1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "indvars"
32 
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(
38     NumSimplifiedSDiv,
39     "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41     NumSimplifiedSRem,
42     "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
44 
45 namespace {
46   /// This is a utility for simplifying induction variables
47   /// based on ScalarEvolution. It is the primary instrument of the
48   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49   /// other loop passes that preserve SCEV.
50   class SimplifyIndvar {
51     Loop             *L;
52     LoopInfo         *LI;
53     ScalarEvolution  *SE;
54     DominatorTree    *DT;
55     const TargetTransformInfo *TTI;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed = false;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, const TargetTransformInfo *TTI,
64                    SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67           DeadInsts(Dead) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82     bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
83 
84     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
85     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
86     bool eliminateTrunc(TruncInst *TI);
87     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
88     bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
89     void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
90     void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
91                              bool IsSigned);
92     void replaceRemWithNumerator(BinaryOperator *Rem);
93     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
94     void replaceSRemWithURem(BinaryOperator *Rem);
95     bool eliminateSDiv(BinaryOperator *SDiv);
96     bool strengthenOverflowingOperation(BinaryOperator *OBO,
97                                         Instruction *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
99   };
100 }
101 
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106                                         DominatorTree &DT) {
107   Instruction *CommonDom = nullptr;
108   for (auto *Insn : Instructions)
109     if (!CommonDom || DT.dominates(Insn, CommonDom))
110       CommonDom = Insn;
111     else if (!DT.dominates(CommonDom, Insn))
112       // If there is no dominance relation, use common dominator.
113       CommonDom =
114           DT.findNearestCommonDominator(CommonDom->getParent(),
115                                         Insn->getParent())->getTerminator();
116   assert(CommonDom && "Common dominator not found?");
117   return CommonDom;
118 }
119 
120 /// Fold an IV operand into its use.  This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
122 ///
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
124 ///
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129   Value *IVSrc = nullptr;
130   const unsigned OperIdx = 0;
131   const SCEV *FoldedExpr = nullptr;
132   bool MustDropExactFlag = false;
133   switch (UseInst->getOpcode()) {
134   default:
135     return nullptr;
136   case Instruction::UDiv:
137   case Instruction::LShr:
138     // We're only interested in the case where we know something about
139     // the numerator and have a constant denominator.
140     if (IVOperand != UseInst->getOperand(OperIdx) ||
141         !isa<ConstantInt>(UseInst->getOperand(1)))
142       return nullptr;
143 
144     // Attempt to fold a binary operator with constant operand.
145     // e.g. ((I + 1) >> 2) => I >> 2
146     if (!isa<BinaryOperator>(IVOperand)
147         || !isa<ConstantInt>(IVOperand->getOperand(1)))
148       return nullptr;
149 
150     IVSrc = IVOperand->getOperand(0);
151     // IVSrc must be the (SCEVable) IV, since the other operand is const.
152     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
153 
154     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155     if (UseInst->getOpcode() == Instruction::LShr) {
156       // Get a constant for the divisor. See createSCEV.
157       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158       if (D->getValue().uge(BitWidth))
159         return nullptr;
160 
161       D = ConstantInt::get(UseInst->getContext(),
162                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
163     }
164     const auto *LHS = SE->getSCEV(IVSrc);
165     const auto *RHS = SE->getSCEV(D);
166     FoldedExpr = SE->getUDivExpr(LHS, RHS);
167     // We might have 'exact' flag set at this point which will no longer be
168     // correct after we make the replacement.
169     if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
170       MustDropExactFlag = true;
171   }
172   // We have something that might fold it's operand. Compare SCEVs.
173   if (!SE->isSCEVable(UseInst->getType()))
174     return nullptr;
175 
176   // Bypass the operand if SCEV can prove it has no effect.
177   if (SE->getSCEV(UseInst) != FoldedExpr)
178     return nullptr;
179 
180   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
181                     << " -> " << *UseInst << '\n');
182 
183   UseInst->setOperand(OperIdx, IVSrc);
184   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
185 
186   if (MustDropExactFlag)
187     UseInst->dropPoisonGeneratingFlags();
188 
189   ++NumElimOperand;
190   Changed = true;
191   if (IVOperand->use_empty())
192     DeadInsts.emplace_back(IVOperand);
193   return IVSrc;
194 }
195 
196 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
197                                                Instruction *IVOperand) {
198   unsigned IVOperIdx = 0;
199   ICmpInst::Predicate Pred = ICmp->getPredicate();
200   if (IVOperand != ICmp->getOperand(0)) {
201     // Swapped
202     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
203     IVOperIdx = 1;
204     Pred = ICmpInst::getSwappedPredicate(Pred);
205   }
206 
207   // Get the SCEVs for the ICmp operands (in the specific context of the
208   // current loop)
209   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
210   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
211   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
212 
213   auto *PN = dyn_cast<PHINode>(IVOperand);
214   if (!PN)
215     return false;
216   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
217   if (!LIP)
218     return false;
219   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
220   const SCEV *InvariantLHS = LIP->LHS;
221   const SCEV *InvariantRHS = LIP->RHS;
222 
223   // Rewrite the comparison to a loop invariant comparison if it can be done
224   // cheaply, where cheaply means "we don't need to emit any new
225   // instructions".
226 
227   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
228   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
229   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
230 
231   // TODO: Support multiple entry loops?  (We currently bail out of these in
232   // the IndVarSimplify pass)
233   if (auto *BB = L->getLoopPredecessor()) {
234     const int Idx = PN->getBasicBlockIndex(BB);
235     if (Idx >= 0) {
236       Value *Incoming = PN->getIncomingValue(Idx);
237       const SCEV *IncomingS = SE->getSCEV(Incoming);
238       CheapExpansions[IncomingS] = Incoming;
239     }
240   }
241   Value *NewLHS = CheapExpansions[InvariantLHS];
242   Value *NewRHS = CheapExpansions[InvariantRHS];
243 
244   if (!NewLHS)
245     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
246       NewLHS = ConstLHS->getValue();
247   if (!NewRHS)
248     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
249       NewRHS = ConstRHS->getValue();
250 
251   if (!NewLHS || !NewRHS)
252     // We could not find an existing value to replace either LHS or RHS.
253     // Generating new instructions has subtler tradeoffs, so avoid doing that
254     // for now.
255     return false;
256 
257   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
258   ICmp->setPredicate(InvariantPredicate);
259   ICmp->setOperand(0, NewLHS);
260   ICmp->setOperand(1, NewRHS);
261   return true;
262 }
263 
264 /// SimplifyIVUsers helper for eliminating useless
265 /// comparisons against an induction variable.
266 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
267                                            Instruction *IVOperand) {
268   unsigned IVOperIdx = 0;
269   ICmpInst::Predicate Pred = ICmp->getPredicate();
270   ICmpInst::Predicate OriginalPred = Pred;
271   if (IVOperand != ICmp->getOperand(0)) {
272     // Swapped
273     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
274     IVOperIdx = 1;
275     Pred = ICmpInst::getSwappedPredicate(Pred);
276   }
277 
278   // Get the SCEVs for the ICmp operands (in the specific context of the
279   // current loop)
280   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
281   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
282   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
283 
284   // If the condition is always true or always false in the given context,
285   // replace it with a constant value.
286   SmallVector<Instruction *, 4> Users;
287   for (auto *U : ICmp->users())
288     Users.push_back(cast<Instruction>(U));
289   const Instruction *CtxI = findCommonDominator(Users, *DT);
290   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
291     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
292     DeadInsts.emplace_back(ICmp);
293     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
294   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
295     // fallthrough to end of function
296   } else if (ICmpInst::isSigned(OriginalPred) &&
297              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
298     // If we were unable to make anything above, all we can is to canonicalize
299     // the comparison hoping that it will open the doors for other
300     // optimizations. If we find out that we compare two non-negative values,
301     // we turn the instruction's predicate to its unsigned version. Note that
302     // we cannot rely on Pred here unless we check if we have swapped it.
