero extend we can widen icmp for unsigned predicates.
1527       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1528         return false;
1529       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1530         return false;
1531       ICmpUsers.push_back(ICmp);
1532       continue;
1533     }
1534     if (ExtKind == SignExtended)
1535       User = dyn_cast<SExtInst>(User);
1536     else
1537       User = dyn_cast<ZExtInst>(User);
1538     if (!User || User->getType() != WideType)
1539       return false;
1540     ExtUsers.push_back(User);
1541   }
1542   if (ExtUsers.empty()) {
1543     DeadInsts.emplace_back(NarrowUse);
1544     return true;
1545   }
1546 
1547   // We'll prove some facts that should be true in the context of ext users. If
1548   // there is no users, we are done now. If there are some, pick their common
1549   // dominator as context.
1550   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1551 
1552   if (!CanSignExtend && !CanZeroExtend) {
1553     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1554     // will most likely not see it. Let's try to prove it.
1555     if (OpCode != Instruction::Add)
1556       return false;
1557     if (ExtKind != ZeroExtended)
1558       return false;
1559     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1560     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1561     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1562     if (NarrowUse->getOperand(0) != NarrowDef)
1563       return false;
1564     if (!SE->isKnownNegative(RHS))
1565       return false;
1566     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1567                                                SE->getNegativeSCEV(RHS), CtxI);
1568     if (!ProvedSubNUW)
1569       return false;
1570     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1571     // neg(zext(neg(op))), which is basically sext(op).
1572     AnotherOpExtKind = SignExtended;
1573   }
1574 
1575   // Verifying that Defining operand is an AddRec
1576   const SCEV *Op1 = SE->getSCEV(WideDef);
1577   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1578   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1579     return false;
1580 
1581   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1582 
1583   // Generating a widening use instruction.
1584   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1585                    ? WideDef
1586                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1587                                       AnotherOpExtKind, NarrowUse);
1588   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1589                    ? WideDef
1590                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1591                                       AnotherOpExtKind, NarrowUse);
1592 
1593   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1594   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1595                                         NarrowBO->getName());
1596   IRBuilder<> Builder(NarrowUse);
1597   Builder.Insert(WideBO);
1598   WideBO->copyIRFlags(NarrowBO);
1599   ExtendKindMap[NarrowUse] = ExtKind;
1600 
1601   for (Instruction *User : ExtUsers) {
1602     assert(User->getType() == WideType && "Checked before!");
1603     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1604                       << *WideBO << "\n");
1605     ++NumElimExt;
1606     User->replaceAllUsesWith(WideBO);
1607     DeadInsts.emplace_back(User);
1608   }
1609 
1610   for (PHINode *User : LCSSAPhiUsers) {
1611     assert(User->getNumOperands() == 1 && "Checked before!");
1612     Builder.SetInsertPoint(User);
1613     auto *WidePN =
1614         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1615     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1616     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1617            "Not a LCSSA Phi?");
1618     WidePN->addIncoming(WideBO, LoopExitingBlock);
1619     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1620     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1621     User->replaceAllUsesWith(TruncPN);
1622     DeadInsts.emplace_back(User);
1623   }
1624 
1625   for (ICmpInst *User : ICmpUsers) {
1626     Builder.SetInsertPoint(User);
1627     auto ExtendedOp = [&](Value * V)->Value * {
1628       if (V == NarrowUse)
1629         return WideBO;
1630       if (ExtKind == ZeroExtended)
1631         return Builder.CreateZExt(V, WideBO->getType());
1632       else
1633         return Builder.CreateSExt(V, WideBO->getType());
1634     };
1635     auto Pred = User->getPredicate();
1636     auto *LHS = ExtendedOp(User->getOperand(0));
1637     auto *RHS = ExtendedOp(User->getOperand(1));
1638     auto *WideCmp =
1639         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1640     User->replaceAllUsesWith(WideCmp);
1641     DeadInsts.emplace_back(User);
1642   }
1643 
1644   return true;
1645 }
1646 
1647 /// Determine whether an individual user of the narrow IV can be widened. If so,
1648 /// return the wide clone of the user.
1649 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1650   assert(ExtendKindMap.count(DU.NarrowDef) &&
1651          "Should already know the kind of extension used to widen NarrowDef");
1652 
1653   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1654   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1655     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1656       // For LCSSA phis, sink the truncate outside the loop.
