1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolutionExpander.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "indvars"
35 
36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
37 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
38 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
39 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
40 STATISTIC(
41     NumSimplifiedSDiv,
42     "Number of IV signed division operations converted to unsigned division");
43 STATISTIC(
44     NumSimplifiedSRem,
45     "Number of IV signed remainder operations converted to unsigned remainder");
46 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
47 
48 namespace {
49   /// This is a utility for simplifying induction variables
50   /// based on ScalarEvolution. It is the primary instrument of the
51   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
52   /// other loop passes that preserve SCEV.
53   class SimplifyIndvar {
54     Loop             *L;
55     LoopInfo         *LI;
56     ScalarEvolution  *SE;
57     DominatorTree    *DT;
58     SCEVExpander     &Rewriter;
59     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 
61     bool Changed;
62 
63   public:
64     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65                    LoopInfo *LI, SCEVExpander &Rewriter,
66                    SmallVectorImpl<WeakTrackingVH> &Dead)
67         : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
68           Changed(false) {
69       assert(LI && "IV simplification requires LoopInfo");
70     }
71 
72     bool hasChanged() const { return Changed; }
73 
74     /// Iteratively perform simplification on a worklist of users of the
75     /// specified induction variable. This is the top-level driver that applies
76     /// all simplifications to users of an IV.
77     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
78 
79     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
80 
81     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
82     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
83 
84     bool eliminateOverflowIntrinsic(CallInst *CI);
85     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
86     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
87     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
88     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
89                              bool IsSigned);
90     void replaceRemWithNumerator(BinaryOperator *Rem);
91     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
92     void replaceSRemWithURem(BinaryOperator *Rem);
93     bool eliminateSDiv(BinaryOperator *SDiv);
94     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
95     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
96   };
97 }
98 
99 /// Fold an IV operand into its use.  This removes increments of an
100 /// aligned IV when used by a instruction that ignores the low bits.
101 ///
102 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
103 ///
104 /// Return the operand of IVOperand for this induction variable if IVOperand can
105 /// be folded (in case more folding opportunities have been exposed).
106 /// Otherwise return null.
107 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
108   Value *IVSrc = nullptr;
109   unsigned OperIdx = 0;
110   const SCEV *FoldedExpr = nullptr;
111   switch (UseInst->getOpcode()) {
112   default:
113     return nullptr;
114   case Instruction::UDiv:
115   case Instruction::LShr:
116     // We're only interested in the case where we know something about
117     // the numerator and have a constant denominator.
118     if (IVOperand != UseInst->getOperand(OperIdx) ||
119         !isa<ConstantInt>(UseInst->getOperand(1)))
120       return nullptr;
121 
122     // Attempt to fold a binary operator with constant operand.
123     // e.g. ((I + 1) >> 2) => I >> 2
124     if (!isa<BinaryOperator>(IVOperand)
125         || !isa<ConstantInt>(IVOperand->getOperand(1)))
126       return nullptr;
127 
128     IVSrc = IVOperand->getOperand(0);
129     // IVSrc must be the (SCEVable) IV, since the other operand is const.
130     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
131 
132     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
133     if (UseInst->getOpcode() == Instruction::LShr) {
134       // Get a constant for the divisor. See createSCEV.
135       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
136       if (D->getValue().uge(BitWidth))
137         return nullptr;
138 
139       D = ConstantInt::get(UseInst->getContext(),
140                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
141     }
142     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
143   }
144   // We have something that might fold it's operand. Compare SCEVs.
145   if (!SE->isSCEVable(UseInst->getType()))
146     return nullptr;
147 
148   // Bypass the operand if SCEV can prove it has no effect.
