1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 const TargetTransformInfo *TTI; 58 SCEVExpander &Rewriter; 59 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 60 61 bool Changed; 62 63 public: 64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 65 LoopInfo *LI, const TargetTransformInfo *TTI, 66 SCEVExpander &Rewriter, 67 SmallVectorImpl<WeakTrackingVH> &Dead) 68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 69 DeadInsts(Dead), Changed(false) { 70 assert(LI && "IV simplification requires LoopInfo"); 71 } 72 73 bool hasChanged() const { return Changed; } 74 75 /// Iteratively perform simplification on a worklist of users of the 76 /// specified induction variable. This is the top-level driver that applies 77 /// all simplifications to users of an IV. 78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 79 80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 81 82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 84 85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 87 bool eliminateTrunc(TruncInst *TI); 88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 92 bool IsSigned); 93 void replaceRemWithNumerator(BinaryOperator *Rem); 94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 95 void replaceSRemWithURem(BinaryOperator *Rem); 96 bool eliminateSDiv(BinaryOperator *SDiv); 97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 99 }; 100 } 101 102 /// Fold an IV operand into its use. This removes increments of an 103 /// aligned IV when used by a instruction that ignores the low bits. 104 /// 105 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 106 /// 107 /// Return the operand of IVOperand for this induction variable if IVOperand can 108 /// be folded (in case more folding opportunities have been exposed). 109 /// Otherwise return null. 110 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 111 Value *IVSrc = nullptr; 112 const unsigned OperIdx = 0; 113 const SCEV *FoldedExpr = nullptr; 114 bool MustDropExactFlag = false; 115 switch (UseInst->getOpcode()) { 116 default: 117 return nullptr; 118 case Instruction::UDiv: 119 case Instruction::LShr: 120 // We're only interested in the case where we know something about 121 // the numerator and have a constant denominator. 122 if (IVOperand != UseInst->getOperand(OperIdx) || 123 !isa<ConstantInt>(UseInst->getOperand(1))) 124 return nullptr; 125 126 // Attempt to fold a binary operator with constant operand. 127 // e.g. ((I + 1) >> 2) => I >> 2 128 if (!isa<BinaryOperator>(IVOperand) 129 || !isa<ConstantInt>(IVOperand->getOperand(1))) 130 return nullptr; 131 132 IVSrc = IVOperand->getOperand(0); 133 // IVSrc must be the (SCEVable) IV, since the other operand is const. 134 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 135 136 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 137 if (UseInst->getOpcode() == Instruction::LShr) { 138 // Get a constant for the divisor. See createSCEV. 139 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 140 if (D->getValue().uge(BitWidth)) 141 return nullptr; 142 143 D = ConstantInt::get(UseInst->getContext(), 144 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 145 } 146 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 147 // We might have 'exact' flag set at this point which will no longer be 148 // correct after we make the replacement. 149 if (UseInst->isExact() && 150 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 151 MustDropExactFlag = true; 152 } 153 // We have something that might fold it's operand. Compare SCEVs. 154 if (!SE->isSCEVable(UseInst->getType())) 155 return nullptr; 156 157 // Bypass the operand if SCEV can prove it has no effect. 158 if (SE->getSCEV(UseInst) != FoldedExpr) 159 return nullptr; 160 161 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 162 << " -> " << *UseInst << '\n'); 163 164 UseInst->setOperand(OperIdx, IVSrc); 165 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 166 167 if (MustDropExactFlag) 168 UseInst->dropPoisonGeneratingFlags(); 169 170 ++NumElimOperand; 171 Changed = true; 172 if (IVOperand->use_empty()) 173 DeadInsts.emplace_back(IVOperand); 174 return IVSrc; 175 } 176 177 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 178 Value *IVOperand) { 179 unsigned IVOperIdx = 0; 180 ICmpInst::Predicate Pred = ICmp->getPredicate(); 181 if (IVOperand != ICmp->getOperand(0)) { 182 // Swapped 183 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 184 IVOperIdx = 1; 185 Pred = ICmpInst::getSwappedPredicate(Pred); 186 } 187 188 // Get the SCEVs for the ICmp operands (in the specific context of the 189 // current loop) 190 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 191 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 192 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 193 194 ICmpInst::Predicate InvariantPredicate; 195 const SCEV *InvariantLHS, *InvariantRHS; 196 197 auto *PN = dyn_cast<PHINode>(IVOperand); 198 if (!PN) 199 return false; 200 if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 201 InvariantLHS, InvariantRHS)) 202 return false; 203 204 // Rewrite the comparison to a loop invariant comparison if it can be done 205 // cheaply, where cheaply means "we don't need to emit any new 206 // instructions". 207 208 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 209 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 210 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 211 212 // TODO: Support multiple entry loops? (We currently bail out of these in 213 // the IndVarSimplify pass) 214 if (auto *BB = L->getLoopPredecessor()) { 215 const int Idx = PN->getBasicBlockIndex(BB); 216 if (Idx >= 0) { 217 Value *Incoming = PN->getIncomingValue(Idx); 218 const SCEV *IncomingS = SE->getSCEV(Incoming); 219 CheapExpansions[IncomingS] = Incoming; 220 } 221 } 222 Value *NewLHS = CheapExpansions[InvariantLHS]; 223 Value *NewRHS = CheapExpansions[InvariantRHS]; 224 225 if (!NewLHS) 226 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 227 NewLHS = ConstLHS->getValue(); 228 if (!NewRHS) 229 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 230 NewRHS = ConstRHS->getValue(); 231 232 if (!NewLHS || !NewRHS) 233 // We could not find an existing value to replace either LHS or RHS. 234 // Generating new instructions has subtler tradeoffs, so avoid doing that 235 // for now. 236 return false; 237 238 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 239 ICmp->setPredicate(InvariantPredicate); 240 ICmp->setOperand(0, NewLHS); 241 ICmp->setOperand(1, NewRHS); 242 return true; 243 } 244 245 /// SimplifyIVUsers helper for eliminating useless 246 /// comparisons against an induction variable. 247 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 248 unsigned IVOperIdx = 0; 249 ICmpInst::Predicate Pred = ICmp->getPredicate(); 250 ICmpInst::Predicate OriginalPred = Pred; 251 if (IVOperand != ICmp->getOperand(0)) { 252 // Swapped 253 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 254 IVOperIdx = 1; 255 Pred = ICmpInst::getSwappedPredicate(Pred); 256 } 257 258 // Get the SCEVs for the ICmp operands (in the specific context of the 259 // current loop) 260 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 261 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 262 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 263 264 // If the condition is always true or always false, replace it with 265 // a constant value. 266 if (SE->isKnownPredicate(Pred, S, X)) { 267 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 268 DeadInsts.emplace_back(ICmp); 269 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 270 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 271 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 272 DeadInsts.emplace_back(ICmp); 273 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 274 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 275 // fallthrough to end of function 276 } else if (ICmpInst::isSigned(OriginalPred) && 277 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 278 // If we were unable to make anything above, all we can is to canonicalize 279 // the comparison hoping that it will open the doors for other 280 // optimizations. If we find out that we compare two non-negative values, 281 // we turn the instruction's predicate to its unsigned version. Note that 282 // we cannot rely on Pred here unless we check if we have swapped it. 283 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 284 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 285 << '\n'); 286 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 287 } else 288 return; 289 290 ++NumElimCmp; 291 Changed = true; 292 } 293 294 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 295 // Get the SCEVs for the ICmp operands. 