1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/ScalarEvolutionExpander.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "indvars"
33 
34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
35 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
36 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
37 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
38 STATISTIC(
39     NumSimplifiedSDiv,
40     "Number of IV signed division operations converted to unsigned division");
41 STATISTIC(
42     NumSimplifiedSRem,
43     "Number of IV signed remainder operations converted to unsigned remainder");
44 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
45 
46 namespace {
47   /// This is a utility for simplifying induction variables
48   /// based on ScalarEvolution. It is the primary instrument of the
49   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
50   /// other loop passes that preserve SCEV.
51   class SimplifyIndvar {
52     Loop             *L;
53     LoopInfo         *LI;
54     ScalarEvolution  *SE;
55     DominatorTree    *DT;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, SCEVExpander &Rewriter,
64                    SmallVectorImpl<WeakTrackingVH> &Dead)
65         : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
66           Changed(false) {
67       assert(LI && "IV simplification requires LoopInfo");
68     }
69 
70     bool hasChanged() const { return Changed; }
71 
72     /// Iteratively perform simplification on a worklist of users of the
73     /// specified induction variable. This is the top-level driver that applies
74     /// all simplifications to users of an IV.
75     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
76 
77     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
78 
79     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
80     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
81 
82     bool eliminateOverflowIntrinsic(CallInst *CI);
83     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
84     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
85     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
86     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
87                              bool IsSigned);
88     void replaceRemWithNumerator(BinaryOperator *Rem);
89     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
90     void replaceSRemWithURem(BinaryOperator *Rem);
91     bool eliminateSDiv(BinaryOperator *SDiv);
92     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
93     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
94   };
95 }
96 
97 /// Fold an IV operand into its use.  This removes increments of an
98 /// aligned IV when used by a instruction that ignores the low bits.
99 ///
100 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
101 ///
102 /// Return the operand of IVOperand for this induction variable if IVOperand can
103 /// be folded (in case more folding opportunities have been exposed).
104 /// Otherwise return null.
105 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
106   Value *IVSrc = nullptr;
107   unsigned OperIdx = 0;
108   const SCEV *FoldedExpr = nullptr;
109   switch (UseInst->getOpcode()) {
110   default:
111     return nullptr;
112   case Instruction::UDiv:
113   case Instruction::LShr:
114     // We're only interested in the case where we know something about
115     // the numerator and have a constant denominator.
116     if (IVOperand != UseInst->getOperand(OperIdx) ||
117         !isa<ConstantInt>(UseInst->getOperand(1)))
118       return nullptr;
119 
120     // Attempt to fold a binary operator with constant operand.
121     // e.g. ((I + 1) >> 2) => I >> 2
122     if (!isa<BinaryOperator>(IVOperand)
123         || !isa<ConstantInt>(IVOperand->getOperand(1)))
124       return nullptr;
125 
126     IVSrc = IVOperand->getOperand(0);
127     // IVSrc must be the (SCEVable) IV, since the other operand is const.
128     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
129 
130     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
131     if (UseInst->getOpcode() == Instruction::LShr) {
132       // Get a constant for the divisor. See createSCEV.
133       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
134       if (D->getValue().uge(BitWidth))
135         return nullptr;
136 
137       D = ConstantInt::get(UseInst->getContext(),
138                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
139     }
140     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
141   }
142   // We have something that might fold it's operand. Compare SCEVs.
143   if (!SE->isSCEVable(UseInst->getType()))
144     return nullptr;
145 
146   // Bypass the operand if SCEV can prove it has no effect.
