1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ScalarEvolutionExpander.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 SCEVExpander &Rewriter; 58 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 59 60 bool Changed; 61 62 public: 63 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 64 LoopInfo *LI, SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), 67 Changed(false) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 83 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 84 bool eliminateTrunc(TruncInst *TI); 85 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 86 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 87 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 88 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 89 bool IsSigned); 90 void replaceRemWithNumerator(BinaryOperator *Rem); 91 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 92 void replaceSRemWithURem(BinaryOperator *Rem); 93 bool eliminateSDiv(BinaryOperator *SDiv); 94 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 95 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 96 }; 97 } 98 99 /// Fold an IV operand into its use. This removes increments of an 100 /// aligned IV when used by a instruction that ignores the low bits. 101 /// 102 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 103 /// 104 /// Return the operand of IVOperand for this induction variable if IVOperand can 105 /// be folded (in case more folding opportunities have been exposed). 106 /// Otherwise return null. 107 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 108 Value *IVSrc = nullptr; 109 const unsigned OperIdx = 0; 110 const SCEV *FoldedExpr = nullptr; 111 bool MustDropExactFlag = false; 112 switch (UseInst->getOpcode()) { 113 default: 114 return nullptr; 115 case Instruction::UDiv: 116 case Instruction::LShr: 117 // We're only interested in the case where we know something about 118 // the numerator and have a constant denominator. 119 if (IVOperand != UseInst->getOperand(OperIdx) || 120 !isa<ConstantInt>(UseInst->getOperand(1))) 121 return nullptr; 122 123 // Attempt to fold a binary operator with constant operand. 124 // e.g. ((I + 1) >> 2) => I >> 2 125 if (!isa<BinaryOperator>(IVOperand) 126 || !isa<ConstantInt>(IVOperand->getOperand(1))) 127 return nullptr; 128 129 IVSrc = IVOperand->getOperand(0); 130 // IVSrc must be the (SCEVable) IV, since the other operand is const. 131 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 132 133 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 134 if (UseInst->getOpcode() == Instruction::LShr) { 135 // Get a constant for the divisor. See createSCEV. 136 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 137 if (D->getValue().uge(BitWidth)) 138 return nullptr; 139 140 D = ConstantInt::get(UseInst->getContext(), 141 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 142 } 143 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 144 // We might have 'exact' flag set at this point which will no longer be 145 // correct after we make the replacement. 146 if (UseInst->isExact() && 147 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 148 MustDropExactFlag = true; 149 } 150 // We have something that might fold it's operand. Compare SCEVs. 151 if (!SE->isSCEVable(UseInst->getType())) 152 return nullptr; 153 154 // Bypass the operand if SCEV can prove it has no effect. 155 if (SE->getSCEV(UseInst) != FoldedExpr) 156 return nullptr; 157 158 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 159 << " -> " << *UseInst << '\n'); 160 161 UseInst->setOperand(OperIdx, IVSrc); 162 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 163 164 if (MustDropExactFlag) 165 UseInst->dropPoisonGeneratingFlags(); 166 167 ++NumElimOperand; 168 Changed = true; 169 if (IVOperand->use_empty()) 170 DeadInsts.emplace_back(IVOperand); 171 return IVSrc; 172 } 173 174 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 175 Value *IVOperand) { 176 unsigned IVOperIdx = 0; 177 ICmpInst::Predicate Pred = ICmp->getPredicate(); 178 if (IVOperand != ICmp->getOperand(0)) { 179 // Swapped 180 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 181 IVOperIdx = 1; 182 Pred = ICmpInst::getSwappedPredicate(Pred); 183 } 184 185 // Get the SCEVs for the ICmp operands (in the specific context of the 186 // current loop) 187 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 188 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 189 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 190 191 ICmpInst::Predicate InvariantPredicate; 192 const SCEV *InvariantLHS, *InvariantRHS; 193 194 auto *PN = dyn_cast<PHINode>(IVOperand); 195 if (!PN) 196 return false; 197 if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 198 InvariantLHS, InvariantRHS)) 199 return false; 200 201 // Rewrite the comparison to a loop invariant comparison if it can be done 202 // cheaply, where cheaply means "we don't need to emit any new 203 // instructions". 