149   if (SE->getSCEV(UseInst) != FoldedExpr)
150     return nullptr;
151 
152   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
153         << " -> " << *UseInst << '\n');
154 
155   UseInst->setOperand(OperIdx, IVSrc);
156   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
157 
158   ++NumElimOperand;
159   Changed = true;
160   if (IVOperand->use_empty())
161     DeadInsts.emplace_back(IVOperand);
162   return IVSrc;
163 }
164 
165 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
166                                                Value *IVOperand) {
167   unsigned IVOperIdx = 0;
168   ICmpInst::Predicate Pred = ICmp->getPredicate();
169   if (IVOperand != ICmp->getOperand(0)) {
170     // Swapped
171     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
172     IVOperIdx = 1;
173     Pred = ICmpInst::getSwappedPredicate(Pred);
174   }
175 
176   // Get the SCEVs for the ICmp operands (in the specific context of the
177   // current loop)
178   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
179   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
180   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
181 
182   ICmpInst::Predicate InvariantPredicate;
183   const SCEV *InvariantLHS, *InvariantRHS;
184 
185   auto *PN = dyn_cast<PHINode>(IVOperand);
186   if (!PN)
187     return false;
188   if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
189                                     InvariantLHS, InvariantRHS))
190     return false;
191 
192   // Rewrite the comparison to a loop invariant comparison if it can be done
193   // cheaply, where cheaply means "we don't need to emit any new
194   // instructions".
195 
196   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
197   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
198   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
199 
200   // TODO: Support multiple entry loops?  (We currently bail out of these in
201   // the IndVarSimplify pass)
202   if (auto *BB = L->getLoopPredecessor()) {
203     Value *Incoming = PN->getIncomingValueForBlock(BB);
204     const SCEV *IncomingS = SE->getSCEV(Incoming);
205     CheapExpansions[IncomingS] = Incoming;
206   }
207   Value *NewLHS = CheapExpansions[InvariantLHS];
208   Value *NewRHS = CheapExpansions[InvariantRHS];
209 
210   if (!NewLHS || !NewRHS)
211     // We could not find an existing value to replace either LHS or RHS.
212     // Generating new instructions has subtler tradeoffs, so avoid doing that
213     // for now.
214     return false;
215 
216   DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
217   ICmp->setPredicate(InvariantPredicate);
218   ICmp->setOperand(0, NewLHS);
219   ICmp->setOperand(1, NewRHS);
220   return true;
221 }
222 
223 /// SimplifyIVUsers helper for eliminating useless
224 /// comparisons against an induction variable.
225 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
226   unsigned IVOperIdx = 0;
227   ICmpInst::Predicate Pred = ICmp->getPredicate();
228   ICmpInst::Predicate OriginalPred = Pred;
229   if (IVOperand != ICmp->getOperand(0)) {
230     // Swapped
231     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
232     IVOperIdx = 1;
233     Pred = ICmpInst::getSwappedPredicate(Pred);
234   }
235 
236   // Get the SCEVs for the ICmp operands (in the specific context of the
237   // current loop)
238   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
239   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
240   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
241 
242   // If the condition is always true or always false, replace it with
243   // a constant value.
244   if (SE->isKnownPredicate(Pred, S, X)) {
245     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
246     DeadInsts.emplace_back(ICmp);
247     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
248   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
249     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
250     DeadInsts.emplace_back(ICmp);
251     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
252   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
253     // fallthrough to end of function
254   } else if (ICmpInst::isSigned(OriginalPred) &&
255              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
256     // If we were unable to make anything above, all we can is to canonicalize
257     // the comparison hoping that it will open the doors for other
258     // optimizations. If we find out that we compare two non-negative values,
259     // we turn the instruction's predicate to its unsigned version. Note that
260     // we cannot rely on Pred here unless we check if we have swapped it.
261     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
262     DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n');
263     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
264   } else
265     return;
266 
267   ++NumElimCmp;
268   Changed = true;
269 }
270 
271 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
272   // Get the SCEVs for the ICmp operands.
273   auto *N = SE->getSCEV(SDiv->getOperand(0));
274   auto *D = SE->getSCEV(SDiv->getOperand(1));
275 
276   // Simplify unnecessary loops away.