147   if (SE->getSCEV(UseInst) != FoldedExpr)
148     return nullptr;
149 
150   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
151         << " -> " << *UseInst << '\n');
152 
153   UseInst->setOperand(OperIdx, IVSrc);
154   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
155 
156   ++NumElimOperand;
157   Changed = true;
158   if (IVOperand->use_empty())
159     DeadInsts.emplace_back(IVOperand);
160   return IVSrc;
161 }
162 
163 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
164                                                Value *IVOperand) {
165   unsigned IVOperIdx = 0;
166   ICmpInst::Predicate Pred = ICmp->getPredicate();
167   if (IVOperand != ICmp->getOperand(0)) {
168     // Swapped
169     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
170     IVOperIdx = 1;
171     Pred = ICmpInst::getSwappedPredicate(Pred);
172   }
173 
174   // Get the SCEVs for the ICmp operands (in the specific context of the
175   // current loop)
176   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
177   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
178   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
179 
180   ICmpInst::Predicate InvariantPredicate;
181   const SCEV *InvariantLHS, *InvariantRHS;
182 
183   auto *PN = dyn_cast<PHINode>(IVOperand);
184   if (!PN)
185     return false;
186   if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
187                                     InvariantLHS, InvariantRHS))
188     return false;
189 
190   // Rewrite the comparison to a loop invariant comparison if it can be done
191   // cheaply, where cheaply means "we don't need to emit any new
192   // instructions".
193 
194   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
195   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
196   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
197 
198   // TODO: Support multiple entry loops?  (We currently bail out of these in
199   // the IndVarSimplify pass)
200   if (auto *BB = L->getLoopPredecessor()) {
201     const int Idx = PN->getBasicBlockIndex(BB);
202     if (Idx >= 0) {
203       Value *Incoming = PN->getIncomingValue(Idx);
204       const SCEV *IncomingS = SE->getSCEV(Incoming);
205       CheapExpansions[IncomingS] = Incoming;
206     }
207   }
208   Value *NewLHS = CheapExpansions[InvariantLHS];
209   Value *NewRHS = CheapExpansions[InvariantRHS];
210 
211   if (!NewLHS)
212     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
213       NewLHS = ConstLHS->getValue();
214   if (!NewRHS)
215     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
216       NewRHS = ConstRHS->getValue();
217 
218   if (!NewLHS || !NewRHS)
219     // We could not find an existing value to replace either LHS or RHS.
220     // Generating new instructions has subtler tradeoffs, so avoid doing that
221     // for now.
222     return false;
223 
224   DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
225   ICmp->setPredicate(InvariantPredicate);
226   ICmp->setOperand(0, NewLHS);
227   ICmp->setOperand(1, NewRHS);
228   return true;
229 }
230 
231 /// SimplifyIVUsers helper for eliminating useless
232 /// comparisons against an induction variable.
233 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
234   unsigned IVOperIdx = 0;
235   ICmpInst::Predicate Pred = ICmp->getPredicate();
236   ICmpInst::Predicate OriginalPred = Pred;
237   if (IVOperand != ICmp->getOperand(0)) {
238     // Swapped
239     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
240     IVOperIdx = 1;
241     Pred = ICmpInst::getSwappedPredicate(Pred);
242   }
243 
244   // Get the SCEVs for the ICmp operands (in the specific context of the
245   // current loop)
246   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
247   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
248   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
249 
250   // If the condition is always true or always false, replace it with
251   // a constant value.
252   if (SE->isKnownPredicate(Pred, S, X)) {
253     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
254     DeadInsts.emplace_back(ICmp);
255     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
256   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
257     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
258     DeadInsts.emplace_back(ICmp);
259     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
260   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
261     // fallthrough to end of function
262   } else if (ICmpInst::isSigned(OriginalPred) &&
263              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
264     // If we were unable to make anything above, all we can is to canonicalize
265     // the comparison hoping that it will open the doors for other
266     // optimizations. If we find out that we compare two non-negative values,
267     // we turn the instruction's predicate to its unsigned version. Note that
268     // we cannot rely on Pred here unless we check if we have swapped it.
269     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
270     DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n');
271     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
272   } else
273     return;
274 
275   ++NumElimCmp;
276   Changed = true;
277 }
278 
279 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
280   // Get the SCEVs for the ICmp operands.
281   auto *N = SE->getSCEV(SDiv->getOperand(0));
282   auto *D = SE->getSCEV(SDiv->getOperand(1));
283 
284   // Simplify unnecessary loops away.