204 205 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 206 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 207 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 208 209 // TODO: Support multiple entry loops? (We currently bail out of these in 210 // the IndVarSimplify pass) 211 if (auto *BB = L->getLoopPredecessor()) { 212 const int Idx = PN->getBasicBlockIndex(BB); 213 if (Idx >= 0) { 214 Value *Incoming = PN->getIncomingValue(Idx); 215 const SCEV *IncomingS = SE->getSCEV(Incoming); 216 CheapExpansions[IncomingS] = Incoming; 217 } 218 } 219 Value *NewLHS = CheapExpansions[InvariantLHS]; 220 Value *NewRHS = CheapExpansions[InvariantRHS]; 221 222 if (!NewLHS) 223 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 224 NewLHS = ConstLHS->getValue(); 225 if (!NewRHS) 226 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 227 NewRHS = ConstRHS->getValue(); 228 229 if (!NewLHS || !NewRHS) 230 // We could not find an existing value to replace either LHS or RHS. 231 // Generating new instructions has subtler tradeoffs, so avoid doing that 232 // for now. 233 return false; 234 235 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 236 ICmp->setPredicate(InvariantPredicate); 237 ICmp->setOperand(0, NewLHS); 238 ICmp->setOperand(1, NewRHS); 239 return true; 240 } 241 242 /// SimplifyIVUsers helper for eliminating useless 243 /// comparisons against an induction variable. 244 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 245 unsigned IVOperIdx = 0; 246 ICmpInst::Predicate Pred = ICmp->getPredicate(); 247 ICmpInst::Predicate OriginalPred = Pred; 248 if (IVOperand != ICmp->getOperand(0)) { 249 // Swapped 250 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 251 IVOperIdx = 1; 252 Pred = ICmpInst::getSwappedPredicate(Pred); 253 } 254 255 // Get the SCEVs for the ICmp operands (in the specific context of the 256 // current loop) 257 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 258 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 259 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 260 261 // If the condition is always true or always false, replace it with 262 // a constant value. 263 if (SE->isKnownPredicate(Pred, S, X)) { 264 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 265 DeadInsts.emplace_back(ICmp); 266 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 267 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 268 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 269 DeadInsts.emplace_back(ICmp); 270 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 271 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 272 // fallthrough to end of function 273 } else if (ICmpInst::isSigned(OriginalPred) && 274 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 275 // If we were unable to make anything above, all we can is to canonicalize 276 // the comparison hoping that it will open the doors for other 277 // optimizations. If we find out that we compare two non-negative values, 278 // we turn the instruction's predicate to its unsigned version. Note that 279 // we cannot rely on Pred here unless we check if we have swapped it. 280 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 281 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 282 << '\n'); 283 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 284 } else 285 return; 286 287 ++NumElimCmp; 288 Changed = true; 289 } 290 291 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 292 // Get the SCEVs for the ICmp operands. 293 auto *N = SE->getSCEV(SDiv->getOperand(0)); 294 auto *D = SE->getSCEV(SDiv->getOperand(1)); 295 296 // Simplify unnecessary loops away. 297 const Loop *L = LI->getLoopFor(SDiv->getParent()); 298 N = SE->getSCEVAtScope(N, L); 299 D = SE->getSCEVAtScope(D, L); 300 301 // Replace sdiv by udiv if both of the operands are non-negative 302 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 303 auto *UDiv = BinaryOperator::Create( 304 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 305 SDiv->getName() + ".udiv", SDiv); 306 UDiv->setIsExact(SDiv->isExact()); 307 SDiv->replaceAllUsesWith(UDiv); 308 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 309 ++NumSimplifiedSDiv; 310 Changed = true; 311 DeadInsts.push_back(SDiv); 312 return true; 313 } 314 315 return false; 316 } 317 318 // i %s n -> i %u n if i >= 0 and n >= 0 319 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 320 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 321 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 322 Rem->getName() + ".urem", Rem); 323 Rem->replaceAllUsesWith(URem); 324 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 325 ++NumSimplifiedSRem; 326 Changed = true; 327 DeadInsts.emplace_back(Rem); 328 } 329 330 // i % n --> i if i is in [0,n). 