296 auto *N = SE->getSCEV(SDiv->getOperand(0)); 297 auto *D = SE->getSCEV(SDiv->getOperand(1)); 298 299 // Simplify unnecessary loops away. 300 const Loop *L = LI->getLoopFor(SDiv->getParent()); 301 N = SE->getSCEVAtScope(N, L); 302 D = SE->getSCEVAtScope(D, L); 303 304 // Replace sdiv by udiv if both of the operands are non-negative 305 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 306 auto *UDiv = BinaryOperator::Create( 307 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 308 SDiv->getName() + ".udiv", SDiv); 309 UDiv->setIsExact(SDiv->isExact()); 310 SDiv->replaceAllUsesWith(UDiv); 311 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 312 ++NumSimplifiedSDiv; 313 Changed = true; 314 DeadInsts.push_back(SDiv); 315 return true; 316 } 317 318 return false; 319 } 320 321 // i %s n -> i %u n if i >= 0 and n >= 0 322 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 323 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 324 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 325 Rem->getName() + ".urem", Rem); 326 Rem->replaceAllUsesWith(URem); 327 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 328 ++NumSimplifiedSRem; 329 Changed = true; 330 DeadInsts.emplace_back(Rem); 331 } 332 333 // i % n --> i if i is in [0,n). 334 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 335 Rem->replaceAllUsesWith(Rem->getOperand(0)); 336 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 337 ++NumElimRem; 338 Changed = true; 339 DeadInsts.emplace_back(Rem); 340 } 341 342 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 343 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 344 auto *T = Rem->getType(); 345 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 346 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 347 SelectInst *Sel = 348 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 349 Rem->replaceAllUsesWith(Sel); 350 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 351 ++NumElimRem; 352 Changed = true; 353 DeadInsts.emplace_back(Rem); 354 } 355 356 /// SimplifyIVUsers helper for eliminating useless remainder operations 357 /// operating on an induction variable or replacing srem by urem. 358 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 359 bool IsSigned) { 360 auto *NValue = Rem->getOperand(0); 361 auto *DValue = Rem->getOperand(1); 362 // We're only interested in the case where we know something about 363 // the numerator, unless it is a srem, because we want to replace srem by urem 364 // in general. 365 bool UsedAsNumerator = IVOperand == NValue; 366 if (!UsedAsNumerator && !IsSigned) 367 return; 368 369 const SCEV *N = SE->getSCEV(NValue); 370 371 // Simplify unnecessary loops away. 372 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 373 N = SE->getSCEVAtScope(N, ICmpLoop); 374 375 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 376 377 // Do not proceed if the Numerator may be negative 378 if (!IsNumeratorNonNegative) 379 return; 380 381 const SCEV *D = SE->getSCEV(DValue); 382 D = SE->getSCEVAtScope(D, ICmpLoop); 383 384 if (UsedAsNumerator) { 385 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 386 if (SE->isKnownPredicate(LT, N, D)) { 387 replaceRemWithNumerator(Rem); 388 return; 389 } 390 391 auto *T = Rem->getType(); 392 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 393 if (SE->isKnownPredicate(LT, NLessOne, D)) { 394 replaceRemWithNumeratorOrZero(Rem); 395 return; 396 } 397 } 398 399 // Try to replace SRem with URem, if both N and D are known non-negative. 400 // Since we had already check N, we only need to check D now 401 if (!IsSigned || !SE->isKnownNonNegative(D)) 402 return; 403 404 replaceSRemWithURem(Rem); 405 } 406 407 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 408 bool Signed, const SCEV *LHS, const SCEV *RHS) { 409 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 410 SCEV::NoWrapFlags, unsigned); 411 switch (BinOp) { 412 default: 413 llvm_unreachable("Unsupported binary op"); 414 case Instruction::Add: 415 Operation = &ScalarEvolution::getAddExpr; 416 break; 417 case Instruction::Sub: 418 Operation = &ScalarEvolution::getMinusSCEV; 419 break; 420 case Instruction::Mul: 421 Operation = &ScalarEvolution::getMulExpr; 422 break; 423 } 424 425 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 426 Signed ? &ScalarEvolution::getSignExtendExpr 427 : &ScalarEvolution::getZeroExtendExpr; 428 429 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 430 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 431 auto *WideTy = 432 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 433 434 const SCEV *A = 435 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 436 WideTy, 0); 437 const SCEV *B = 438 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 439 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 440 return A == B; 441 } 442 443 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 444 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 445 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 446 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 447 return false; 448 449 // Proved no overflow, nuke the overflow check and, if possible, the overflow 450 // intrinsic as well. 451 452 BinaryOperator *NewResult = BinaryOperator::Create( 453 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 454 455 if (WO->isSigned()) 456 NewResult->setHasNoSignedWrap(true); 457 else 458 NewResult->setHasNoUnsignedWrap(true); 459 460 SmallVector<ExtractValueInst *, 4> ToDelete; 461 462 for (auto *U : WO->users()) { 463 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 464 if (EVI->getIndices()[0] == 1) 465 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 466 else { 467 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 468 EVI->replaceAllUsesWith(NewResult); 469 } 470 ToDelete.push_back(EVI); 471 } 472 } 473 474 for (auto *EVI : ToDelete) 475 EVI->eraseFromParent(); 476 477 if (WO->use_empty()) 478 WO->eraseFromParent(); 479 480 Changed = true; 481 return true; 482 } 483 484 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 485 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 486 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 487 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 488 return false; 489 490 BinaryOperator *BO = BinaryOperator::Create( 491 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 492 if (SI->isSigned()) 493 BO->setHasNoSignedWrap(); 494 else 495 BO->setHasNoUnsignedWrap(); 496 497 SI->replaceAllUsesWith(BO); 498 DeadInsts.emplace_back(SI); 499 Changed = true; 500 return true; 501 } 502 503 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 504 // It is always legal to replace 505 // icmp <pred> i32 trunc(iv), n 506 // with 507 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 508 // Or with 509 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 510 // Or with either of these if pred is an equality predicate. 511 // 512 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 513 // every comparison which uses trunc, it means that we can replace each of 514 // them with comparison of iv against sext/zext(n). We no longer need trunc 515 // after that. 516 // 517 // TODO: Should we do this if we can widen *some* comparisons, but not all 518 // of them? Sometimes it is enough to enable other optimizations, but the 519 // trunc instruction will stay in the loop. 520 Value *IV = TI->getOperand(0); 521 Type *IVTy = IV->getType(); 522 const SCEV *IVSCEV = SE->getSCEV(IV); 523 const SCEV *TISCEV = SE->getSCEV(TI); 524 525 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 526 // get rid of trunc 527 bool DoesSExtCollapse = false; 528 bool DoesZExtCollapse = false; 529 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 530 DoesSExtCollapse = true; 531 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 532 DoesZExtCollapse = true; 533 534 // If neither sext nor zext does collapse, it is not profitable to do any 535 // transform. Bail. 536 if (!DoesSExtCollapse && !DoesZExtCollapse) 537 return false; 538 539 // Collect users of the trunc that look like comparisons against invariants. 540 // Bail if we find something different. 541 SmallVector<ICmpInst *, 4> ICmpUsers; 542 for (auto *U : TI->users()) { 543 // We don't care about users in unreachable blocks. 544 if (isa<Instruction>(U) && 545 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 546 continue; 547 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 548 if (!ICI) return false; 549 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 550 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 551 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 552 return false; 553 // If we cannot get rid of trunc, bail. 554 if (ICI->isSigned() && !DoesSExtCollapse) 555 return false; 556 if (ICI->isUnsigned() && !DoesZExtCollapse) 557 return false; 558 // For equality, either signed or unsigned works. 