277   const Loop *L = LI->getLoopFor(SDiv->getParent());
278   N = SE->getSCEVAtScope(N, L);
279   D = SE->getSCEVAtScope(D, L);
280 
281   // Replace sdiv by udiv if both of the operands are non-negative
282   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
283     auto *UDiv = BinaryOperator::Create(
284         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
285         SDiv->getName() + ".udiv", SDiv);
286     UDiv->setIsExact(SDiv->isExact());
287     SDiv->replaceAllUsesWith(UDiv);
288     DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
289     ++NumSimplifiedSDiv;
290     Changed = true;
291     DeadInsts.push_back(SDiv);
292     return true;
293   }
294 
295   return false;
296 }
297 
298 // i %s n -> i %u n if i >= 0 and n >= 0
299 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
300   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
301   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
302                                       Rem->getName() + ".urem", Rem);
303   Rem->replaceAllUsesWith(URem);
304   DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
305   ++NumSimplifiedSRem;
306   Changed = true;
307   DeadInsts.emplace_back(Rem);
308 }
309 
310 // i % n  -->  i  if i is in [0,n).
311 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
312   Rem->replaceAllUsesWith(Rem->getOperand(0));
313   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
314   ++NumElimRem;
315   Changed = true;
316   DeadInsts.emplace_back(Rem);
317 }
318 
319 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
320 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
321   auto *T = Rem->getType();
322   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
323   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
324   SelectInst *Sel =
325       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
326   Rem->replaceAllUsesWith(Sel);
327   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
328   ++NumElimRem;
329   Changed = true;
330   DeadInsts.emplace_back(Rem);
331 }
332 
333 /// SimplifyIVUsers helper for eliminating useless remainder operations
334 /// operating on an induction variable or replacing srem by urem.
335 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
336                                          bool IsSigned) {
337   auto *NValue = Rem->getOperand(0);
338   auto *DValue = Rem->getOperand(1);
339   // We're only interested in the case where we know something about
340   // the numerator, unless it is a srem, because we want to replace srem by urem
341   // in general.
342   bool UsedAsNumerator = IVOperand == NValue;
343   if (!UsedAsNumerator && !IsSigned)
344     return;
345 
346   const SCEV *N = SE->getSCEV(NValue);
347 
348   // Simplify unnecessary loops away.
349   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
350   N = SE->getSCEVAtScope(N, ICmpLoop);
351 
352   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
353 
354   // Do not proceed if the Numerator may be negative
355   if (!IsNumeratorNonNegative)
356     return;
357 
358   const SCEV *D = SE->getSCEV(DValue);
359   D = SE->getSCEVAtScope(D, ICmpLoop);
360 
361   if (UsedAsNumerator) {
362     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
363     if (SE->isKnownPredicate(LT, N, D)) {
364       replaceRemWithNumerator(Rem);
365       return;
366     }
367 
368     auto *T = Rem->getType();
369     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
370     if (SE->isKnownPredicate(LT, NLessOne, D)) {
371       replaceRemWithNumeratorOrZero(Rem);
372       return;
373     }
374   }
375 
376   // Try to replace SRem with URem, if both N and D are known non-negative.
377   // Since we had already check N, we only need to check D now
378   if (!IsSigned || !SE->isKnownNonNegative(D))
379     return;
380 
381   replaceSRemWithURem(Rem);
382 }
383 
384 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
385   auto *F = CI->getCalledFunction();
386   if (!F)
387     return false;
388 
389   typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
390       const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
391   typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
392       const SCEV *, Type *, unsigned);
393 
394   OperationFunctionTy Operation;
395   ExtensionFunctionTy Extension;
396 
397   Instruction::BinaryOps RawOp;
398 
399   // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
400   // have nuw.