331 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 332 Rem->replaceAllUsesWith(Rem->getOperand(0)); 333 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 334 ++NumElimRem; 335 Changed = true; 336 DeadInsts.emplace_back(Rem); 337 } 338 339 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 340 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 341 auto *T = Rem->getType(); 342 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 343 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 344 SelectInst *Sel = 345 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 346 Rem->replaceAllUsesWith(Sel); 347 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 348 ++NumElimRem; 349 Changed = true; 350 DeadInsts.emplace_back(Rem); 351 } 352 353 /// SimplifyIVUsers helper for eliminating useless remainder operations 354 /// operating on an induction variable or replacing srem by urem. 355 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 356 bool IsSigned) { 357 auto *NValue = Rem->getOperand(0); 358 auto *DValue = Rem->getOperand(1); 359 // We're only interested in the case where we know something about 360 // the numerator, unless it is a srem, because we want to replace srem by urem 361 // in general. 362 bool UsedAsNumerator = IVOperand == NValue; 363 if (!UsedAsNumerator && !IsSigned) 364 return; 365 366 const SCEV *N = SE->getSCEV(NValue); 367 368 // Simplify unnecessary loops away. 369 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 370 N = SE->getSCEVAtScope(N, ICmpLoop); 371 372 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 373 374 // Do not proceed if the Numerator may be negative 375 if (!IsNumeratorNonNegative) 376 return; 377 378 const SCEV *D = SE->getSCEV(DValue); 379 D = SE->getSCEVAtScope(D, ICmpLoop); 380 381 if (UsedAsNumerator) { 382 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 383 if (SE->isKnownPredicate(LT, N, D)) { 384 replaceRemWithNumerator(Rem); 385 return; 386 } 387 388 auto *T = Rem->getType(); 389 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 390 if (SE->isKnownPredicate(LT, NLessOne, D)) { 391 replaceRemWithNumeratorOrZero(Rem); 392 return; 393 } 394 } 395 396 // Try to replace SRem with URem, if both N and D are known non-negative. 397 // Since we had already check N, we only need to check D now 398 if (!IsSigned || !SE->isKnownNonNegative(D)) 399 return; 400 401 replaceSRemWithURem(Rem); 402 } 403 404 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 405 bool Signed, const SCEV *LHS, const SCEV *RHS) { 406 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 407 SCEV::NoWrapFlags, unsigned); 408 switch (BinOp) { 409 default: 410 llvm_unreachable("Unsupported binary op"); 411 case Instruction::Add: 412 Operation = &ScalarEvolution::getAddExpr; 413 break; 414 case Instruction::Sub: 415 Operation = &ScalarEvolution::getMinusSCEV; 416 break; 417 case Instruction::Mul: 418 Operation = &ScalarEvolution::getMulExpr; 419 break; 420 } 421 422 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 423 Signed ? &ScalarEvolution::getSignExtendExpr 424 : &ScalarEvolution::getZeroExtendExpr; 425 426 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 427 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 428 auto *WideTy = 429 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 430 431 const SCEV *A = 432 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 433 WideTy, 0); 434 const SCEV *B = 435 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 436 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 437 return A == B; 438 } 439 440 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 441 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 442 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 443 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 444 return false; 445 446 // Proved no overflow, nuke the overflow check and, if possible, the overflow 447 // intrinsic as well. 448 449 BinaryOperator *NewResult = BinaryOperator::Create( 450 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 451 452 if (WO->isSigned()) 453 NewResult->setHasNoSignedWrap(true); 454 else 455 NewResult->setHasNoUnsignedWrap(true); 456 457 SmallVector<ExtractValueInst *, 4> ToDelete; 458 459 for (auto *U : WO->users()) { 460 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 461 if (EVI->getIndices()[0] == 1) 462 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 463 else { 464 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 465 EVI->replaceAllUsesWith(NewResult); 466 } 467 ToDelete.push_back(EVI); 468 } 469 } 470 471 for (auto *EVI : ToDelete) 472 EVI->eraseFromParent(); 473 474 if (WO->use_empty()) 475 WO->eraseFromParent(); 476 477 return true; 478 } 479 480 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 481 // It is always legal to replace 482 // icmp <pred> i32 trunc(iv), n 483 // with 484 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 485 // Or with 486 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 487 // Or with either of these if pred is an equality predicate. 