303     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
304     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
305                       << '\n');
306     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
307   } else
308     return;
309 
310   ++NumElimCmp;
311   Changed = true;
312 }
313 
314 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
315   // Get the SCEVs for the ICmp operands.
316   auto *N = SE->getSCEV(SDiv->getOperand(0));
317   auto *D = SE->getSCEV(SDiv->getOperand(1));
318 
319   // Simplify unnecessary loops away.
320   const Loop *L = LI->getLoopFor(SDiv->getParent());
321   N = SE->getSCEVAtScope(N, L);
322   D = SE->getSCEVAtScope(D, L);
323 
324   // Replace sdiv by udiv if both of the operands are non-negative
325   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
326     auto *UDiv = BinaryOperator::Create(
327         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
328         SDiv->getName() + ".udiv", SDiv);
329     UDiv->setIsExact(SDiv->isExact());
330     SDiv->replaceAllUsesWith(UDiv);
331     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
332     ++NumSimplifiedSDiv;
333     Changed = true;
334     DeadInsts.push_back(SDiv);
335     return true;
336   }
337 
338   return false;
339 }
340 
341 // i %s n -> i %u n if i >= 0 and n >= 0
342 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
343   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
344   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
345                                       Rem->getName() + ".urem", Rem);
346   Rem->replaceAllUsesWith(URem);
347   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
348   ++NumSimplifiedSRem;
349   Changed = true;
350   DeadInsts.emplace_back(Rem);
351 }
352 
353 // i % n  -->  i  if i is in [0,n).
354 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
355   Rem->replaceAllUsesWith(Rem->getOperand(0));
356   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
357   ++NumElimRem;
358   Changed = true;
359   DeadInsts.emplace_back(Rem);
360 }
361 
362 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
363 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
364   auto *T = Rem->getType();
365   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
366   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
367   SelectInst *Sel =
368       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
369   Rem->replaceAllUsesWith(Sel);
370   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
371   ++NumElimRem;
372   Changed = true;
373   DeadInsts.emplace_back(Rem);
374 }
375 
376 /// SimplifyIVUsers helper for eliminating useless remainder operations
377 /// operating on an induction variable or replacing srem by urem.
378 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
379                                          Instruction *IVOperand,
380                                          bool IsSigned) {
381   auto *NValue = Rem->getOperand(0);
382   auto *DValue = Rem->getOperand(1);
383   // We're only interested in the case where we know something about
384   // the numerator, unless it is a srem, because we want to replace srem by urem
385   // in general.
386   bool UsedAsNumerator = IVOperand == NValue;
387   if (!UsedAsNumerator && !IsSigned)
388     return;
389 
390   const SCEV *N = SE->getSCEV(NValue);
391 
392   // Simplify unnecessary loops away.
393   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
394   N = SE->getSCEVAtScope(N, ICmpLoop);
395 
396   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
397 
398   // Do not proceed if the Numerator may be negative
399   if (!IsNumeratorNonNegative)
400     return;
401 
402   const SCEV *D = SE->getSCEV(DValue);
403   D = SE->getSCEVAtScope(D, ICmpLoop);
404 
405   if (UsedAsNumerator) {
406     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
407     if (SE->isKnownPredicate(LT, N, D)) {
408       replaceRemWithNumerator(Rem);
409       return;
410     }
411 
412     auto *T = Rem->getType();
413     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
414     if (SE->isKnownPredicate(LT, NLessOne, D)) {
415       replaceRemWithNumeratorOrZero(Rem);
416       return;
417     }
418   }
419 
420   // Try to replace SRem with URem, if both N and D are known non-negative.
421   // Since we had already check N, we only need to check D now
422   if (!IsSigned || !SE->isKnownNonNegative(D))
423     return;
424 
425   replaceSRemWithURem(Rem);
426 }
427 
428 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
429   const SCEV *LHS = SE->getSCEV(WO->getLHS());
430   const SCEV *RHS = SE->getSCEV(WO->getRHS());
431   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
432     return false;
433 
434   // Proved no overflow, nuke the overflow check and, if possible, the overflow
435   // intrinsic as well.
436 
437   BinaryOperator *NewResult = BinaryOperator::Create(
438       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
439 
440   if (WO->isSigned())
441     NewResult->setHasNoSignedWrap(true);
442   else
443     NewResult->setHasNoUnsignedWrap(true);
444 
445   SmallVector<ExtractValueInst *, 4> ToDelete;
446 
447   for (auto *U : WO->users()) {
448     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
449       if (EVI->getIndices()[0] == 1)
450         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
451       else {
452         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
453         EVI->replaceAllUsesWith(NewResult);
454       }
455       ToDelete.push_back(EVI);
456     }
457   }
458 
459   for (auto *EVI : ToDelete)
460     EVI->eraseFromParent();
461 
462   if (WO->use_empty())
463     WO->eraseFromParent();
464 
465   Changed = true;
466   return true;
467 }
468 
469 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
470   const SCEV *LHS = SE->getSCEV(SI->getLHS());
471   const SCEV *RHS = SE->getSCEV(SI->getRHS());
472   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
473     return false;
474 
475   BinaryOperator *BO = BinaryOperator::Create(
476       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
477   if (SI->isSigned())
478     BO->setHasNoSignedWrap();
479   else
480     BO->setHasNoUnsignedWrap();
481 
482   SI->replaceAllUsesWith(BO);
483   DeadInsts.emplace_back(SI);
484   Changed = true;
485   return true;
486 }
487 
488 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
489   // It is always legal to replace
490   //   icmp <pred> i32 trunc(iv), n
491   // with
492   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
493   // Or with
494   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
495   // Or with either of these if pred is an equality predicate.
496   //
497   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
498   // every comparison which uses trunc, it means that we can replace each of
499   // them with comparison of iv against sext/zext(n). We no longer need trunc
500   // after that.
501   //
502   // TODO: Should we do this if we can widen *some* comparisons, but not all
503   // of them? Sometimes it is enough to enable other optimizations, but the
504   // trunc instruction will stay in the loop.
505   Value *IV = TI->getOperand(0);
506   Type *IVTy = IV->getType();
507   const SCEV *IVSCEV = SE->getSCEV(IV);
508   const SCEV *TISCEV = SE->getSCEV(TI);
509 
510   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
511   // get rid of trunc
512   bool DoesSExtCollapse = false;
513   bool DoesZExtCollapse = false;
514   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
515     DoesSExtCollapse = true;
516   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
517     DoesZExtCollapse = true;
518 
519   // If neither sext nor zext does collapse, it is not profitable to do any
520   // transform. Bail.
521   if (!DoesSExtCollapse && !DoesZExtCollapse)
522     return false;
523 
524   // Collect users of the trunc that look like comparisons against invariants.
525   // Bail if we find something different.
526   SmallVector<ICmpInst *, 4> ICmpUsers;
527   for (auto *U : TI->users()) {
528     // We don't care about users in unreachable blocks.
529     if (isa<Instruction>(U) &&
530         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
531       continue;
532     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
533     if (!ICI) return false;
534     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
535     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
536         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
537       return false;
538     // If we cannot get rid of trunc, bail.
539     if (ICI->isSigned() && !DoesSExtCollapse)
540       return false;
541     if (ICI->isUnsigned() && !DoesZExtCollapse)
542       return false;
543     // For equality, either signed or unsigned works.
544     ICmpUsers.push_back(ICI);
545   }
546 
547   auto CanUseZExt = [&](ICmpInst *ICI) {
548     // Unsigned comparison can be widened as unsigned.
549     if (ICI->isUnsigned())
550       return true;
551     // Is it profitable to do zext?
552     if (!DoesZExtCollapse)
553       return false;
554     // For equality, we can safely zext both parts.
555     if (ICI->isEquality())
556       return true;
557     // Otherwise we can only use zext when comparing two non-negative or two
558     // negative values. But in practice, we will never pass DoesZExtCollapse
559     // check for a negative value, because zext(trunc(x)) is non-negative. So
560     // it only make sense to check for non-negativity here.
561     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
562     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
563     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
564   };
565   // Replace all comparisons against trunc with comparisons against IV.