559 ICmpUsers.push_back(ICI); 560 } 561 562 auto CanUseZExt = [&](ICmpInst *ICI) { 563 // Unsigned comparison can be widened as unsigned. 564 if (ICI->isUnsigned()) 565 return true; 566 // Is it profitable to do zext? 567 if (!DoesZExtCollapse) 568 return false; 569 // For equality, we can safely zext both parts. 570 if (ICI->isEquality()) 571 return true; 572 // Otherwise we can only use zext when comparing two non-negative or two 573 // negative values. But in practice, we will never pass DoesZExtCollapse 574 // check for a negative value, because zext(trunc(x)) is non-negative. So 575 // it only make sense to check for non-negativity here. 576 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 577 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 578 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 579 }; 580 // Replace all comparisons against trunc with comparisons against IV. 581 for (auto *ICI : ICmpUsers) { 582 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 583 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 584 Instruction *Ext = nullptr; 585 // For signed/unsigned predicate, replace the old comparison with comparison 586 // of immediate IV against sext/zext of the invariant argument. If we can 587 // use either sext or zext (i.e. we are dealing with equality predicate), 588 // then prefer zext as a more canonical form. 589 // TODO: If we see a signed comparison which can be turned into unsigned, 590 // we can do it here for canonicalization purposes. 591 ICmpInst::Predicate Pred = ICI->getPredicate(); 592 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 593 if (CanUseZExt(ICI)) { 594 assert(DoesZExtCollapse && "Unprofitable zext?"); 595 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 596 Pred = ICmpInst::getUnsignedPredicate(Pred); 597 } else { 598 assert(DoesSExtCollapse && "Unprofitable sext?"); 599 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 600 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 601 } 602 bool Changed; 603 L->makeLoopInvariant(Ext, Changed); 604 (void)Changed; 605 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 606 ICI->replaceAllUsesWith(NewICI); 607 DeadInsts.emplace_back(ICI); 608 } 609 610 // Trunc no longer needed. 611 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 612 DeadInsts.emplace_back(TI); 613 return true; 614 } 615 616 /// Eliminate an operation that consumes a simple IV and has no observable 617 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 618 /// but UseInst may not be. 619 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 620 Instruction *IVOperand) { 621 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 622 eliminateIVComparison(ICmp, IVOperand); 623 return true; 624 } 625 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 626 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 627 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 628 simplifyIVRemainder(Bin, IVOperand, IsSRem); 629 return true; 630 } 631 632 if (Bin->getOpcode() == Instruction::SDiv) 633 return eliminateSDiv(Bin); 634 } 635 636 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 637 if (eliminateOverflowIntrinsic(WO)) 638 return true; 639 640 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 641 if (eliminateSaturatingIntrinsic(SI)) 642 return true; 643 644 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 645 if (eliminateTrunc(TI)) 646 return true; 647 648 if (eliminateIdentitySCEV(UseInst, IVOperand)) 649 return true; 650 651 return false; 652 } 653 654 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 655 if (auto *BB = L->getLoopPreheader()) 656 return BB->getTerminator(); 657 658 return Hint; 659 } 660 661 /// Replace the UseInst with a loop invariant expression if it is safe. 662 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 663 if (!SE->isSCEVable(I->getType())) 664 return false; 665 666 // Get the symbolic expression for this instruction. 667 const SCEV *S = SE->getSCEV(I); 668 669 if (!SE->isLoopInvariant(S, L)) 670 return false; 671 672 // Do not generate something ridiculous even if S is loop invariant. 673 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 674 return false; 675 676 auto *IP = GetLoopInvariantInsertPosition(L, I); 677 678 if (!isSafeToExpandAt(S, IP, *SE)) { 679 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 680 << " with non-speculable loop invariant: " << *S << '\n'); 681 return false; 682 } 683 684 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 685 686 I->replaceAllUsesWith(Invariant); 687 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 688 << " with loop invariant: " << *S << '\n'); 689 ++NumFoldedUser; 690 Changed = true; 691 DeadInsts.emplace_back(I); 692 return true; 693 } 694 695 /// Eliminate any operation that SCEV can prove is an identity function. 696 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 697 Instruction *IVOperand) { 698 if (!SE->isSCEVable(UseInst->getType()) || 699 (UseInst->getType() != IVOperand->getType()) || 700 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 701 return false; 702 703 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 704 // dominator tree, even if X is an operand to Y. For instance, in 705 // 706 // %iv = phi i32 {0,+,1} 707 // br %cond, label %left, label %merge 708 // 709 // left: 710 // %X = add i32 %iv, 0 711 // br label %merge 712 // 713 // merge: 714 // %M = phi (%X, %iv) 715 // 716 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 717 // %M.replaceAllUsesWith(%X) would be incorrect. 718 719 if (isa<PHINode>(UseInst)) 720 // If UseInst is not a PHI node then we know that IVOperand dominates 721 // UseInst directly from the legality of SSA. 722 if (!DT || !DT->dominates(IVOperand, UseInst)) 723 return false; 724 725 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 726 return false; 727 728 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 729 730 UseInst->replaceAllUsesWith(IVOperand); 731 ++NumElimIdentity; 732 Changed = true; 733 DeadInsts.emplace_back(UseInst); 734 return true; 735 } 736 737 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 738 /// unsigned-overflow. Returns true if anything changed, false otherwise. 739 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 740 Value *IVOperand) { 741 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 742 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 743 return false; 744 745 if (BO->getOpcode() != Instruction::Add && 746 BO->getOpcode() != Instruction::Sub && 747 BO->getOpcode() != Instruction::Mul) 748 return false; 749 750 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 751 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 752 bool Changed = false; 753 754 if (!BO->hasNoUnsignedWrap() && 755 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 756 BO->setHasNoUnsignedWrap(); 757 SE->forgetValue(BO); 758 Changed = true; 759 } 760 761 if (!BO->hasNoSignedWrap() && 762 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 763 BO->setHasNoSignedWrap(); 764 SE->forgetValue(BO); 765 Changed = true; 766 } 767 768 return Changed; 769 } 770 771 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 772 /// information from the IV's range. Returns true if anything changed, false 773 /// otherwise. 774 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 775 Value *IVOperand) { 776 using namespace llvm::PatternMatch; 777 778 if (BO->getOpcode() == Instruction::Shl) { 779 bool Changed = false; 780 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 781 for (auto *U : BO->users()) { 782 const APInt *C; 783 if (match(U, 784 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 785 match(U, 786 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 787 BinaryOperator *Shr = cast<BinaryOperator>(U); 788 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 789 Shr->setIsExact(true); 790 Changed = true; 791 } 792 } 793 } 794 return Changed; 795 } 796 797 return false; 798 } 799 800 /// Add all uses of Def to the current IV's worklist. 801 static void pushIVUsers( 802 Instruction *Def, Loop *L, 803 SmallPtrSet<Instruction*,16> &Simplified, 804 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 805 806 for (User *U : Def->users()) { 807 Instruction *UI = cast<Instruction>(U); 808 809 // Avoid infinite or exponential worklist processing. 810 // Also ensure unique worklist users. 811 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 812 // self edges first. 813 if (UI == Def) 814 continue; 815 816 // Only change the current Loop, do not change the other parts (e.g. other 817 // Loops). 