1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 const TargetTransformInfo *TTI; 58 SCEVExpander &Rewriter; 59 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 60 61 bool Changed; 62 63 public: 64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 65 LoopInfo *LI, const TargetTransformInfo *TTI, 66 SCEVExpander &Rewriter, 67 SmallVectorImpl<WeakTrackingVH> &Dead) 68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 69 DeadInsts(Dead), Changed(false) { 70 assert(LI && "IV simplification requires LoopInfo"); 71 } 72 73 bool hasChanged() const { return Changed; } 74 75 /// Iteratively perform simplification on a worklist of users of the 76 /// specified induction variable. This is the top-level driver that applies 77 /// all simplifications to users of an IV. 78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 79 80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 81 82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 84 85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 87 bool eliminateTrunc(TruncInst *TI); 88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 92 bool IsSigned); 93 void replaceRemWithNumerator(BinaryOperator *Rem); 94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 95 void replaceSRemWithURem(BinaryOperator *Rem); 96 bool eliminateSDiv(BinaryOperator *SDiv); 97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 99 }; 100 } 101 102 /// Fold an IV operand into its use. This removes increments of an 103 /// aligned IV when used by a instruction that ignores the low bits. 104 /// 105 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 106 /// 107 /// Return the operand of IVOperand for this induction variable if IVOperand can 108 /// be folded (in case more folding opportunities have been exposed). 109 /// Otherwise return null. 110 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 111 Value *IVSrc = nullptr; 112 const unsigned OperIdx = 0; 113 const SCEV *FoldedExpr = nullptr; 114 bool MustDropExactFlag = false; 115 switch (UseInst->getOpcode()) { 116 default: 117 return nullptr; 118 case Instruction::UDiv: 119 case Instruction::LShr: 120 // We're only interested in the case where we know something about 121 // the numerator and have a constant denominator. 122 if (IVOperand != UseInst->getOperand(OperIdx) || 123 !isa<ConstantInt>(UseInst->getOperand(1))) 124 return nullptr; 125 126 // Attempt to fold a binary operator with constant operand. 127 // e.g. ((I + 1) >> 2) => I >> 2 128 if (!isa<BinaryOperator>(IVOperand) 129 || !isa<ConstantInt>(IVOperand->getOperand(1))) 130 return nullptr; 131 132 IVSrc = IVOperand->getOperand(0); 133 // IVSrc must be the (SCEVable) IV, since the other operand is const. 134 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 135 136 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 137 if (UseInst->getOpcode() == Instruction::LShr) { 138 // Get a constant for the divisor. See createSCEV. 139 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 140 if (D->getValue().uge(BitWidth)) 141 return nullptr; 142 143 D = ConstantInt::get(UseInst->getContext(), 144 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 145 } 146 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 147 // We might have 'exact' flag set at this point which will no longer be 148 // correct after we make the replacement. 149 if (UseInst->isExact() && 150 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 151 MustDropExactFlag = true; 152 } 153 // We have something that might fold it's operand. Compare SCEVs. 154 if (!SE->isSCEVable(UseInst->getType())) 155 return nullptr; 156 157 // Bypass the operand if SCEV can prove it has no effect. 158 if (SE->getSCEV(UseInst) != FoldedExpr) 159 return nullptr; 160 161 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 162 << " -> " << *UseInst << '\n'); 163 164 UseInst->setOperand(OperIdx, IVSrc); 165 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 166 167 if (MustDropExactFlag) 168 UseInst->dropPoisonGeneratingFlags(); 169 170 ++NumElimOperand; 171 Changed = true; 172 if (IVOperand->use_empty()) 173 DeadInsts.emplace_back(IVOperand); 174 return IVSrc; 175 } 176 177 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 178 Value *IVOperand) { 179 unsigned IVOperIdx = 0; 180 ICmpInst::Predicate Pred = ICmp->getPredicate(); 181 if (IVOperand != ICmp->getOperand(0)) { 182 // Swapped 183 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 184 IVOperIdx = 1; 185 Pred = ICmpInst::getSwappedPredicate(Pred); 186 } 187 188 // Get the SCEVs for the ICmp operands (in the specific context of the 189 // current loop) 190 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 191 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 192 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 193 194 auto *PN = dyn_cast<PHINode>(IVOperand); 195 if (!PN) 196 return false; 197 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L); 198 if (!LIP) 199 return false; 200 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 201 const SCEV *InvariantLHS = LIP->LHS; 202 const SCEV *InvariantRHS = LIP->RHS; 203 204 // Rewrite the comparison to a loop invariant comparison if it can be done 205 // cheaply, where cheaply means "we don't need to emit any new 206 // instructions". 207 208 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 209 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 210 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 211 212 // TODO: Support multiple entry loops? (We currently bail out of these in 213 // the IndVarSimplify pass) 214 if (auto *BB = L->getLoopPredecessor()) { 215 const int Idx = PN->getBasicBlockIndex(BB); 216 if (Idx >= 0) { 217 Value *Incoming = PN->getIncomingValue(Idx); 218 const SCEV *IncomingS = SE->getSCEV(Incoming); 219 CheapExpansions[IncomingS] = Incoming; 220 } 221 } 222 Value *NewLHS = CheapExpansions[InvariantLHS]; 223 Value *NewRHS = CheapExpansions[InvariantRHS]; 224 225 if (!NewLHS) 226 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 227 NewLHS = ConstLHS->getValue(); 228 if (!NewRHS) 229 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 230 NewRHS = ConstRHS->getValue(); 231 232 if (!NewLHS || !NewRHS) 233 // We could not find an existing value to replace either LHS or RHS. 234 // Generating new instructions has subtler tradeoffs, so avoid doing that 235 // for now. 236 return false; 237 238 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 239 ICmp->setPredicate(InvariantPredicate); 240 ICmp->setOperand(0, NewLHS); 241 ICmp->setOperand(1, NewRHS); 242 return true; 243 } 244 245 /// SimplifyIVUsers helper for eliminating useless 246 /// comparisons against an induction variable. 247 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 248 unsigned IVOperIdx = 0; 249 ICmpInst::Predicate Pred = ICmp->getPredicate(); 250 ICmpInst::Predicate OriginalPred = Pred; 251 if (IVOperand != ICmp->getOperand(0)) { 252 // Swapped 253 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 254 IVOperIdx = 1; 255 Pred = ICmpInst::getSwappedPredicate(Pred); 256 } 257 258 // Get the SCEVs for the ICmp operands (in the specific context of the 259 // current loop) 260 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 261 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 262 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 263 264 // If the condition is always true or always false in the given context, 265 // replace it with a constant value. 266 // TODO: We can sharpen the context to common dominator of all ICmp's users. 267 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, ICmp)) { 268 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 269 DeadInsts.emplace_back(ICmp); 270 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 271 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 272 // fallthrough to end of function 273 } else if (ICmpInst::isSigned(OriginalPred) && 274 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 275 // If we were unable to make anything above, all we can is to canonicalize 276 // the comparison hoping that it will open the doors for other 277 // optimizations. If we find out that we compare two non-negative values, 278 // we turn the instruction's predicate to its unsigned version. Note that 279 // we cannot rely on Pred here unless we check if we have swapped it. 280 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 281 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 282 << '\n'); 283 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 284 } else 285 return; 286 287 ++NumElimCmp; 288 Changed = true; 289 } 290 291 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 292 // Get the SCEVs for the ICmp operands. 