1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "indvars"
32 
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(
38     NumSimplifiedSDiv,
39     "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41     NumSimplifiedSRem,
42     "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
44 
45 namespace {
46   /// This is a utility for simplifying induction variables
47   /// based on ScalarEvolution. It is the primary instrument of the
48   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49   /// other loop passes that preserve SCEV.
50   class SimplifyIndvar {
51     Loop             *L;
52     LoopInfo         *LI;
53     ScalarEvolution  *SE;
54     DominatorTree    *DT;
55     const TargetTransformInfo *TTI;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed = false;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, const TargetTransformInfo *TTI,
64                    SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67           DeadInsts(Dead) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82     bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
83 
84     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
85     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
86     bool eliminateTrunc(TruncInst *TI);
87     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
88     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
89     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
90     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
91                              bool IsSigned);
92     void replaceRemWithNumerator(BinaryOperator *Rem);
93     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
94     void replaceSRemWithURem(BinaryOperator *Rem);
95     bool eliminateSDiv(BinaryOperator *SDiv);
96     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
97     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
98   };
99 }
100 
101 /// Find a point in code which dominates all given instructions. We can safely
102 /// assume that, whatever fact we can prove at the found point, this fact is
103 /// also true for each of the given instructions.
104 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
105                                         DominatorTree &DT) {
106   Instruction *CommonDom = nullptr;
107   for (auto *Insn : Instructions)
108     if (!CommonDom || DT.dominates(Insn, CommonDom))
109       CommonDom = Insn;
110     else if (!DT.dominates(CommonDom, Insn))
111       // If there is no dominance relation, use common dominator.
112       CommonDom =
113           DT.findNearestCommonDominator(CommonDom->getParent(),
114                                         Insn->getParent())->getTerminator();
115   assert(CommonDom && "Common dominator not found?");
116   return CommonDom;
117 }
118 
119 /// Fold an IV operand into its use.  This removes increments of an
120 /// aligned IV when used by a instruction that ignores the low bits.
121 ///
122 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
123 ///
124 /// Return the operand of IVOperand for this induction variable if IVOperand can
125 /// be folded (in case more folding opportunities have been exposed).
126 /// Otherwise return null.
127 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
128   Value *IVSrc = nullptr;
129   const unsigned OperIdx = 0;
130   const SCEV *FoldedExpr = nullptr;
131   bool MustDropExactFlag = false;
132   switch (UseInst->getOpcode()) {
133   default:
134     return nullptr;
135   case Instruction::UDiv:
136   case Instruction::LShr:
137     // We're only interested in the case where we know something about
138     // the numerator and have a constant denominator.
139     if (IVOperand != UseInst->getOperand(OperIdx) ||
140         !isa<ConstantInt>(UseInst->getOperand(1)))
141       return nullptr;
142 
143     // Attempt to fold a binary operator with constant operand.
144     // e.g. ((I + 1) >> 2) => I >> 2
145     if (!isa<BinaryOperator>(IVOperand)
146         || !isa<ConstantInt>(IVOperand->getOperand(1)))
147       return nullptr;
148 
149     IVSrc = IVOperand->getOperand(0);
150     // IVSrc must be the (SCEVable) IV, since the other operand is const.
151     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
152 
153     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
154     if (UseInst->getOpcode() == Instruction::LShr) {
155       // Get a constant for the divisor. See createSCEV.
156       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
157       if (D->getValue().uge(BitWidth))
158         return nullptr;
159 
160       D = ConstantInt::get(UseInst->getContext(),
161                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
162     }
163     const auto *LHS = SE->getSCEV(IVSrc);
164     const auto *RHS = SE->getSCEV(D);
165     FoldedExpr = SE->getUDivExpr(LHS, RHS);
166     // We might have 'exact' flag set at this point which will no longer be
167     // correct after we make the replacement.
168     if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
169       MustDropExactFlag = true;
170   }
171   // We have something that might fold it's operand. Compare SCEVs.
172   if (!SE->isSCEVable(UseInst->getType()))
173     return nullptr;
174 
175   // Bypass the operand if SCEV can prove it has no effect.