818 if (!L->contains(UI)) 819 continue; 820 821 // Do not push the same instruction more than once. 822 if (!Simplified.insert(UI).second) 823 continue; 824 825 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 826 } 827 } 828 829 /// Return true if this instruction generates a simple SCEV 830 /// expression in terms of that IV. 831 /// 832 /// This is similar to IVUsers' isInteresting() but processes each instruction 833 /// non-recursively when the operand is already known to be a simpleIVUser. 834 /// 835 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 836 if (!SE->isSCEVable(I->getType())) 837 return false; 838 839 // Get the symbolic expression for this instruction. 840 const SCEV *S = SE->getSCEV(I); 841 842 // Only consider affine recurrences. 843 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 844 if (AR && AR->getLoop() == L) 845 return true; 846 847 return false; 848 } 849 850 /// Iteratively perform simplification on a worklist of users 851 /// of the specified induction variable. Each successive simplification may push 852 /// more users which may themselves be candidates for simplification. 853 /// 854 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 855 /// instructions in-place during analysis. Rather than rewriting induction 856 /// variables bottom-up from their users, it transforms a chain of IVUsers 857 /// top-down, updating the IR only when it encounters a clear optimization 858 /// opportunity. 859 /// 860 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 861 /// 862 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 863 if (!SE->isSCEVable(CurrIV->getType())) 864 return; 865 866 // Instructions processed by SimplifyIndvar for CurrIV. 867 SmallPtrSet<Instruction*,16> Simplified; 868 869 // Use-def pairs if IV users waiting to be processed for CurrIV. 870 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 871 872 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 873 // called multiple times for the same LoopPhi. This is the proper thing to 874 // do for loop header phis that use each other. 875 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 876 877 while (!SimpleIVUsers.empty()) { 878 std::pair<Instruction*, Instruction*> UseOper = 879 SimpleIVUsers.pop_back_val(); 880 Instruction *UseInst = UseOper.first; 881 882 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 883 // rather than try to do some complex analysis or transformation (such as 884 // widening) basing on it. 885 // TODO: Propagate TLI and pass it here to handle more cases. 886 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 887 DeadInsts.emplace_back(UseInst); 888 continue; 889 } 890 891 // Bypass back edges to avoid extra work. 892 if (UseInst == CurrIV) continue; 893 894 // Try to replace UseInst with a loop invariant before any other 895 // simplifications. 896 if (replaceIVUserWithLoopInvariant(UseInst)) 897 continue; 898 899 Instruction *IVOperand = UseOper.second; 900 for (unsigned N = 0; IVOperand; ++N) { 901 assert(N <= Simplified.size() && "runaway iteration"); 902 903 Value *NewOper = foldIVUser(UseInst, IVOperand); 904 if (!NewOper) 905 break; // done folding 906 IVOperand = dyn_cast<Instruction>(NewOper); 907 } 908 if (!IVOperand) 909 continue; 910 911 if (eliminateIVUser(UseInst, IVOperand)) { 912 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 913 continue; 914 } 915 916 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 917 if ((isa<OverflowingBinaryOperator>(BO) && 918 strengthenOverflowingOperation(BO, IVOperand)) || 919 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 920 // re-queue uses of the now modified binary operator and fall 921 // through to the checks that remain. 922 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 923 } 924 } 925 926 CastInst *Cast = dyn_cast<CastInst>(UseInst); 927 if (V && Cast) { 928 V->visitCast(Cast); 929 continue; 930 } 931 if (isSimpleIVUser(UseInst, L, SE)) { 932 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 933 } 934 } 935 } 936 937 namespace llvm { 938 939 void IVVisitor::anchor() { } 940 941 /// Simplify instructions that use this induction variable 942 /// by using ScalarEvolution to analyze the IV's recurrence. 943 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 944 LoopInfo *LI, const TargetTransformInfo *TTI, 945 SmallVectorImpl<WeakTrackingVH> &Dead, 946 SCEVExpander &Rewriter, IVVisitor *V) { 947 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 948 Rewriter, Dead); 949 SIV.simplifyUsers(CurrIV, V); 950 return SIV.hasChanged(); 951 } 952 953 /// Simplify users of induction variables within this 954 /// loop. This does not actually change or add IVs. 955 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 956 LoopInfo *LI, const TargetTransformInfo *TTI, 957 SmallVectorImpl<WeakTrackingVH> &Dead) { 958 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 959 #ifndef NDEBUG 960 Rewriter.setDebugType(DEBUG_TYPE); 961 #endif 962 bool Changed = false; 963 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 964 Changed |= 965 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 966 } 967 return Changed; 968 } 969 970 } // namespace llvm 971 972 //===----------------------------------------------------------------------===// 973 // Widen Induction Variables - Extend the width of an IV to cover its 974 // widest uses. 975 //===----------------------------------------------------------------------===// 976 977 class WidenIV { 978 // Parameters 979 PHINode *OrigPhi; 980 Type *WideType; 981 982 // Context 983 LoopInfo *LI; 984 Loop *L; 985 ScalarEvolution *SE; 986 DominatorTree *DT; 987 988 // Does the module have any calls to the llvm.experimental.guard intrinsic 989 // at all? If not we can avoid scanning instructions looking for guards. 990 bool HasGuards; 991 992 bool UsePostIncrementRanges; 993 994 // Statistics 995 unsigned NumElimExt = 0; 996 unsigned NumWidened = 0; 997 998 // Result 999 PHINode *WidePhi = nullptr; 1000 Instruction *WideInc = nullptr; 1001 const SCEV *WideIncExpr = nullptr; 1002 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1003 1004 SmallPtrSet<Instruction *,16> Widened; 1005 1006 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 1007 1008 // A map tracking the kind of extension used to widen each narrow IV 1009 // and narrow IV user. 1010 // Key: pointer to a narrow IV or IV user. 1011 // Value: the kind of extension used to widen this Instruction. 1012 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1013 1014 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1015 1016 // A map with control-dependent ranges for post increment IV uses. The key is 1017 // a pair of IV def and a use of this def denoting the context. The value is 1018 // a ConstantRange representing possible values of the def at the given 1019 // context. 1020 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1021 1022 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1023 Instruction *UseI) { 1024 DefUserPair Key(Def, UseI); 1025 auto It = PostIncRangeInfos.find(Key); 1026 return It == PostIncRangeInfos.end() 1027 ? Optional<ConstantRange>(None) 1028 : Optional<ConstantRange>(It->second); 1029 } 1030 1031 void calculatePostIncRanges(PHINode *OrigPhi); 1032 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1033 1034 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1035 DefUserPair Key(Def, UseI); 1036 auto It = PostIncRangeInfos.find(Key); 1037 if (It == PostIncRangeInfos.end()) 1038 PostIncRangeInfos.insert({Key, R}); 1039 else 1040 It->second = R.intersectWith(It->second); 1041 } 1042 1043 public: 1044 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1045 /// computes the same value as the Narrow IV def. This avoids caching Use* 1046 /// pointers. 1047 struct NarrowIVDefUse { 1048 Instruction *NarrowDef = nullptr; 1049 Instruction *NarrowUse = nullptr; 1050 Instruction *WideDef = nullptr; 1051 1052 // True if the narrow def is never negative. Tracking this information lets 1053 // us use a sign extension instead of a zero extension or vice versa, when 1054 // profitable and legal. 