1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "indvars" 35 36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 40 41 namespace { 42 /// This is a utility for simplifying induction variables 43 /// based on ScalarEvolution. It is the primary instrument of the 44 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 45 /// other loop passes that preserve SCEV. 46 class SimplifyIndvar { 47 Loop *L; 48 LoopInfo *LI; 49 ScalarEvolution *SE; 50 51 SmallVectorImpl<WeakVH> &DeadInsts; 52 53 bool Changed; 54 55 public: 56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI, 57 SmallVectorImpl<WeakVH> &Dead) 58 : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) { 59 assert(LI && "IV simplification requires LoopInfo"); 60 } 61 62 bool hasChanged() const { return Changed; } 63 64 /// Iteratively perform simplification on a worklist of users of the 65 /// specified induction variable. This is the top-level driver that applies 66 /// all simplifications to users of an IV. 67 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 68 69 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 70 71 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 72 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 73 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 74 bool IsSigned); 75 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 76 77 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 78 const DominatorTree *DT); 79 }; 80 } 81 82 /// Fold an IV operand into its use. This removes increments of an 83 /// aligned IV when used by a instruction that ignores the low bits. 84 /// 85 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 86 /// 87 /// Return the operand of IVOperand for this induction variable if IVOperand can 88 /// be folded (in case more folding opportunities have been exposed). 89 /// Otherwise return null. 90 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 91 Value *IVSrc = nullptr; 92 unsigned OperIdx = 0; 93 const SCEV *FoldedExpr = nullptr; 94 switch (UseInst->getOpcode()) { 95 default: 96 return nullptr; 97 case Instruction::UDiv: 98 case Instruction::LShr: 99 // We're only interested in the case where we know something about 100 // the numerator and have a constant denominator. 101 if (IVOperand != UseInst->getOperand(OperIdx) || 102 !isa<ConstantInt>(UseInst->getOperand(1))) 103 return nullptr; 104 105 // Attempt to fold a binary operator with constant operand. 106 // e.g. ((I + 1) >> 2) => I >> 2 107 if (!isa<BinaryOperator>(IVOperand) 108 || !isa<ConstantInt>(IVOperand->getOperand(1))) 109 return nullptr; 110 111 IVSrc = IVOperand->getOperand(0); 112 // IVSrc must be the (SCEVable) IV, since the other operand is const. 113 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 114 115 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 116 if (UseInst->getOpcode() == Instruction::LShr) { 117 // Get a constant for the divisor. See createSCEV. 118 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 119 if (D->getValue().uge(BitWidth)) 120 return nullptr; 121 122 D = ConstantInt::get(UseInst->getContext(), 123 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 124 } 125 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 126 } 127 // We have something that might fold it's operand. Compare SCEVs. 128 if (!SE->isSCEVable(UseInst->getType())) 129 return nullptr; 130 131 // Bypass the operand if SCEV can prove it has no effect. 132 if (SE->getSCEV(UseInst) != FoldedExpr) 133 return nullptr; 134 135 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 136 << " -> " << *UseInst << '\n'); 137 138 UseInst->setOperand(OperIdx, IVSrc); 139 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 140 141 ++NumElimOperand; 142 Changed = true; 143 if (IVOperand->use_empty()) 144 DeadInsts.emplace_back(IVOperand); 145 return IVSrc; 146 } 147 148 /// SimplifyIVUsers helper for eliminating useless 149 /// comparisons against an induction variable. 150 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 151 unsigned IVOperIdx = 0; 152 ICmpInst::Predicate Pred = ICmp->getPredicate(); 153 if (IVOperand != ICmp->getOperand(0)) { 154 // Swapped 155 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 156 IVOperIdx = 1; 157 Pred = ICmpInst::getSwappedPredicate(Pred); 158 } 159 160 // Get the SCEVs for the ICmp operands. 161 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 162 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 163 164 // Simplify unnecessary loops away. 165 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 166 S = SE->getSCEVAtScope(S, ICmpLoop); 167 X = SE->getSCEVAtScope(X, ICmpLoop); 168 169 ICmpInst::Predicate InvariantPredicate; 170 const SCEV *InvariantLHS, *InvariantRHS; 171 172 // If the condition is always true or always false, replace it with 173 // a constant value. 