566   for (auto *ICI : ICmpUsers) {
567     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
568     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
569     Instruction *Ext = nullptr;
570     // For signed/unsigned predicate, replace the old comparison with comparison
571     // of immediate IV against sext/zext of the invariant argument. If we can
572     // use either sext or zext (i.e. we are dealing with equality predicate),
573     // then prefer zext as a more canonical form.
574     // TODO: If we see a signed comparison which can be turned into unsigned,
575     // we can do it here for canonicalization purposes.
576     ICmpInst::Predicate Pred = ICI->getPredicate();
577     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
578     if (CanUseZExt(ICI)) {
579       assert(DoesZExtCollapse && "Unprofitable zext?");
580       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
581       Pred = ICmpInst::getUnsignedPredicate(Pred);
582     } else {
583       assert(DoesSExtCollapse && "Unprofitable sext?");
584       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
585       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
586     }
587     bool Changed;
588     L->makeLoopInvariant(Ext, Changed);
589     (void)Changed;
590     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
591     ICI->replaceAllUsesWith(NewICI);
592     DeadInsts.emplace_back(ICI);
593   }
594 
595   // Trunc no longer needed.
596   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
597   DeadInsts.emplace_back(TI);
598   return true;
599 }
600 
601 /// Eliminate an operation that consumes a simple IV and has no observable
602 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
603 /// but UseInst may not be.
604 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
605                                      Instruction *IVOperand) {
606   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
607     eliminateIVComparison(ICmp, IVOperand);
608     return true;
609   }
610   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
611     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
612     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
613       simplifyIVRemainder(Bin, IVOperand, IsSRem);
614       return true;
615     }
616 
617     if (Bin->getOpcode() == Instruction::SDiv)
618       return eliminateSDiv(Bin);
619   }
620 
621   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
622     if (eliminateOverflowIntrinsic(WO))
623       return true;
624 
625   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
626     if (eliminateSaturatingIntrinsic(SI))
627       return true;
628 
629   if (auto *TI = dyn_cast<TruncInst>(UseInst))
630     if (eliminateTrunc(TI))
631       return true;
632 
633   if (eliminateIdentitySCEV(UseInst, IVOperand))
634     return true;
635 
636   return false;
637 }
638 
639 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
640   if (auto *BB = L->getLoopPreheader())
641     return BB->getTerminator();
642 
643   return Hint;
644 }
645 
646 /// Replace the UseInst with a loop invariant expression if it is safe.
647 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
648   if (!SE->isSCEVable(I->getType()))
649     return false;
650 
651   // Get the symbolic expression for this instruction.
652   const SCEV *S = SE->getSCEV(I);
653 
654   if (!SE->isLoopInvariant(S, L))
655     return false;
656 
657   // Do not generate something ridiculous even if S is loop invariant.
658   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
659     return false;
660 
661   auto *IP = GetLoopInvariantInsertPosition(L, I);
662 
663   if (!Rewriter.isSafeToExpandAt(S, IP)) {
664     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
665                       << " with non-speculable loop invariant: " << *S << '\n');
666     return false;
667   }
668 
669   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
670 
671   I->replaceAllUsesWith(Invariant);
672   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
673                     << " with loop invariant: " << *S << '\n');
674   ++NumFoldedUser;
675   Changed = true;
676   DeadInsts.emplace_back(I);
677   return true;
678 }
679 
680 /// Eliminate redundant type cast between integer and float.
681 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
682   if (UseInst->getOpcode() != CastInst::SIToFP)
683     return false;
684 
685   Value *IVOperand = UseInst->getOperand(0);
686   // Get the symbolic expression for this instruction.
687   ConstantRange IVRange = SE->getSignedRange(SE->getSCEV(IVOperand));
688   unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
689   if (IVRange.getActiveBits() <= DestNumSigBits) {
690     for (User *U : UseInst->users()) {
691       // Match for fptosi/fptoui of sitofp and with same type.
692       auto *CI = dyn_cast<CastInst>(U);
693       if (!CI || IVOperand->getType() != CI->getType())
694         continue;
695 
696       CastInst::CastOps Opcode = CI->getOpcode();
697       if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
698         continue;
699 
700       CI->replaceAllUsesWith(IVOperand);
701       DeadInsts.push_back(CI);
702       LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
703                         << " with: " << *IVOperand << '\n');
704 
705       ++NumFoldedUser;
706       Changed = true;
707     }
708   }
709 
710   return Changed;
711 }
712 
713 /// Eliminate any operation that SCEV can prove is an identity function.
714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
715                                            Instruction *IVOperand) {
716   if (!SE->isSCEVable(UseInst->getType()) ||
717       (UseInst->getType() != IVOperand->getType()) ||
718       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
719     return false;
720 
721   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
722   // dominator tree, even if X is an operand to Y.  For instance, in
723   //
724   //     %iv = phi i32 {0,+,1}
725   //     br %cond, label %left, label %merge
726   //
727   //   left:
728   //     %X = add i32 %iv, 0
729   //     br label %merge
730   //
731   //   merge:
732   //     %M = phi (%X, %iv)
733   //
734   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
735   // %M.replaceAllUsesWith(%X) would be incorrect.
736 
737   if (isa<PHINode>(UseInst))
738     // If UseInst is not a PHI node then we know that IVOperand dominates
739     // UseInst directly from the legality of SSA.
740     if (!DT || !DT->dominates(IVOperand, UseInst))
741       return false;
742 
743   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
744     return false;
745 
746   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
747 
748   UseInst->replaceAllUsesWith(IVOperand);
749   ++NumElimIdentity;
750   Changed = true;
751   DeadInsts.emplace_back(UseInst);
752   return true;
753 }
754 
755 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
756 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
757 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
758                                                     Instruction *IVOperand) {
759   auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
760       cast<OverflowingBinaryOperator>(BO));
761 
762   if (!Flags)
763     return false;
764 
765   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
766                            SCEV::FlagNUW);
767   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
768                          SCEV::FlagNSW);
769 
770   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
771   // flags on addrecs while performing zero/sign extensions. We could call
772   // forgetValue() here to make sure those flags also propagate to any other
773   // SCEV expressions based on the addrec. However, this can have pathological
774   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
775   return true;
776 }
777 
778 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
779 /// information from the IV's range. Returns true if anything changed, false
780 /// otherwise.
781 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
782                                           Instruction *IVOperand) {
783   using namespace llvm::PatternMatch;
784 
785   if (BO->getOpcode() == Instruction::Shl) {
786     bool Changed = false;
787     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
788     for (auto *U : BO->users()) {
789       const APInt *C;
790       if (match(U,
791                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
792           match(U,
793                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
794         BinaryOperator *Shr = cast<BinaryOperator>(U);
795         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
796           Shr->setIsExact(true);
797           Changed = true;
798         }
799       }
800     }
801     return Changed;
802   }
803 
804   return false;
805 }
806 
807 /// Add all uses of Def to the current IV's worklist.
808 static void pushIVUsers(
809   Instruction *Def, Loop *L,
810   SmallPtrSet<Instruction*,16> &Simplified,
811   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
812 
813   for (User *U : Def->users()) {
814     Instruction *UI = cast<Instruction>(U);
815 
816     // Avoid infinite or exponential worklist processing.
817     // Also ensure unique worklist users.
818     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
819     // self edges first.
820     if (UI == Def)
821       continue;
822 
823     // Only change the current Loop, do not change the other parts (e.g. other
824     // Loops).
825     if (!L->contains(UI))
826       continue;
827 
828     // Do not push the same instruction more than once.
829     if (!Simplified.insert(UI).second)
830       continue;
831 
832     SimpleIVUsers.push_back(std::make_pair(UI, Def));
833   }
834 }
835 
836 /// Return true if this instruction generates a simple SCEV
837 /// expression in terms of that IV.
838 ///
839 /// This is similar to IVUsers' isInteresting() but processes each instruction
840 /// non-recursively when the operand is already known to be a simpleIVUser.
841 ///
842 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
843   if (!SE->isSCEVable(I->getType()))
844     return false;
845 
846   // Get the symbolic expression for this instruction.