1055 bool NeverNegative = false; 1056 1057 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1058 bool NeverNegative) 1059 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1060 NeverNegative(NeverNegative) {} 1061 }; 1062 1063 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1064 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1065 bool HasGuards, bool UsePostIncrementRanges = true); 1066 1067 PHINode *createWideIV(SCEVExpander &Rewriter); 1068 1069 unsigned getNumElimExt() { return NumElimExt; }; 1070 unsigned getNumWidened() { return NumWidened; }; 1071 1072 protected: 1073 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1074 Instruction *Use); 1075 1076 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1077 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1078 const SCEVAddRecExpr *WideAR); 1079 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1080 1081 ExtendKind getExtendKind(Instruction *I); 1082 1083 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1084 1085 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1086 1087 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1088 1089 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1090 unsigned OpCode) const; 1091 1092 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1093 1094 bool widenLoopCompare(NarrowIVDefUse DU); 1095 bool widenWithVariantUse(NarrowIVDefUse DU); 1096 1097 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1098 1099 private: 1100 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1101 }; 1102 1103 1104 /// Determine the insertion point for this user. By default, insert immediately 1105 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1106 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1107 /// common dominator for the incoming blocks. A nullptr can be returned if no 1108 /// viable location is found: it may happen if User is a PHI and Def only comes 1109 /// to this PHI from unreachable blocks. 1110 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1111 DominatorTree *DT, LoopInfo *LI) { 1112 PHINode *PHI = dyn_cast<PHINode>(User); 1113 if (!PHI) 1114 return User; 1115 1116 Instruction *InsertPt = nullptr; 1117 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1118 if (PHI->getIncomingValue(i) != Def) 1119 continue; 1120 1121 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1122 1123 if (!DT->isReachableFromEntry(InsertBB)) 1124 continue; 1125 1126 if (!InsertPt) { 1127 InsertPt = InsertBB->getTerminator(); 1128 continue; 1129 } 1130 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1131 InsertPt = InsertBB->getTerminator(); 1132 } 1133 1134 // If we have skipped all inputs, it means that Def only comes to Phi from 1135 // unreachable blocks. 1136 if (!InsertPt) 1137 return nullptr; 1138 1139 auto *DefI = dyn_cast<Instruction>(Def); 1140 if (!DefI) 1141 return InsertPt; 1142 1143 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1144 1145 auto *L = LI->getLoopFor(DefI->getParent()); 1146 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1147 1148 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1149 if (LI->getLoopFor(DTN->getBlock()) == L) 1150 return DTN->getBlock()->getTerminator(); 1151 1152 llvm_unreachable("DefI dominates InsertPt!"); 1153 } 1154 1155 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1156 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1157 bool HasGuards, bool UsePostIncrementRanges) 1158 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1159 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1160 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1161 DeadInsts(DI) { 1162 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1163 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1164 } 1165 1166 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1167 bool IsSigned, Instruction *Use) { 1168 // Set the debug location and conservative insertion point. 1169 IRBuilder<> Builder(Use); 1170 // Hoist the insertion point into loop preheaders as far as possible. 1171 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1172 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1173 L = L->getParentLoop()) 1174 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1175 1176 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1177 Builder.CreateZExt(NarrowOper, WideType); 1178 } 1179 1180 /// Instantiate a wide operation to replace a narrow operation. This only needs 1181 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1182 /// 0 for any operation we decide not to clone. 1183 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1184 const SCEVAddRecExpr *WideAR) { 1185 unsigned Opcode = DU.NarrowUse->getOpcode(); 1186 switch (Opcode) { 1187 default: 1188 return nullptr; 1189 case Instruction::Add: 1190 case Instruction::Mul: 1191 case Instruction::UDiv: 1192 case Instruction::Sub: 1193 return cloneArithmeticIVUser(DU, WideAR); 1194 1195 case Instruction::And: 1196 case Instruction::Or: 1197 case Instruction::Xor: 1198 case Instruction::Shl: 1199 case Instruction::LShr: 1200 case Instruction::AShr: 1201 return cloneBitwiseIVUser(DU); 1202 } 1203 } 1204 1205 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1206 Instruction *NarrowUse = DU.NarrowUse; 1207 Instruction *NarrowDef = DU.NarrowDef; 1208 Instruction *WideDef = DU.WideDef; 1209 1210 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1211 1212 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1213 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1214 // invariant and will be folded or hoisted. If it actually comes from a 1215 // widened IV, it should be removed during a future call to widenIVUse. 1216 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1217 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1218 ? WideDef 1219 : createExtendInst(NarrowUse->getOperand(0), WideType, 1220 IsSigned, NarrowUse); 1221 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1222 ? WideDef 1223 : createExtendInst(NarrowUse->getOperand(1), WideType, 1224 IsSigned, NarrowUse); 1225 1226 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1227 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1228 NarrowBO->getName()); 1229 IRBuilder<> Builder(NarrowUse); 1230 Builder.Insert(WideBO); 1231 WideBO->copyIRFlags(NarrowBO); 1232 return WideBO; 1233 } 1234 1235 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1236 const SCEVAddRecExpr *WideAR) { 1237 Instruction *NarrowUse = DU.NarrowUse; 1238 Instruction *NarrowDef = DU.NarrowDef; 1239 Instruction *WideDef = DU.WideDef; 1240 1241 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1242 1243 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1244 1245 // We're trying to find X such that 1246 // 1247 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1248 // 1249 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1250 // and check using SCEV if any of them are correct. 1251 1252 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1253 // correct solution to X. 1254 auto GuessNonIVOperand = [&](bool SignExt) { 1255 const SCEV *WideLHS; 1256 const SCEV *WideRHS; 1257 1258 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1259 if (SignExt) 1260 return SE->getSignExtendExpr(S, Ty); 1261 return SE->getZeroExtendExpr(S, Ty); 1262 }; 1263 1264 if (IVOpIdx == 0) { 1265 WideLHS = SE->getSCEV(WideDef); 1266 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1267 WideRHS = GetExtend(NarrowRHS, WideType); 1268 } else { 1269 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1270 WideLHS = GetExtend(NarrowLHS, WideType); 1271 WideRHS = SE->getSCEV(WideDef); 1272 } 1273 1274 // WideUse is "WideDef `op.wide` X" as described in the comment. 1275 const SCEV *WideUse = nullptr; 1276 1277 switch (NarrowUse->getOpcode()) { 1278 default: 1279 llvm_unreachable("No other possibility!"); 1280 1281 case Instruction::Add: 1282 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1283 break; 1284 1285 case Instruction::Mul: 1286 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1287 break; 1288 1289 case Instruction::UDiv: 1290 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1291 break; 1292 1293 case Instruction::Sub: 1294 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1295 break; 1296 } 1297 1298 return WideUse == WideAR; 1299 }; 1300 1301 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1302 if (!GuessNonIVOperand(SignExtend)) { 1303 SignExtend = !SignExtend; 1304 if (!GuessNonIVOperand(SignExtend)) 1305 return nullptr; 1306 } 1307 1308 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1309 ? WideDef 1310 : createExtendInst(NarrowUse->getOperand(0), WideType, 1311 SignExtend, NarrowUse); 1312 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1313 ? WideDef 1314 : createExtendInst(NarrowUse->getOperand(1), WideType, 1315 SignExtend, NarrowUse); 1316 1317 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1318 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1319 NarrowBO->getName()); 1320 1321 IRBuilder<> Builder(NarrowUse); 1322 Builder.Insert(WideBO); 1323 WideBO->copyIRFlags(NarrowBO); 1324 return WideBO; 1325 } 1326 1327 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1328 auto It = ExtendKindMap.find(I); 1329 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1330 return It->second; 1331 } 1332 1333 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1334 unsigned OpCode) const { 1335 if (OpCode == Instruction::Add) 1336 return SE->getAddExpr(LHS, RHS); 1337 if (OpCode == Instruction::Sub) 1338 return SE->getMinusSCEV(LHS, RHS); 1339 if (OpCode == Instruction::Mul) 1340 return SE->getMulExpr(LHS, RHS); 1341 1342 llvm_unreachable("Unsupported opcode."); 1343 } 1344 1345 /// No-wrap operations can transfer sign extension of their result to their 1346 /// operands. Generate the SCEV value for the widened operation without 1347 /// actually modifying the IR yet. If the expression after extending the 1348 /// operands is an AddRec for this loop, return the AddRec and the kind of 1349 /// extension used. 1350 WidenIV::WidenedRecTy 1351 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1352 // Handle the common case of add<nsw/nuw> 1353 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1354 // Only Add/Sub/Mul instructions supported yet. 1355 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1356 OpCode != Instruction::Mul) 1357 return {nullptr, Unknown}; 1358 1359 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1360 // if extending the other will lead to a recurrence. 