1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "indvars" 35 36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 40 41 namespace { 42 /// This is a utility for simplifying induction variables 43 /// based on ScalarEvolution. It is the primary instrument of the 44 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 45 /// other loop passes that preserve SCEV. 46 class SimplifyIndvar { 47 Loop *L; 48 LoopInfo *LI; 49 ScalarEvolution *SE; 50 51 SmallVectorImpl<WeakVH> &DeadInsts; 52 53 bool Changed; 54 55 public: 56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI, 57 SmallVectorImpl<WeakVH> &Dead) 58 : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) { 59 assert(LI && "IV simplification requires LoopInfo"); 60 } 61 62 bool hasChanged() const { return Changed; } 63 64 /// Iteratively perform simplification on a worklist of users of the 65 /// specified induction variable. This is the top-level driver that applies 66 /// all simplicitions to users of an IV. 67 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 68 69 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 70 71 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 72 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 73 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 74 bool IsSigned); 75 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 76 77 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 78 const DominatorTree *DT); 79 }; 80 } 81 82 /// Fold an IV operand into its use. This removes increments of an 83 /// aligned IV when used by a instruction that ignores the low bits. 84 /// 85 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 86 /// 87 /// Return the operand of IVOperand for this induction variable if IVOperand can 88 /// be folded (in case more folding opportunities have been exposed). 89 /// Otherwise return null. 90 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 91 Value *IVSrc = nullptr; 92 unsigned OperIdx = 0; 93 const SCEV *FoldedExpr = nullptr; 94 switch (UseInst->getOpcode()) { 95 default: 96 return nullptr; 97 case Instruction::UDiv: 98 case Instruction::LShr: 99 // We're only interested in the case where we know something about 100 // the numerator and have a constant denominator. 101 if (IVOperand != UseInst->getOperand(OperIdx) || 102 !isa<ConstantInt>(UseInst->getOperand(1))) 103 return nullptr; 104 105 // Attempt to fold a binary operator with constant operand. 106 // e.g. ((I + 1) >> 2) => I >> 2 107 if (!isa<BinaryOperator>(IVOperand) 108 || !isa<ConstantInt>(IVOperand->getOperand(1))) 109 return nullptr; 110 111 IVSrc = IVOperand->getOperand(0); 112 // IVSrc must be the (SCEVable) IV, since the other operand is const. 113 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 114 115 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 116 if (UseInst->getOpcode() == Instruction::LShr) { 117 // Get a constant for the divisor. See createSCEV. 118 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 119 if (D->getValue().uge(BitWidth)) 120 return nullptr; 121 122 D = ConstantInt::get(UseInst->getContext(), 123 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 124 } 125 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 126 } 127 // We have something that might fold it's operand. Compare SCEVs. 128 if (!SE->isSCEVable(UseInst->getType())) 129 return nullptr; 130 131 // Bypass the operand if SCEV can prove it has no effect. 132 if (SE->getSCEV(UseInst) != FoldedExpr) 133 return nullptr; 134 135 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 136 << " -> " << *UseInst << '\n'); 137 138 UseInst->setOperand(OperIdx, IVSrc); 139 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 140 141 ++NumElimOperand; 142 Changed = true; 143 if (IVOperand->use_empty()) 144 DeadInsts.emplace_back(IVOperand); 145 return IVSrc; 146 } 147 148 /// SimplifyIVUsers helper for eliminating useless 149 /// comparisons against an induction variable. 150 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 151 unsigned IVOperIdx = 0; 152 ICmpInst::Predicate Pred = ICmp->getPredicate(); 153 if (IVOperand != ICmp->getOperand(0)) { 154 // Swapped 155 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 156 IVOperIdx = 1; 157 Pred = ICmpInst::getSwappedPredicate(Pred); 158 } 159 160 // Get the SCEVs for the ICmp operands. 