1657       // After SimplifyCFG most loop exit targets have a single predecessor.
1658       // Otherwise fall back to a truncate within the loop.
1659       if (UsePhi->getNumOperands() != 1)
1660         truncateIVUse(DU, DT, LI);
1661       else {
1662         // Widening the PHI requires us to insert a trunc.  The logical place
1663         // for this trunc is in the same BB as the PHI.  This is not possible if
1664         // the BB is terminated by a catchswitch.
1665         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1666           return nullptr;
1667 
1668         PHINode *WidePhi =
1669           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1670                           UsePhi);
1671         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1672         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1673         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1674         UsePhi->replaceAllUsesWith(Trunc);
1675         DeadInsts.emplace_back(UsePhi);
1676         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1677                           << *WidePhi << "\n");
1678       }
1679       return nullptr;
1680     }
1681   }
1682 
1683   // This narrow use can be widened by a sext if it's non-negative or its narrow
1684   // def was widended by a sext. Same for zext.
1685   auto canWidenBySExt = [&]() {
1686     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1687   };
1688   auto canWidenByZExt = [&]() {
1689     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1690   };
1691 
1692   // Our raison d'etre! Eliminate sign and zero extension.
1693   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1694       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1695     Value *NewDef = DU.WideDef;
1696     if (DU.NarrowUse->getType() != WideType) {
1697       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1698       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1699       if (CastWidth < IVWidth) {
1700         // The cast isn't as wide as the IV, so insert a Trunc.
1701         IRBuilder<> Builder(DU.NarrowUse);
1702         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1703       }
1704       else {
1705         // A wider extend was hidden behind a narrower one. This may induce
1706         // another round of IV widening in which the intermediate IV becomes
1707         // dead. It should be very rare.
1708         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1709                           << " not wide enough to subsume " << *DU.NarrowUse
1710                           << "\n");
1711         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1712         NewDef = DU.NarrowUse;
1713       }
1714     }
1715     if (NewDef != DU.NarrowUse) {
1716       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1717                         << " replaced by " << *DU.WideDef << "\n");
1718       ++NumElimExt;
1719       DU.NarrowUse->replaceAllUsesWith(NewDef);
1720       DeadInsts.emplace_back(DU.NarrowUse);
1721     }
1722     // Now that the extend is gone, we want to expose it's uses for potential
1723     // further simplification. We don't need to directly inform SimplifyIVUsers
1724     // of the new users, because their parent IV will be processed later as a
1725     // new loop phi. If we preserved IVUsers analysis, we would also want to
1726     // push the uses of WideDef here.
1727 
1728     // No further widening is needed. The deceased [sz]ext had done it for us.
1729     return nullptr;
1730   }
1731 
1732   // Does this user itself evaluate to a recurrence after widening?
1733   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1734   if (!WideAddRec.first)
1735     WideAddRec = getWideRecurrence(DU);
1736 
1737   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1738   if (!WideAddRec.first) {
1739     // If use is a loop condition, try to promote the condition instead of
1740     // truncating the IV first.
1741     if (widenLoopCompare(DU))
1742       return nullptr;
1743 
1744     // We are here about to generate a truncate instruction that may hurt
1745     // performance because the scalar evolution expression computed earlier
1746     // in WideAddRec.first does not indicate a polynomial induction expression.
1747     // In that case, look at the operands of the use instruction to determine
1748     // if we can still widen the use instead of truncating its operand.
1749     if (widenWithVariantUse(DU))
1750       return nullptr;
1751 
1752     // This user does not evaluate to a recurrence after widening, so don't
1753     // follow it. Instead insert a Trunc to kill off the original use,
1754     // eventually isolating the original narrow IV so it can be removed.
1755     truncateIVUse(DU, DT, LI);
1756     return nullptr;
1757   }
1758   // Assume block terminators cannot evaluate to a recurrence. We can't to
1759   // insert a Trunc after a terminator if there happens to be a critical edge.
1760   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1761          "SCEV is not expected to evaluate a block terminator");
1762 
1763   // Reuse the IV increment that SCEVExpander created as long as it dominates
1764   // NarrowUse.
