1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "indvars" 17 18 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/IVUsers.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace llvm; 36 37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 38 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 39 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 40 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 41 42 namespace { 43 /// SimplifyIndvar - This is a utility for simplifying induction variables 44 /// based on ScalarEvolution. It is the primary instrument of the 45 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 46 /// other loop passes that preserve SCEV. 47 class SimplifyIndvar { 48 Loop *L; 49 LoopInfo *LI; 50 ScalarEvolution *SE; 51 const DataLayout *TD; // May be NULL 52 53 SmallVectorImpl<WeakVH> &DeadInsts; 54 55 bool Changed; 56 57 public: 58 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, 59 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) : 60 L(Loop), 61 LI(LPM->getAnalysisIfAvailable<LoopInfo>()), 62 SE(SE), 63 TD(LPM->getAnalysisIfAvailable<DataLayout>()), 64 DeadInsts(Dead), 65 Changed(false) { 66 assert(LI && "IV simplification requires LoopInfo"); 67 } 68 69 bool hasChanged() const { return Changed; } 70 71 /// Iteratively perform simplification on a worklist of users of the 72 /// specified induction variable. This is the top-level driver that applies 73 /// all simplicitions to users of an IV. 74 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL); 75 76 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 77 78 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 79 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 80 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 81 bool IsSigned); 82 83 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 84 const DominatorTree *DT); 85 }; 86 } 87 88 /// foldIVUser - Fold an IV operand into its use. This removes increments of an 89 /// aligned IV when used by a instruction that ignores the low bits. 90 /// 91 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 92 /// 93 /// Return the operand of IVOperand for this induction variable if IVOperand can 94 /// be folded (in case more folding opportunities have been exposed). 95 /// Otherwise return null. 96 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 97 Value *IVSrc = 0; 98 unsigned OperIdx = 0; 99 const SCEV *FoldedExpr = 0; 100 switch (UseInst->getOpcode()) { 101 default: 102 return 0; 103 case Instruction::UDiv: 104 case Instruction::LShr: 105 // We're only interested in the case where we know something about 106 // the numerator and have a constant denominator. 107 if (IVOperand != UseInst->getOperand(OperIdx) || 108 !isa<ConstantInt>(UseInst->getOperand(1))) 109 return 0; 110 111 // Attempt to fold a binary operator with constant operand. 112 // e.g. ((I + 1) >> 2) => I >> 2 113 if (!isa<BinaryOperator>(IVOperand) 114 || !isa<ConstantInt>(IVOperand->getOperand(1))) 115 return 0; 116 117 IVSrc = IVOperand->getOperand(0); 118 // IVSrc must be the (SCEVable) IV, since the other operand is const. 119 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 120 121 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 122 if (UseInst->getOpcode() == Instruction::LShr) { 123 // Get a constant for the divisor. See createSCEV. 124 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 125 if (D->getValue().uge(BitWidth)) 126 return 0; 127 128 D = ConstantInt::get(UseInst->getContext(), 129 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 130 } 131 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 132 } 133 // We have something that might fold it's operand. Compare SCEVs. 134 if (!SE->isSCEVable(UseInst->getType())) 135 return 0; 136 137 // Bypass the operand if SCEV can prove it has no effect. 138 if (SE->getSCEV(UseInst) != FoldedExpr) 139 return 0; 140 141 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 142 << " -> " << *UseInst << '\n'); 143 144 UseInst->setOperand(OperIdx, IVSrc); 145 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 146 147 ++NumElimOperand; 148 Changed = true; 149 if (IVOperand->use_empty()) 150 DeadInsts.push_back(IVOperand); 151 return IVSrc; 152 } 153 154 /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless 155 /// comparisons against an induction variable. 156 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 157 unsigned IVOperIdx = 0; 158 ICmpInst::Predicate Pred = ICmp->getPredicate(); 159 if (IVOperand != ICmp->getOperand(0)) { 160 // Swapped 161 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 162 IVOperIdx = 1; 163 Pred = ICmpInst::getSwappedPredicate(Pred); 164 } 165 166 // Get the SCEVs for the ICmp operands. 167 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 168 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 169 170 // Simplify unnecessary loops away. 171 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 172 S = SE->getSCEVAtScope(S, ICmpLoop); 173 X = SE->getSCEVAtScope(X, ICmpLoop); 174 175 // If the condition is always true or always false, replace it with 176 // a constant value. 