293 auto *N = SE->getSCEV(SDiv->getOperand(0)); 294 auto *D = SE->getSCEV(SDiv->getOperand(1)); 295 296 // Simplify unnecessary loops away. 297 const Loop *L = LI->getLoopFor(SDiv->getParent()); 298 N = SE->getSCEVAtScope(N, L); 299 D = SE->getSCEVAtScope(D, L); 300 301 // Replace sdiv by udiv if both of the operands are non-negative 302 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 303 auto *UDiv = BinaryOperator::Create( 304 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 305 SDiv->getName() + ".udiv", SDiv); 306 UDiv->setIsExact(SDiv->isExact()); 307 SDiv->replaceAllUsesWith(UDiv); 308 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 309 ++NumSimplifiedSDiv; 310 Changed = true; 311 DeadInsts.push_back(SDiv); 312 return true; 313 } 314 315 return false; 316 } 317 318 // i %s n -> i %u n if i >= 0 and n >= 0 319 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 320 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 321 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 322 Rem->getName() + ".urem", Rem); 323 Rem->replaceAllUsesWith(URem); 324 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 325 ++NumSimplifiedSRem; 326 Changed = true; 327 DeadInsts.emplace_back(Rem); 328 } 329 330 // i % n --> i if i is in [0,n). 331 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 332 Rem->replaceAllUsesWith(Rem->getOperand(0)); 333 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 334 ++NumElimRem; 335 Changed = true; 336 DeadInsts.emplace_back(Rem); 337 } 338 339 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 340 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 341 auto *T = Rem->getType(); 342 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 343 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 344 SelectInst *Sel = 345 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 346 Rem->replaceAllUsesWith(Sel); 347 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 348 ++NumElimRem; 349 Changed = true; 350 DeadInsts.emplace_back(Rem); 351 } 352 353 /// SimplifyIVUsers helper for eliminating useless remainder operations 354 /// operating on an induction variable or replacing srem by urem. 355 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 356 bool IsSigned) { 357 auto *NValue = Rem->getOperand(0); 358 auto *DValue = Rem->getOperand(1); 359 // We're only interested in the case where we know something about 360 // the numerator, unless it is a srem, because we want to replace srem by urem 361 // in general. 362 bool UsedAsNumerator = IVOperand == NValue; 363 if (!UsedAsNumerator && !IsSigned) 364 return; 365 366 const SCEV *N = SE->getSCEV(NValue); 367 368 // Simplify unnecessary loops away. 369 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 370 N = SE->getSCEVAtScope(N, ICmpLoop); 371 372 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 373 374 // Do not proceed if the Numerator may be negative 375 if (!IsNumeratorNonNegative) 376 return; 377 378 const SCEV *D = SE->getSCEV(DValue); 379 D = SE->getSCEVAtScope(D, ICmpLoop); 380 381 if (UsedAsNumerator) { 382 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 383 if (SE->isKnownPredicate(LT, N, D)) { 384 replaceRemWithNumerator(Rem); 385 return; 386 } 387 388 auto *T = Rem->getType(); 389 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 390 if (SE->isKnownPredicate(LT, NLessOne, D)) { 391 replaceRemWithNumeratorOrZero(Rem); 392 return; 393 } 394 } 395 396 // Try to replace SRem with URem, if both N and D are known non-negative. 397 // Since we had already check N, we only need to check D now 398 if (!IsSigned || !SE->isKnownNonNegative(D)) 399 return; 400 401 replaceSRemWithURem(Rem); 402 } 403 404 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 405 bool Signed, const SCEV *LHS, const SCEV *RHS) { 406 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 407 SCEV::NoWrapFlags, unsigned); 408 switch (BinOp) { 409 default: 410 llvm_unreachable("Unsupported binary op"); 411 case Instruction::Add: 412 Operation = &ScalarEvolution::getAddExpr; 413 break; 414 case Instruction::Sub: 415 Operation = &ScalarEvolution::getMinusSCEV; 416 break; 417 case Instruction::Mul: 418 Operation = &ScalarEvolution::getMulExpr; 419 break; 420 } 421 422 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 423 Signed ? &ScalarEvolution::getSignExtendExpr 424 : &ScalarEvolution::getZeroExtendExpr; 425 426 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 427 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 428 auto *WideTy = 429 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 430 431 const SCEV *A = 432 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 433 WideTy, 0); 434 const SCEV *B = 435 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 436 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 437 return A == B; 438 } 439 440 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 441 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 442 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 443 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 444 return false; 445 446 // Proved no overflow, nuke the overflow check and, if possible, the overflow 447 // intrinsic as well. 448 449 BinaryOperator *NewResult = BinaryOperator::Create( 450 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 451 452 if (WO->isSigned()) 453 NewResult->setHasNoSignedWrap(true); 454 else 455 NewResult->setHasNoUnsignedWrap(true); 456 457 SmallVector<ExtractValueInst *, 4> ToDelete; 458 459 for (auto *U : WO->users()) { 460 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 461 if (EVI->getIndices()[0] == 1) 462 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 463 else { 464 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 465 EVI->replaceAllUsesWith(NewResult); 466 } 467 ToDelete.push_back(EVI); 468 } 469 } 470 471 for (auto *EVI : ToDelete) 472 EVI->eraseFromParent(); 473 474 if (WO->use_empty()) 475 WO->eraseFromParent(); 476 477 Changed = true; 478 return true; 479 } 480 481 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 482 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 483 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 484 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 485 return false; 486 487 BinaryOperator *BO = BinaryOperator::Create( 488 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 489 if (SI->isSigned()) 490 BO->setHasNoSignedWrap(); 491 else 492 BO->setHasNoUnsignedWrap(); 493 494 SI->replaceAllUsesWith(BO); 495 DeadInsts.emplace_back(SI); 496 Changed = true; 497 return true; 498 } 499 500 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 501 // It is always legal to replace 502 // icmp <pred> i32 trunc(iv), n 503 // with 504 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 505 // Or with 506 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 507 // Or with either of these if pred is an equality predicate. 508 // 509 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 510 // every comparison which uses trunc, it means that we can replace each of 511 // them with comparison of iv against sext/zext(n). We no longer need trunc 512 // after that. 513 // 514 // TODO: Should we do this if we can widen *some* comparisons, but not all 515 // of them? Sometimes it is enough to enable other optimizations, but the 516 // trunc instruction will stay in the loop. 517 Value *IV = TI->getOperand(0); 518 Type *IVTy = IV->getType(); 519 const SCEV *IVSCEV = SE->getSCEV(IV); 520 const SCEV *TISCEV = SE->getSCEV(TI); 521 522 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 523 // get rid of trunc 524 bool DoesSExtCollapse = false; 525 bool DoesZExtCollapse = false; 526 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 527 DoesSExtCollapse = true; 528 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 529 DoesZExtCollapse = true; 530 531 // If neither sext nor zext does collapse, it is not profitable to do any 532 // transform. Bail. 533 if (!DoesSExtCollapse && !DoesZExtCollapse) 534 return false; 535 536 // Collect users of the trunc that look like comparisons against invariants. 537 // Bail if we find something different. 538 SmallVector<ICmpInst *, 4> ICmpUsers; 539 for (auto *U : TI->users()) { 540 // We don't care about users in unreachable blocks. 541 if (isa<Instruction>(U) && 542 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 543 continue; 544 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 545 if (!ICI) return false; 546 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 547 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 548 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 549 return false; 550 // If we cannot get rid of trunc, bail. 551 if (ICI->isSigned() && !DoesSExtCollapse) 552 return false; 553 if (ICI->isUnsigned() && !DoesZExtCollapse) 554 return false; 555 // For equality, either signed or unsigned works. 556 ICmpUsers.push_back(ICI); 557 } 558 559 auto CanUseZExt = [&](ICmpInst *ICI) { 560 // Unsigned comparison can be widened as unsigned. 561 if (ICI->isUnsigned()) 562 return true; 563 // Is it profitable to do zext? 564 if (!DoesZExtCollapse) 565 return false; 566 // For equality, we can safely zext both parts. 567 if (ICI->isEquality()) 568 return true; 569 // Otherwise we can only use zext when comparing two non-negative or two 570 // negative values. But in practice, we will never pass DoesZExtCollapse 571 // check for a negative value, because zext(trunc(x)) is non-negative. So 572 // it only make sense to check for non-negativity here. 573 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 574 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 575 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 576 }; 577 // Replace all comparisons against trunc with comparisons against IV. 578 for (auto *ICI : ICmpUsers) { 579 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 580 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 581 Instruction *Ext = nullptr; 582 // For signed/unsigned predicate, replace the old comparison with comparison 583 // of immediate IV against sext/zext of the invariant argument. If we can 584 // use either sext or zext (i.e. we are dealing with equality predicate), 585 // then prefer zext as a more canonical form. 586 // TODO: If we see a signed comparison which can be turned into unsigned, 587 // we can do it here for canonicalization purposes. 