176   if (SE->getSCEV(UseInst) != FoldedExpr)
177     return nullptr;
178 
179   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180                     << " -> " << *UseInst << '\n');
181 
182   UseInst->setOperand(OperIdx, IVSrc);
183   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184 
185   if (MustDropExactFlag)
186     UseInst->dropPoisonGeneratingFlags();
187 
188   ++NumElimOperand;
189   Changed = true;
190   if (IVOperand->use_empty())
191     DeadInsts.emplace_back(IVOperand);
192   return IVSrc;
193 }
194 
195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196                                                Value *IVOperand) {
197   unsigned IVOperIdx = 0;
198   ICmpInst::Predicate Pred = ICmp->getPredicate();
199   if (IVOperand != ICmp->getOperand(0)) {
200     // Swapped
201     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202     IVOperIdx = 1;
203     Pred = ICmpInst::getSwappedPredicate(Pred);
204   }
205 
206   // Get the SCEVs for the ICmp operands (in the specific context of the
207   // current loop)
208   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
211 
212   auto *PN = dyn_cast<PHINode>(IVOperand);
213   if (!PN)
214     return false;
215   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216   if (!LIP)
217     return false;
218   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219   const SCEV *InvariantLHS = LIP->LHS;
220   const SCEV *InvariantRHS = LIP->RHS;
221 
222   // Rewrite the comparison to a loop invariant comparison if it can be done
223   // cheaply, where cheaply means "we don't need to emit any new
224   // instructions".
225 
226   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
229 
230   // TODO: Support multiple entry loops?  (We currently bail out of these in
231   // the IndVarSimplify pass)
232   if (auto *BB = L->getLoopPredecessor()) {
233     const int Idx = PN->getBasicBlockIndex(BB);
234     if (Idx >= 0) {
235       Value *Incoming = PN->getIncomingValue(Idx);
236       const SCEV *IncomingS = SE->getSCEV(Incoming);
237       CheapExpansions[IncomingS] = Incoming;
238     }
239   }
240   Value *NewLHS = CheapExpansions[InvariantLHS];
241   Value *NewRHS = CheapExpansions[InvariantRHS];
242 
243   if (!NewLHS)
244     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245       NewLHS = ConstLHS->getValue();
246   if (!NewRHS)
247     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248       NewRHS = ConstRHS->getValue();
249 
250   if (!NewLHS || !NewRHS)
251     // We could not find an existing value to replace either LHS or RHS.
252     // Generating new instructions has subtler tradeoffs, so avoid doing that
253     // for now.
254     return false;
255 
256   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257   ICmp->setPredicate(InvariantPredicate);
258   ICmp->setOperand(0, NewLHS);
259   ICmp->setOperand(1, NewRHS);
260   return true;
261 }
262 
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266   unsigned IVOperIdx = 0;
267   ICmpInst::Predicate Pred = ICmp->getPredicate();
268   ICmpInst::Predicate OriginalPred = Pred;
269   if (IVOperand != ICmp->getOperand(0)) {
270     // Swapped
271     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272     IVOperIdx = 1;
273     Pred = ICmpInst::getSwappedPredicate(Pred);
274   }
275 
276   // Get the SCEVs for the ICmp operands (in the specific context of the
277   // current loop)
278   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
281 
282   // If the condition is always true or always false in the given context,
283   // replace it with a constant value.
284   SmallVector<Instruction *, 4> Users;
285   for (auto *U : ICmp->users())
286     Users.push_back(cast<Instruction>(U));
287   const Instruction *CtxI = findCommonDominator(Users, *DT);
288   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290     DeadInsts.emplace_back(ICmp);
291     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293     // fallthrough to end of function
294   } else if (ICmpInst::isSigned(OriginalPred) &&
295              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296     // If we were unable to make anything above, all we can is to canonicalize
297     // the comparison hoping that it will open the doors for other
298     // optimizations. If we find out that we compare two non-negative values,
299     // we turn the instruction's predicate to its unsigned version. Note that
300     // we cannot rely on Pred here unless we check if we have swapped it.
301     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303                       << '\n');
304     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305   } else
306     return;
307 
308   ++NumElimCmp;
309   Changed = true;
310 }
311 
312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313   // Get the SCEVs for the ICmp operands.
314   auto *N = SE->getSCEV(SDiv->getOperand(0));
315   auto *D = SE->getSCEV(SDiv->getOperand(1));
316 
317   // Simplify unnecessary loops away.
318   const Loop *L = LI->getLoopFor(SDiv->getParent());
319   N = SE->getSCEVAtScope(N, L);
320   D = SE->getSCEVAtScope(D, L);
321 
322   // Replace sdiv by udiv if both of the operands are non-negative
323   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324     auto *UDiv = BinaryOperator::Create(
325         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326         SDiv->getName() + ".udiv", SDiv);
327     UDiv->setIsExact(SDiv->isExact());
328     SDiv->replaceAllUsesWith(UDiv);
329     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330     ++NumSimplifiedSDiv;
331     Changed = true;
332     DeadInsts.push_back(SDiv);
333     return true;
334   }
335 
336   return false;
337 }
338 
339 // i %s n -> i %u n if i >= 0 and n >= 0
340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343                                       Rem->getName() + ".urem", Rem);
344   Rem->replaceAllUsesWith(URem);
345   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346   ++NumSimplifiedSRem;
347   Changed = true;
348   DeadInsts.emplace_back(Rem);
349 }
350 
351 // i % n  -->  i  if i is in [0,n).