177 if (SE->isKnownPredicate(Pred, S, X)) 178 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 179 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 180 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 181 else 182 return; 183 184 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 185 ++NumElimCmp; 186 Changed = true; 187 DeadInsts.push_back(ICmp); 188 } 189 190 /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless 191 /// remainder operations operating on an induction variable. 192 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 193 Value *IVOperand, 194 bool IsSigned) { 195 // We're only interested in the case where we know something about 196 // the numerator. 197 if (IVOperand != Rem->getOperand(0)) 198 return; 199 200 // Get the SCEVs for the ICmp operands. 201 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 202 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 203 204 // Simplify unnecessary loops away. 205 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 206 S = SE->getSCEVAtScope(S, ICmpLoop); 207 X = SE->getSCEVAtScope(X, ICmpLoop); 208 209 // i % n --> i if i is in [0,n). 210 if ((!IsSigned || SE->isKnownNonNegative(S)) && 211 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 212 S, X)) 213 Rem->replaceAllUsesWith(Rem->getOperand(0)); 214 else { 215 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 216 const SCEV *LessOne = 217 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 218 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 219 return; 220 221 if (!SE->isKnownPredicate(IsSigned ? 222 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 223 LessOne, X)) 224 return; 225 226 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 227 Rem->getOperand(0), Rem->getOperand(1)); 228 SelectInst *Sel = 229 SelectInst::Create(ICmp, 230 ConstantInt::get(Rem->getType(), 0), 231 Rem->getOperand(0), "tmp", Rem); 232 Rem->replaceAllUsesWith(Sel); 233 } 234 235 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 236 ++NumElimRem; 237 Changed = true; 238 DeadInsts.push_back(Rem); 239 } 240 241 /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has 242 /// no observable side-effect given the range of IV values. 243 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 244 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 245 Instruction *IVOperand) { 246 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 247 eliminateIVComparison(ICmp, IVOperand); 248 return true; 249 } 250 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 251 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 252 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 253 eliminateIVRemainder(Rem, IVOperand, IsSigned); 254 return true; 255 } 256 } 257 258 // Eliminate any operation that SCEV can prove is an identity function. 259 if (!SE->isSCEVable(UseInst->getType()) || 260 (UseInst->getType() != IVOperand->getType()) || 261 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 262 return false; 263 264 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 265 266 UseInst->replaceAllUsesWith(IVOperand); 267 ++NumElimIdentity; 268 Changed = true; 269 DeadInsts.push_back(UseInst); 270 return true; 271 } 272 273 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 274 /// analysis and optimization. 275 /// 276 /// \return A new value representing the non-overflowing add if possible, 277 /// otherwise return the original value. 278 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 279 const DominatorTree *DT) { 280 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 281 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 282 return IVUser; 283 284 // Find a branch guarded by the overflow check. 285 BranchInst *Branch = 0; 286 Instruction *AddVal = 0; 287 for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); 288 UI != E; ++UI) { 289 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(*UI)) { 290 if (ExtractInst->getNumIndices() != 1) 291 continue; 292 if (ExtractInst->getIndices()[0] == 0) 293 AddVal = ExtractInst; 294 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 295 Branch = dyn_cast<BranchInst>(ExtractInst->use_back()); 296 } 297 } 298 if (!AddVal || !Branch) 299 return IVUser; 300 301 BasicBlock *ContinueBB = Branch->getSuccessor(1); 302 if (llvm::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 303 return IVUser; 304 305 // Check if all users of the add are provably NSW. 306 bool AllNSW = true; 307 for (Value::use_iterator UI = AddVal->use_begin(), E = AddVal->use_end(); 308 UI != E; ++UI) { 309 if (Instruction *UseInst = dyn_cast<Instruction>(*UI)) { 310 BasicBlock *UseBB = UseInst->getParent(); 311 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 312 UseBB = PHI->getIncomingBlock(UI); 313 if (!DT->dominates(ContinueBB, UseBB)) { 314 AllNSW = false; 315 break; 316 } 317 } 318 } 319 if (!AllNSW) 320 return IVUser; 321 322 // Go for it... 323 IRBuilder<> Builder(IVUser); 324 Instruction *AddInst = dyn_cast<Instruction>( 325 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 326 327 // The caller expects the new add to have the same form as the intrinsic. The 328 // IV operand position must be the same. 329 assert((AddInst->getOpcode() == Instruction::Add && 330 AddInst->getOperand(0) == II->getOperand(0)) && 331 "Bad add instruction created from overflow intrinsic."); 332 333 AddVal->replaceAllUsesWith(AddInst); 334 DeadInsts.push_back(AddVal); 335 return AddInst; 336 } 337 338 /// pushIVUsers - Add all uses of Def to the current IV's worklist. 