588 ICmpInst::Predicate Pred = ICI->getPredicate(); 589 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 590 if (CanUseZExt(ICI)) { 591 assert(DoesZExtCollapse && "Unprofitable zext?"); 592 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 593 Pred = ICmpInst::getUnsignedPredicate(Pred); 594 } else { 595 assert(DoesSExtCollapse && "Unprofitable sext?"); 596 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 597 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 598 } 599 bool Changed; 600 L->makeLoopInvariant(Ext, Changed); 601 (void)Changed; 602 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 603 ICI->replaceAllUsesWith(NewICI); 604 DeadInsts.emplace_back(ICI); 605 } 606 607 // Trunc no longer needed. 608 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 609 DeadInsts.emplace_back(TI); 610 return true; 611 } 612 613 /// Eliminate an operation that consumes a simple IV and has no observable 614 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 615 /// but UseInst may not be. 616 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 617 Instruction *IVOperand) { 618 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 619 eliminateIVComparison(ICmp, IVOperand); 620 return true; 621 } 622 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 623 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 624 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 625 simplifyIVRemainder(Bin, IVOperand, IsSRem); 626 return true; 627 } 628 629 if (Bin->getOpcode() == Instruction::SDiv) 630 return eliminateSDiv(Bin); 631 } 632 633 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 634 if (eliminateOverflowIntrinsic(WO)) 635 return true; 636 637 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 638 if (eliminateSaturatingIntrinsic(SI)) 639 return true; 640 641 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 642 if (eliminateTrunc(TI)) 643 return true; 644 645 if (eliminateIdentitySCEV(UseInst, IVOperand)) 646 return true; 647 648 return false; 649 } 650 651 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 652 if (auto *BB = L->getLoopPreheader()) 653 return BB->getTerminator(); 654 655 return Hint; 656 } 657 658 /// Replace the UseInst with a loop invariant expression if it is safe. 659 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 660 if (!SE->isSCEVable(I->getType())) 661 return false; 662 663 // Get the symbolic expression for this instruction. 664 const SCEV *S = SE->getSCEV(I); 665 666 if (!SE->isLoopInvariant(S, L)) 667 return false; 668 669 // Do not generate something ridiculous even if S is loop invariant. 670 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 671 return false; 672 673 auto *IP = GetLoopInvariantInsertPosition(L, I); 674 675 if (!isSafeToExpandAt(S, IP, *SE)) { 676 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 677 << " with non-speculable loop invariant: " << *S << '\n'); 678 return false; 679 } 680 681 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 682 683 I->replaceAllUsesWith(Invariant); 684 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 685 << " with loop invariant: " << *S << '\n'); 686 ++NumFoldedUser; 687 Changed = true; 688 DeadInsts.emplace_back(I); 689 return true; 690 } 691 692 /// Eliminate any operation that SCEV can prove is an identity function. 693 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 694 Instruction *IVOperand) { 695 if (!SE->isSCEVable(UseInst->getType()) || 696 (UseInst->getType() != IVOperand->getType()) || 697 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 698 return false; 699 700 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 701 // dominator tree, even if X is an operand to Y. For instance, in 702 // 703 // %iv = phi i32 {0,+,1} 704 // br %cond, label %left, label %merge 705 // 706 // left: 707 // %X = add i32 %iv, 0 708 // br label %merge 709 // 710 // merge: 711 // %M = phi (%X, %iv) 712 // 713 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 714 // %M.replaceAllUsesWith(%X) would be incorrect. 715 716 if (isa<PHINode>(UseInst)) 717 // If UseInst is not a PHI node then we know that IVOperand dominates 718 // UseInst directly from the legality of SSA. 719 if (!DT || !DT->dominates(IVOperand, UseInst)) 720 return false; 721 722 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 723 return false; 724 725 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 726 727 UseInst->replaceAllUsesWith(IVOperand); 728 ++NumElimIdentity; 729 Changed = true; 730 DeadInsts.emplace_back(UseInst); 731 return true; 732 } 733 734 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 735 /// unsigned-overflow. Returns true if anything changed, false otherwise. 736 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 737 Value *IVOperand) { 738 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 739 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 740 return false; 741 742 if (BO->getOpcode() != Instruction::Add && 743 BO->getOpcode() != Instruction::Sub && 744 BO->getOpcode() != Instruction::Mul) 745 return false; 746 747 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 748 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 749 bool Changed = false; 750 751 if (!BO->hasNoUnsignedWrap() && 752 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 753 BO->setHasNoUnsignedWrap(); 754 SE->forgetValue(BO); 755 Changed = true; 756 } 757 758 if (!BO->hasNoSignedWrap() && 759 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 760 BO->setHasNoSignedWrap(); 761 SE->forgetValue(BO); 762 Changed = true; 763 } 764 765 return Changed; 766 } 767 768 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 769 /// information from the IV's range. Returns true if anything changed, false 770 /// otherwise. 771 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 772 Value *IVOperand) { 773 using namespace llvm::PatternMatch; 774 775 if (BO->getOpcode() == Instruction::Shl) { 776 bool Changed = false; 777 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 778 for (auto *U : BO->users()) { 779 const APInt *C; 780 if (match(U, 781 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 782 match(U, 783 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 784 BinaryOperator *Shr = cast<BinaryOperator>(U); 785 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 786 Shr->setIsExact(true); 787 Changed = true; 788 } 789 } 790 } 791 return Changed; 792 } 793 794 return false; 795 } 796 797 /// Add all uses of Def to the current IV's worklist. 798 static void pushIVUsers( 799 Instruction *Def, Loop *L, 800 SmallPtrSet<Instruction*,16> &Simplified, 801 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 802 803 for (User *U : Def->users()) { 804 Instruction *UI = cast<Instruction>(U); 805 806 // Avoid infinite or exponential worklist processing. 807 // Also ensure unique worklist users. 808 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 809 // self edges first. 810 if (UI == Def) 811 continue; 812 813 // Only change the current Loop, do not change the other parts (e.g. other 814 // Loops). 815 if (!L->contains(UI)) 816 continue; 817 818 // Do not push the same instruction more than once. 819 if (!Simplified.insert(UI).second) 820 continue; 821 822 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 823 } 824 } 825 826 /// Return true if this instruction generates a simple SCEV 827 /// expression in terms of that IV. 828 /// 829 /// This is similar to IVUsers' isInteresting() but processes each instruction 830 /// non-recursively when the operand is already known to be a simpleIVUser. 831 /// 832 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 833 if (!SE->isSCEVable(I->getType())) 834 return false; 835 836 // Get the symbolic expression for this instruction. 837 const SCEV *S = SE->getSCEV(I); 838 839 // Only consider affine recurrences. 840 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 841 if (AR && AR->getLoop() == L) 842 return true; 843 844 return false; 845 } 846 847 /// Iteratively perform simplification on a worklist of users 848 /// of the specified induction variable. Each successive simplification may push 849 /// more users which may themselves be candidates for simplification. 850 /// 851 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 852 /// instructions in-place during analysis. Rather than rewriting induction 853 /// variables bottom-up from their users, it transforms a chain of IVUsers 854 /// top-down, updating the IR only when it encounters a clear optimization 855 /// opportunity. 856 /// 857 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 858 /// 859 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 860 if (!SE->isSCEVable(CurrIV->getType())) 861 return; 862 863 // Instructions processed by SimplifyIndvar for CurrIV. 