847   const SCEV *S = SE->getSCEV(I);
848 
849   // Only consider affine recurrences.
850   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
851   if (AR && AR->getLoop() == L)
852     return true;
853 
854   return false;
855 }
856 
857 /// Iteratively perform simplification on a worklist of users
858 /// of the specified induction variable. Each successive simplification may push
859 /// more users which may themselves be candidates for simplification.
860 ///
861 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
862 /// instructions in-place during analysis. Rather than rewriting induction
863 /// variables bottom-up from their users, it transforms a chain of IVUsers
864 /// top-down, updating the IR only when it encounters a clear optimization
865 /// opportunity.
866 ///
867 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
868 ///
869 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
870   if (!SE->isSCEVable(CurrIV->getType()))
871     return;
872 
873   // Instructions processed by SimplifyIndvar for CurrIV.
874   SmallPtrSet<Instruction*,16> Simplified;
875 
876   // Use-def pairs if IV users waiting to be processed for CurrIV.
877   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
878 
879   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
880   // called multiple times for the same LoopPhi. This is the proper thing to
881   // do for loop header phis that use each other.
882   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
883 
884   while (!SimpleIVUsers.empty()) {
885     std::pair<Instruction*, Instruction*> UseOper =
886       SimpleIVUsers.pop_back_val();
887     Instruction *UseInst = UseOper.first;
888 
889     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
890     // rather than try to do some complex analysis or transformation (such as
891     // widening) basing on it.
892     // TODO: Propagate TLI and pass it here to handle more cases.
893     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
894       DeadInsts.emplace_back(UseInst);
895       continue;
896     }
897 
898     // Bypass back edges to avoid extra work.
899     if (UseInst == CurrIV) continue;
900 
901     // Try to replace UseInst with a loop invariant before any other
902     // simplifications.
903     if (replaceIVUserWithLoopInvariant(UseInst))
904       continue;
905 
906     Instruction *IVOperand = UseOper.second;
907     for (unsigned N = 0; IVOperand; ++N) {
908       assert(N <= Simplified.size() && "runaway iteration");
909       (void) N;
910 
911       Value *NewOper = foldIVUser(UseInst, IVOperand);
912       if (!NewOper)
913         break; // done folding
914       IVOperand = dyn_cast<Instruction>(NewOper);
915     }
916     if (!IVOperand)
917       continue;
918 
919     if (eliminateIVUser(UseInst, IVOperand)) {
920       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
921       continue;
922     }
923 
924     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
925       if ((isa<OverflowingBinaryOperator>(BO) &&
926            strengthenOverflowingOperation(BO, IVOperand)) ||
927           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
928         // re-queue uses of the now modified binary operator and fall
929         // through to the checks that remain.
930         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
931       }
932     }
933 
934     // Try to use integer induction for FPToSI of float induction directly.
935     if (replaceFloatIVWithIntegerIV(UseInst)) {
936       // Re-queue the potentially new direct uses of IVOperand.
937       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
938       continue;
939     }
940 
941     CastInst *Cast = dyn_cast<CastInst>(UseInst);
942     if (V && Cast) {
943       V->visitCast(Cast);
944       continue;
945     }
946     if (isSimpleIVUser(UseInst, L, SE)) {
947       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
948     }
949   }
950 }
951 
952 namespace llvm {
953 
954 void IVVisitor::anchor() { }
955 
956 /// Simplify instructions that use this induction variable
957 /// by using ScalarEvolution to analyze the IV's recurrence.
958 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
959                        LoopInfo *LI, const TargetTransformInfo *TTI,
960                        SmallVectorImpl<WeakTrackingVH> &Dead,
961                        SCEVExpander &Rewriter, IVVisitor *V) {
962   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
963                      Rewriter, Dead);
964   SIV.simplifyUsers(CurrIV, V);
965   return SIV.hasChanged();
966 }
967 
968 /// Simplify users of induction variables within this
969 /// loop. This does not actually change or add IVs.
970 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
971                      LoopInfo *LI, const TargetTransformInfo *TTI,
972                      SmallVectorImpl<WeakTrackingVH> &Dead) {
973   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
974 #ifndef NDEBUG
975   Rewriter.setDebugType(DEBUG_TYPE);
976 #endif
977   bool Changed = false;
978   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
979     Changed |=
980         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
981   }
982   return Changed;
983 }
984 
985 } // namespace llvm
986 
987 namespace {
988 //===----------------------------------------------------------------------===//
989 // Widen Induction Variables - Extend the width of an IV to cover its
990 // widest uses.
991 //===----------------------------------------------------------------------===//
992 
993 class WidenIV {
994   // Parameters
995   PHINode *OrigPhi;
996   Type *WideType;
997 
998   // Context
999   LoopInfo        *LI;
1000   Loop            *L;
1001   ScalarEvolution *SE;
1002   DominatorTree   *DT;
1003 
1004   // Does the module have any calls to the llvm.experimental.guard intrinsic
1005   // at all? If not we can avoid scanning instructions looking for guards.
1006   bool HasGuards;
1007 
1008   bool UsePostIncrementRanges;
1009 
1010   // Statistics
1011   unsigned NumElimExt = 0;
1012   unsigned NumWidened = 0;
1013 
1014   // Result
1015   PHINode *WidePhi = nullptr;
1016   Instruction *WideInc = nullptr;
1017   const SCEV *WideIncExpr = nullptr;
1018   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1019 
1020   SmallPtrSet<Instruction *,16> Widened;
1021 
1022   enum class ExtendKind { Zero, Sign, Unknown };
1023 
1024   // A map tracking the kind of extension used to widen each narrow IV
1025   // and narrow IV user.
1026   // Key: pointer to a narrow IV or IV user.
1027   // Value: the kind of extension used to widen this Instruction.
1028   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1029 
1030   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1031 
1032   // A map with control-dependent ranges for post increment IV uses. The key is
1033   // a pair of IV def and a use of this def denoting the context. The value is
1034   // a ConstantRange representing possible values of the def at the given
1035   // context.
1036   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1037 
1038   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1039                                               Instruction *UseI) {
1040     DefUserPair Key(Def, UseI);
1041     auto It = PostIncRangeInfos.find(Key);
1042     return It == PostIncRangeInfos.end()
1043                ? Optional<ConstantRange>(None)
1044                : Optional<ConstantRange>(It->second);
1045   }
1046 
1047   void calculatePostIncRanges(PHINode *OrigPhi);
1048   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1049 
1050   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1051     DefUserPair Key(Def, UseI);
1052     auto It = PostIncRangeInfos.find(Key);
1053     if (It == PostIncRangeInfos.end())
1054       PostIncRangeInfos.insert({Key, R});
1055     else
1056       It->second = R.intersectWith(It->second);
1057   }
1058 
1059 public:
1060   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1061   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1062   /// pointers.
1063   struct NarrowIVDefUse {
1064     Instruction *NarrowDef = nullptr;
1065     Instruction *NarrowUse = nullptr;
1066     Instruction *WideDef = nullptr;
1067 
1068     // True if the narrow def is never negative.  Tracking this information lets
1069     // us use a sign extension instead of a zero extension or vice versa, when
1070     // profitable and legal.
1071     bool NeverNegative = false;
1072 
1073     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1074                    bool NeverNegative)
1075         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1076           NeverNegative(NeverNegative) {}
1077   };
1078 
1079   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1080           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1081           bool HasGuards, bool UsePostIncrementRanges = true);
1082 
1083   PHINode *createWideIV(SCEVExpander &Rewriter);
1084 
1085   unsigned getNumElimExt() { return NumElimExt; };
1086   unsigned getNumWidened() { return NumWidened; };
1087 
1088 protected:
1089   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1090                           Instruction *Use);
1091 
1092   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1093   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1094                                      const SCEVAddRecExpr *WideAR);
1095   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1096 
1097   ExtendKind getExtendKind(Instruction *I);
1098 
1099   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1100 
1101   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1102 
1103   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1104 
1105   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1106                               unsigned OpCode) const;
1107 
1108   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1109 
1110   bool widenLoopCompare(NarrowIVDefUse DU);
1111   bool widenWithVariantUse(NarrowIVDefUse DU);
1112 
1113   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1114 
1115 private:
1116   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1117 };
1118 } // namespace
1119 
1120 /// Determine the insertion point for this user. By default, insert immediately
1121 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1122 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1123 /// common dominator for the incoming blocks. A nullptr can be returned if no
1124 /// viable location is found: it may happen if User is a PHI and Def only comes
1125 /// to this PHI from unreachable blocks.