352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353   Rem->replaceAllUsesWith(Rem->getOperand(0));
354   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355   ++NumElimRem;
356   Changed = true;
357   DeadInsts.emplace_back(Rem);
358 }
359 
360 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362   auto *T = Rem->getType();
363   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365   SelectInst *Sel =
366       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367   Rem->replaceAllUsesWith(Sel);
368   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369   ++NumElimRem;
370   Changed = true;
371   DeadInsts.emplace_back(Rem);
372 }
373 
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377                                          bool IsSigned) {
378   auto *NValue = Rem->getOperand(0);
379   auto *DValue = Rem->getOperand(1);
380   // We're only interested in the case where we know something about
381   // the numerator, unless it is a srem, because we want to replace srem by urem
382   // in general.
383   bool UsedAsNumerator = IVOperand == NValue;
384   if (!UsedAsNumerator && !IsSigned)
385     return;
386 
387   const SCEV *N = SE->getSCEV(NValue);
388 
389   // Simplify unnecessary loops away.
390   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391   N = SE->getSCEVAtScope(N, ICmpLoop);
392 
393   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
394 
395   // Do not proceed if the Numerator may be negative
396   if (!IsNumeratorNonNegative)
397     return;
398 
399   const SCEV *D = SE->getSCEV(DValue);
400   D = SE->getSCEVAtScope(D, ICmpLoop);
401 
402   if (UsedAsNumerator) {
403     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404     if (SE->isKnownPredicate(LT, N, D)) {
405       replaceRemWithNumerator(Rem);
406       return;
407     }
408 
409     auto *T = Rem->getType();
410     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411     if (SE->isKnownPredicate(LT, NLessOne, D)) {
412       replaceRemWithNumeratorOrZero(Rem);
413       return;
414     }
415   }
416 
417   // Try to replace SRem with URem, if both N and D are known non-negative.
418   // Since we had already check N, we only need to check D now
419   if (!IsSigned || !SE->isKnownNonNegative(D))
420     return;
421 
422   replaceSRemWithURem(Rem);
423 }
424 
425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
426   const SCEV *LHS = SE->getSCEV(WO->getLHS());
427   const SCEV *RHS = SE->getSCEV(WO->getRHS());
428   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
429     return false;
430 
431   // Proved no overflow, nuke the overflow check and, if possible, the overflow
432   // intrinsic as well.
433 
434   BinaryOperator *NewResult = BinaryOperator::Create(
435       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
436 
437   if (WO->isSigned())
438     NewResult->setHasNoSignedWrap(true);
439   else
440     NewResult->setHasNoUnsignedWrap(true);
441 
442   SmallVector<ExtractValueInst *, 4> ToDelete;
443 
444   for (auto *U : WO->users()) {
445     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446       if (EVI->getIndices()[0] == 1)
447         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
448       else {
449         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450         EVI->replaceAllUsesWith(NewResult);
451       }
452       ToDelete.push_back(EVI);
453     }
454   }
455 
456   for (auto *EVI : ToDelete)
457     EVI->eraseFromParent();
458 
459   if (WO->use_empty())
460     WO->eraseFromParent();
461 
462   Changed = true;
463   return true;
464 }
465 
466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
467   const SCEV *LHS = SE->getSCEV(SI->getLHS());
468   const SCEV *RHS = SE->getSCEV(SI->getRHS());
469   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
470     return false;
471 
472   BinaryOperator *BO = BinaryOperator::Create(
473       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
474   if (SI->isSigned())
475     BO->setHasNoSignedWrap();
476   else
477     BO->setHasNoUnsignedWrap();
478 
479   SI->replaceAllUsesWith(BO);
480   DeadInsts.emplace_back(SI);
481   Changed = true;
482   return true;
483 }
484 
485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
486   // It is always legal to replace
487   //   icmp <pred> i32 trunc(iv), n
488   // with
489   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
490   // Or with
491   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
492   // Or with either of these if pred is an equality predicate.
493   //
494   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
495   // every comparison which uses trunc, it means that we can replace each of
496   // them with comparison of iv against sext/zext(n). We no longer need trunc
497   // after that.