161 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 162 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 163 164 // Simplify unnecessary loops away. 165 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 166 S = SE->getSCEVAtScope(S, ICmpLoop); 167 X = SE->getSCEVAtScope(X, ICmpLoop); 168 169 ICmpInst::Predicate InvariantPredicate; 170 const SCEV *InvariantLHS, *InvariantRHS; 171 172 const char *Verb = nullptr; 173 174 // If the condition is always true or always false, replace it with 175 // a constant value. 176 if (SE->isKnownPredicate(Pred, S, X)) { 177 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 178 DeadInsts.emplace_back(ICmp); 179 Verb = "Eliminated"; 180 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 181 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 182 DeadInsts.emplace_back(ICmp); 183 Verb = "Eliminated"; 184 } else if (isa<PHINode>(IVOperand) && 185 SE->isLoopInvariantPredicate(Pred, S, X, ICmpLoop, 186 InvariantPredicate, InvariantLHS, 187 InvariantRHS)) { 188 189 // Rewrite the comparision to a loop invariant comparision if it can be done 190 // cheaply, where cheaply means "we don't need to emit any new 191 // instructions". 192 193 Value *NewLHS = nullptr, *NewRHS = nullptr; 194 195 if (S == InvariantLHS || X == InvariantLHS) 196 NewLHS = 197 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 198 199 if (S == InvariantRHS || X == InvariantRHS) 200 NewRHS = 201 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 202 203 for (Value *Incoming : cast<PHINode>(IVOperand)->incoming_values()) { 204 if (NewLHS && NewRHS) 205 break; 206 207 const SCEV *IncomingS = SE->getSCEV(Incoming); 208 209 if (!NewLHS && IncomingS == InvariantLHS) 210 NewLHS = Incoming; 211 if (!NewRHS && IncomingS == InvariantRHS) 212 NewRHS = Incoming; 213 } 214 215 if (!NewLHS || !NewRHS) 216 // We could not find an existing value to replace either LHS or RHS. 217 // Generating new instructions has subtler tradeoffs, so avoid doing that 218 // for now. 219 return; 220 221 Verb = "Simplified"; 222 ICmp->setPredicate(InvariantPredicate); 223 ICmp->setOperand(0, NewLHS); 224 ICmp->setOperand(1, NewRHS); 225 } else 226 return; 227 228 DEBUG(dbgs() << "INDVARS: " << Verb << " comparison: " << *ICmp << '\n'); 229 ++NumElimCmp; 230 Changed = true; 231 } 232 233 /// SimplifyIVUsers helper for eliminating useless 234 /// remainder operations operating on an induction variable. 235 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 236 Value *IVOperand, 237 bool IsSigned) { 238 // We're only interested in the case where we know something about 239 // the numerator. 240 if (IVOperand != Rem->getOperand(0)) 241 return; 242 243 // Get the SCEVs for the ICmp operands. 244 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 245 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 246 247 // Simplify unnecessary loops away. 248 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 249 S = SE->getSCEVAtScope(S, ICmpLoop); 250 X = SE->getSCEVAtScope(X, ICmpLoop); 251 252 // i % n --> i if i is in [0,n). 253 if ((!IsSigned || SE->isKnownNonNegative(S)) && 254 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 255 S, X)) 256 Rem->replaceAllUsesWith(Rem->getOperand(0)); 257 else { 258 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 259 const SCEV *LessOne = 260 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 261 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 262 return; 263 264 if (!SE->isKnownPredicate(IsSigned ? 265 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 266 LessOne, X)) 267 return; 268 269 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 270 Rem->getOperand(0), Rem->getOperand(1)); 271 SelectInst *Sel = 272 SelectInst::Create(ICmp, 273 ConstantInt::get(Rem->getType(), 0), 274 Rem->getOperand(0), "tmp", Rem); 275 Rem->replaceAllUsesWith(Sel); 276 } 277 278 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 279 ++NumElimRem; 280 Changed = true; 281 DeadInsts.emplace_back(Rem); 282 } 283 284 /// Eliminate an operation that consumes a simple IV and has 285 /// no observable side-effect given the range of IV values. 286 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 287 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 288 Instruction *IVOperand) { 289 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 290 eliminateIVComparison(ICmp, IVOperand); 291 return true; 292 } 293 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 294 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 295 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 296 eliminateIVRemainder(Rem, IVOperand, IsSigned); 297 return true; 298 } 299 } 300 301 // Eliminate any operation that SCEV can prove is an identity function. 