1765   Instruction *WideUse = nullptr;
1766   if (WideAddRec.first == WideIncExpr &&
1767       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1768     WideUse = WideInc;
1769   else {
1770     WideUse = cloneIVUser(DU, WideAddRec.first);
1771     if (!WideUse)
1772       return nullptr;
1773   }
1774   // Evaluation of WideAddRec ensured that the narrow expression could be
1775   // extended outside the loop without overflow. This suggests that the wide use
1776   // evaluates to the same expression as the extended narrow use, but doesn't
1777   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1778   // where it fails, we simply throw away the newly created wide use.
1779   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1780     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1781                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1782                       << "\n");
1783     DeadInsts.emplace_back(WideUse);
1784     return nullptr;
1785   }
1786 
1787   // if we reached this point then we are going to replace
1788   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1789   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1790 
1791   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1792   // Returning WideUse pushes it on the worklist.
1793   return WideUse;
1794 }
1795 
1796 /// Add eligible users of NarrowDef to NarrowIVUsers.
1797 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1798   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1799   bool NonNegativeDef =
1800       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1801                            SE->getZero(NarrowSCEV->getType()));
1802   for (User *U : NarrowDef->users()) {
1803     Instruction *NarrowUser = cast<Instruction>(U);
1804 
1805     // Handle data flow merges and bizarre phi cycles.
1806     if (!Widened.insert(NarrowUser).second)
1807       continue;
1808 
1809     bool NonNegativeUse = false;
1810     if (!NonNegativeDef) {
1811       // We might have a control-dependent range information for this context.
1812       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1813         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1814     }
1815 
1816     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1817                                NonNegativeDef || NonNegativeUse);
1818   }
1819 }
1820 
1821 /// Process a single induction variable. First use the SCEVExpander to create a
1822 /// wide induction variable that evaluates to the same recurrence as the
1823 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1824 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1825 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1826 ///
1827 /// It would be simpler to delete uses as they are processed, but we must avoid
1828 /// invalidating SCEV expressions.
1829 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1830   // Is this phi an induction variable?
1831   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1832   if (!AddRec)
1833     return nullptr;
1834 
1835   // Widen the induction variable expression.
1836   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1837                                ? SE->getSignExtendExpr(AddRec, WideType)
1838                                : SE->getZeroExtendExpr(AddRec, WideType);
1839 
1840   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1841          "Expect the new IV expression to preserve its type");
1842 
1843   // Can the IV be extended outside the loop without overflow?
1844   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1845   if (!AddRec || AddRec->getLoop() != L)
1846     return nullptr;
1847 
1848   // An AddRec must have loop-invariant operands. Since this AddRec is
1849   // materialized by a loop header phi, the expression cannot have any post-loop
1850   // operands, so they must dominate the loop header.
1851   assert(
1852       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1853       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1854       "Loop header phi recurrence inputs do not dominate the loop");
1855 
1856   // Iterate over IV uses (including transitive ones) looking for IV increments
1857   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1858   // the increment calculate control-dependent range information basing on
1859   // dominating conditions inside of the loop (e.g. a range check inside of the
1860   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1861   //
1862   // Control-dependent range information is later used to prove that a narrow
1863   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1864   // this on demand because when pushNarrowIVUsers needs this information some
1865   // of the dominating conditions might be already widened.
1866   if (UsePostIncrementRanges)
1867     calculatePostIncRanges(OrigPhi);
1868 
1869   // The rewriter provides a value for the desired IV expression. This may
1870   // either find an existing phi or materialize a new one. Either way, we
1871   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1872   // of the phi-SCC dominates the loop entry.
1873   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1874   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1875   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1876   // inttoptr, ptrtoint, just skip for now.
1877   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1878     // if the cast node is an inserted instruction without any user, we should
1879     // remove it to make sure the pass don't touch the function as we can not
1880     // wide the phi.
1881     if (ExpandInst->hasNUses(0) &&
1882         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1883       DeadInsts.emplace_back(ExpandInst);
1884     return nullptr;
1885   }
1886 
1887   // Remembering the WideIV increment generated by SCEVExpander allows
1888   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1889   // employ a general reuse mechanism because the call above is the only call to
1890   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1891   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1892     WideInc =
1893       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1894     WideIncExpr = SE->getSCEV(WideInc);
1895     // Propagate the debug location associated with the original loop increment
1896     // to the new (widened) increment.
1897     auto *OrigInc =
1898       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1899     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1900   }
1901 
1902   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1903   ++NumWidened;
1904 
1905   // Traverse the def-use chain using a worklist starting at the original IV.