498   //
499   // TODO: Should we do this if we can widen *some* comparisons, but not all
500   // of them? Sometimes it is enough to enable other optimizations, but the
501   // trunc instruction will stay in the loop.
502   Value *IV = TI->getOperand(0);
503   Type *IVTy = IV->getType();
504   const SCEV *IVSCEV = SE->getSCEV(IV);
505   const SCEV *TISCEV = SE->getSCEV(TI);
506 
507   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
508   // get rid of trunc
509   bool DoesSExtCollapse = false;
510   bool DoesZExtCollapse = false;
511   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
512     DoesSExtCollapse = true;
513   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
514     DoesZExtCollapse = true;
515 
516   // If neither sext nor zext does collapse, it is not profitable to do any
517   // transform. Bail.
518   if (!DoesSExtCollapse && !DoesZExtCollapse)
519     return false;
520 
521   // Collect users of the trunc that look like comparisons against invariants.
522   // Bail if we find something different.
523   SmallVector<ICmpInst *, 4> ICmpUsers;
524   for (auto *U : TI->users()) {
525     // We don't care about users in unreachable blocks.
526     if (isa<Instruction>(U) &&
527         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
528       continue;
529     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
530     if (!ICI) return false;
531     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
532     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
533         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
534       return false;
535     // If we cannot get rid of trunc, bail.
536     if (ICI->isSigned() && !DoesSExtCollapse)
537       return false;
538     if (ICI->isUnsigned() && !DoesZExtCollapse)
539       return false;
540     // For equality, either signed or unsigned works.
541     ICmpUsers.push_back(ICI);
542   }
543 
544   auto CanUseZExt = [&](ICmpInst *ICI) {
545     // Unsigned comparison can be widened as unsigned.
546     if (ICI->isUnsigned())
547       return true;
548     // Is it profitable to do zext?
549     if (!DoesZExtCollapse)
550       return false;
551     // For equality, we can safely zext both parts.
552     if (ICI->isEquality())
553       return true;
554     // Otherwise we can only use zext when comparing two non-negative or two
555     // negative values. But in practice, we will never pass DoesZExtCollapse
556     // check for a negative value, because zext(trunc(x)) is non-negative. So
557     // it only make sense to check for non-negativity here.
558     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
559     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
560     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
561   };
562   // Replace all comparisons against trunc with comparisons against IV.
563   for (auto *ICI : ICmpUsers) {
564     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
565     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
566     Instruction *Ext = nullptr;
567     // For signed/unsigned predicate, replace the old comparison with comparison
568     // of immediate IV against sext/zext of the invariant argument. If we can
569     // use either sext or zext (i.e. we are dealing with equality predicate),
570     // then prefer zext as a more canonical form.
571     // TODO: If we see a signed comparison which can be turned into unsigned,
572     // we can do it here for canonicalization purposes.
573     ICmpInst::Predicate Pred = ICI->getPredicate();
574     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
575     if (CanUseZExt(ICI)) {
576       assert(DoesZExtCollapse && "Unprofitable zext?");
577       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
578       Pred = ICmpInst::getUnsignedPredicate(Pred);
579     } else {
580       assert(DoesSExtCollapse && "Unprofitable sext?");
581       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
582       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
583     }
584     bool Changed;
585     L->makeLoopInvariant(Ext, Changed);
586     (void)Changed;
587     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
588     ICI->replaceAllUsesWith(NewICI);
589     DeadInsts.emplace_back(ICI);
590   }
591 
592   // Trunc no longer needed.
593   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
594   DeadInsts.emplace_back(TI);
595   return true;
596 }
597 
598 /// Eliminate an operation that consumes a simple IV and has no observable
599 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
600 /// but UseInst may not be.
601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
602                                      Instruction *IVOperand) {
603   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
604     eliminateIVComparison(ICmp, IVOperand);
605     return true;
606   }
607   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
608     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
609     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
610       simplifyIVRemainder(Bin, IVOperand, IsSRem);
611       return true;
612     }
613 
614     if (Bin->getOpcode() == Instruction::SDiv)
615       return eliminateSDiv(Bin);
616   }
617 
618   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
619     if (eliminateOverflowIntrinsic(WO))
620       return true;
621 
622   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
623     if (eliminateSaturatingIntrinsic(SI))
624       return true;
625 
626   if (auto *TI = dyn_cast<TruncInst>(UseInst))
627     if (eliminateTrunc(TI))
628       return true;
629 
630   if (eliminateIdentitySCEV(UseInst, IVOperand))
631     return true;
632 
633   return false;
634 }
635 
636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
637   if (auto *BB = L->getLoopPreheader())
638     return BB->getTerminator();
639 
640   return Hint;
641 }
642 
643 /// Replace the UseInst with a loop invariant expression if it is safe.