1126 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1127                                           DominatorTree *DT, LoopInfo *LI) {
1128   PHINode *PHI = dyn_cast<PHINode>(User);
1129   if (!PHI)
1130     return User;
1131 
1132   Instruction *InsertPt = nullptr;
1133   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1134     if (PHI->getIncomingValue(i) != Def)
1135       continue;
1136 
1137     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1138 
1139     if (!DT->isReachableFromEntry(InsertBB))
1140       continue;
1141 
1142     if (!InsertPt) {
1143       InsertPt = InsertBB->getTerminator();
1144       continue;
1145     }
1146     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1147     InsertPt = InsertBB->getTerminator();
1148   }
1149 
1150   // If we have skipped all inputs, it means that Def only comes to Phi from
1151   // unreachable blocks.
1152   if (!InsertPt)
1153     return nullptr;
1154 
1155   auto *DefI = dyn_cast<Instruction>(Def);
1156   if (!DefI)
1157     return InsertPt;
1158 
1159   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1160 
1161   auto *L = LI->getLoopFor(DefI->getParent());
1162   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1163 
1164   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1165     if (LI->getLoopFor(DTN->getBlock()) == L)
1166       return DTN->getBlock()->getTerminator();
1167 
1168   llvm_unreachable("DefI dominates InsertPt!");
1169 }
1170 
1171 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1172           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1173           bool HasGuards, bool UsePostIncrementRanges)
1174       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1175         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1176         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1177         DeadInsts(DI) {
1178     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1179     ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1180 }
1181 
1182 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1183                                  bool IsSigned, Instruction *Use) {
1184   // Set the debug location and conservative insertion point.
1185   IRBuilder<> Builder(Use);
1186   // Hoist the insertion point into loop preheaders as far as possible.
1187   for (const Loop *L = LI->getLoopFor(Use->getParent());
1188        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1189        L = L->getParentLoop())
1190     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1191 
1192   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1193                     Builder.CreateZExt(NarrowOper, WideType);
1194 }
1195 
1196 /// Instantiate a wide operation to replace a narrow operation. This only needs
1197 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1198 /// 0 for any operation we decide not to clone.
1199 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1200                                   const SCEVAddRecExpr *WideAR) {
1201   unsigned Opcode = DU.NarrowUse->getOpcode();
1202   switch (Opcode) {
1203   default:
1204     return nullptr;
1205   case Instruction::Add:
1206   case Instruction::Mul:
1207   case Instruction::UDiv:
1208   case Instruction::Sub:
1209     return cloneArithmeticIVUser(DU, WideAR);
1210 
1211   case Instruction::And:
1212   case Instruction::Or:
1213   case Instruction::Xor:
1214   case Instruction::Shl:
1215   case Instruction::LShr:
1216   case Instruction::AShr:
1217     return cloneBitwiseIVUser(DU);
1218   }
1219 }
1220 
1221 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1222   Instruction *NarrowUse = DU.NarrowUse;
1223   Instruction *NarrowDef = DU.NarrowDef;
1224   Instruction *WideDef = DU.WideDef;
1225 
1226   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1227 
1228   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1229   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1230   // invariant and will be folded or hoisted. If it actually comes from a
1231   // widened IV, it should be removed during a future call to widenIVUse.
1232   bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1233   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1234                    ? WideDef
1235                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1236                                       IsSigned, NarrowUse);
1237   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1238                    ? WideDef
1239                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1240                                       IsSigned, NarrowUse);
1241 
1242   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1243   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1244                                         NarrowBO->getName());
1245   IRBuilder<> Builder(NarrowUse);
1246   Builder.Insert(WideBO);
1247   WideBO->copyIRFlags(NarrowBO);
1248   return WideBO;
1249 }
1250 
1251 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1252                                             const SCEVAddRecExpr *WideAR) {
1253   Instruction *NarrowUse = DU.NarrowUse;
1254   Instruction *NarrowDef = DU.NarrowDef;
1255   Instruction *WideDef = DU.WideDef;
1256 
1257   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1258 
1259   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1260 
1261   // We're trying to find X such that
1262   //
1263   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1264   //
1265   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1266   // and check using SCEV if any of them are correct.
1267 
1268   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1269   // correct solution to X.
1270   auto GuessNonIVOperand = [&](bool SignExt) {
1271     const SCEV *WideLHS;
1272     const SCEV *WideRHS;
1273 
1274     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1275       if (SignExt)
1276         return SE->getSignExtendExpr(S, Ty);
1277       return SE->getZeroExtendExpr(S, Ty);
1278     };
1279 
1280     if (IVOpIdx == 0) {
1281       WideLHS = SE->getSCEV(WideDef);
1282       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1283       WideRHS = GetExtend(NarrowRHS, WideType);
1284     } else {
1285       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1286       WideLHS = GetExtend(NarrowLHS, WideType);
1287       WideRHS = SE->getSCEV(WideDef);
1288     }
1289 
1290     // WideUse is "WideDef `op.wide` X" as described in the comment.
1291     const SCEV *WideUse =
1292       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1293 
1294     return WideUse == WideAR;
1295   };
1296 
1297   bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1298   if (!GuessNonIVOperand(SignExtend)) {
1299     SignExtend = !SignExtend;
1300     if (!GuessNonIVOperand(SignExtend))
1301       return nullptr;
1302   }
1303 
1304   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1305                    ? WideDef
1306                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1307                                       SignExtend, NarrowUse);
1308   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1309                    ? WideDef
1310                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1311                                       SignExtend, NarrowUse);
1312 
1313   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1314   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1315                                         NarrowBO->getName());
1316 
1317   IRBuilder<> Builder(NarrowUse);
1318   Builder.Insert(WideBO);
1319   WideBO->copyIRFlags(NarrowBO);
1320   return WideBO;
1321 }
1322 
1323 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1324   auto It = ExtendKindMap.find(I);
1325   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1326   return It->second;
1327 }
1328 
1329 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1330                                      unsigned OpCode) const {
1331   switch (OpCode) {
1332   case Instruction::Add:
1333     return SE->getAddExpr(LHS, RHS);
1334   case Instruction::Sub:
1335     return SE->getMinusSCEV(LHS, RHS);
1336   case Instruction::Mul:
1337     return SE->getMulExpr(LHS, RHS);
1338   case Instruction::UDiv:
1339     return SE->getUDivExpr(LHS, RHS);
1340   default:
1341     llvm_unreachable("Unsupported opcode.");
1342   };
1343 }
1344 
1345 /// No-wrap operations can transfer sign extension of their result to their
1346 /// operands. Generate the SCEV value for the widened operation without
1347 /// actually modifying the IR yet. If the expression after extending the
1348 /// operands is an AddRec for this loop, return the AddRec and the kind of
1349 /// extension used.
1350 WidenIV::WidenedRecTy
1351 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1352   // Handle the common case of add<nsw/nuw>
1353   const unsigned OpCode = DU.NarrowUse->getOpcode();
1354   // Only Add/Sub/Mul instructions supported yet.
1355   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1356       OpCode != Instruction::Mul)
1357     return {nullptr, ExtendKind::Unknown};
1358 
1359   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1360   // if extending the other will lead to a recurrence.
1361   const unsigned ExtendOperIdx =
1362       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1363   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1364 
1365   const SCEV *ExtendOperExpr = nullptr;
1366   const OverflowingBinaryOperator *OBO =
1367     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1368   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1369   if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap())
1370     ExtendOperExpr = SE->getSignExtendExpr(
1371       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1372   else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())
1373     ExtendOperExpr = SE->getZeroExtendExpr(
1374       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1375   else
1376     return {nullptr, ExtendKind::Unknown};
1377 
1378   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1379   // flags. This instruction may be guarded by control flow that the no-wrap
1380   // behavior depends on. Non-control-equivalent instructions can be mapped to
1381   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1382   // semantics to those operations.