864 SmallPtrSet<Instruction*,16> Simplified; 865 866 // Use-def pairs if IV users waiting to be processed for CurrIV. 867 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 868 869 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 870 // called multiple times for the same LoopPhi. This is the proper thing to 871 // do for loop header phis that use each other. 872 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 873 874 while (!SimpleIVUsers.empty()) { 875 std::pair<Instruction*, Instruction*> UseOper = 876 SimpleIVUsers.pop_back_val(); 877 Instruction *UseInst = UseOper.first; 878 879 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 880 // rather than try to do some complex analysis or transformation (such as 881 // widening) basing on it. 882 // TODO: Propagate TLI and pass it here to handle more cases. 883 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 884 DeadInsts.emplace_back(UseInst); 885 continue; 886 } 887 888 // Bypass back edges to avoid extra work. 889 if (UseInst == CurrIV) continue; 890 891 // Try to replace UseInst with a loop invariant before any other 892 // simplifications. 893 if (replaceIVUserWithLoopInvariant(UseInst)) 894 continue; 895 896 Instruction *IVOperand = UseOper.second; 897 for (unsigned N = 0; IVOperand; ++N) { 898 assert(N <= Simplified.size() && "runaway iteration"); 899 900 Value *NewOper = foldIVUser(UseInst, IVOperand); 901 if (!NewOper) 902 break; // done folding 903 IVOperand = dyn_cast<Instruction>(NewOper); 904 } 905 if (!IVOperand) 906 continue; 907 908 if (eliminateIVUser(UseInst, IVOperand)) { 909 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 910 continue; 911 } 912 913 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 914 if ((isa<OverflowingBinaryOperator>(BO) && 915 strengthenOverflowingOperation(BO, IVOperand)) || 916 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 917 // re-queue uses of the now modified binary operator and fall 918 // through to the checks that remain. 919 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 920 } 921 } 922 923 CastInst *Cast = dyn_cast<CastInst>(UseInst); 924 if (V && Cast) { 925 V->visitCast(Cast); 926 continue; 927 } 928 if (isSimpleIVUser(UseInst, L, SE)) { 929 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 930 } 931 } 932 } 933 934 namespace llvm { 935 936 void IVVisitor::anchor() { } 937 938 /// Simplify instructions that use this induction variable 939 /// by using ScalarEvolution to analyze the IV's recurrence. 940 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 941 LoopInfo *LI, const TargetTransformInfo *TTI, 942 SmallVectorImpl<WeakTrackingVH> &Dead, 943 SCEVExpander &Rewriter, IVVisitor *V) { 944 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 945 Rewriter, Dead); 946 SIV.simplifyUsers(CurrIV, V); 947 return SIV.hasChanged(); 948 } 949 950 /// Simplify users of induction variables within this 951 /// loop. This does not actually change or add IVs. 952 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 953 LoopInfo *LI, const TargetTransformInfo *TTI, 954 SmallVectorImpl<WeakTrackingVH> &Dead) { 955 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 956 #ifndef NDEBUG 957 Rewriter.setDebugType(DEBUG_TYPE); 958 #endif 959 bool Changed = false; 960 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 961 Changed |= 962 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 963 } 964 return Changed; 965 } 966 967 } // namespace llvm 968 969 //===----------------------------------------------------------------------===// 970 // Widen Induction Variables - Extend the width of an IV to cover its 971 // widest uses. 972 //===----------------------------------------------------------------------===// 973 974 class WidenIV { 975 // Parameters 976 PHINode *OrigPhi; 977 Type *WideType; 978 979 // Context 980 LoopInfo *LI; 981 Loop *L; 982 ScalarEvolution *SE; 983 DominatorTree *DT; 984 985 // Does the module have any calls to the llvm.experimental.guard intrinsic 986 // at all? If not we can avoid scanning instructions looking for guards. 987 bool HasGuards; 988 989 bool UsePostIncrementRanges; 990 991 // Statistics 992 unsigned NumElimExt = 0; 993 unsigned NumWidened = 0; 994 995 // Result 996 PHINode *WidePhi = nullptr; 997 Instruction *WideInc = nullptr; 998 const SCEV *WideIncExpr = nullptr; 999 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1000 1001 SmallPtrSet<Instruction *,16> Widened; 1002 1003 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 1004 1005 // A map tracking the kind of extension used to widen each narrow IV 1006 // and narrow IV user. 1007 // Key: pointer to a narrow IV or IV user. 1008 // Value: the kind of extension used to widen this Instruction. 1009 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1010 1011 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1012 1013 // A map with control-dependent ranges for post increment IV uses. The key is 1014 // a pair of IV def and a use of this def denoting the context. The value is 1015 // a ConstantRange representing possible values of the def at the given 1016 // context. 1017 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1018 1019 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1020 Instruction *UseI) { 1021 DefUserPair Key(Def, UseI); 1022 auto It = PostIncRangeInfos.find(Key); 1023 return It == PostIncRangeInfos.end() 1024 ? Optional<ConstantRange>(None) 1025 : Optional<ConstantRange>(It->second); 1026 } 1027 1028 void calculatePostIncRanges(PHINode *OrigPhi); 1029 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1030 1031 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1032 DefUserPair Key(Def, UseI); 1033 auto It = PostIncRangeInfos.find(Key); 1034 if (It == PostIncRangeInfos.end()) 1035 PostIncRangeInfos.insert({Key, R}); 1036 else 1037 It->second = R.intersectWith(It->second); 1038 } 1039 1040 public: 1041 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1042 /// computes the same value as the Narrow IV def. This avoids caching Use* 1043 /// pointers. 1044 struct NarrowIVDefUse { 1045 Instruction *NarrowDef = nullptr; 1046 Instruction *NarrowUse = nullptr; 1047 Instruction *WideDef = nullptr; 1048 1049 // True if the narrow def is never negative. Tracking this information lets 1050 // us use a sign extension instead of a zero extension or vice versa, when 1051 // profitable and legal. 1052 bool NeverNegative = false; 1053 1054 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1055 bool NeverNegative) 1056 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1057 NeverNegative(NeverNegative) {} 1058 }; 1059 1060 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1061 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1062 bool HasGuards, bool UsePostIncrementRanges = true); 1063 1064 PHINode *createWideIV(SCEVExpander &Rewriter); 1065 1066 unsigned getNumElimExt() { return NumElimExt; }; 1067 unsigned getNumWidened() { return NumWidened; }; 1068 1069 protected: 1070 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1071 Instruction *Use); 1072 1073 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1074 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1075 const SCEVAddRecExpr *WideAR); 1076 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1077 1078 ExtendKind getExtendKind(Instruction *I); 1079 1080 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1081 1082 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1083 1084 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1085 1086 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1087 unsigned OpCode) const; 1088 1089 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1090 1091 bool widenLoopCompare(NarrowIVDefUse DU); 1092 bool widenWithVariantUse(NarrowIVDefUse DU); 1093 1094 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1095 1096 private: 1097 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1098 }; 1099 1100 1101 /// Determine the insertion point for this user. By default, insert immediately 1102 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1103 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1104 /// common dominator for the incoming blocks. A nullptr can be returned if no 1105 /// viable location is found: it may happen if User is a PHI and Def only comes 1106 /// to this PHI from unreachable blocks. 1107 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1108 DominatorTree *DT, LoopInfo *LI) { 1109 PHINode *PHI = dyn_cast<PHINode>(User); 1110 if (!PHI) 1111 return User; 1112 1113 Instruction *InsertPt = nullptr; 1114 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1115 if (PHI->getIncomingValue(i) != Def) 1116 continue; 1117 1118 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1119 1120 if (!DT->isReachableFromEntry(InsertBB)) 1121 continue; 1122 1123 if (!InsertPt) { 1124 InsertPt = InsertBB->getTerminator(); 1125 continue; 1126 } 1127 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1128 InsertPt = InsertBB->getTerminator(); 1129 } 1130 1131 // If we have skipped all inputs, it means that Def only comes to Phi from 1132 // unreachable blocks. 