488 // 489 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 490 // every comparison which uses trunc, it means that we can replace each of 491 // them with comparison of iv against sext/zext(n). We no longer need trunc 492 // after that. 493 // 494 // TODO: Should we do this if we can widen *some* comparisons, but not all 495 // of them? Sometimes it is enough to enable other optimizations, but the 496 // trunc instruction will stay in the loop. 497 Value *IV = TI->getOperand(0); 498 Type *IVTy = IV->getType(); 499 const SCEV *IVSCEV = SE->getSCEV(IV); 500 const SCEV *TISCEV = SE->getSCEV(TI); 501 502 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 503 // get rid of trunc 504 bool DoesSExtCollapse = false; 505 bool DoesZExtCollapse = false; 506 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 507 DoesSExtCollapse = true; 508 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 509 DoesZExtCollapse = true; 510 511 // If neither sext nor zext does collapse, it is not profitable to do any 512 // transform. Bail. 513 if (!DoesSExtCollapse && !DoesZExtCollapse) 514 return false; 515 516 // Collect users of the trunc that look like comparisons against invariants. 517 // Bail if we find something different. 518 SmallVector<ICmpInst *, 4> ICmpUsers; 519 for (auto *U : TI->users()) { 520 // We don't care about users in unreachable blocks. 521 if (isa<Instruction>(U) && 522 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 523 continue; 524 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { 525 if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) { 526 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 527 // If we cannot get rid of trunc, bail. 528 if (ICI->isSigned() && !DoesSExtCollapse) 529 return false; 530 if (ICI->isUnsigned() && !DoesZExtCollapse) 531 return false; 532 // For equality, either signed or unsigned works. 533 ICmpUsers.push_back(ICI); 534 } else 535 return false; 536 } else 537 return false; 538 } 539 540 auto CanUseZExt = [&](ICmpInst *ICI) { 541 // Unsigned comparison can be widened as unsigned. 542 if (ICI->isUnsigned()) 543 return true; 544 // Is it profitable to do zext? 545 if (!DoesZExtCollapse) 546 return false; 547 // For equality, we can safely zext both parts. 548 if (ICI->isEquality()) 549 return true; 550 // Otherwise we can only use zext when comparing two non-negative or two 551 // negative values. But in practice, we will never pass DoesZExtCollapse 552 // check for a negative value, because zext(trunc(x)) is non-negative. So 553 // it only make sense to check for non-negativity here. 554 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 555 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 556 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 557 }; 558 // Replace all comparisons against trunc with comparisons against IV. 559 for (auto *ICI : ICmpUsers) { 560 auto *Op1 = ICI->getOperand(1); 561 Instruction *Ext = nullptr; 562 // For signed/unsigned predicate, replace the old comparison with comparison 563 // of immediate IV against sext/zext of the invariant argument. If we can 564 // use either sext or zext (i.e. we are dealing with equality predicate), 565 // then prefer zext as a more canonical form. 566 // TODO: If we see a signed comparison which can be turned into unsigned, 567 // we can do it here for canonicalization purposes. 568 ICmpInst::Predicate Pred = ICI->getPredicate(); 569 if (CanUseZExt(ICI)) { 570 assert(DoesZExtCollapse && "Unprofitable zext?"); 571 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 572 Pred = ICmpInst::getUnsignedPredicate(Pred); 573 } else { 574 assert(DoesSExtCollapse && "Unprofitable sext?"); 575 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 576 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 577 } 578 bool Changed; 579 L->makeLoopInvariant(Ext, Changed); 580 (void)Changed; 581 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 582 ICI->replaceAllUsesWith(NewICI); 583 DeadInsts.emplace_back(ICI); 584 } 585 586 // Trunc no longer needed. 587 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 588 DeadInsts.emplace_back(TI); 589 return true; 590 } 591 592 /// Eliminate an operation that consumes a simple IV and has no observable 593 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 594 /// but UseInst may not be. 595 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 596 Instruction *IVOperand) { 597 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 598 eliminateIVComparison(ICmp, IVOperand); 599 return true; 600 } 601 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 602 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 603 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 604 simplifyIVRemainder(Bin, IVOperand, IsSRem); 605 return true; 606 } 607 608 if (Bin->getOpcode() == Instruction::SDiv) 609 return eliminateSDiv(Bin); 610 } 611 612 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 613 if (eliminateOverflowIntrinsic(WO)) 614 return true; 615 616 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 617 if (eliminateTrunc(TI)) 618 return true; 619 620 if (eliminateIdentitySCEV(UseInst, IVOperand)) 621 return true; 622 623 return false; 624 } 625 626 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 627 if (auto *BB = L->getLoopPreheader()) 628 return BB->getTerminator(); 629 630 return Hint; 631 } 632 633 /// Replace the UseInst with a constant if possible. 