401   bool NoSignedOverflow;
402 
403   switch (F->getIntrinsicID()) {
404   default:
405     return false;
406 
407   case Intrinsic::sadd_with_overflow:
408     Operation = &ScalarEvolution::getAddExpr;
409     Extension = &ScalarEvolution::getSignExtendExpr;
410     RawOp = Instruction::Add;
411     NoSignedOverflow = true;
412     break;
413 
414   case Intrinsic::uadd_with_overflow:
415     Operation = &ScalarEvolution::getAddExpr;
416     Extension = &ScalarEvolution::getZeroExtendExpr;
417     RawOp = Instruction::Add;
418     NoSignedOverflow = false;
419     break;
420 
421   case Intrinsic::ssub_with_overflow:
422     Operation = &ScalarEvolution::getMinusSCEV;
423     Extension = &ScalarEvolution::getSignExtendExpr;
424     RawOp = Instruction::Sub;
425     NoSignedOverflow = true;
426     break;
427 
428   case Intrinsic::usub_with_overflow:
429     Operation = &ScalarEvolution::getMinusSCEV;
430     Extension = &ScalarEvolution::getZeroExtendExpr;
431     RawOp = Instruction::Sub;
432     NoSignedOverflow = false;
433     break;
434   }
435 
436   const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
437   const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
438 
439   auto *NarrowTy = cast<IntegerType>(LHS->getType());
440   auto *WideTy =
441     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
442 
443   const SCEV *A =
444       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
445                        WideTy, 0);
446   const SCEV *B =
447       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
448                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
449 
450   if (A != B)
451     return false;
452 
453   // Proved no overflow, nuke the overflow check and, if possible, the overflow
454   // intrinsic as well.
455 
456   BinaryOperator *NewResult = BinaryOperator::Create(
457       RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
458 
459   if (NoSignedOverflow)
460     NewResult->setHasNoSignedWrap(true);
461   else
462     NewResult->setHasNoUnsignedWrap(true);
463 
464   SmallVector<ExtractValueInst *, 4> ToDelete;
465 
466   for (auto *U : CI->users()) {
467     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
468       if (EVI->getIndices()[0] == 1)
469         EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
470       else {
471         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
472         EVI->replaceAllUsesWith(NewResult);
473       }
474       ToDelete.push_back(EVI);
475     }
476   }
477 
478   for (auto *EVI : ToDelete)
479     EVI->eraseFromParent();
480 
481   if (CI->use_empty())
482     CI->eraseFromParent();
483 
484   return true;
485 }
486 
487 /// Eliminate an operation that consumes a simple IV and has no observable
488 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
489 /// but UseInst may not be.
490 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
491                                      Instruction *IVOperand) {
492   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
493     eliminateIVComparison(ICmp, IVOperand);
494     return true;
495   }
496   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
497     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
498     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
499       simplifyIVRemainder(Bin, IVOperand, IsSRem);
500       return true;
501     }
502 
503     if (Bin->getOpcode() == Instruction::SDiv)
504       return eliminateSDiv(Bin);
505   }
506 
507   if (auto *CI = dyn_cast<CallInst>(UseInst))
508     if (eliminateOverflowIntrinsic(CI))
509       return true;
510 
511   if (eliminateIdentitySCEV(UseInst, IVOperand))
512     return true;
513 
514   return false;
515 }
516 
517 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
518   if (auto *BB = L->getLoopPreheader())
519     return BB->getTerminator();
520 
521   return Hint;
522 }
523 
524 /// Replace the UseInst with a constant if possible.
525 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
526   if (!SE->isSCEVable(I->getType()))
527     return false;
528 
529   // Get the symbolic expression for this instruction.
530   const SCEV *S = SE->getSCEV(I);
531 
532   if (!SE->isLoopInvariant(S, L))
533     return false;
534 
535   // Do not generate something ridiculous even if S is loop invariant.
536   if (Rewriter.isHighCostExpansion(S, L, I))
537     return false;
538 
539   auto *IP = GetLoopInvariantInsertPosition(L, I);
540   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
541 
542   I->replaceAllUsesWith(Invariant);
543   DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
544                << " with loop invariant: " << *S << '\n');
545   ++NumFoldedUser;
546   Changed = true;
547   DeadInsts.emplace_back(I);
548   return true;
549 }
550 
551 /// Eliminate any operation that SCEV can prove is an identity function.