1133 if (!InsertPt) 1134 return nullptr; 1135 1136 auto *DefI = dyn_cast<Instruction>(Def); 1137 if (!DefI) 1138 return InsertPt; 1139 1140 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1141 1142 auto *L = LI->getLoopFor(DefI->getParent()); 1143 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1144 1145 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1146 if (LI->getLoopFor(DTN->getBlock()) == L) 1147 return DTN->getBlock()->getTerminator(); 1148 1149 llvm_unreachable("DefI dominates InsertPt!"); 1150 } 1151 1152 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1153 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1154 bool HasGuards, bool UsePostIncrementRanges) 1155 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1156 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1157 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1158 DeadInsts(DI) { 1159 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1160 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1161 } 1162 1163 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1164 bool IsSigned, Instruction *Use) { 1165 // Set the debug location and conservative insertion point. 1166 IRBuilder<> Builder(Use); 1167 // Hoist the insertion point into loop preheaders as far as possible. 1168 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1169 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1170 L = L->getParentLoop()) 1171 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1172 1173 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1174 Builder.CreateZExt(NarrowOper, WideType); 1175 } 1176 1177 /// Instantiate a wide operation to replace a narrow operation. This only needs 1178 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1179 /// 0 for any operation we decide not to clone. 1180 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1181 const SCEVAddRecExpr *WideAR) { 1182 unsigned Opcode = DU.NarrowUse->getOpcode(); 1183 switch (Opcode) { 1184 default: 1185 return nullptr; 1186 case Instruction::Add: 1187 case Instruction::Mul: 1188 case Instruction::UDiv: 1189 case Instruction::Sub: 1190 return cloneArithmeticIVUser(DU, WideAR); 1191 1192 case Instruction::And: 1193 case Instruction::Or: 1194 case Instruction::Xor: 1195 case Instruction::Shl: 1196 case Instruction::LShr: 1197 case Instruction::AShr: 1198 return cloneBitwiseIVUser(DU); 1199 } 1200 } 1201 1202 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1203 Instruction *NarrowUse = DU.NarrowUse; 1204 Instruction *NarrowDef = DU.NarrowDef; 1205 Instruction *WideDef = DU.WideDef; 1206 1207 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1208 1209 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1210 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1211 // invariant and will be folded or hoisted. If it actually comes from a 1212 // widened IV, it should be removed during a future call to widenIVUse. 1213 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1214 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1215 ? WideDef 1216 : createExtendInst(NarrowUse->getOperand(0), WideType, 1217 IsSigned, NarrowUse); 1218 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1219 ? WideDef 1220 : createExtendInst(NarrowUse->getOperand(1), WideType, 1221 IsSigned, NarrowUse); 1222 1223 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1224 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1225 NarrowBO->getName()); 1226 IRBuilder<> Builder(NarrowUse); 1227 Builder.Insert(WideBO); 1228 WideBO->copyIRFlags(NarrowBO); 1229 return WideBO; 1230 } 1231 1232 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1233 const SCEVAddRecExpr *WideAR) { 1234 Instruction *NarrowUse = DU.NarrowUse; 1235 Instruction *NarrowDef = DU.NarrowDef; 1236 Instruction *WideDef = DU.WideDef; 1237 1238 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1239 1240 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1241 1242 // We're trying to find X such that 1243 // 1244 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1245 // 1246 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1247 // and check using SCEV if any of them are correct. 1248 1249 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1250 // correct solution to X. 1251 auto GuessNonIVOperand = [&](bool SignExt) { 1252 const SCEV *WideLHS; 1253 const SCEV *WideRHS; 1254 1255 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1256 if (SignExt) 1257 return SE->getSignExtendExpr(S, Ty); 1258 return SE->getZeroExtendExpr(S, Ty); 1259 }; 1260 1261 if (IVOpIdx == 0) { 1262 WideLHS = SE->getSCEV(WideDef); 1263 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1264 WideRHS = GetExtend(NarrowRHS, WideType); 1265 } else { 1266 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1267 WideLHS = GetExtend(NarrowLHS, WideType); 1268 WideRHS = SE->getSCEV(WideDef); 1269 } 1270 1271 // WideUse is "WideDef `op.wide` X" as described in the comment. 1272 const SCEV *WideUse = 1273 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1274 1275 return WideUse == WideAR; 1276 }; 1277 1278 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1279 if (!GuessNonIVOperand(SignExtend)) { 1280 SignExtend = !SignExtend; 1281 if (!GuessNonIVOperand(SignExtend)) 1282 return nullptr; 1283 } 1284 1285 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1286 ? WideDef 1287 : createExtendInst(NarrowUse->getOperand(0), WideType, 1288 SignExtend, NarrowUse); 1289 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1290 ? WideDef 1291 : createExtendInst(NarrowUse->getOperand(1), WideType, 1292 SignExtend, NarrowUse); 1293 1294 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1295 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1296 NarrowBO->getName()); 1297 1298 IRBuilder<> Builder(NarrowUse); 1299 Builder.Insert(WideBO); 1300 WideBO->copyIRFlags(NarrowBO); 1301 return WideBO; 1302 } 1303 1304 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1305 auto It = ExtendKindMap.find(I); 1306 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1307 return It->second; 1308 } 1309 1310 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1311 unsigned OpCode) const { 1312 switch (OpCode) { 1313 case Instruction::Add: 1314 return SE->getAddExpr(LHS, RHS); 1315 case Instruction::Sub: 1316 return SE->getMinusSCEV(LHS, RHS); 1317 case Instruction::Mul: 1318 return SE->getMulExpr(LHS, RHS); 1319 case Instruction::UDiv: 1320 return SE->getUDivExpr(LHS, RHS); 1321 default: 1322 llvm_unreachable("Unsupported opcode."); 1323 }; 1324 } 1325 1326 /// No-wrap operations can transfer sign extension of their result to their 1327 /// operands. Generate the SCEV value for the widened operation without 1328 /// actually modifying the IR yet. If the expression after extending the 1329 /// operands is an AddRec for this loop, return the AddRec and the kind of 1330 /// extension used. 1331 WidenIV::WidenedRecTy 1332 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1333 // Handle the common case of add<nsw/nuw> 1334 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1335 // Only Add/Sub/Mul instructions supported yet. 1336 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1337 OpCode != Instruction::Mul) 1338 return {nullptr, Unknown}; 1339 1340 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1341 // if extending the other will lead to a recurrence. 1342 const unsigned ExtendOperIdx = 1343 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1344 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1345 1346 const SCEV *ExtendOperExpr = nullptr; 1347 const OverflowingBinaryOperator *OBO = 1348 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1349 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1350 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1351 ExtendOperExpr = SE->getSignExtendExpr( 1352 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1353 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1354 ExtendOperExpr = SE->getZeroExtendExpr( 1355 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1356 else 1357 return {nullptr, Unknown}; 1358 1359 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1360 // flags. This instruction may be guarded by control flow that the no-wrap 1361 // behavior depends on. Non-control-equivalent instructions can be mapped to 1362 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1363 // semantics to those operations. 1364 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1365 const SCEV *rhs = ExtendOperExpr; 1366 1367 // Let's swap operands to the initial order for the case of non-commutative 1368 // operations, like SUB. See PR21014. 1369 if (ExtendOperIdx == 0) 1370 std::swap(lhs, rhs); 1371 const SCEVAddRecExpr *AddRec = 1372 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1373 1374 if (!AddRec || AddRec->getLoop() != L) 1375 return {nullptr, Unknown}; 1376 1377 return {AddRec, ExtKind}; 1378 } 1379 1380 /// Is this instruction potentially interesting for further simplification after 1381 /// widening it's type? In other words, can the extend be safely hoisted out of 1382 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1383 /// so, return the extended recurrence and the kind of extension used. Otherwise 1384 /// return {nullptr, Unknown}. 