174 if (SE->isKnownPredicate(Pred, S, X)) { 175 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 176 DeadInsts.emplace_back(ICmp); 177 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 178 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 179 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 180 DeadInsts.emplace_back(ICmp); 181 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 182 } else if (isa<PHINode>(IVOperand) && 183 SE->isLoopInvariantPredicate(Pred, S, X, ICmpLoop, 184 InvariantPredicate, InvariantLHS, 185 InvariantRHS)) { 186 187 // Rewrite the comparison to a loop invariant comparison if it can be done 188 // cheaply, where cheaply means "we don't need to emit any new 189 // instructions". 190 191 Value *NewLHS = nullptr, *NewRHS = nullptr; 192 193 if (S == InvariantLHS || X == InvariantLHS) 194 NewLHS = 195 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 196 197 if (S == InvariantRHS || X == InvariantRHS) 198 NewRHS = 199 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 200 201 for (Value *Incoming : cast<PHINode>(IVOperand)->incoming_values()) { 202 if (NewLHS && NewRHS) 203 break; 204 205 const SCEV *IncomingS = SE->getSCEV(Incoming); 206 207 if (!NewLHS && IncomingS == InvariantLHS) 208 NewLHS = Incoming; 209 if (!NewRHS && IncomingS == InvariantRHS) 210 NewRHS = Incoming; 211 } 212 213 if (!NewLHS || !NewRHS) 214 // We could not find an existing value to replace either LHS or RHS. 215 // Generating new instructions has subtler tradeoffs, so avoid doing that 216 // for now. 217 return; 218 219 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 220 ICmp->setPredicate(InvariantPredicate); 221 ICmp->setOperand(0, NewLHS); 222 ICmp->setOperand(1, NewRHS); 223 } else 224 return; 225 226 ++NumElimCmp; 227 Changed = true; 228 } 229 230 /// SimplifyIVUsers helper for eliminating useless 231 /// remainder operations operating on an induction variable. 232 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 233 Value *IVOperand, 234 bool IsSigned) { 235 // We're only interested in the case where we know something about 236 // the numerator. 237 if (IVOperand != Rem->getOperand(0)) 238 return; 239 240 // Get the SCEVs for the ICmp operands. 241 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 242 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 243 244 // Simplify unnecessary loops away. 245 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 246 S = SE->getSCEVAtScope(S, ICmpLoop); 247 X = SE->getSCEVAtScope(X, ICmpLoop); 248 249 // i % n --> i if i is in [0,n). 250 if ((!IsSigned || SE->isKnownNonNegative(S)) && 251 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 252 S, X)) 253 Rem->replaceAllUsesWith(Rem->getOperand(0)); 254 else { 255 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 256 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 257 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 258 return; 259 260 if (!SE->isKnownPredicate(IsSigned ? 261 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 262 LessOne, X)) 263 return; 264 265 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 266 Rem->getOperand(0), Rem->getOperand(1)); 267 SelectInst *Sel = 268 SelectInst::Create(ICmp, 269 ConstantInt::get(Rem->getType(), 0), 270 Rem->getOperand(0), "tmp", Rem); 271 Rem->replaceAllUsesWith(Sel); 272 } 273 274 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 275 ++NumElimRem; 276 Changed = true; 277 DeadInsts.emplace_back(Rem); 278 } 279 280 /// Eliminate an operation that consumes a simple IV and has 281 /// no observable side-effect given the range of IV values. 282 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 283 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 284 Instruction *IVOperand) { 285 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 286 eliminateIVComparison(ICmp, IVOperand); 287 return true; 288 } 289 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 290 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 291 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 292 eliminateIVRemainder(Rem, IVOperand, IsSigned); 293 return true; 294 } 295 } 296 297 // Eliminate any operation that SCEV can prove is an identity function. 