1361 const unsigned ExtendOperIdx = 1362 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1363 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1364 1365 const SCEV *ExtendOperExpr = nullptr; 1366 const OverflowingBinaryOperator *OBO = 1367 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1368 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1369 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1370 ExtendOperExpr = SE->getSignExtendExpr( 1371 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1372 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1373 ExtendOperExpr = SE->getZeroExtendExpr( 1374 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1375 else 1376 return {nullptr, Unknown}; 1377 1378 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1379 // flags. This instruction may be guarded by control flow that the no-wrap 1380 // behavior depends on. Non-control-equivalent instructions can be mapped to 1381 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1382 // semantics to those operations. 1383 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1384 const SCEV *rhs = ExtendOperExpr; 1385 1386 // Let's swap operands to the initial order for the case of non-commutative 1387 // operations, like SUB. See PR21014. 1388 if (ExtendOperIdx == 0) 1389 std::swap(lhs, rhs); 1390 const SCEVAddRecExpr *AddRec = 1391 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1392 1393 if (!AddRec || AddRec->getLoop() != L) 1394 return {nullptr, Unknown}; 1395 1396 return {AddRec, ExtKind}; 1397 } 1398 1399 /// Is this instruction potentially interesting for further simplification after 1400 /// widening it's type? In other words, can the extend be safely hoisted out of 1401 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1402 /// so, return the extended recurrence and the kind of extension used. Otherwise 1403 /// return {nullptr, Unknown}. 1404 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1405 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1406 return {nullptr, Unknown}; 1407 1408 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1409 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1410 SE->getTypeSizeInBits(WideType)) { 1411 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1412 // index. So don't follow this use. 1413 return {nullptr, Unknown}; 1414 } 1415 1416 const SCEV *WideExpr; 1417 ExtendKind ExtKind; 1418 if (DU.NeverNegative) { 1419 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1420 if (isa<SCEVAddRecExpr>(WideExpr)) 1421 ExtKind = SignExtended; 1422 else { 1423 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1424 ExtKind = ZeroExtended; 1425 } 1426 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1427 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1428 ExtKind = SignExtended; 1429 } else { 1430 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1431 ExtKind = ZeroExtended; 1432 } 1433 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1434 if (!AddRec || AddRec->getLoop() != L) 1435 return {nullptr, Unknown}; 1436 return {AddRec, ExtKind}; 1437 } 1438 1439 /// This IV user cannot be widened. Replace this use of the original narrow IV 1440 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1441 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1442 LoopInfo *LI) { 1443 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1444 if (!InsertPt) 1445 return; 1446 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1447 << *DU.NarrowUse << "\n"); 1448 IRBuilder<> Builder(InsertPt); 1449 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1450 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1451 } 1452 1453 /// If the narrow use is a compare instruction, then widen the compare 1454 // (and possibly the other operand). The extend operation is hoisted into the 1455 // loop preheader as far as possible. 1456 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1457 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1458 if (!Cmp) 1459 return false; 1460 1461 // We can legally widen the comparison in the following two cases: 1462 // 1463 // - The signedness of the IV extension and comparison match 1464 // 1465 // - The narrow IV is always positive (and thus its sign extension is equal 1466 // to its zero extension). For instance, let's say we're zero extending 1467 // %narrow for the following use 1468 // 1469 // icmp slt i32 %narrow, %val ... (A) 1470 // 1471 // and %narrow is always positive. Then 1472 // 1473 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1474 // == icmp slt i32 zext(%narrow), sext(%val) 1475 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1476 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1477 return false; 1478 1479 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1480 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1481 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1482 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1483 1484 // Widen the compare instruction. 1485 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1486 if (!InsertPt) 1487 return false; 1488 IRBuilder<> Builder(InsertPt); 1489 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1490 1491 // Widen the other operand of the compare, if necessary. 1492 if (CastWidth < IVWidth) { 1493 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1494 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1495 } 1496 return true; 1497 } 1498 1499 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1500 // will not work when: 1501 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1502 // expand, eg. add %indvar, (load %addr) 1503 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1504 // While SCEV fails to avoid trunc, we can still try to use instruction 1505 // combining approach to prove trunc is not required. This can be further 1506 // extended with other instruction combining checks, but for now we handle the 1507 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1508 // 1509 // Src: 1510 // %c = sub nsw %b, %indvar 1511 // %d = sext %c to i64 1512 // Dst: 1513 // %indvar.ext1 = sext %indvar to i64 1514 // %m = sext %b to i64 1515 // %d = sub nsw i64 %m, %indvar.ext1 1516 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1517 // trunc is required regardless of how %b is generated. This pattern is common 1518 // when calculating address in 64 bit architecture 1519 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1520 Instruction *NarrowUse = DU.NarrowUse; 1521 Instruction *NarrowDef = DU.NarrowDef; 1522 Instruction *WideDef = DU.WideDef; 1523 1524 // Handle the common case of add<nsw/nuw> 1525 const unsigned OpCode = NarrowUse->getOpcode(); 1526 // Only Add/Sub/Mul instructions are supported. 1527 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1528 OpCode != Instruction::Mul) 1529 return false; 1530 1531 // The operand that is not defined by NarrowDef of DU. Let's call it the 1532 // other operand. 1533 assert((NarrowUse->getOperand(0) == NarrowDef || 1534 NarrowUse->getOperand(1) == NarrowDef) && 1535 "bad DU"); 1536 1537 const OverflowingBinaryOperator *OBO = 1538 cast<OverflowingBinaryOperator>(NarrowUse); 1539 ExtendKind ExtKind = getExtendKind(NarrowDef); 1540 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap(); 1541 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap(); 1542 if (!CanSignExtend && !CanZeroExtend) 1543 return false; 1544 1545 // Verifying that Defining operand is an AddRec 1546 const SCEV *Op1 = SE->getSCEV(WideDef); 1547 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1548 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1549 return false; 1550 1551 for (Use &U : NarrowUse->uses()) { 1552 Instruction *User = nullptr; 1553 if (ExtKind == SignExtended) 1554 User = dyn_cast<SExtInst>(U.getUser()); 1555 else 1556 User = dyn_cast<ZExtInst>(U.getUser()); 1557 if (!User || User->getType() != WideType) 1558 return false; 1559 } 1560 1561 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1562 1563 // Generating a widening use instruction. 