1385 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1386 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1387 return {nullptr, Unknown}; 1388 1389 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1390 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1391 SE->getTypeSizeInBits(WideType)) { 1392 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1393 // index. So don't follow this use. 1394 return {nullptr, Unknown}; 1395 } 1396 1397 const SCEV *WideExpr; 1398 ExtendKind ExtKind; 1399 if (DU.NeverNegative) { 1400 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1401 if (isa<SCEVAddRecExpr>(WideExpr)) 1402 ExtKind = SignExtended; 1403 else { 1404 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1405 ExtKind = ZeroExtended; 1406 } 1407 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1408 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1409 ExtKind = SignExtended; 1410 } else { 1411 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1412 ExtKind = ZeroExtended; 1413 } 1414 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1415 if (!AddRec || AddRec->getLoop() != L) 1416 return {nullptr, Unknown}; 1417 return {AddRec, ExtKind}; 1418 } 1419 1420 /// This IV user cannot be widened. Replace this use of the original narrow IV 1421 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1422 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1423 LoopInfo *LI) { 1424 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1425 if (!InsertPt) 1426 return; 1427 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1428 << *DU.NarrowUse << "\n"); 1429 IRBuilder<> Builder(InsertPt); 1430 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1431 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1432 } 1433 1434 /// If the narrow use is a compare instruction, then widen the compare 1435 // (and possibly the other operand). The extend operation is hoisted into the 1436 // loop preheader as far as possible. 1437 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1438 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1439 if (!Cmp) 1440 return false; 1441 1442 // We can legally widen the comparison in the following two cases: 1443 // 1444 // - The signedness of the IV extension and comparison match 1445 // 1446 // - The narrow IV is always positive (and thus its sign extension is equal 1447 // to its zero extension). For instance, let's say we're zero extending 1448 // %narrow for the following use 1449 // 1450 // icmp slt i32 %narrow, %val ... (A) 1451 // 1452 // and %narrow is always positive. Then 1453 // 1454 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1455 // == icmp slt i32 zext(%narrow), sext(%val) 1456 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1457 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1458 return false; 1459 1460 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1461 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1462 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1463 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1464 1465 // Widen the compare instruction. 1466 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1467 if (!InsertPt) 1468 return false; 1469 IRBuilder<> Builder(InsertPt); 1470 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1471 1472 // Widen the other operand of the compare, if necessary. 1473 if (CastWidth < IVWidth) { 1474 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1475 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1476 } 1477 return true; 1478 } 1479 1480 /// Find a point in code which dominates all given instructions. We can safely 1481 /// assume that, whatever fact we can prove at the found point, this fact is 1482 /// also true for each of the given instructions. 1483 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 1484 DominatorTree &DT) { 1485 Instruction *CommonDom = nullptr; 1486 for (auto *Insn : Instructions) 1487 if (!CommonDom || DT.dominates(Insn, CommonDom)) 1488 CommonDom = Insn; 1489 else if (!DT.dominates(CommonDom, Insn)) 1490 // If there is no dominance relation, use common dominator. 1491 CommonDom = 1492 DT.findNearestCommonDominator(CommonDom->getParent(), 1493 Insn->getParent())->getTerminator(); 1494 assert(CommonDom && "Common dominator not found?"); 1495 return CommonDom; 1496 } 1497 1498 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1499 // will not work when: 1500 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1501 // expand, eg. add %indvar, (load %addr) 1502 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1503 // While SCEV fails to avoid trunc, we can still try to use instruction 1504 // combining approach to prove trunc is not required. This can be further 1505 // extended with other instruction combining checks, but for now we handle the 1506 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1507 // 1508 // Src: 1509 // %c = sub nsw %b, %indvar 1510 // %d = sext %c to i64 1511 // Dst: 1512 // %indvar.ext1 = sext %indvar to i64 1513 // %m = sext %b to i64 1514 // %d = sub nsw i64 %m, %indvar.ext1 1515 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1516 // trunc is required regardless of how %b is generated. This pattern is common 1517 // when calculating address in 64 bit architecture 1518 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1519 Instruction *NarrowUse = DU.NarrowUse; 1520 Instruction *NarrowDef = DU.NarrowDef; 1521 Instruction *WideDef = DU.WideDef; 1522 1523 // Handle the common case of add<nsw/nuw> 1524 const unsigned OpCode = NarrowUse->getOpcode(); 1525 // Only Add/Sub/Mul instructions are supported. 1526 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1527 OpCode != Instruction::Mul) 1528 return false; 1529 1530 // The operand that is not defined by NarrowDef of DU. Let's call it the 1531 // other operand. 1532 assert((NarrowUse->getOperand(0) == NarrowDef || 1533 NarrowUse->getOperand(1) == NarrowDef) && 1534 "bad DU"); 1535 1536 const OverflowingBinaryOperator *OBO = 1537 cast<OverflowingBinaryOperator>(NarrowUse); 1538 ExtendKind ExtKind = getExtendKind(NarrowDef); 1539 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap(); 1540 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap(); 1541 auto AnotherOpExtKind = ExtKind; 1542 1543 // Check that all uses are either: 1544 // - narrow def (in case of we are widening the IV increment); 1545 // - single-input LCSSA Phis; 1546 // - comparison of the chosen type; 1547 // - extend of the chosen type (raison d'etre). 1548 SmallVector<Instruction *, 4> ExtUsers; 1549 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1550 SmallVector<ICmpInst *, 4> ICmpUsers; 1551 for (Use &U : NarrowUse->uses()) { 1552 Instruction *User = cast<Instruction>(U.getUser()); 1553 if (User == NarrowDef) 1554 continue; 1555 if (!L->contains(User)) { 1556 auto *LCSSAPhi = cast<PHINode>(User); 1557 // Make sure there is only 1 input, so that we don't have to split 1558 // critical edges. 1559 if (LCSSAPhi->getNumOperands() != 1) 1560 return false; 1561 LCSSAPhiUsers.push_back(LCSSAPhi); 1562 continue; 1563 } 1564 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1565 auto Pred = ICmp->getPredicate(); 1566 // We have 3 types of predicates: signed, unsigned and equality 1567 // predicates. For equality, it's legal to widen icmp for either sign and 1568 // zero extend. For sign extend, we can also do so for signed predicates, 1569 // likeweise for zero extend we can widen icmp for unsigned predicates. 1570 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred)) 1571 return false; 1572 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred)) 1573 return false; 1574 ICmpUsers.push_back(ICmp); 1575 continue; 1576 } 1577 if (ExtKind == SignExtended) 1578 User = dyn_cast<SExtInst>(User); 1579 else 1580 User = dyn_cast<ZExtInst>(User); 1581 if (!User || User->getType() != WideType) 1582 return false; 1583 ExtUsers.push_back(User); 1584 } 1585 if (ExtUsers.empty()) { 1586 DeadInsts.emplace_back(NarrowUse); 1587 return true; 1588 } 1589 1590 // We'll prove some facts that should be true in the context of ext users. If 1591 // there is no users, we are done now. If there are some, pick their common 1592 // dominator as context. 1593 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1594 1595 if (!CanSignExtend && !CanZeroExtend) { 1596 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1597 // will most likely not see it. Let's try to prove it. 1598 if (OpCode != Instruction::Add) 1599 return false; 1600 if (ExtKind != ZeroExtended) 1601 return false; 1602 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1603 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1604 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1605 if (NarrowUse->getOperand(0) != NarrowDef) 1606 return false; 1607 if (!SE->isKnownNegative(RHS)) 1608 return false; 1609 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1610 SE->getNegativeSCEV(RHS), CtxI); 1611 if (!ProvedSubNUW) 1612 return false; 1613 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1614 // neg(zext(neg(op))), which is basically sext(op). 1615 AnotherOpExtKind = SignExtended; 1616 } 1617 1618 // Verifying that Defining operand is an AddRec 1619 const SCEV *Op1 = SE->getSCEV(WideDef); 1620 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1621 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1622 return false; 1623 1624 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1625 1626 // Generating a widening use instruction. 