644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
645   if (!SE->isSCEVable(I->getType()))
646     return false;
647 
648   // Get the symbolic expression for this instruction.
649   const SCEV *S = SE->getSCEV(I);
650 
651   if (!SE->isLoopInvariant(S, L))
652     return false;
653 
654   // Do not generate something ridiculous even if S is loop invariant.
655   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
656     return false;
657 
658   auto *IP = GetLoopInvariantInsertPosition(L, I);
659 
660   if (!isSafeToExpandAt(S, IP, *SE)) {
661     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
662                       << " with non-speculable loop invariant: " << *S << '\n');
663     return false;
664   }
665 
666   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
667 
668   I->replaceAllUsesWith(Invariant);
669   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
670                     << " with loop invariant: " << *S << '\n');
671   ++NumFoldedUser;
672   Changed = true;
673   DeadInsts.emplace_back(I);
674   return true;
675 }
676 
677 /// Eliminate redundant type cast between integer and float.
678 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
679   if (UseInst->getOpcode() != CastInst::SIToFP)
680     return false;
681 
682   Value *IVOperand = UseInst->getOperand(0);
683   // Get the symbolic expression for this instruction.
684   ConstantRange IVRange = SE->getSignedRange(SE->getSCEV(IVOperand));
685   unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
686   if (IVRange.getActiveBits() <= DestNumSigBits) {
687     for (User *U : UseInst->users()) {
688       // Match for fptosi of sitofp and with same type.
689       auto *CI = dyn_cast<FPToSIInst>(U);
690       if (!CI || IVOperand->getType() != CI->getType())
691         continue;
692 
693       CI->replaceAllUsesWith(IVOperand);
694       DeadInsts.push_back(CI);
695       LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
696                         << " with: " << *IVOperand << '\n');
697 
698       ++NumFoldedUser;
699       Changed = true;
700     }
701   }
702 
703   return Changed;
704 }
705 
706 /// Eliminate any operation that SCEV can prove is an identity function.
707 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
708                                            Instruction *IVOperand) {
709   if (!SE->isSCEVable(UseInst->getType()) ||
710       (UseInst->getType() != IVOperand->getType()) ||
711       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
712     return false;
713 
714   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
715   // dominator tree, even if X is an operand to Y.  For instance, in
716   //
717   //     %iv = phi i32 {0,+,1}
718   //     br %cond, label %left, label %merge
719   //
720   //   left:
721   //     %X = add i32 %iv, 0
722   //     br label %merge
723   //
724   //   merge:
725   //     %M = phi (%X, %iv)
726   //
727   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
728   // %M.replaceAllUsesWith(%X) would be incorrect.
729 
730   if (isa<PHINode>(UseInst))
731     // If UseInst is not a PHI node then we know that IVOperand dominates
732     // UseInst directly from the legality of SSA.
733     if (!DT || !DT->dominates(IVOperand, UseInst))
734       return false;
735 
736   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
737     return false;
738 
739   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
740 
741   UseInst->replaceAllUsesWith(IVOperand);
742   ++NumElimIdentity;
743   Changed = true;
744   DeadInsts.emplace_back(UseInst);
745   return true;
746 }
747 
748 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
749 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
750 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
751                                                     Value *IVOperand) {
752   SCEV::NoWrapFlags Flags;
753   bool Deduced;
754   std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
755       cast<OverflowingBinaryOperator>(BO));
756 
757   if (!Deduced)
758     return Deduced;
759 
760   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
761                            SCEV::FlagNUW);
762   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
763                          SCEV::FlagNSW);
764 
765   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
766   // flags on addrecs while performing zero/sign extensions. We could call
767   // forgetValue() here to make sure those flags also propagate to any other
768   // SCEV expressions based on the addrec. However, this can have pathological
769   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
770   return Deduced;
771 }
772 
773 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
774 /// information from the IV's range. Returns true if anything changed, false
775 /// otherwise.
776 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
777                                           Value *IVOperand) {
778   using namespace llvm::PatternMatch;
779 
780   if (BO->getOpcode() == Instruction::Shl) {
781     bool Changed = false;
782     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
783     for (auto *U : BO->users()) {
784       const APInt *C;
785       if (match(U,
786                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
787           match(U,
788                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
789         BinaryOperator *Shr = cast<BinaryOperator>(U);
790         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
791           Shr->setIsExact(true);
792           Changed = true;
793         }
794       }
795     }
796     return Changed;
797   }
798 
799   return false;
800 }
801 
802 /// Add all uses of Def to the current IV's worklist.