302 if (!SE->isSCEVable(UseInst->getType()) || 303 (UseInst->getType() != IVOperand->getType()) || 304 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 305 return false; 306 307 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 308 309 UseInst->replaceAllUsesWith(IVOperand); 310 ++NumElimIdentity; 311 Changed = true; 312 DeadInsts.emplace_back(UseInst); 313 return true; 314 } 315 316 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 317 /// unsigned-overflow. Returns true if anything changed, false otherwise. 318 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 319 Value *IVOperand) { 320 321 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 322 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 323 return false; 324 325 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 326 SCEV::NoWrapFlags); 327 328 switch (BO->getOpcode()) { 329 default: 330 return false; 331 332 case Instruction::Add: 333 GetExprForBO = &ScalarEvolution::getAddExpr; 334 break; 335 336 case Instruction::Sub: 337 GetExprForBO = &ScalarEvolution::getMinusSCEV; 338 break; 339 340 case Instruction::Mul: 341 GetExprForBO = &ScalarEvolution::getMulExpr; 342 break; 343 } 344 345 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 346 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 347 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 348 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 349 350 bool Changed = false; 351 352 if (!BO->hasNoUnsignedWrap()) { 353 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 354 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 355 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 356 SCEV::FlagAnyWrap); 357 if (ExtendAfterOp == OpAfterExtend) { 358 BO->setHasNoUnsignedWrap(); 359 SE->forgetValue(BO); 360 Changed = true; 361 } 362 } 363 364 if (!BO->hasNoSignedWrap()) { 365 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 366 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 367 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 368 SCEV::FlagAnyWrap); 369 if (ExtendAfterOp == OpAfterExtend) { 370 BO->setHasNoSignedWrap(); 371 SE->forgetValue(BO); 372 Changed = true; 373 } 374 } 375 376 return Changed; 377 } 378 379 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 380 /// analysis and optimization. 381 /// 382 /// \return A new value representing the non-overflowing add if possible, 383 /// otherwise return the original value. 384 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 385 const DominatorTree *DT) { 386 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 387 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 388 return IVUser; 389 390 // Find a branch guarded by the overflow check. 391 BranchInst *Branch = nullptr; 392 Instruction *AddVal = nullptr; 393 for (User *U : II->users()) { 394 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 395 if (ExtractInst->getNumIndices() != 1) 396 continue; 397 if (ExtractInst->getIndices()[0] == 0) 398 AddVal = ExtractInst; 399 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 400 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 401 } 402 } 403 if (!AddVal || !Branch) 404 return IVUser; 405 406 BasicBlock *ContinueBB = Branch->getSuccessor(1); 407 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 408 return IVUser; 409 410 // Check if all users of the add are provably NSW. 411 bool AllNSW = true; 412 for (Use &U : AddVal->uses()) { 413 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 414 BasicBlock *UseBB = UseInst->getParent(); 415 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 416 UseBB = PHI->getIncomingBlock(U); 417 if (!DT->dominates(ContinueBB, UseBB)) { 418 AllNSW = false; 419 break; 420 } 421 } 422 } 423 if (!AllNSW) 424 return IVUser; 425 426 // Go for it... 427 IRBuilder<> Builder(IVUser); 428 Instruction *AddInst = dyn_cast<Instruction>( 429 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 430 431 // The caller expects the new add to have the same form as the intrinsic. The 432 // IV operand position must be the same. 433 assert((AddInst->getOpcode() == Instruction::Add && 434 AddInst->getOperand(0) == II->getOperand(0)) && 435 "Bad add instruction created from overflow intrinsic."); 436 437 AddVal->replaceAllUsesWith(AddInst); 438 DeadInsts.emplace_back(AddVal); 439 return AddInst; 440 } 441 442 /// Add all uses of Def to the current IV's worklist. 443 static void pushIVUsers( 444 Instruction *Def, 445 SmallPtrSet<Instruction*,16> &Simplified, 446 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 447 448 for (User *U : Def->users()) { 449 Instruction *UI = cast<Instruction>(U); 450 451 // Avoid infinite or exponential worklist processing. 