1627 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1628 ? WideDef 1629 : createExtendInst(NarrowUse->getOperand(0), WideType, 1630 AnotherOpExtKind, NarrowUse); 1631 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1632 ? WideDef 1633 : createExtendInst(NarrowUse->getOperand(1), WideType, 1634 AnotherOpExtKind, NarrowUse); 1635 1636 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1637 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1638 NarrowBO->getName()); 1639 IRBuilder<> Builder(NarrowUse); 1640 Builder.Insert(WideBO); 1641 WideBO->copyIRFlags(NarrowBO); 1642 ExtendKindMap[NarrowUse] = ExtKind; 1643 1644 for (Instruction *User : ExtUsers) { 1645 assert(User->getType() == WideType && "Checked before!"); 1646 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1647 << *WideBO << "\n"); 1648 ++NumElimExt; 1649 User->replaceAllUsesWith(WideBO); 1650 DeadInsts.emplace_back(User); 1651 } 1652 1653 for (PHINode *User : LCSSAPhiUsers) { 1654 assert(User->getNumOperands() == 1 && "Checked before!"); 1655 Builder.SetInsertPoint(User); 1656 auto *WidePN = 1657 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1658 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1659 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1660 "Not a LCSSA Phi?"); 1661 WidePN->addIncoming(WideBO, LoopExitingBlock); 1662 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1663 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1664 User->replaceAllUsesWith(TruncPN); 1665 DeadInsts.emplace_back(User); 1666 } 1667 1668 for (ICmpInst *User : ICmpUsers) { 1669 Builder.SetInsertPoint(User); 1670 auto ExtendedOp = [&](Value * V)->Value * { 1671 if (V == NarrowUse) 1672 return WideBO; 1673 if (ExtKind == ZeroExtended) 1674 return Builder.CreateZExt(V, WideBO->getType()); 1675 else 1676 return Builder.CreateSExt(V, WideBO->getType()); 1677 }; 1678 auto Pred = User->getPredicate(); 1679 auto *LHS = ExtendedOp(User->getOperand(0)); 1680 auto *RHS = ExtendedOp(User->getOperand(1)); 1681 auto *WideCmp = 1682 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1683 User->replaceAllUsesWith(WideCmp); 1684 DeadInsts.emplace_back(User); 1685 } 1686 1687 return true; 1688 } 1689 1690 /// Determine whether an individual user of the narrow IV can be widened. If so, 1691 /// return the wide clone of the user. 1692 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1693 assert(ExtendKindMap.count(DU.NarrowDef) && 1694 "Should already know the kind of extension used to widen NarrowDef"); 1695 1696 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1697 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1698 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1699 // For LCSSA phis, sink the truncate outside the loop. 1700 // After SimplifyCFG most loop exit targets have a single predecessor. 1701 // Otherwise fall back to a truncate within the loop. 1702 if (UsePhi->getNumOperands() != 1) 1703 truncateIVUse(DU, DT, LI); 1704 else { 1705 // Widening the PHI requires us to insert a trunc. The logical place 1706 // for this trunc is in the same BB as the PHI. This is not possible if 1707 // the BB is terminated by a catchswitch. 1708 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1709 return nullptr; 1710 1711 PHINode *WidePhi = 1712 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1713 UsePhi); 1714 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1715 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1716 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1717 UsePhi->replaceAllUsesWith(Trunc); 1718 DeadInsts.emplace_back(UsePhi); 1719 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1720 << *WidePhi << "\n"); 1721 } 1722 return nullptr; 1723 } 1724 } 1725 1726 // This narrow use can be widened by a sext if it's non-negative or its narrow 1727 // def was widended by a sext. Same for zext. 1728 auto canWidenBySExt = [&]() { 1729 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1730 }; 1731 auto canWidenByZExt = [&]() { 1732 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1733 }; 1734 1735 // Our raison d'etre! Eliminate sign and zero extension. 1736 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1737 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1738 Value *NewDef = DU.WideDef; 1739 if (DU.NarrowUse->getType() != WideType) { 1740 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1741 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1742 if (CastWidth < IVWidth) { 1743 // The cast isn't as wide as the IV, so insert a Trunc. 1744 IRBuilder<> Builder(DU.NarrowUse); 1745 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1746 } 1747 else { 1748 // A wider extend was hidden behind a narrower one. This may induce 1749 // another round of IV widening in which the intermediate IV becomes 1750 // dead. It should be very rare. 1751 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1752 << " not wide enough to subsume " << *DU.NarrowUse 1753 << "\n"); 1754 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1755 NewDef = DU.NarrowUse; 1756 } 1757 } 1758 if (NewDef != DU.NarrowUse) { 1759 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1760 << " replaced by " << *DU.WideDef << "\n"); 1761 ++NumElimExt; 1762 DU.NarrowUse->replaceAllUsesWith(NewDef); 1763 DeadInsts.emplace_back(DU.NarrowUse); 1764 } 1765 // Now that the extend is gone, we want to expose it's uses for potential 1766 // further simplification. We don't need to directly inform SimplifyIVUsers 1767 // of the new users, because their parent IV will be processed later as a 1768 // new loop phi. If we preserved IVUsers analysis, we would also want to 1769 // push the uses of WideDef here. 1770 1771 // No further widening is needed. The deceased [sz]ext had done it for us. 1772 return nullptr; 1773 } 1774 1775 // Does this user itself evaluate to a recurrence after widening? 1776 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1777 if (!WideAddRec.first) 1778 WideAddRec = getWideRecurrence(DU); 1779 1780 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1781 if (!WideAddRec.first) { 1782 // If use is a loop condition, try to promote the condition instead of 1783 // truncating the IV first. 1784 if (widenLoopCompare(DU)) 1785 return nullptr; 1786 1787 // We are here about to generate a truncate instruction that may hurt 1788 // performance because the scalar evolution expression computed earlier 1789 // in WideAddRec.first does not indicate a polynomial induction expression. 1790 // In that case, look at the operands of the use instruction to determine 1791 // if we can still widen the use instead of truncating its operand. 1792 if (widenWithVariantUse(DU)) 1793 return nullptr; 1794 1795 // This user does not evaluate to a recurrence after widening, so don't 1796 // follow it. Instead insert a Trunc to kill off the original use, 1797 // eventually isolating the original narrow IV so it can be removed. 1798 truncateIVUse(DU, DT, LI); 1799 return nullptr; 1800 } 1801 // Assume block terminators cannot evaluate to a recurrence. We can't to 1802 // insert a Trunc after a terminator if there happens to be a critical edge. 1803 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1804 "SCEV is not expected to evaluate a block terminator"); 1805 1806 // Reuse the IV increment that SCEVExpander created as long as it dominates 1807 // NarrowUse. 1808 Instruction *WideUse = nullptr; 1809 if (WideAddRec.first == WideIncExpr && 1810 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1811 WideUse = WideInc; 1812 else { 1813 WideUse = cloneIVUser(DU, WideAddRec.first); 1814 if (!WideUse) 1815 return nullptr; 1816 } 1817 // Evaluation of WideAddRec ensured that the narrow expression could be 1818 // extended outside the loop without overflow. This suggests that the wide use 1819 // evaluates to the same expression as the extended narrow use, but doesn't 1820 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1821 // where it fails, we simply throw away the newly created wide use. 1822 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1823 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1824 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1825 << "\n"); 1826 DeadInsts.emplace_back(WideUse); 1827 return nullptr; 1828 } 1829 1830 // if we reached this point then we are going to replace 1831 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1832 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1833 1834 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1835 // Returning WideUse pushes it on the worklist. 1836 return WideUse; 1837 } 1838 1839 /// Add eligible users of NarrowDef to NarrowIVUsers. 1840 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1841 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1842 bool NonNegativeDef = 1843 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1844 SE->getZero(NarrowSCEV->getType())); 1845 for (User *U : NarrowDef->users()) { 1846 Instruction *NarrowUser = cast<Instruction>(U); 1847 1848 // Handle data flow merges and bizarre phi cycles. 1849 if (!Widened.insert(NarrowUser).second) 1850 continue; 1851 1852 bool NonNegativeUse = false; 1853 if (!NonNegativeDef) { 1854 // We might have a control-dependent range information for this context. 