803 static void pushIVUsers(
804   Instruction *Def, Loop *L,
805   SmallPtrSet<Instruction*,16> &Simplified,
806   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
807 
808   for (User *U : Def->users()) {
809     Instruction *UI = cast<Instruction>(U);
810 
811     // Avoid infinite or exponential worklist processing.
812     // Also ensure unique worklist users.
813     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
814     // self edges first.
815     if (UI == Def)
816       continue;
817 
818     // Only change the current Loop, do not change the other parts (e.g. other
819     // Loops).
820     if (!L->contains(UI))
821       continue;
822 
823     // Do not push the same instruction more than once.
824     if (!Simplified.insert(UI).second)
825       continue;
826 
827     SimpleIVUsers.push_back(std::make_pair(UI, Def));
828   }
829 }
830 
831 /// Return true if this instruction generates a simple SCEV
832 /// expression in terms of that IV.
833 ///
834 /// This is similar to IVUsers' isInteresting() but processes each instruction
835 /// non-recursively when the operand is already known to be a simpleIVUser.
836 ///
837 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
838   if (!SE->isSCEVable(I->getType()))
839     return false;
840 
841   // Get the symbolic expression for this instruction.
842   const SCEV *S = SE->getSCEV(I);
843 
844   // Only consider affine recurrences.
845   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
846   if (AR && AR->getLoop() == L)
847     return true;
848 
849   return false;
850 }
851 
852 /// Iteratively perform simplification on a worklist of users
853 /// of the specified induction variable. Each successive simplification may push
854 /// more users which may themselves be candidates for simplification.
855 ///
856 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
857 /// instructions in-place during analysis. Rather than rewriting induction
858 /// variables bottom-up from their users, it transforms a chain of IVUsers
859 /// top-down, updating the IR only when it encounters a clear optimization
860 /// opportunity.
861 ///
862 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
863 ///
864 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
865   if (!SE->isSCEVable(CurrIV->getType()))
866     return;
867 
868   // Instructions processed by SimplifyIndvar for CurrIV.
869   SmallPtrSet<Instruction*,16> Simplified;
870 
871   // Use-def pairs if IV users waiting to be processed for CurrIV.
872   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
873 
874   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
875   // called multiple times for the same LoopPhi. This is the proper thing to
876   // do for loop header phis that use each other.
877   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
878 
879   while (!SimpleIVUsers.empty()) {
880     std::pair<Instruction*, Instruction*> UseOper =
881       SimpleIVUsers.pop_back_val();
882     Instruction *UseInst = UseOper.first;
883 
884     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
885     // rather than try to do some complex analysis or transformation (such as
886     // widening) basing on it.
887     // TODO: Propagate TLI and pass it here to handle more cases.
888     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
889       DeadInsts.emplace_back(UseInst);
890       continue;
891     }
892 
893     // Bypass back edges to avoid extra work.
894     if (UseInst == CurrIV) continue;
895 
896     // Try to replace UseInst with a loop invariant before any other
897     // simplifications.
898     if (replaceIVUserWithLoopInvariant(UseInst))
899       continue;
900 
901     Instruction *IVOperand = UseOper.second;
902     for (unsigned N = 0; IVOperand; ++N) {
903       assert(N <= Simplified.size() && "runaway iteration");
904       (void) N;
905 
906       Value *NewOper = foldIVUser(UseInst, IVOperand);
907       if (!NewOper)
908         break; // done folding
909       IVOperand = dyn_cast<Instruction>(NewOper);
910     }
911     if (!IVOperand)
912       continue;
913 
914     if (eliminateIVUser(UseInst, IVOperand)) {
915       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
916       continue;
917     }
918 
919     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
920       if ((isa<OverflowingBinaryOperator>(BO) &&
921            strengthenOverflowingOperation(BO, IVOperand)) ||
922           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
923         // re-queue uses of the now modified binary operator and fall
924         // through to the checks that remain.
925         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
926       }
927     }
928 
929     // Try to use integer induction for FPToSI of float induction directly.
930     if (replaceFloatIVWithIntegerIV(UseInst)) {
931       // Re-queue the potentially new direct uses of IVOperand.