634 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 635 if (!SE->isSCEVable(I->getType())) 636 return false; 637 638 // Get the symbolic expression for this instruction. 639 const SCEV *S = SE->getSCEV(I); 640 641 if (!SE->isLoopInvariant(S, L)) 642 return false; 643 644 // Do not generate something ridiculous even if S is loop invariant. 645 if (Rewriter.isHighCostExpansion(S, L, I)) 646 return false; 647 648 auto *IP = GetLoopInvariantInsertPosition(L, I); 649 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 650 651 I->replaceAllUsesWith(Invariant); 652 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 653 << " with loop invariant: " << *S << '\n'); 654 ++NumFoldedUser; 655 Changed = true; 656 DeadInsts.emplace_back(I); 657 return true; 658 } 659 660 /// Eliminate any operation that SCEV can prove is an identity function. 661 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 662 Instruction *IVOperand) { 663 if (!SE->isSCEVable(UseInst->getType()) || 664 (UseInst->getType() != IVOperand->getType()) || 665 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 666 return false; 667 668 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 669 // dominator tree, even if X is an operand to Y. For instance, in 670 // 671 // %iv = phi i32 {0,+,1} 672 // br %cond, label %left, label %merge 673 // 674 // left: 675 // %X = add i32 %iv, 0 676 // br label %merge 677 // 678 // merge: 679 // %M = phi (%X, %iv) 680 // 681 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 682 // %M.replaceAllUsesWith(%X) would be incorrect. 683 684 if (isa<PHINode>(UseInst)) 685 // If UseInst is not a PHI node then we know that IVOperand dominates 686 // UseInst directly from the legality of SSA. 687 if (!DT || !DT->dominates(IVOperand, UseInst)) 688 return false; 689 690 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 691 return false; 692 693 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 694 695 UseInst->replaceAllUsesWith(IVOperand); 696 ++NumElimIdentity; 697 Changed = true; 698 DeadInsts.emplace_back(UseInst); 699 return true; 700 } 701 702 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 703 /// unsigned-overflow. Returns true if anything changed, false otherwise. 704 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 705 Value *IVOperand) { 706 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 707 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 708 return false; 709 710 if (BO->getOpcode() != Instruction::Add && 711 BO->getOpcode() != Instruction::Sub && 712 BO->getOpcode() != Instruction::Mul) 713 return false; 714 715 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 716 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 717 bool Changed = false; 718 719 if (!BO->hasNoUnsignedWrap() && 720 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 721 BO->setHasNoUnsignedWrap(); 722 SE->forgetValue(BO); 723 Changed = true; 724 } 725 726 if (!BO->hasNoSignedWrap() && 727 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 728 BO->setHasNoSignedWrap(); 729 SE->forgetValue(BO); 730 Changed = true; 731 } 732 733 return Changed; 734 } 735 736 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 737 /// information from the IV's range. Returns true if anything changed, false 738 /// otherwise. 739 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 740 Value *IVOperand) { 741 using namespace llvm::PatternMatch; 742 743 if (BO->getOpcode() == Instruction::Shl) { 744 bool Changed = false; 745 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 746 for (auto *U : BO->users()) { 747 const APInt *C; 748 if (match(U, 749 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 750 match(U, 751 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 752 BinaryOperator *Shr = cast<BinaryOperator>(U); 753 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 754 Shr->setIsExact(true); 755 Changed = true; 756 } 757 } 758 } 759 return Changed; 760 } 761 762 return false; 763 } 764 765 /// Add all uses of Def to the current IV's worklist. 766 static void pushIVUsers( 767 Instruction *Def, Loop *L, 768 SmallPtrSet<Instruction*,16> &Simplified, 769 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 770 771 for (User *U : Def->users()) { 772 Instruction *UI = cast<Instruction>(U); 773 774 // Avoid infinite or exponential worklist processing. 775 // Also ensure unique worklist users. 776 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 777 // self edges first. 778 if (UI == Def) 779 continue; 780 781 // Only change the current Loop, do not change the other parts (e.g. other 782 // Loops). 