298 if (!SE->isSCEVable(UseInst->getType()) || 299 (UseInst->getType() != IVOperand->getType()) || 300 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 301 return false; 302 303 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 304 305 UseInst->replaceAllUsesWith(IVOperand); 306 ++NumElimIdentity; 307 Changed = true; 308 DeadInsts.emplace_back(UseInst); 309 return true; 310 } 311 312 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 313 /// unsigned-overflow. Returns true if anything changed, false otherwise. 314 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 315 Value *IVOperand) { 316 317 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 318 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 319 return false; 320 321 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 322 SCEV::NoWrapFlags); 323 324 switch (BO->getOpcode()) { 325 default: 326 return false; 327 328 case Instruction::Add: 329 GetExprForBO = &ScalarEvolution::getAddExpr; 330 break; 331 332 case Instruction::Sub: 333 GetExprForBO = &ScalarEvolution::getMinusSCEV; 334 break; 335 336 case Instruction::Mul: 337 GetExprForBO = &ScalarEvolution::getMulExpr; 338 break; 339 } 340 341 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 342 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 343 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 344 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 345 346 bool Changed = false; 347 348 if (!BO->hasNoUnsignedWrap()) { 349 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 350 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 351 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 352 SCEV::FlagAnyWrap); 353 if (ExtendAfterOp == OpAfterExtend) { 354 BO->setHasNoUnsignedWrap(); 355 SE->forgetValue(BO); 356 Changed = true; 357 } 358 } 359 360 if (!BO->hasNoSignedWrap()) { 361 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 362 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 363 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 364 SCEV::FlagAnyWrap); 365 if (ExtendAfterOp == OpAfterExtend) { 366 BO->setHasNoSignedWrap(); 367 SE->forgetValue(BO); 368 Changed = true; 369 } 370 } 371 372 return Changed; 373 } 374 375 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 376 /// analysis and optimization. 377 /// 378 /// \return A new value representing the non-overflowing add if possible, 379 /// otherwise return the original value. 380 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 381 const DominatorTree *DT) { 382 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 383 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 384 return IVUser; 385 386 // Find a branch guarded by the overflow check. 387 BranchInst *Branch = nullptr; 388 Instruction *AddVal = nullptr; 389 for (User *U : II->users()) { 390 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 391 if (ExtractInst->getNumIndices() != 1) 392 continue; 393 if (ExtractInst->getIndices()[0] == 0) 394 AddVal = ExtractInst; 395 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 396 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 397 } 398 } 399 if (!AddVal || !Branch) 400 return IVUser; 401 402 BasicBlock *ContinueBB = Branch->getSuccessor(1); 403 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 404 return IVUser; 405 406 // Check if all users of the add are provably NSW. 407 bool AllNSW = true; 408 for (Use &U : AddVal->uses()) { 409 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 410 BasicBlock *UseBB = UseInst->getParent(); 411 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 412 UseBB = PHI->getIncomingBlock(U); 413 if (!DT->dominates(ContinueBB, UseBB)) { 414 AllNSW = false; 415 break; 416 } 417 } 418 } 419 if (!AllNSW) 420 return IVUser; 421 422 // Go for it... 423 IRBuilder<> Builder(IVUser); 424 Instruction *AddInst = dyn_cast<Instruction>( 425 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 426 427 // The caller expects the new add to have the same form as the intrinsic. The 428 // IV operand position must be the same. 429 assert((AddInst->getOpcode() == Instruction::Add && 430 AddInst->getOperand(0) == II->getOperand(0)) && 431 "Bad add instruction created from overflow intrinsic."); 432 433 AddVal->replaceAllUsesWith(AddInst); 434 DeadInsts.emplace_back(AddVal); 435 return AddInst; 436 } 437 438 /// Add all uses of Def to the current IV's worklist. 439 static void pushIVUsers( 440 Instruction *Def, 441 SmallPtrSet<Instruction*,16> &Simplified, 442 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 443 444 for (User *U : Def->users()) { 445 Instruction *UI = cast<Instruction>(U); 446 447 // Avoid infinite or exponential worklist processing. 