1383   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1384   const SCEV *rhs = ExtendOperExpr;
1385 
1386   // Let's swap operands to the initial order for the case of non-commutative
1387   // operations, like SUB. See PR21014.
1388   if (ExtendOperIdx == 0)
1389     std::swap(lhs, rhs);
1390   const SCEVAddRecExpr *AddRec =
1391       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1392 
1393   if (!AddRec || AddRec->getLoop() != L)
1394     return {nullptr, ExtendKind::Unknown};
1395 
1396   return {AddRec, ExtKind};
1397 }
1398 
1399 /// Is this instruction potentially interesting for further simplification after
1400 /// widening it's type? In other words, can the extend be safely hoisted out of
1401 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1402 /// so, return the extended recurrence and the kind of extension used. Otherwise
1403 /// return {nullptr, ExtendKind::Unknown}.
1404 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1405   if (!DU.NarrowUse->getType()->isIntegerTy())
1406     return {nullptr, ExtendKind::Unknown};
1407 
1408   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1409   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1410       SE->getTypeSizeInBits(WideType)) {
1411     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1412     // index. So don't follow this use.
1413     return {nullptr, ExtendKind::Unknown};
1414   }
1415 
1416   const SCEV *WideExpr;
1417   ExtendKind ExtKind;
1418   if (DU.NeverNegative) {
1419     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1420     if (isa<SCEVAddRecExpr>(WideExpr))
1421       ExtKind = ExtendKind::Sign;
1422     else {
1423       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1424       ExtKind = ExtendKind::Zero;
1425     }
1426   } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1427     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1428     ExtKind = ExtendKind::Sign;
1429   } else {
1430     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1431     ExtKind = ExtendKind::Zero;
1432   }
1433   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1434   if (!AddRec || AddRec->getLoop() != L)
1435     return {nullptr, ExtendKind::Unknown};
1436   return {AddRec, ExtKind};
1437 }
1438 
1439 /// This IV user cannot be widened. Replace this use of the original narrow IV
1440 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1441 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1442                           LoopInfo *LI) {
1443   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1444   if (!InsertPt)
1445     return;
1446   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1447                     << *DU.NarrowUse << "\n");
1448   IRBuilder<> Builder(InsertPt);
1449   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1450   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1451 }
1452 
1453 /// If the narrow use is a compare instruction, then widen the compare
1454 //  (and possibly the other operand).  The extend operation is hoisted into the
1455 // loop preheader as far as possible.
1456 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1457   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1458   if (!Cmp)
1459     return false;
1460 
1461   // We can legally widen the comparison in the following two cases:
1462   //
1463   //  - The signedness of the IV extension and comparison match
1464   //
1465   //  - The narrow IV is always positive (and thus its sign extension is equal
1466   //    to its zero extension).  For instance, let's say we're zero extending
1467   //    %narrow for the following use
1468   //
1469   //      icmp slt i32 %narrow, %val   ... (A)
1470   //
1471   //    and %narrow is always positive.  Then
1472   //
1473   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1474   //          == icmp slt i32 zext(%narrow), sext(%val)
1475   bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1476   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1477     return false;
1478 
1479   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1480   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1481   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1482   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1483 
1484   // Widen the compare instruction.
1485   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1486   if (!InsertPt)
1487     return false;
1488   IRBuilder<> Builder(InsertPt);
1489   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1490 
1491   // Widen the other operand of the compare, if necessary.
1492   if (CastWidth < IVWidth) {
1493     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1494     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1495   }
1496   return true;
1497 }
1498 
1499 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1500 // will not work when:
1501 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1502 // expand, eg. add %indvar, (load %addr)
1503 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1504 // While SCEV fails to avoid trunc, we can still try to use instruction
1505 // combining approach to prove trunc is not required. This can be further
1506 // extended with other instruction combining checks, but for now we handle the
1507 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1508 //
1509 // Src:
1510 //   %c = sub nsw %b, %indvar
1511 //   %d = sext %c to i64
1512 // Dst:
1513 //   %indvar.ext1 = sext %indvar to i64
1514 //   %m = sext %b to i64
1515 //   %d = sub nsw i64 %m, %indvar.ext1
1516 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1517 // trunc is required regardless of how %b is generated. This pattern is common
1518 // when calculating address in 64 bit architecture
1519 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1520   Instruction *NarrowUse = DU.NarrowUse;
1521   Instruction *NarrowDef = DU.NarrowDef;
1522   Instruction *WideDef = DU.WideDef;
1523 
1524   // Handle the common case of add<nsw/nuw>
1525   const unsigned OpCode = NarrowUse->getOpcode();
1526   // Only Add/Sub/Mul instructions are supported.
1527   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1528       OpCode != Instruction::Mul)
1529     return false;
1530 
1531   // The operand that is not defined by NarrowDef of DU. Let's call it the
1532   // other operand.
1533   assert((NarrowUse->getOperand(0) == NarrowDef ||
1534           NarrowUse->getOperand(1) == NarrowDef) &&
1535          "bad DU");
1536 
1537   const OverflowingBinaryOperator *OBO =
1538     cast<OverflowingBinaryOperator>(NarrowUse);
1539   ExtendKind ExtKind = getExtendKind(NarrowDef);
1540   bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
1541   bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
1542   auto AnotherOpExtKind = ExtKind;
1543 
1544   // Check that all uses are either:
1545   // - narrow def (in case of we are widening the IV increment);
1546   // - single-input LCSSA Phis;
1547   // - comparison of the chosen type;
1548   // - extend of the chosen type (raison d'etre).
1549   SmallVector<Instruction *, 4> ExtUsers;
1550   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1551   SmallVector<ICmpInst *, 4> ICmpUsers;
1552   for (Use &U : NarrowUse->uses()) {
1553     Instruction *User = cast<Instruction>(U.getUser());
1554     if (User == NarrowDef)
1555       continue;
1556     if (!L->contains(User)) {
1557       auto *LCSSAPhi = cast<PHINode>(User);
1558       // Make sure there is only 1 input, so that we don't have to split
1559       // critical edges.
1560       if (LCSSAPhi->getNumOperands() != 1)
1561         return false;
1562       LCSSAPhiUsers.push_back(LCSSAPhi);
1563       continue;
1564     }
1565     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1566       auto Pred = ICmp->getPredicate();
1567       // We have 3 types of predicates: signed, unsigned and equality
1568       // predicates. For equality, it's legal to widen icmp for either sign and
1569       // zero extend. For sign extend, we can also do so for signed predicates,
1570       // likeweise for zero extend we can widen icmp for unsigned predicates.
1571       if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1572         return false;
1573       if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1574         return false;
1575       ICmpUsers.push_back(ICmp);
1576       continue;
1577     }
1578     if (ExtKind == ExtendKind::Sign)
1579       User = dyn_cast<SExtInst>(User);
1580     else
1581       User = dyn_cast<ZExtInst>(User);
1582     if (!User || User->getType() != WideType)
1583       return false;
1584     ExtUsers.push_back(User);
1585   }
1586   if (ExtUsers.empty()) {
1587     DeadInsts.emplace_back(NarrowUse);
1588     return true;
1589   }
1590 
1591   // We'll prove some facts that should be true in the context of ext users. If
1592   // there is no users, we are done now. If there are some, pick their common
1593   // dominator as context.
1594   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1595 
1596   if (!CanSignExtend && !CanZeroExtend) {
1597     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1598     // will most likely not see it. Let's try to prove it.
1599     if (OpCode != Instruction::Add)
1600       return false;
1601     if (ExtKind != ExtendKind::Zero)
1602       return false;
1603     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1604     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1605     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1606     if (NarrowUse->getOperand(0) != NarrowDef)
1607       return false;
1608     if (!SE->isKnownNegative(RHS))
1609       return false;
1610     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1611                                                SE->getNegativeSCEV(RHS), CtxI);
1612     if (!ProvedSubNUW)
1613       return false;
1614     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1615     // neg(zext(neg(op))), which is basically sext(op).