452 // Also ensure unique worklist users. 453 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 454 // self edges first. 455 if (UI != Def && Simplified.insert(UI).second) 456 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 457 } 458 } 459 460 /// Return true if this instruction generates a simple SCEV 461 /// expression in terms of that IV. 462 /// 463 /// This is similar to IVUsers' isInteresting() but processes each instruction 464 /// non-recursively when the operand is already known to be a simpleIVUser. 465 /// 466 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 467 if (!SE->isSCEVable(I->getType())) 468 return false; 469 470 // Get the symbolic expression for this instruction. 471 const SCEV *S = SE->getSCEV(I); 472 473 // Only consider affine recurrences. 474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 475 if (AR && AR->getLoop() == L) 476 return true; 477 478 return false; 479 } 480 481 /// Iteratively perform simplification on a worklist of users 482 /// of the specified induction variable. Each successive simplification may push 483 /// more users which may themselves be candidates for simplification. 484 /// 485 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 486 /// instructions in-place during analysis. Rather than rewriting induction 487 /// variables bottom-up from their users, it transforms a chain of IVUsers 488 /// top-down, updating the IR only when it encouters a clear optimization 489 /// opportunitiy. 490 /// 491 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 492 /// 493 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 494 if (!SE->isSCEVable(CurrIV->getType())) 495 return; 496 497 // Instructions processed by SimplifyIndvar for CurrIV. 498 SmallPtrSet<Instruction*,16> Simplified; 499 500 // Use-def pairs if IV users waiting to be processed for CurrIV. 501 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 502 503 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 504 // called multiple times for the same LoopPhi. This is the proper thing to 505 // do for loop header phis that use each other. 506 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 507 508 while (!SimpleIVUsers.empty()) { 509 std::pair<Instruction*, Instruction*> UseOper = 510 SimpleIVUsers.pop_back_val(); 511 Instruction *UseInst = UseOper.first; 512 513 // Bypass back edges to avoid extra work. 514 if (UseInst == CurrIV) continue; 515 516 if (V && V->shouldSplitOverflowInstrinsics()) { 517 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 518 if (!UseInst) 519 continue; 520 } 521 522 Instruction *IVOperand = UseOper.second; 523 for (unsigned N = 0; IVOperand; ++N) { 524 assert(N <= Simplified.size() && "runaway iteration"); 525 526 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 527 if (!NewOper) 528 break; // done folding 529 IVOperand = dyn_cast<Instruction>(NewOper); 530 } 531 if (!IVOperand) 532 continue; 533 534 if (eliminateIVUser(UseOper.first, IVOperand)) { 535 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 536 continue; 537 } 538 539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 540 if (isa<OverflowingBinaryOperator>(BO) && 541 strengthenOverflowingOperation(BO, IVOperand)) { 542 // re-queue uses of the now modified binary operator and fall 543 // through to the checks that remain. 544 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 545 } 546 } 547 548 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 549 if (V && Cast) { 550 V->visitCast(Cast); 551 continue; 552 } 553 if (isSimpleIVUser(UseOper.first, L, SE)) { 554 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 555 } 556 } 557 } 558 559 namespace llvm { 560 561 void IVVisitor::anchor() { } 562 563 /// Simplify instructions that use this induction variable 564 /// by using ScalarEvolution to analyze the IV's recurrence. 565 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 566 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 567 { 568 LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 569 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead); 570 SIV.simplifyUsers(CurrIV, V); 571 return SIV.hasChanged(); 572 } 573 574 /// Simplify users of induction variables within this 575 /// loop. This does not actually change or add IVs. 576 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 577 SmallVectorImpl<WeakVH> &Dead) { 578 bool Changed = false; 579 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 580 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 581 } 582 return Changed; 583 } 584 585 } // namespace llvm 586