339 /// 340 static void pushIVUsers( 341 Instruction *Def, 342 SmallPtrSet<Instruction*,16> &Simplified, 343 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 344 345 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); 346 UI != E; ++UI) { 347 Instruction *User = cast<Instruction>(*UI); 348 349 // Avoid infinite or exponential worklist processing. 350 // Also ensure unique worklist users. 351 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 352 // self edges first. 353 if (User != Def && Simplified.insert(User)) 354 SimpleIVUsers.push_back(std::make_pair(User, Def)); 355 } 356 } 357 358 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV 359 /// expression in terms of that IV. 360 /// 361 /// This is similar to IVUsers' isInteresting() but processes each instruction 362 /// non-recursively when the operand is already known to be a simpleIVUser. 363 /// 364 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 365 if (!SE->isSCEVable(I->getType())) 366 return false; 367 368 // Get the symbolic expression for this instruction. 369 const SCEV *S = SE->getSCEV(I); 370 371 // Only consider affine recurrences. 372 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 373 if (AR && AR->getLoop() == L) 374 return true; 375 376 return false; 377 } 378 379 /// simplifyUsers - Iteratively perform simplification on a worklist of users 380 /// of the specified induction variable. Each successive simplification may push 381 /// more users which may themselves be candidates for simplification. 382 /// 383 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 384 /// instructions in-place during analysis. Rather than rewriting induction 385 /// variables bottom-up from their users, it transforms a chain of IVUsers 386 /// top-down, updating the IR only when it encouters a clear optimization 387 /// opportunitiy. 388 /// 389 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 390 /// 391 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 392 if (!SE->isSCEVable(CurrIV->getType())) 393 return; 394 395 // Instructions processed by SimplifyIndvar for CurrIV. 396 SmallPtrSet<Instruction*,16> Simplified; 397 398 // Use-def pairs if IV users waiting to be processed for CurrIV. 399 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 400 401 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 402 // called multiple times for the same LoopPhi. This is the proper thing to 403 // do for loop header phis that use each other. 404 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 405 406 while (!SimpleIVUsers.empty()) { 407 std::pair<Instruction*, Instruction*> UseOper = 408 SimpleIVUsers.pop_back_val(); 409 Instruction *UseInst = UseOper.first; 410 411 // Bypass back edges to avoid extra work. 412 if (UseInst == CurrIV) continue; 413 414 if (V && V->shouldSplitOverflowInstrinsics()) { 415 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 416 if (!UseInst) 417 continue; 418 } 419 420 Instruction *IVOperand = UseOper.second; 421 for (unsigned N = 0; IVOperand; ++N) { 422 assert(N <= Simplified.size() && "runaway iteration"); 423 424 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 425 if (!NewOper) 426 break; // done folding 427 IVOperand = dyn_cast<Instruction>(NewOper); 428 } 429 if (!IVOperand) 430 continue; 431 432 if (eliminateIVUser(UseOper.first, IVOperand)) { 433 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 434 continue; 435 } 436 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 437 if (V && Cast) { 438 V->visitCast(Cast); 439 continue; 440 } 441 if (isSimpleIVUser(UseOper.first, L, SE)) { 442 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 443 } 444 } 445 } 446 447 namespace llvm { 448 449 void IVVisitor::anchor() { } 450 451 /// simplifyUsersOfIV - Simplify instructions that use this induction variable 452 /// by using ScalarEvolution to analyze the IV's recurrence. 453 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 454 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 455 { 456 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); 457 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); 458 SIV.simplifyUsers(CurrIV, V); 459 return SIV.hasChanged(); 460 } 461 462 /// simplifyLoopIVs - Simplify users of induction variables within this 463 /// loop. This does not actually change or add IVs. 464 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 465 SmallVectorImpl<WeakVH> &Dead) { 466 bool Changed = false; 467 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 468 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 469 } 470 return Changed; 471 } 472 473 } // namespace llvm 474