1564 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1565 ? WideDef 1566 : createExtendInst(NarrowUse->getOperand(0), WideType, 1567 ExtKind, NarrowUse); 1568 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1569 ? WideDef 1570 : createExtendInst(NarrowUse->getOperand(1), WideType, 1571 ExtKind, NarrowUse); 1572 1573 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1574 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1575 NarrowBO->getName()); 1576 IRBuilder<> Builder(NarrowUse); 1577 Builder.Insert(WideBO); 1578 WideBO->copyIRFlags(NarrowBO); 1579 ExtendKindMap[NarrowUse] = ExtKind; 1580 1581 for (Use &U : NarrowUse->uses()) { 1582 Instruction *User = nullptr; 1583 if (ExtKind == SignExtended) 1584 User = cast<SExtInst>(U.getUser()); 1585 else 1586 User = cast<ZExtInst>(U.getUser()); 1587 assert(User->getType() == WideType && "Checked before!"); 1588 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1589 << *WideBO << "\n"); 1590 ++NumElimExt; 1591 User->replaceAllUsesWith(WideBO); 1592 DeadInsts.emplace_back(User); 1593 } 1594 return true; 1595 } 1596 1597 /// Determine whether an individual user of the narrow IV can be widened. If so, 1598 /// return the wide clone of the user. 1599 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1600 assert(ExtendKindMap.count(DU.NarrowDef) && 1601 "Should already know the kind of extension used to widen NarrowDef"); 1602 1603 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1604 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1605 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1606 // For LCSSA phis, sink the truncate outside the loop. 1607 // After SimplifyCFG most loop exit targets have a single predecessor. 1608 // Otherwise fall back to a truncate within the loop. 1609 if (UsePhi->getNumOperands() != 1) 1610 truncateIVUse(DU, DT, LI); 1611 else { 1612 // Widening the PHI requires us to insert a trunc. The logical place 1613 // for this trunc is in the same BB as the PHI. This is not possible if 1614 // the BB is terminated by a catchswitch. 1615 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1616 return nullptr; 1617 1618 PHINode *WidePhi = 1619 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1620 UsePhi); 1621 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1622 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1623 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1624 UsePhi->replaceAllUsesWith(Trunc); 1625 DeadInsts.emplace_back(UsePhi); 1626 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1627 << *WidePhi << "\n"); 1628 } 1629 return nullptr; 1630 } 1631 } 1632 1633 // This narrow use can be widened by a sext if it's non-negative or its narrow 1634 // def was widended by a sext. Same for zext. 1635 auto canWidenBySExt = [&]() { 1636 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1637 }; 1638 auto canWidenByZExt = [&]() { 1639 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1640 }; 1641 1642 // Our raison d'etre! Eliminate sign and zero extension. 1643 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1644 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1645 Value *NewDef = DU.WideDef; 1646 if (DU.NarrowUse->getType() != WideType) { 1647 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1648 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1649 if (CastWidth < IVWidth) { 1650 // The cast isn't as wide as the IV, so insert a Trunc. 1651 IRBuilder<> Builder(DU.NarrowUse); 1652 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1653 } 1654 else { 1655 // A wider extend was hidden behind a narrower one. This may induce 1656 // another round of IV widening in which the intermediate IV becomes 1657 // dead. It should be very rare. 1658 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1659 << " not wide enough to subsume " << *DU.NarrowUse 1660 << "\n"); 1661 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1662 NewDef = DU.NarrowUse; 1663 } 1664 } 1665 if (NewDef != DU.NarrowUse) { 1666 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1667 << " replaced by " << *DU.WideDef << "\n"); 1668 ++NumElimExt; 1669 DU.NarrowUse->replaceAllUsesWith(NewDef); 1670 DeadInsts.emplace_back(DU.NarrowUse); 1671 } 1672 // Now that the extend is gone, we want to expose it's uses for potential 1673 // further simplification. We don't need to directly inform SimplifyIVUsers 1674 // of the new users, because their parent IV will be processed later as a 1675 // new loop phi. If we preserved IVUsers analysis, we would also want to 1676 // push the uses of WideDef here. 1677 1678 // No further widening is needed. The deceased [sz]ext had done it for us. 1679 return nullptr; 1680 } 1681 1682 // Does this user itself evaluate to a recurrence after widening? 1683 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1684 if (!WideAddRec.first) 1685 WideAddRec = getWideRecurrence(DU); 1686 1687 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1688 if (!WideAddRec.first) { 1689 // If use is a loop condition, try to promote the condition instead of 1690 // truncating the IV first. 1691 if (widenLoopCompare(DU)) 1692 return nullptr; 1693 1694 // We are here about to generate a truncate instruction that may hurt 1695 // performance because the scalar evolution expression computed earlier 1696 // in WideAddRec.first does not indicate a polynomial induction expression. 1697 // In that case, look at the operands of the use instruction to determine 1698 // if we can still widen the use instead of truncating its operand. 1699 if (widenWithVariantUse(DU)) 1700 return nullptr; 1701 1702 // This user does not evaluate to a recurrence after widening, so don't 1703 // follow it. Instead insert a Trunc to kill off the original use, 1704 // eventually isolating the original narrow IV so it can be removed. 1705 truncateIVUse(DU, DT, LI); 1706 return nullptr; 1707 } 1708 // Assume block terminators cannot evaluate to a recurrence. We can't to 1709 // insert a Trunc after a terminator if there happens to be a critical edge. 1710 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1711 "SCEV is not expected to evaluate a block terminator"); 1712 1713 // Reuse the IV increment that SCEVExpander created as long as it dominates 1714 // NarrowUse. 1715 Instruction *WideUse = nullptr; 1716 if (WideAddRec.first == WideIncExpr && 1717 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1718 WideUse = WideInc; 1719 else { 1720 WideUse = cloneIVUser(DU, WideAddRec.first); 1721 if (!WideUse) 1722 return nullptr; 1723 } 1724 // Evaluation of WideAddRec ensured that the narrow expression could be 1725 // extended outside the loop without overflow. This suggests that the wide use 1726 // evaluates to the same expression as the extended narrow use, but doesn't 1727 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1728 // where it fails, we simply throw away the newly created wide use. 1729 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1730 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1731 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1732 << "\n"); 1733 DeadInsts.emplace_back(WideUse); 1734 return nullptr; 1735 } 1736 1737 // if we reached this point then we are going to replace 1738 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1739 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1740 1741 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1742 // Returning WideUse pushes it on the worklist. 1743 return WideUse; 1744 } 1745 1746 /// Add eligible users of NarrowDef to NarrowIVUsers. 1747 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1748 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1749 bool NonNegativeDef = 1750 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1751 SE->getZero(NarrowSCEV->getType())); 1752 for (User *U : NarrowDef->users()) { 1753 Instruction *NarrowUser = cast<Instruction>(U); 1754 1755 // Handle data flow merges and bizarre phi cycles. 1756 if (!Widened.insert(NarrowUser).second) 1757 continue; 1758 1759 bool NonNegativeUse = false; 1760 if (!NonNegativeDef) { 1761 // We might have a control-dependent range information for this context. 1762 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1763 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1764 } 1765 1766 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1767 NonNegativeDef || NonNegativeUse); 1768 } 1769 } 1770 1771 /// Process a single induction variable. First use the SCEVExpander to create a 1772 /// wide induction variable that evaluates to the same recurrence as the 1773 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1774 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1775 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1776 /// 1777 /// It would be simpler to delete uses as they are processed, but we must avoid 1778 /// invalidating SCEV expressions. 