285   const Loop *L = LI->getLoopFor(SDiv->getParent());
286   N = SE->getSCEVAtScope(N, L);
287   D = SE->getSCEVAtScope(D, L);
288 
289   // Replace sdiv by udiv if both of the operands are non-negative
290   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
291     auto *UDiv = BinaryOperator::Create(
292         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
293         SDiv->getName() + ".udiv", SDiv);
294     UDiv->setIsExact(SDiv->isExact());
295     SDiv->replaceAllUsesWith(UDiv);
296     DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
297     ++NumSimplifiedSDiv;
298     Changed = true;
299     DeadInsts.push_back(SDiv);
300     return true;
301   }
302 
303   return false;
304 }
305 
306 // i %s n -> i %u n if i >= 0 and n >= 0
307 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
308   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
309   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
310                                       Rem->getName() + ".urem", Rem);
311   Rem->replaceAllUsesWith(URem);
312   DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
313   ++NumSimplifiedSRem;
314   Changed = true;
315   DeadInsts.emplace_back(Rem);
316 }
317 
318 // i % n  -->  i  if i is in [0,n).
319 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
320   Rem->replaceAllUsesWith(Rem->getOperand(0));
321   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
322   ++NumElimRem;
323   Changed = true;
324   DeadInsts.emplace_back(Rem);
325 }
326 
327 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
328 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
329   auto *T = Rem->getType();
330   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
331   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
332   SelectInst *Sel =
333       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
334   Rem->replaceAllUsesWith(Sel);
335   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
336   ++NumElimRem;
337   Changed = true;
338   DeadInsts.emplace_back(Rem);
339 }
340 
341 /// SimplifyIVUsers helper for eliminating useless remainder operations
342 /// operating on an induction variable or replacing srem by urem.
343 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
344                                          bool IsSigned) {
345   auto *NValue = Rem->getOperand(0);
346   auto *DValue = Rem->getOperand(1);
347   // We're only interested in the case where we know something about
348   // the numerator, unless it is a srem, because we want to replace srem by urem
349   // in general.
350   bool UsedAsNumerator = IVOperand == NValue;
351   if (!UsedAsNumerator && !IsSigned)
352     return;
353 
354   const SCEV *N = SE->getSCEV(NValue);
355 
356   // Simplify unnecessary loops away.
357   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
358   N = SE->getSCEVAtScope(N, ICmpLoop);
359 
360   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
361 
362   // Do not proceed if the Numerator may be negative
363   if (!IsNumeratorNonNegative)
364     return;
365 
366   const SCEV *D = SE->getSCEV(DValue);
367   D = SE->getSCEVAtScope(D, ICmpLoop);
368 
369   if (UsedAsNumerator) {
370     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
371     if (SE->isKnownPredicate(LT, N, D)) {
372       replaceRemWithNumerator(Rem);
373       return;
374     }
375 
376     auto *T = Rem->getType();
377     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
378     if (SE->isKnownPredicate(LT, NLessOne, D)) {
379       replaceRemWithNumeratorOrZero(Rem);
380       return;
381     }
382   }
383 
384   // Try to replace SRem with URem, if both N and D are known non-negative.
385   // Since we had already check N, we only need to check D now
386   if (!IsSigned || !SE->isKnownNonNegative(D))
387     return;
388 
389   replaceSRemWithURem(Rem);
390 }
391 
392 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
393   auto *F = CI->getCalledFunction();
394   if (!F)
395     return false;
396 
397   typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
398       const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
399   typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
400       const SCEV *, Type *, unsigned);
401 
402   OperationFunctionTy Operation;
403   ExtensionFunctionTy Extension;
404 
405   Instruction::BinaryOps RawOp;
406 
407   // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
408   // have nuw.