552 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
553                                            Instruction *IVOperand) {
554   if (!SE->isSCEVable(UseInst->getType()) ||
555       (UseInst->getType() != IVOperand->getType()) ||
556       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
557     return false;
558 
559   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
560   // dominator tree, even if X is an operand to Y.  For instance, in
561   //
562   //     %iv = phi i32 {0,+,1}
563   //     br %cond, label %left, label %merge
564   //
565   //   left:
566   //     %X = add i32 %iv, 0
567   //     br label %merge
568   //
569   //   merge:
570   //     %M = phi (%X, %iv)
571   //
572   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
573   // %M.replaceAllUsesWith(%X) would be incorrect.
574 
575   if (isa<PHINode>(UseInst))
576     // If UseInst is not a PHI node then we know that IVOperand dominates
577     // UseInst directly from the legality of SSA.
578     if (!DT || !DT->dominates(IVOperand, UseInst))
579       return false;
580 
581   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
582     return false;
583 
584   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
585 
586   UseInst->replaceAllUsesWith(IVOperand);
587   ++NumElimIdentity;
588   Changed = true;
589   DeadInsts.emplace_back(UseInst);
590   return true;
591 }
592 
593 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
594 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
595 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
596                                                     Value *IVOperand) {
597 
598   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
599   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
600     return false;
601 
602   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
603                                                SCEV::NoWrapFlags, unsigned);
604   switch (BO->getOpcode()) {
605   default:
606     return false;
607 
608   case Instruction::Add:
609     GetExprForBO = &ScalarEvolution::getAddExpr;
610     break;
611 
612   case Instruction::Sub:
613     GetExprForBO = &ScalarEvolution::getMinusSCEV;
614     break;
615 
616   case Instruction::Mul:
617     GetExprForBO = &ScalarEvolution::getMulExpr;
618     break;
619   }
620 
621   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
622   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
623   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
624   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
625 
626   bool Changed = false;
627 
628   if (!BO->hasNoUnsignedWrap()) {
629     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
630     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
631       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
632       SCEV::FlagAnyWrap, 0u);
633     if (ExtendAfterOp == OpAfterExtend) {
634       BO->setHasNoUnsignedWrap();
635       SE->forgetValue(BO);
636       Changed = true;
637     }
638   }
639 
640   if (!BO->hasNoSignedWrap()) {
641     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
642     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
643       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
644       SCEV::FlagAnyWrap, 0u);
645     if (ExtendAfterOp == OpAfterExtend) {
646       BO->setHasNoSignedWrap();
647       SE->forgetValue(BO);
648       Changed = true;
649     }
650   }
651 
652   return Changed;
653 }
654 
655 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
656 /// information from the IV's range. Returns true if anything changed, false
657 /// otherwise.
658 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
659                                           Value *IVOperand) {
660   using namespace llvm::PatternMatch;
661 
662   if (BO->getOpcode() == Instruction::Shl) {
663     bool Changed = false;
664     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
665     for (auto *U : BO->users()) {
666       const APInt *C;
667       if (match(U,
668                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
669           match(U,
670                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
671         BinaryOperator *Shr = cast<BinaryOperator>(U);
672         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
673           Shr->setIsExact(true);
674           Changed = true;
675         }
676       }
677     }
678     return Changed;
679   }
680 
681   return false;
682 }
683 
684 /// Add all uses of Def to the current IV's worklist.
685 static void pushIVUsers(
686   Instruction *Def, Loop *L,
687   SmallPtrSet<Instruction*,16> &Simplified,
688   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
689 
690   for (User *U : Def->users()) {
691     Instruction *UI = cast<Instruction>(U);
692 
693     // Avoid infinite or exponential worklist processing.
694     // Also ensure unique worklist users.
695     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
696     // self edges first.
697     if (UI == Def)
698       continue;
699 
700     // Only change the current Loop, do not change the other parts (e.g. other
701     // Loops).
702     if (!L->contains(UI))
703       continue;
704 
705     // Do not push the same instruction more than once.