1855 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1856 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1857 } 1858 1859 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1860 NonNegativeDef || NonNegativeUse); 1861 } 1862 } 1863 1864 /// Process a single induction variable. First use the SCEVExpander to create a 1865 /// wide induction variable that evaluates to the same recurrence as the 1866 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1867 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1868 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1869 /// 1870 /// It would be simpler to delete uses as they are processed, but we must avoid 1871 /// invalidating SCEV expressions. 1872 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1873 // Is this phi an induction variable? 1874 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1875 if (!AddRec) 1876 return nullptr; 1877 1878 // Widen the induction variable expression. 1879 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1880 ? SE->getSignExtendExpr(AddRec, WideType) 1881 : SE->getZeroExtendExpr(AddRec, WideType); 1882 1883 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1884 "Expect the new IV expression to preserve its type"); 1885 1886 // Can the IV be extended outside the loop without overflow? 1887 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1888 if (!AddRec || AddRec->getLoop() != L) 1889 return nullptr; 1890 1891 // An AddRec must have loop-invariant operands. Since this AddRec is 1892 // materialized by a loop header phi, the expression cannot have any post-loop 1893 // operands, so they must dominate the loop header. 1894 assert( 1895 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1896 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1897 "Loop header phi recurrence inputs do not dominate the loop"); 1898 1899 // Iterate over IV uses (including transitive ones) looking for IV increments 1900 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1901 // the increment calculate control-dependent range information basing on 1902 // dominating conditions inside of the loop (e.g. a range check inside of the 1903 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1904 // 1905 // Control-dependent range information is later used to prove that a narrow 1906 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1907 // this on demand because when pushNarrowIVUsers needs this information some 1908 // of the dominating conditions might be already widened. 1909 if (UsePostIncrementRanges) 1910 calculatePostIncRanges(OrigPhi); 1911 1912 // The rewriter provides a value for the desired IV expression. This may 1913 // either find an existing phi or materialize a new one. Either way, we 1914 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1915 // of the phi-SCC dominates the loop entry. 1916 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1917 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1918 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1919 // inttoptr, ptrtoint, just skip for now. 1920 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1921 // if the cast node is an inserted instruction without any user, we should 1922 // remove it to make sure the pass don't touch the function as we can not 1923 // wide the phi. 1924 if (ExpandInst->hasNUses(0) && 1925 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1926 DeadInsts.emplace_back(ExpandInst); 1927 return nullptr; 1928 } 1929 1930 // Remembering the WideIV increment generated by SCEVExpander allows 1931 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1932 // employ a general reuse mechanism because the call above is the only call to 1933 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1934 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1935 WideInc = 1936 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1937 WideIncExpr = SE->getSCEV(WideInc); 1938 // Propagate the debug location associated with the original loop increment 1939 // to the new (widened) increment. 1940 auto *OrigInc = 1941 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1942 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1943 } 1944 1945 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1946 ++NumWidened; 1947 1948 // Traverse the def-use chain using a worklist starting at the original IV. 1949 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1950 1951 Widened.insert(OrigPhi); 1952 pushNarrowIVUsers(OrigPhi, WidePhi); 1953 1954 while (!NarrowIVUsers.empty()) { 1955 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1956 1957 // Process a def-use edge. This may replace the use, so don't hold a 1958 // use_iterator across it. 1959 Instruction *WideUse = widenIVUse(DU, Rewriter); 1960 1961 // Follow all def-use edges from the previous narrow use. 1962 if (WideUse) 1963 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1964 1965 // widenIVUse may have removed the def-use edge. 1966 if (DU.NarrowDef->use_empty()) 1967 DeadInsts.emplace_back(DU.NarrowDef); 1968 } 1969 1970 // Attach any debug information to the new PHI. 1971 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1972 1973 return WidePhi; 1974 } 1975 1976 /// Calculates control-dependent range for the given def at the given context 1977 /// by looking at dominating conditions inside of the loop 1978 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1979 Instruction *NarrowUser) { 1980 using namespace llvm::PatternMatch; 1981 1982 Value *NarrowDefLHS; 1983 const APInt *NarrowDefRHS; 1984 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1985 m_APInt(NarrowDefRHS))) || 1986 !NarrowDefRHS->isNonNegative()) 1987 return; 1988 1989 auto UpdateRangeFromCondition = [&] (Value *Condition, 1990 bool TrueDest) { 1991 CmpInst::Predicate Pred; 1992 Value *CmpRHS; 1993 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1994 m_Value(CmpRHS)))) 1995 return; 1996 1997 CmpInst::Predicate P = 1998 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1999 2000 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2001 auto CmpConstrainedLHSRange = 2002 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2003 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2004 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2005 2006 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2007 }; 2008 2009 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2010 if (!HasGuards) 2011 return; 2012 2013 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2014 Ctx->getParent()->rend())) { 2015 Value *C = nullptr; 2016 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2017 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2018 } 2019 }; 2020 2021 UpdateRangeFromGuards(NarrowUser); 2022 2023 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2024 // If NarrowUserBB is statically unreachable asking dominator queries may 2025 // yield surprising results. (e.g. the block may not have a dom tree node) 2026 if (!DT->isReachableFromEntry(NarrowUserBB)) 2027 return; 2028 2029 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2030 L->contains(DTB->getBlock()); 2031 DTB = DTB->getIDom()) { 2032 auto *BB = DTB->getBlock(); 2033 auto *TI = BB->getTerminator(); 2034 UpdateRangeFromGuards(TI); 2035 2036 auto *BI = dyn_cast<BranchInst>(TI); 2037 if (!BI || !BI->isConditional()) 2038 continue; 2039 2040 auto *TrueSuccessor = BI->getSuccessor(0); 2041 auto *FalseSuccessor = BI->getSuccessor(1); 2042 2043 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2044 return BBE.isSingleEdge() && 2045 DT->dominates(BBE, NarrowUser->getParent()); 2046 }; 2047 2048 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2049 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2050 2051 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2052 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2053 } 2054 } 2055 2056 /// Calculates PostIncRangeInfos map for the given IV 2057 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2058 SmallPtrSet<Instruction *, 16> Visited; 2059 SmallVector<Instruction *, 6> Worklist; 2060 Worklist.push_back(OrigPhi); 2061 Visited.insert(OrigPhi); 2062 2063 while (!Worklist.empty()) { 2064 Instruction *NarrowDef = Worklist.pop_back_val(); 2065 2066 for (Use &U : NarrowDef->uses()) { 2067 auto *NarrowUser = cast<Instruction>(U.getUser()); 2068 2069 // Don't go looking outside the current loop. 2070 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2071 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2072 continue; 2073 2074 if (!Visited.insert(NarrowUser).second) 2075 continue; 2076 2077 Worklist.push_back(NarrowUser); 2078 2079 calculatePostIncRange(NarrowDef, NarrowUser); 2080 } 2081 } 2082 } 2083 2084 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2085 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2086 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2087 unsigned &NumElimExt, unsigned &NumWidened, 2088 bool HasGuards, bool UsePostIncrementRanges) { 2089 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2090 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2091 NumElimExt = Widener.getNumElimExt(); 2092 NumWidened = Widener.getNumWidened(); 2093 return WidePHI; 2094 } 2095