1616     AnotherOpExtKind = ExtendKind::Sign;
1617   }
1618 
1619   // Verifying that Defining operand is an AddRec
1620   const SCEV *Op1 = SE->getSCEV(WideDef);
1621   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1622   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1623     return false;
1624 
1625   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1626 
1627   // Generating a widening use instruction.
1628   Value *LHS =
1629       (NarrowUse->getOperand(0) == NarrowDef)
1630           ? WideDef
1631           : createExtendInst(NarrowUse->getOperand(0), WideType,
1632                              AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1633   Value *RHS =
1634       (NarrowUse->getOperand(1) == NarrowDef)
1635           ? WideDef
1636           : createExtendInst(NarrowUse->getOperand(1), WideType,
1637                              AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1638 
1639   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1640   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1641                                         NarrowBO->getName());
1642   IRBuilder<> Builder(NarrowUse);
1643   Builder.Insert(WideBO);
1644   WideBO->copyIRFlags(NarrowBO);
1645   ExtendKindMap[NarrowUse] = ExtKind;
1646 
1647   for (Instruction *User : ExtUsers) {
1648     assert(User->getType() == WideType && "Checked before!");
1649     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1650                       << *WideBO << "\n");
1651     ++NumElimExt;
1652     User->replaceAllUsesWith(WideBO);
1653     DeadInsts.emplace_back(User);
1654   }
1655 
1656   for (PHINode *User : LCSSAPhiUsers) {
1657     assert(User->getNumOperands() == 1 && "Checked before!");
1658     Builder.SetInsertPoint(User);
1659     auto *WidePN =
1660         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1661     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1662     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1663            "Not a LCSSA Phi?");
1664     WidePN->addIncoming(WideBO, LoopExitingBlock);
1665     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1666     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1667     User->replaceAllUsesWith(TruncPN);
1668     DeadInsts.emplace_back(User);
1669   }
1670 
1671   for (ICmpInst *User : ICmpUsers) {
1672     Builder.SetInsertPoint(User);
1673     auto ExtendedOp = [&](Value * V)->Value * {
1674       if (V == NarrowUse)
1675         return WideBO;
1676       if (ExtKind == ExtendKind::Zero)
1677         return Builder.CreateZExt(V, WideBO->getType());
1678       else
1679         return Builder.CreateSExt(V, WideBO->getType());
1680     };
1681     auto Pred = User->getPredicate();
1682     auto *LHS = ExtendedOp(User->getOperand(0));
1683     auto *RHS = ExtendedOp(User->getOperand(1));
1684     auto *WideCmp =
1685         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1686     User->replaceAllUsesWith(WideCmp);
1687     DeadInsts.emplace_back(User);
1688   }
1689 
1690   return true;
1691 }
1692 
1693 /// Determine whether an individual user of the narrow IV can be widened. If so,
1694 /// return the wide clone of the user.
1695 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1696   assert(ExtendKindMap.count(DU.NarrowDef) &&
1697          "Should already know the kind of extension used to widen NarrowDef");
1698 
1699   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1700   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1701     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1702       // For LCSSA phis, sink the truncate outside the loop.
1703       // After SimplifyCFG most loop exit targets have a single predecessor.
1704       // Otherwise fall back to a truncate within the loop.
1705       if (UsePhi->getNumOperands() != 1)
1706         truncateIVUse(DU, DT, LI);
1707       else {
1708         // Widening the PHI requires us to insert a trunc.  The logical place
1709         // for this trunc is in the same BB as the PHI.  This is not possible if
1710         // the BB is terminated by a catchswitch.
1711         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1712           return nullptr;
1713 
1714         PHINode *WidePhi =
1715           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1716                           UsePhi);
1717         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1718         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1719         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1720         UsePhi->replaceAllUsesWith(Trunc);
1721         DeadInsts.emplace_back(UsePhi);
1722         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1723                           << *WidePhi << "\n");
1724       }
1725       return nullptr;
1726     }
1727   }
1728 
1729   // This narrow use can be widened by a sext if it's non-negative or its narrow
1730   // def was widended by a sext. Same for zext.
1731   auto canWidenBySExt = [&]() {
1732     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1733   };
1734   auto canWidenByZExt = [&]() {
1735     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1736   };
1737 
1738   // Our raison d'etre! Eliminate sign and zero extension.
1739   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1740       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1741     Value *NewDef = DU.WideDef;
1742     if (DU.NarrowUse->getType() != WideType) {
1743       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1744       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1745       if (CastWidth < IVWidth) {
1746         // The cast isn't as wide as the IV, so insert a Trunc.
1747         IRBuilder<> Builder(DU.NarrowUse);
1748         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1749       }
1750       else {
1751         // A wider extend was hidden behind a narrower one. This may induce
1752         // another round of IV widening in which the intermediate IV becomes
1753         // dead. It should be very rare.
1754         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1755                           << " not wide enough to subsume " << *DU.NarrowUse
1756                           << "\n");
1757         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1758         NewDef = DU.NarrowUse;
1759       }
1760     }
1761     if (NewDef != DU.NarrowUse) {
1762       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1763                         << " replaced by " << *DU.WideDef << "\n");
1764       ++NumElimExt;
1765       DU.NarrowUse->replaceAllUsesWith(NewDef);
1766       DeadInsts.emplace_back(DU.NarrowUse);
1767     }
1768     // Now that the extend is gone, we want to expose it's uses for potential
1769     // further simplification. We don't need to directly inform SimplifyIVUsers
1770     // of the new users, because their parent IV will be processed later as a
1771     // new loop phi. If we preserved IVUsers analysis, we would also want to
1772     // push the uses of WideDef here.
1773 
1774     // No further widening is needed. The deceased [sz]ext had done it for us.
1775     return nullptr;
1776   }
1777 
1778   // Does this user itself evaluate to a recurrence after widening?
1779   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1780   if (!WideAddRec.first)
1781     WideAddRec = getWideRecurrence(DU);
1782 
1783   assert((WideAddRec.first == nullptr) ==
1784          (WideAddRec.second == ExtendKind::Unknown));
1785   if (!WideAddRec.first) {
1786     // If use is a loop condition, try to promote the condition instead of
1787     // truncating the IV first.
1788     if (widenLoopCompare(DU))
1789       return nullptr;
1790 
1791     // We are here about to generate a truncate instruction that may hurt
1792     // performance because the scalar evolution expression computed earlier
1793     // in WideAddRec.first does not indicate a polynomial induction expression.
1794     // In that case, look at the operands of the use instruction to determine
1795     // if we can still widen the use instead of truncating its operand.
1796     if (widenWithVariantUse(DU))
1797       return nullptr;
1798 
1799     // This user does not evaluate to a recurrence after widening, so don't
1800     // follow it. Instead insert a Trunc to kill off the original use,
1801     // eventually isolating the original narrow IV so it can be removed.
1802     truncateIVUse(DU, DT, LI);
1803     return nullptr;
1804   }
1805 
1806   // Reuse the IV increment that SCEVExpander created as long as it dominates
1807   // NarrowUse.
1808   Instruction *WideUse = nullptr;
1809   if (WideAddRec.first == WideIncExpr &&
1810       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1811     WideUse = WideInc;
1812   else {
1813     WideUse = cloneIVUser(DU, WideAddRec.first);
1814     if (!WideUse)
1815       return nullptr;
1816   }
1817   // Evaluation of WideAddRec ensured that the narrow expression could be
1818   // extended outside the loop without overflow. This suggests that the wide use
1819   // evaluates to the same expression as the extended narrow use, but doesn't
1820   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1821   // where it fails, we simply throw away the newly created wide use.
1822   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1823     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1824                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1825                       << "\n");
1826     DeadInsts.emplace_back(WideUse);
1827     return nullptr;
1828   }
1829 
1830   // if we reached this point then we are going to replace
1831   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1832   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1833 
1834   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1835   // Returning WideUse pushes it on the worklist.