706     if (!Simplified.insert(UI).second)
707       continue;
708 
709     SimpleIVUsers.push_back(std::make_pair(UI, Def));
710   }
711 }
712 
713 /// Return true if this instruction generates a simple SCEV
714 /// expression in terms of that IV.
715 ///
716 /// This is similar to IVUsers' isInteresting() but processes each instruction
717 /// non-recursively when the operand is already known to be a simpleIVUser.
718 ///
719 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
720   if (!SE->isSCEVable(I->getType()))
721     return false;
722 
723   // Get the symbolic expression for this instruction.
724   const SCEV *S = SE->getSCEV(I);
725 
726   // Only consider affine recurrences.
727   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
728   if (AR && AR->getLoop() == L)
729     return true;
730 
731   return false;
732 }
733 
734 /// Iteratively perform simplification on a worklist of users
735 /// of the specified induction variable. Each successive simplification may push
736 /// more users which may themselves be candidates for simplification.
737 ///
738 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
739 /// instructions in-place during analysis. Rather than rewriting induction
740 /// variables bottom-up from their users, it transforms a chain of IVUsers
741 /// top-down, updating the IR only when it encounters a clear optimization
742 /// opportunity.
743 ///
744 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
745 ///
746 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
747   if (!SE->isSCEVable(CurrIV->getType()))
748     return;
749 
750   // Instructions processed by SimplifyIndvar for CurrIV.
751   SmallPtrSet<Instruction*,16> Simplified;
752 
753   // Use-def pairs if IV users waiting to be processed for CurrIV.
754   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
755 
756   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
757   // called multiple times for the same LoopPhi. This is the proper thing to
758   // do for loop header phis that use each other.
759   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
760 
761   while (!SimpleIVUsers.empty()) {
762     std::pair<Instruction*, Instruction*> UseOper =
763       SimpleIVUsers.pop_back_val();
764     Instruction *UseInst = UseOper.first;
765 
766     // Bypass back edges to avoid extra work.
767     if (UseInst == CurrIV) continue;
768 
769     // Try to replace UseInst with a loop invariant before any other
770     // simplifications.
771     if (replaceIVUserWithLoopInvariant(UseInst))
772       continue;
773 
774     Instruction *IVOperand = UseOper.second;
775     for (unsigned N = 0; IVOperand; ++N) {
776       assert(N <= Simplified.size() && "runaway iteration");
777 
778       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
779       if (!NewOper)
780         break; // done folding
781       IVOperand = dyn_cast<Instruction>(NewOper);
782     }
783     if (!IVOperand)
784       continue;
785 
786     if (eliminateIVUser(UseOper.first, IVOperand)) {
787       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
788       continue;
789     }
790 
791     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
792       if ((isa<OverflowingBinaryOperator>(BO) &&
793            strengthenOverflowingOperation(BO, IVOperand)) ||
794           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
795         // re-queue uses of the now modified binary operator and fall
796         // through to the checks that remain.
797         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
798       }
799     }
800 
801     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
802     if (V && Cast) {
803       V->visitCast(Cast);
804       continue;
805     }
806     if (isSimpleIVUser(UseOper.first, L, SE)) {
807       pushIVUsers(UseOper.first, L, Simplified, SimpleIVUsers);
808     }
809   }
810 }
811 
812 namespace llvm {
813 
814 void IVVisitor::anchor() { }
815 
816 /// Simplify instructions that use this induction variable
817 /// by using ScalarEvolution to analyze the IV's recurrence.
818 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
819                        LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
820                        SCEVExpander &Rewriter, IVVisitor *V) {
821   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
822                      Dead);
823   SIV.simplifyUsers(CurrIV, V);
824   return SIV.hasChanged();
825 }
826 
827 /// Simplify users of induction variables within this
828 /// loop. This does not actually change or add IVs.
829 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
830                      LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
831   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
832 #ifndef NDEBUG
833   Rewriter.setDebugType(DEBUG_TYPE);
834 #endif
835   bool Changed = false;
836   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
837     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
838   }
839   return Changed;
840 }
841 
842 } // namespace llvm
843