409   bool NoSignedOverflow;
410 
411   switch (F->getIntrinsicID()) {
412   default:
413     return false;
414 
415   case Intrinsic::sadd_with_overflow:
416     Operation = &ScalarEvolution::getAddExpr;
417     Extension = &ScalarEvolution::getSignExtendExpr;
418     RawOp = Instruction::Add;
419     NoSignedOverflow = true;
420     break;
421 
422   case Intrinsic::uadd_with_overflow:
423     Operation = &ScalarEvolution::getAddExpr;
424     Extension = &ScalarEvolution::getZeroExtendExpr;
425     RawOp = Instruction::Add;
426     NoSignedOverflow = false;
427     break;
428 
429   case Intrinsic::ssub_with_overflow:
430     Operation = &ScalarEvolution::getMinusSCEV;
431     Extension = &ScalarEvolution::getSignExtendExpr;
432     RawOp = Instruction::Sub;
433     NoSignedOverflow = true;
434     break;
435 
436   case Intrinsic::usub_with_overflow:
437     Operation = &ScalarEvolution::getMinusSCEV;
438     Extension = &ScalarEvolution::getZeroExtendExpr;
439     RawOp = Instruction::Sub;
440     NoSignedOverflow = false;
441     break;
442   }
443 
444   const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
445   const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
446 
447   auto *NarrowTy = cast<IntegerType>(LHS->getType());
448   auto *WideTy =
449     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
450 
451   const SCEV *A =
452       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
453                        WideTy, 0);
454   const SCEV *B =
455       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
456                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
457 
458   if (A != B)
459     return false;
460 
461   // Proved no overflow, nuke the overflow check and, if possible, the overflow
462   // intrinsic as well.
463 
464   BinaryOperator *NewResult = BinaryOperator::Create(
465       RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
466 
467   if (NoSignedOverflow)
468     NewResult->setHasNoSignedWrap(true);
469   else
470     NewResult->setHasNoUnsignedWrap(true);
471 
472   SmallVector<ExtractValueInst *, 4> ToDelete;
473 
474   for (auto *U : CI->users()) {
475     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
476       if (EVI->getIndices()[0] == 1)
477         EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
478       else {
479         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
480         EVI->replaceAllUsesWith(NewResult);
481       }
482       ToDelete.push_back(EVI);
483     }
484   }
485 
486   for (auto *EVI : ToDelete)
487     EVI->eraseFromParent();
488 
489   if (CI->use_empty())
490     CI->eraseFromParent();
491 
492   return true;
493 }
494 
495 /// Eliminate an operation that consumes a simple IV and has no observable
496 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
497 /// but UseInst may not be.
498 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
499                                      Instruction *IVOperand) {
500   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
501     eliminateIVComparison(ICmp, IVOperand);
502     return true;
503   }
504   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
505     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
506     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
507       simplifyIVRemainder(Bin, IVOperand, IsSRem);
508       return true;
509     }
510 
511     if (Bin->getOpcode() == Instruction::SDiv)
512       return eliminateSDiv(Bin);
513   }
514 
515   if (auto *CI = dyn_cast<CallInst>(UseInst))
516     if (eliminateOverflowIntrinsic(CI))
517       return true;
518 
519   if (eliminateIdentitySCEV(UseInst, IVOperand))
520     return true;
521 
522   return false;
523 }
524 
525 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
526   if (auto *BB = L->getLoopPreheader())
527     return BB->getTerminator();
528 
529   return Hint;
530 }
531 
532 /// Replace the UseInst with a constant if possible.
533 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
534   if (!SE->isSCEVable(I->getType()))
535     return false;
536 
537   // Get the symbolic expression for this instruction.
538   const SCEV *S = SE->getSCEV(I);
539 
540   if (!SE->isLoopInvariant(S, L))
541     return false;
542 
543   // Do not generate something ridiculous even if S is loop invariant.
544   if (Rewriter.isHighCostExpansion(S, L, I))
545     return false;
546 
547   auto *IP = GetLoopInvariantInsertPosition(L, I);
548   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
549 
550   I->replaceAllUsesWith(Invariant);
551   DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
552                << " with loop invariant: " << *S << '\n');
553   ++NumFoldedUser;
554   Changed = true;
555   DeadInsts.emplace_back(I);
556   return true;
557 }
558 
559 /// Eliminate any operation that SCEV can prove is an identity function.