448 // Also ensure unique worklist users. 449 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 450 // self edges first. 451 if (UI != Def && Simplified.insert(UI).second) 452 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 453 } 454 } 455 456 /// Return true if this instruction generates a simple SCEV 457 /// expression in terms of that IV. 458 /// 459 /// This is similar to IVUsers' isInteresting() but processes each instruction 460 /// non-recursively when the operand is already known to be a simpleIVUser. 461 /// 462 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 463 if (!SE->isSCEVable(I->getType())) 464 return false; 465 466 // Get the symbolic expression for this instruction. 467 const SCEV *S = SE->getSCEV(I); 468 469 // Only consider affine recurrences. 470 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 471 if (AR && AR->getLoop() == L) 472 return true; 473 474 return false; 475 } 476 477 /// Iteratively perform simplification on a worklist of users 478 /// of the specified induction variable. Each successive simplification may push 479 /// more users which may themselves be candidates for simplification. 480 /// 481 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 482 /// instructions in-place during analysis. Rather than rewriting induction 483 /// variables bottom-up from their users, it transforms a chain of IVUsers 484 /// top-down, updating the IR only when it encounters a clear optimization 485 /// opportunity. 486 /// 487 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 488 /// 489 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 490 if (!SE->isSCEVable(CurrIV->getType())) 491 return; 492 493 // Instructions processed by SimplifyIndvar for CurrIV. 494 SmallPtrSet<Instruction*,16> Simplified; 495 496 // Use-def pairs if IV users waiting to be processed for CurrIV. 497 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 498 499 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 500 // called multiple times for the same LoopPhi. This is the proper thing to 501 // do for loop header phis that use each other. 502 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 503 504 while (!SimpleIVUsers.empty()) { 505 std::pair<Instruction*, Instruction*> UseOper = 506 SimpleIVUsers.pop_back_val(); 507 Instruction *UseInst = UseOper.first; 508 509 // Bypass back edges to avoid extra work. 510 if (UseInst == CurrIV) continue; 511 512 if (V && V->shouldSplitOverflowInstrinsics()) { 513 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 514 if (!UseInst) 515 continue; 516 } 517 518 Instruction *IVOperand = UseOper.second; 519 for (unsigned N = 0; IVOperand; ++N) { 520 assert(N <= Simplified.size() && "runaway iteration"); 521 522 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 523 if (!NewOper) 524 break; // done folding 525 IVOperand = dyn_cast<Instruction>(NewOper); 526 } 527 if (!IVOperand) 528 continue; 529 530 if (eliminateIVUser(UseOper.first, IVOperand)) { 531 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 532 continue; 533 } 534 535 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 536 if (isa<OverflowingBinaryOperator>(BO) && 537 strengthenOverflowingOperation(BO, IVOperand)) { 538 // re-queue uses of the now modified binary operator and fall 539 // through to the checks that remain. 540 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 541 } 542 } 543 544 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 545 if (V && Cast) { 546 V->visitCast(Cast); 547 continue; 548 } 549 if (isSimpleIVUser(UseOper.first, L, SE)) { 550 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 551 } 552 } 553 } 554 555 namespace llvm { 556 557 void IVVisitor::anchor() { } 558 559 /// Simplify instructions that use this induction variable 560 /// by using ScalarEvolution to analyze the IV's recurrence. 561 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 562 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 563 { 564 LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 565 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead); 566 SIV.simplifyUsers(CurrIV, V); 567 return SIV.hasChanged(); 568 } 569 570 /// Simplify users of induction variables within this 571 /// loop. This does not actually change or add IVs. 572 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 573 SmallVectorImpl<WeakVH> &Dead) { 574 bool Changed = false; 575 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 576 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 577 } 578 return Changed; 579 } 580 581 } // namespace llvm 582