1906   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1907 
1908   Widened.insert(OrigPhi);
1909   pushNarrowIVUsers(OrigPhi, WidePhi);
1910 
1911   while (!NarrowIVUsers.empty()) {
1912     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1913 
1914     // Process a def-use edge. This may replace the use, so don't hold a
1915     // use_iterator across it.
1916     Instruction *WideUse = widenIVUse(DU, Rewriter);
1917 
1918     // Follow all def-use edges from the previous narrow use.
1919     if (WideUse)
1920       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1921 
1922     // widenIVUse may have removed the def-use edge.
1923     if (DU.NarrowDef->use_empty())
1924       DeadInsts.emplace_back(DU.NarrowDef);
1925   }
1926 
1927   // Attach any debug information to the new PHI.
1928   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1929 
1930   return WidePhi;
1931 }
1932 
1933 /// Calculates control-dependent range for the given def at the given context
1934 /// by looking at dominating conditions inside of the loop
1935 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1936                                     Instruction *NarrowUser) {
1937   using namespace llvm::PatternMatch;
1938 
1939   Value *NarrowDefLHS;
1940   const APInt *NarrowDefRHS;
1941   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1942                                  m_APInt(NarrowDefRHS))) ||
1943       !NarrowDefRHS->isNonNegative())
1944     return;
1945 
1946   auto UpdateRangeFromCondition = [&] (Value *Condition,
1947                                        bool TrueDest) {
1948     CmpInst::Predicate Pred;
1949     Value *CmpRHS;
1950     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1951                                  m_Value(CmpRHS))))
1952       return;
1953 
1954     CmpInst::Predicate P =
1955             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1956 
1957     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1958     auto CmpConstrainedLHSRange =
1959             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1960     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1961         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1962 
1963     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1964   };
1965 
1966   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1967     if (!HasGuards)
1968       return;
1969 
1970     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1971                                      Ctx->getParent()->rend())) {
1972       Value *C = nullptr;
1973       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1974         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1975     }
1976   };
1977 
1978   UpdateRangeFromGuards(NarrowUser);
1979 
1980   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1981   // If NarrowUserBB is statically unreachable asking dominator queries may
1982   // yield surprising results. (e.g. the block may not have a dom tree node)
1983   if (!DT->isReachableFromEntry(NarrowUserBB))
1984     return;
1985 
1986   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1987        L->contains(DTB->getBlock());
1988        DTB = DTB->getIDom()) {
1989     auto *BB = DTB->getBlock();
1990     auto *TI = BB->getTerminator();
1991     UpdateRangeFromGuards(TI);
1992 
1993     auto *BI = dyn_cast<BranchInst>(TI);
1994     if (!BI || !BI->isConditional())
1995       continue;
1996 
1997     auto *TrueSuccessor = BI->getSuccessor(0);
1998     auto *FalseSuccessor = BI->getSuccessor(1);
1999 
2000     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2001       return BBE.isSingleEdge() &&
2002              DT->dominates(BBE, NarrowUser->getParent());
2003     };
2004 
2005     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2006       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2007 
2008     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2009       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2010   }
2011 }
2012 
2013 /// Calculates PostIncRangeInfos map for the given IV
2014 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2015   SmallPtrSet<Instruction *, 16> Visited;
2016   SmallVector<Instruction *, 6> Worklist;
2017   Worklist.push_back(OrigPhi);
2018   Visited.insert(OrigPhi);
2019 
2020   while (!Worklist.empty()) {
2021     Instruction *NarrowDef = Worklist.pop_back_val();
2022 
2023     for (Use &U : NarrowDef->uses()) {
2024       auto *NarrowUser = cast<Instruction>(U.getUser());
2025 
2026       // Don't go looking outside the current loop.
2027       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2028       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2029         continue;
2030 
2031       if (!Visited.insert(NarrowUser).second)
2032         continue;
2033 
2034       Worklist.push_back(NarrowUser);
2035 
2036       calculatePostIncRange(NarrowDef, NarrowUser);
2037     }
2038   }
2039 }
2040 
2041 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2042     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2043     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2044     unsigned &NumElimExt, unsigned &NumWidened,
2045     bool HasGuards, bool UsePostIncrementRanges) {
2046   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2047   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2048   NumElimExt = Widener.getNumElimExt();
2049   NumWidened = Widener.getNumWidened();
2050   return WidePHI;
2051 }
2052