932       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
933       continue;
934     }
935 
936     CastInst *Cast = dyn_cast<CastInst>(UseInst);
937     if (V && Cast) {
938       V->visitCast(Cast);
939       continue;
940     }
941     if (isSimpleIVUser(UseInst, L, SE)) {
942       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
943     }
944   }
945 }
946 
947 namespace llvm {
948 
949 void IVVisitor::anchor() { }
950 
951 /// Simplify instructions that use this induction variable
952 /// by using ScalarEvolution to analyze the IV's recurrence.
953 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
954                        LoopInfo *LI, const TargetTransformInfo *TTI,
955                        SmallVectorImpl<WeakTrackingVH> &Dead,
956                        SCEVExpander &Rewriter, IVVisitor *V) {
957   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
958                      Rewriter, Dead);
959   SIV.simplifyUsers(CurrIV, V);
960   return SIV.hasChanged();
961 }
962 
963 /// Simplify users of induction variables within this
964 /// loop. This does not actually change or add IVs.
965 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
966                      LoopInfo *LI, const TargetTransformInfo *TTI,
967                      SmallVectorImpl<WeakTrackingVH> &Dead) {
968   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
969 #ifndef NDEBUG
970   Rewriter.setDebugType(DEBUG_TYPE);
971 #endif
972   bool Changed = false;
973   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
974     Changed |=
975         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
976   }
977   return Changed;
978 }
979 
980 } // namespace llvm
981 
982 namespace {
983 //===----------------------------------------------------------------------===//
984 // Widen Induction Variables - Extend the width of an IV to cover its
985 // widest uses.
986 //===----------------------------------------------------------------------===//
987 
988 class WidenIV {
989   // Parameters
990   PHINode *OrigPhi;
991   Type *WideType;
992 
993   // Context
994   LoopInfo        *LI;
995   Loop            *L;
996   ScalarEvolution *SE;
997   DominatorTree   *DT;
998 
999   // Does the module have any calls to the llvm.experimental.guard intrinsic
1000   // at all? If not we can avoid scanning instructions looking for guards.
1001   bool HasGuards;
1002 
1003   bool UsePostIncrementRanges;
1004 
1005   // Statistics
1006   unsigned NumElimExt = 0;
1007   unsigned NumWidened = 0;
1008 
1009   // Result
1010   PHINode *WidePhi = nullptr;
1011   Instruction *WideInc = nullptr;
1012   const SCEV *WideIncExpr = nullptr;
1013   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1014 
1015   SmallPtrSet<Instruction *,16> Widened;
1016 
1017   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
1018 
1019   // A map tracking the kind of extension used to widen each narrow IV
1020   // and narrow IV user.
1021   // Key: pointer to a narrow IV or IV user.
1022   // Value: the kind of extension used to widen this Instruction.
1023   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1024 
1025   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1026 
1027   // A map with control-dependent ranges for post increment IV uses. The key is
1028   // a pair of IV def and a use of this def denoting the context. The value is
1029   // a ConstantRange representing possible values of the def at the given
1030   // context.
1031   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1032 
1033   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1034                                               Instruction *UseI) {
1035     DefUserPair Key(Def, UseI);
1036     auto It = PostIncRangeInfos.find(Key);
1037     return It == PostIncRangeInfos.end()
1038                ? Optional<ConstantRange>(None)
1039                : Optional<ConstantRange>(It->second);
1040   }
1041 
1042   void calculatePostIncRanges(PHINode *OrigPhi);
1043   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1044 
1045   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1046     DefUserPair Key(Def, UseI);
1047     auto It = PostIncRangeInfos.find(Key);
1048     if (It == PostIncRangeInfos.end())
1049       PostIncRangeInfos.insert({Key, R});
1050     else
1051       It->second = R.intersectWith(It->second);
1052   }
1053 
1054 public:
1055   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1056   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1057   /// pointers.
1058   struct NarrowIVDefUse {
1059     Instruction *NarrowDef = nullptr;
1060     Instruction *NarrowUse = nullptr;
1061     Instruction *WideDef = nullptr;
1062 
1063     // True if the narrow def is never negative.  Tracking this information lets
1064     // us use a sign extension instead of a zero extension or vice versa, when
1065     // profitable and legal.