1836   return WideUse;
1837 }
1838 
1839 /// Add eligible users of NarrowDef to NarrowIVUsers.
1840 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1841   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1842   bool NonNegativeDef =
1843       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1844                            SE->getZero(NarrowSCEV->getType()));
1845   for (User *U : NarrowDef->users()) {
1846     Instruction *NarrowUser = cast<Instruction>(U);
1847 
1848     // Handle data flow merges and bizarre phi cycles.
1849     if (!Widened.insert(NarrowUser).second)
1850       continue;
1851 
1852     bool NonNegativeUse = false;
1853     if (!NonNegativeDef) {
1854       // We might have a control-dependent range information for this context.
1855       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1856         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1857     }
1858 
1859     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1860                                NonNegativeDef || NonNegativeUse);
1861   }
1862 }
1863 
1864 /// Process a single induction variable. First use the SCEVExpander to create a
1865 /// wide induction variable that evaluates to the same recurrence as the
1866 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1867 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1868 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1869 ///
1870 /// It would be simpler to delete uses as they are processed, but we must avoid
1871 /// invalidating SCEV expressions.
1872 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1873   // Is this phi an induction variable?
1874   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1875   if (!AddRec)
1876     return nullptr;
1877 
1878   // Widen the induction variable expression.
1879   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
1880                                ? SE->getSignExtendExpr(AddRec, WideType)
1881                                : SE->getZeroExtendExpr(AddRec, WideType);
1882 
1883   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1884          "Expect the new IV expression to preserve its type");
1885 
1886   // Can the IV be extended outside the loop without overflow?
1887   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1888   if (!AddRec || AddRec->getLoop() != L)
1889     return nullptr;
1890 
1891   // An AddRec must have loop-invariant operands. Since this AddRec is
1892   // materialized by a loop header phi, the expression cannot have any post-loop
1893   // operands, so they must dominate the loop header.
1894   assert(
1895       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1896       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1897       "Loop header phi recurrence inputs do not dominate the loop");
1898 
1899   // Iterate over IV uses (including transitive ones) looking for IV increments
1900   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1901   // the increment calculate control-dependent range information basing on
1902   // dominating conditions inside of the loop (e.g. a range check inside of the
1903   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1904   //
1905   // Control-dependent range information is later used to prove that a narrow
1906   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1907   // this on demand because when pushNarrowIVUsers needs this information some
1908   // of the dominating conditions might be already widened.
1909   if (UsePostIncrementRanges)
1910     calculatePostIncRanges(OrigPhi);
1911 
1912   // The rewriter provides a value for the desired IV expression. This may
1913   // either find an existing phi or materialize a new one. Either way, we
1914   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1915   // of the phi-SCC dominates the loop entry.
1916   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1917   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1918   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1919   // inttoptr, ptrtoint, just skip for now.
1920   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1921     // if the cast node is an inserted instruction without any user, we should
1922     // remove it to make sure the pass don't touch the function as we can not
1923     // wide the phi.
1924     if (ExpandInst->hasNUses(0) &&
1925         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1926       DeadInsts.emplace_back(ExpandInst);
1927     return nullptr;
1928   }
1929 
1930   // Remembering the WideIV increment generated by SCEVExpander allows
1931   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1932   // employ a general reuse mechanism because the call above is the only call to
1933   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1934   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1935     WideInc =
1936       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1937     WideIncExpr = SE->getSCEV(WideInc);
1938     // Propagate the debug location associated with the original loop increment
1939     // to the new (widened) increment.
1940     auto *OrigInc =
1941       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1942     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1943   }
1944 
1945   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1946   ++NumWidened;
1947 
1948   // Traverse the def-use chain using a worklist starting at the original IV.
1949   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1950 
1951   Widened.insert(OrigPhi);
1952   pushNarrowIVUsers(OrigPhi, WidePhi);
1953 
1954   while (!NarrowIVUsers.empty()) {
1955     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1956 
1957     // Process a def-use edge. This may replace the use, so don't hold a
1958     // use_iterator across it.
1959     Instruction *WideUse = widenIVUse(DU, Rewriter);
1960 
1961     // Follow all def-use edges from the previous narrow use.
1962     if (WideUse)
1963       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1964 
1965     // widenIVUse may have removed the def-use edge.
1966     if (DU.NarrowDef->use_empty())
1967       DeadInsts.emplace_back(DU.NarrowDef);
1968   }
1969 
1970   // Attach any debug information to the new PHI.
1971   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1972 
1973   return WidePhi;
1974 }
1975 
1976 /// Calculates control-dependent range for the given def at the given context
1977 /// by looking at dominating conditions inside of the loop
1978 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1979                                     Instruction *NarrowUser) {
1980   using namespace llvm::PatternMatch;
1981 
1982   Value *NarrowDefLHS;
1983   const APInt *NarrowDefRHS;
1984   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1985                                  m_APInt(NarrowDefRHS))) ||
1986       !NarrowDefRHS->isNonNegative())
1987     return;
1988 
1989   auto UpdateRangeFromCondition = [&] (Value *Condition,
1990                                        bool TrueDest) {
1991     CmpInst::Predicate Pred;
1992     Value *CmpRHS;
1993     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1994                                  m_Value(CmpRHS))))
1995       return;
1996 
1997     CmpInst::Predicate P =
1998             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1999 
2000     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
2001     auto CmpConstrainedLHSRange =
2002             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
2003     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2004         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
2005 
2006     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2007   };
2008 
2009   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2010     if (!HasGuards)
2011       return;
2012 
2013     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2014                                      Ctx->getParent()->rend())) {
2015       Value *C = nullptr;
2016       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2017         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2018     }
2019   };
2020 
2021   UpdateRangeFromGuards(NarrowUser);
2022 
2023   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2024   // If NarrowUserBB is statically unreachable asking dominator queries may
2025   // yield surprising results. (e.g. the block may not have a dom tree node)
2026   if (!DT->isReachableFromEntry(NarrowUserBB))
2027     return;
2028 
2029   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2030        L->contains(DTB->getBlock());
2031        DTB = DTB->getIDom()) {
2032     auto *BB = DTB->getBlock();
2033     auto *TI = BB->getTerminator();
2034     UpdateRangeFromGuards(TI);
2035 
2036     auto *BI = dyn_cast<BranchInst>(TI);
2037     if (!BI || !BI->isConditional())
2038       continue;
2039 
2040     auto *TrueSuccessor = BI->getSuccessor(0);
2041     auto *FalseSuccessor = BI->getSuccessor(1);
2042 
2043     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2044       return BBE.isSingleEdge() &&
2045              DT->dominates(BBE, NarrowUser->getParent());
2046     };
2047 
2048     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2049       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2050 
2051     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2052       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2053   }
2054 }
2055 
2056 /// Calculates PostIncRangeInfos map for the given IV
2057 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2058   SmallPtrSet<Instruction *, 16> Visited;
2059   SmallVector<Instruction *, 6> Worklist;
2060   Worklist.push_back(OrigPhi);
2061   Visited.insert(OrigPhi);
2062 
2063   while (!Worklist.empty()) {
2064     Instruction *NarrowDef = Worklist.pop_back_val();
2065 
2066     for (Use &U : NarrowDef->uses()) {
2067       auto *NarrowUser = cast<Instruction>(U.getUser());
2068 
2069       // Don't go looking outside the current loop.
2070       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2071       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2072         continue;
2073 
2074       if (!Visited.insert(NarrowUser).second)
2075         continue;
2076 
2077       Worklist.push_back(NarrowUser);
2078 
2079       calculatePostIncRange(NarrowDef, NarrowUser);
2080     }
2081   }
2082 }
2083 
2084 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2085     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2086     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2087     unsigned &NumElimExt, unsigned &NumWidened,
2088     bool HasGuards, bool UsePostIncrementRanges) {
2089   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2090   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2091   NumElimExt = Widener.getNumElimExt();
2092   NumWidened = Widener.getNumWidened();
2093   return WidePHI;
2094 }
2095