783 if (!L->contains(UI)) 784 continue; 785 786 // Do not push the same instruction more than once. 787 if (!Simplified.insert(UI).second) 788 continue; 789 790 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 791 } 792 } 793 794 /// Return true if this instruction generates a simple SCEV 795 /// expression in terms of that IV. 796 /// 797 /// This is similar to IVUsers' isInteresting() but processes each instruction 798 /// non-recursively when the operand is already known to be a simpleIVUser. 799 /// 800 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 801 if (!SE->isSCEVable(I->getType())) 802 return false; 803 804 // Get the symbolic expression for this instruction. 805 const SCEV *S = SE->getSCEV(I); 806 807 // Only consider affine recurrences. 808 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 809 if (AR && AR->getLoop() == L) 810 return true; 811 812 return false; 813 } 814 815 /// Iteratively perform simplification on a worklist of users 816 /// of the specified induction variable. Each successive simplification may push 817 /// more users which may themselves be candidates for simplification. 818 /// 819 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 820 /// instructions in-place during analysis. Rather than rewriting induction 821 /// variables bottom-up from their users, it transforms a chain of IVUsers 822 /// top-down, updating the IR only when it encounters a clear optimization 823 /// opportunity. 824 /// 825 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 826 /// 827 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 828 if (!SE->isSCEVable(CurrIV->getType())) 829 return; 830 831 // Instructions processed by SimplifyIndvar for CurrIV. 832 SmallPtrSet<Instruction*,16> Simplified; 833 834 // Use-def pairs if IV users waiting to be processed for CurrIV. 835 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 836 837 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 838 // called multiple times for the same LoopPhi. This is the proper thing to 839 // do for loop header phis that use each other. 840 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 841 842 while (!SimpleIVUsers.empty()) { 843 std::pair<Instruction*, Instruction*> UseOper = 844 SimpleIVUsers.pop_back_val(); 845 Instruction *UseInst = UseOper.first; 846 847 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 848 // rather than try to do some complex analysis or transformation (such as 849 // widening) basing on it. 850 // TODO: Propagate TLI and pass it here to handle more cases. 851 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 852 DeadInsts.emplace_back(UseInst); 853 continue; 854 } 855 856 // Bypass back edges to avoid extra work. 857 if (UseInst == CurrIV) continue; 858 859 // Try to replace UseInst with a loop invariant before any other 860 // simplifications. 861 if (replaceIVUserWithLoopInvariant(UseInst)) 862 continue; 863 864 Instruction *IVOperand = UseOper.second; 865 for (unsigned N = 0; IVOperand; ++N) { 866 assert(N <= Simplified.size() && "runaway iteration"); 867 868 Value *NewOper = foldIVUser(UseInst, IVOperand); 869 if (!NewOper) 870 break; // done folding 871 IVOperand = dyn_cast<Instruction>(NewOper); 872 } 873 if (!IVOperand) 874 continue; 875 876 if (eliminateIVUser(UseInst, IVOperand)) { 877 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 878 continue; 879 } 880 881 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 882 if ((isa<OverflowingBinaryOperator>(BO) && 883 strengthenOverflowingOperation(BO, IVOperand)) || 884 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 885 // re-queue uses of the now modified binary operator and fall 886 // through to the checks that remain. 887 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 888 } 889 } 890 891 CastInst *Cast = dyn_cast<CastInst>(UseInst); 892 if (V && Cast) { 893 V->visitCast(Cast); 894 continue; 895 } 896 if (isSimpleIVUser(UseInst, L, SE)) { 897 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 898 } 899 } 900 } 901 902 namespace llvm { 903 904 void IVVisitor::anchor() { } 905 906 /// Simplify instructions that use this induction variable 907 /// by using ScalarEvolution to analyze the IV's recurrence. 908 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 909 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, 910 SCEVExpander &Rewriter, IVVisitor *V) { 911 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, 912 Dead); 913 SIV.simplifyUsers(CurrIV, V); 914 return SIV.hasChanged(); 915 } 916 917 /// Simplify users of induction variables within this 918 /// loop. This does not actually change or add IVs. 919 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 920 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { 921 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 922 #ifndef NDEBUG 923 Rewriter.setDebugType(DEBUG_TYPE); 924 #endif 925 bool Changed = false; 926 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 927 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); 928 } 929 return Changed; 930 } 931 932 } // namespace llvm 933