560 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
561                                            Instruction *IVOperand) {
562   if (!SE->isSCEVable(UseInst->getType()) ||
563       (UseInst->getType() != IVOperand->getType()) ||
564       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
565     return false;
566 
567   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
568   // dominator tree, even if X is an operand to Y.  For instance, in
569   //
570   //     %iv = phi i32 {0,+,1}
571   //     br %cond, label %left, label %merge
572   //
573   //   left:
574   //     %X = add i32 %iv, 0
575   //     br label %merge
576   //
577   //   merge:
578   //     %M = phi (%X, %iv)
579   //
580   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
581   // %M.replaceAllUsesWith(%X) would be incorrect.
582 
583   if (isa<PHINode>(UseInst))
584     // If UseInst is not a PHI node then we know that IVOperand dominates
585     // UseInst directly from the legality of SSA.
586     if (!DT || !DT->dominates(IVOperand, UseInst))
587       return false;
588 
589   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
590     return false;
591 
592   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
593 
594   UseInst->replaceAllUsesWith(IVOperand);
595   ++NumElimIdentity;
596   Changed = true;
597   DeadInsts.emplace_back(UseInst);
598   return true;
599 }
600 
601 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
602 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
603 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
604                                                     Value *IVOperand) {
605 
606   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
607   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
608     return false;
609 
610   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
611                                                SCEV::NoWrapFlags, unsigned);
612   switch (BO->getOpcode()) {
613   default:
614     return false;
615 
616   case Instruction::Add:
617     GetExprForBO = &ScalarEvolution::getAddExpr;
618     break;
619 
620   case Instruction::Sub:
621     GetExprForBO = &ScalarEvolution::getMinusSCEV;
622     break;
623 
624   case Instruction::Mul:
625     GetExprForBO = &ScalarEvolution::getMulExpr;
626     break;
627   }
628 
629   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
630   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
631   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
632   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
633 
634   bool Changed = false;
635 
636   if (!BO->hasNoUnsignedWrap()) {
637     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
638     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
639       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
640       SCEV::FlagAnyWrap, 0u);
641     if (ExtendAfterOp == OpAfterExtend) {
642       BO->setHasNoUnsignedWrap();
643       SE->forgetValue(BO);
644       Changed = true;
645     }
646   }
647 
648   if (!BO->hasNoSignedWrap()) {
649     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
650     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
651       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
652       SCEV::FlagAnyWrap, 0u);
653     if (ExtendAfterOp == OpAfterExtend) {
654       BO->setHasNoSignedWrap();
655       SE->forgetValue(BO);
656       Changed = true;
657     }
658   }
659 
660   return Changed;
661 }
662 
663 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
664 /// information from the IV's range. Returns true if anything changed, false
665 /// otherwise.
666 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
667                                           Value *IVOperand) {
668   using namespace llvm::PatternMatch;
669 
670   if (BO->getOpcode() == Instruction::Shl) {
671     bool Changed = false;
672     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
673     for (auto *U : BO->users()) {
674       const APInt *C;
675       if (match(U,
676                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
677           match(U,
678                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
679         BinaryOperator *Shr = cast<BinaryOperator>(U);
680         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
681           Shr->setIsExact(true);
682           Changed = true;
683         }
684       }
685     }
686     return Changed;
687   }
688 
689   return false;
690 }
691 
692 /// Add all uses of Def to the current IV's worklist.
693 static void pushIVUsers(
694   Instruction *Def, Loop *L,
695   SmallPtrSet<Instruction*,16> &Simplified,
696   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
697 
698   for (User *U : Def->users()) {
699     Instruction *UI = cast<Instruction>(U);
700 
701     // Avoid infinite or exponential worklist processing.
702     // Also ensure unique worklist users.
703     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
704     // self edges first.
705     if (UI == Def)
706       continue;
707 
708     // Only change the current Loop, do not change the other parts (e.g. other
709     // Loops).
710     if (!L->contains(UI))
711       continue;
712 
713     // Do not push the same instruction more than once.