1779 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1780 // Is this phi an induction variable? 1781 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1782 if (!AddRec) 1783 return nullptr; 1784 1785 // Widen the induction variable expression. 1786 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1787 ? SE->getSignExtendExpr(AddRec, WideType) 1788 : SE->getZeroExtendExpr(AddRec, WideType); 1789 1790 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1791 "Expect the new IV expression to preserve its type"); 1792 1793 // Can the IV be extended outside the loop without overflow? 1794 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1795 if (!AddRec || AddRec->getLoop() != L) 1796 return nullptr; 1797 1798 // An AddRec must have loop-invariant operands. Since this AddRec is 1799 // materialized by a loop header phi, the expression cannot have any post-loop 1800 // operands, so they must dominate the loop header. 1801 assert( 1802 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1803 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1804 "Loop header phi recurrence inputs do not dominate the loop"); 1805 1806 // Iterate over IV uses (including transitive ones) looking for IV increments 1807 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1808 // the increment calculate control-dependent range information basing on 1809 // dominating conditions inside of the loop (e.g. a range check inside of the 1810 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1811 // 1812 // Control-dependent range information is later used to prove that a narrow 1813 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1814 // this on demand because when pushNarrowIVUsers needs this information some 1815 // of the dominating conditions might be already widened. 1816 if (UsePostIncrementRanges) 1817 calculatePostIncRanges(OrigPhi); 1818 1819 // The rewriter provides a value for the desired IV expression. This may 1820 // either find an existing phi or materialize a new one. Either way, we 1821 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1822 // of the phi-SCC dominates the loop entry. 1823 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1824 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1825 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1826 // inttoptr, ptrtoint, just skip for now. 1827 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1828 // if the cast node is an inserted instruction without any user, we should 1829 // remove it to make sure the pass don't touch the function as we can not 1830 // wide the phi. 1831 if (ExpandInst->hasNUses(0) && 1832 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1833 DeadInsts.emplace_back(ExpandInst); 1834 return nullptr; 1835 } 1836 1837 // Remembering the WideIV increment generated by SCEVExpander allows 1838 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1839 // employ a general reuse mechanism because the call above is the only call to 1840 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1841 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1842 WideInc = 1843 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1844 WideIncExpr = SE->getSCEV(WideInc); 1845 // Propagate the debug location associated with the original loop increment 1846 // to the new (widened) increment. 1847 auto *OrigInc = 1848 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1849 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1850 } 1851 1852 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1853 ++NumWidened; 1854 1855 // Traverse the def-use chain using a worklist starting at the original IV. 1856 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1857 1858 Widened.insert(OrigPhi); 1859 pushNarrowIVUsers(OrigPhi, WidePhi); 1860 1861 while (!NarrowIVUsers.empty()) { 1862 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1863 1864 // Process a def-use edge. This may replace the use, so don't hold a 1865 // use_iterator across it. 1866 Instruction *WideUse = widenIVUse(DU, Rewriter); 1867 1868 // Follow all def-use edges from the previous narrow use. 1869 if (WideUse) 1870 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1871 1872 // widenIVUse may have removed the def-use edge. 1873 if (DU.NarrowDef->use_empty()) 1874 DeadInsts.emplace_back(DU.NarrowDef); 1875 } 1876 1877 // Attach any debug information to the new PHI. 1878 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1879 1880 return WidePhi; 1881 } 1882 1883 /// Calculates control-dependent range for the given def at the given context 1884 /// by looking at dominating conditions inside of the loop 1885 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1886 Instruction *NarrowUser) { 1887 using namespace llvm::PatternMatch; 1888 1889 Value *NarrowDefLHS; 1890 const APInt *NarrowDefRHS; 1891 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1892 m_APInt(NarrowDefRHS))) || 1893 !NarrowDefRHS->isNonNegative()) 1894 return; 1895 1896 auto UpdateRangeFromCondition = [&] (Value *Condition, 1897 bool TrueDest) { 1898 CmpInst::Predicate Pred; 1899 Value *CmpRHS; 1900 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1901 m_Value(CmpRHS)))) 1902 return; 1903 1904 CmpInst::Predicate P = 1905 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1906 1907 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1908 auto CmpConstrainedLHSRange = 1909 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1910 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 1911 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 1912 1913 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1914 }; 1915 1916 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1917 if (!HasGuards) 1918 return; 1919 1920 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1921 Ctx->getParent()->rend())) { 1922 Value *C = nullptr; 1923 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1924 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1925 } 1926 }; 1927 1928 UpdateRangeFromGuards(NarrowUser); 1929 1930 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1931 // If NarrowUserBB is statically unreachable asking dominator queries may 1932 // yield surprising results. (e.g. the block may not have a dom tree node) 1933 if (!DT->isReachableFromEntry(NarrowUserBB)) 1934 return; 1935 1936 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1937 L->contains(DTB->getBlock()); 1938 DTB = DTB->getIDom()) { 1939 auto *BB = DTB->getBlock(); 1940 auto *TI = BB->getTerminator(); 1941 UpdateRangeFromGuards(TI); 1942 1943 auto *BI = dyn_cast<BranchInst>(TI); 1944 if (!BI || !BI->isConditional()) 1945 continue; 1946 1947 auto *TrueSuccessor = BI->getSuccessor(0); 1948 auto *FalseSuccessor = BI->getSuccessor(1); 1949 1950 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1951 return BBE.isSingleEdge() && 1952 DT->dominates(BBE, NarrowUser->getParent()); 1953 }; 1954 1955 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1956 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1957 1958 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1959 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1960 } 1961 } 1962 1963 /// Calculates PostIncRangeInfos map for the given IV 1964 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1965 SmallPtrSet<Instruction *, 16> Visited; 1966 SmallVector<Instruction *, 6> Worklist; 1967 Worklist.push_back(OrigPhi); 1968 Visited.insert(OrigPhi); 1969 1970 while (!Worklist.empty()) { 1971 Instruction *NarrowDef = Worklist.pop_back_val(); 1972 1973 for (Use &U : NarrowDef->uses()) { 1974 auto *NarrowUser = cast<Instruction>(U.getUser()); 1975 1976 // Don't go looking outside the current loop. 1977 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1978 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1979 continue; 1980 1981 if (!Visited.insert(NarrowUser).second) 1982 continue; 1983 1984 Worklist.push_back(NarrowUser); 1985 1986 calculatePostIncRange(NarrowDef, NarrowUser); 1987 } 1988 } 1989 } 1990 1991 PHINode *llvm::createWideIV(WideIVInfo &WI, 1992 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 1993 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1994 unsigned &NumElimExt, unsigned &NumWidened, 1995 bool HasGuards, bool UsePostIncrementRanges) { 1996 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 1997 PHINode *WidePHI = Widener.createWideIV(Rewriter); 1998 NumElimExt = Widener.getNumElimExt(); 1999 NumWidened = Widener.getNumWidened(); 2000 return WidePHI; 2001 } 2002