714     if (!Simplified.insert(UI).second)
715       continue;
716 
717     SimpleIVUsers.push_back(std::make_pair(UI, Def));
718   }
719 }
720 
721 /// Return true if this instruction generates a simple SCEV
722 /// expression in terms of that IV.
723 ///
724 /// This is similar to IVUsers' isInteresting() but processes each instruction
725 /// non-recursively when the operand is already known to be a simpleIVUser.
726 ///
727 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
728   if (!SE->isSCEVable(I->getType()))
729     return false;
730 
731   // Get the symbolic expression for this instruction.
732   const SCEV *S = SE->getSCEV(I);
733 
734   // Only consider affine recurrences.
735   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
736   if (AR && AR->getLoop() == L)
737     return true;
738 
739   return false;
740 }
741 
742 /// Iteratively perform simplification on a worklist of users
743 /// of the specified induction variable. Each successive simplification may push
744 /// more users which may themselves be candidates for simplification.
745 ///
746 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
747 /// instructions in-place during analysis. Rather than rewriting induction
748 /// variables bottom-up from their users, it transforms a chain of IVUsers
749 /// top-down, updating the IR only when it encounters a clear optimization
750 /// opportunity.
751 ///
752 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
753 ///
754 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
755   if (!SE->isSCEVable(CurrIV->getType()))
756     return;
757 
758   // Instructions processed by SimplifyIndvar for CurrIV.
759   SmallPtrSet<Instruction*,16> Simplified;
760 
761   // Use-def pairs if IV users waiting to be processed for CurrIV.
762   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
763 
764   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
765   // called multiple times for the same LoopPhi. This is the proper thing to
766   // do for loop header phis that use each other.
767   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
768 
769   while (!SimpleIVUsers.empty()) {
770     std::pair<Instruction*, Instruction*> UseOper =
771       SimpleIVUsers.pop_back_val();
772     Instruction *UseInst = UseOper.first;
773 
774     // Bypass back edges to avoid extra work.
775     if (UseInst == CurrIV) continue;
776 
777     // Try to replace UseInst with a loop invariant before any other
778     // simplifications.
779     if (replaceIVUserWithLoopInvariant(UseInst))
780       continue;
781 
782     Instruction *IVOperand = UseOper.second;
783     for (unsigned N = 0; IVOperand; ++N) {
784       assert(N <= Simplified.size() && "runaway iteration");
785 
786       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
787       if (!NewOper)
788         break; // done folding
789       IVOperand = dyn_cast<Instruction>(NewOper);
790     }
791     if (!IVOperand)
792       continue;
793 
794     if (eliminateIVUser(UseOper.first, IVOperand)) {
795       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
796       continue;
797     }
798 
799     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
800       if ((isa<OverflowingBinaryOperator>(BO) &&
801            strengthenOverflowingOperation(BO, IVOperand)) ||
802           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
803         // re-queue uses of the now modified binary operator and fall
804         // through to the checks that remain.
805         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
806       }
807     }
808 
809     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
810     if (V && Cast) {
811       V->visitCast(Cast);
812       continue;
813     }
814     if (isSimpleIVUser(UseOper.first, L, SE)) {
815       pushIVUsers(UseOper.first, L, Simplified, SimpleIVUsers);
816     }
817   }
818 }
819 
820 namespace llvm {
821 
822 void IVVisitor::anchor() { }
823 
824 /// Simplify instructions that use this induction variable
825 /// by using ScalarEvolution to analyze the IV's recurrence.
826 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
827                        LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
828                        SCEVExpander &Rewriter, IVVisitor *V) {
829   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
830                      Dead);
831   SIV.simplifyUsers(CurrIV, V);
832   return SIV.hasChanged();
833 }
834 
835 /// Simplify users of induction variables within this
836 /// loop. This does not actually change or add IVs.
837 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
838                      LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
839   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
840 #ifndef NDEBUG
841   Rewriter.setDebugType(DEBUG_TYPE);
842 #endif
843   bool Changed = false;
844   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
845     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
846   }
847   return Changed;
848 }
849 
850 } // namespace llvm
851