1066     bool NeverNegative = false;
1067 
1068     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1069                    bool NeverNegative)
1070         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1071           NeverNegative(NeverNegative) {}
1072   };
1073 
1074   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1075           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1076           bool HasGuards, bool UsePostIncrementRanges = true);
1077 
1078   PHINode *createWideIV(SCEVExpander &Rewriter);
1079 
1080   unsigned getNumElimExt() { return NumElimExt; };
1081   unsigned getNumWidened() { return NumWidened; };
1082 
1083 protected:
1084   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1085                           Instruction *Use);
1086 
1087   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1088   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1089                                      const SCEVAddRecExpr *WideAR);
1090   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1091 
1092   ExtendKind getExtendKind(Instruction *I);
1093 
1094   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1095 
1096   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1097 
1098   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1099 
1100   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1101                               unsigned OpCode) const;
1102 
1103   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1104 
1105   bool widenLoopCompare(NarrowIVDefUse DU);
1106   bool widenWithVariantUse(NarrowIVDefUse DU);
1107 
1108   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1109 
1110 private:
1111   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1112 };
1113 } // namespace
1114 
1115 /// Determine the insertion point for this user. By default, insert immediately
1116 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1117 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1118 /// common dominator for the incoming blocks. A nullptr can be returned if no
1119 /// viable location is found: it may happen if User is a PHI and Def only comes
1120 /// to this PHI from unreachable blocks.
1121 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1122                                           DominatorTree *DT, LoopInfo *LI) {
1123   PHINode *PHI = dyn_cast<PHINode>(User);
1124   if (!PHI)
1125     return User;
1126 
1127   Instruction *InsertPt = nullptr;
1128   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1129     if (PHI->getIncomingValue(i) != Def)
1130       continue;
1131 
1132     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1133 
1134     if (!DT->isReachableFromEntry(InsertBB))
1135       continue;
1136 
1137     if (!InsertPt) {
1138       InsertPt = InsertBB->getTerminator();
1139       continue;
1140     }
1141     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1142     InsertPt = InsertBB->getTerminator();
1143   }
1144 
1145   // If we have skipped all inputs, it means that Def only comes to Phi from
1146   // unreachable blocks.
1147   if (!InsertPt)
1148     return nullptr;
1149 
1150   auto *DefI = dyn_cast<Instruction>(Def);
1151   if (!DefI)
1152     return InsertPt;
1153 
1154   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1155 
1156   auto *L = LI->getLoopFor(DefI->getParent());
1157   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1158 
1159   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1160     if (LI->getLoopFor(DTN->getBlock()) == L)
1161       return DTN->getBlock()->getTerminator();
1162 
1163   llvm_unreachable("DefI dominates InsertPt!");
1164 }
1165 
1166 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1167           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1168           bool HasGuards, bool UsePostIncrementRanges)
1169       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1170         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1171         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1172         DeadInsts(DI) {
1173     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1174     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1175 }
1176 
1177 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1178                                  bool IsSigned, Instruction *Use) {
1179   // Set the debug location and conservative insertion point.
1180   IRBuilder<> Builder(Use);
1181   // Hoist the insertion point into loop preheaders as far as possible.
1182   for (const Loop *L = LI->getLoopFor(Use->getParent());
1183        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1184        L = L->getParentLoop())
1185     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1186 
1187   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1188                     Builder.CreateZExt(NarrowOper, WideType);
1189 }
1190 
1191 /// Instantiate a wide operation to replace a narrow operation. This only needs
1192 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1193 /// 0 for any operation we decide not to clone.
1194 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1195                                   const SCEVAddRecExpr *WideAR) {
1196   unsigned Opcode = DU.NarrowUse->getOpcode();
1197   switch (Opcode) {
1198   default:
1199     return nullptr;
1200   case Instruction::Add:
1201   case Instruction::Mul:
1202   case Instruction::UDiv:
1203   case Instruction::Sub:
1204     return cloneArithmeticIVUser(DU, WideAR);
1205 
1206   case Instruction::And:
1207   case Instruction::Or:
1208   case Instruction::Xor:
1209   case Instruction::Shl:
1210   case Instruction::LShr:
1211   case Instruction::AShr:
1212     return cloneBitwiseIVUser(DU);
1213   }
1214 }
1215 
1216 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1217   Instruction *NarrowUse = DU.NarrowUse;
1218   Instruction *NarrowDef = DU.NarrowDef;
1219   Instruction *WideDef = DU.WideDef;
1220 
1221   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1222 
1223   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1224   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1225   // invariant and will be folded or hoisted. If it actually comes from a
1226   // widened IV, it should be removed during a future call to widenIVUse.
1227   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1228   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1229                    ? WideDef
1230                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1231                                       IsSigned, NarrowUse);
1232   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1233                    ? WideDef
1234                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1235                                       IsSigned, NarrowUse);
1236 
1237   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1238   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1239                                         NarrowBO->getName());
1240   IRBuilder<> Builder(NarrowUse);
1241   Builder.Insert(WideBO);
1242   WideBO->copyIRFlags(NarrowBO);
1243   return WideBO;
1244 }
1245 
1246 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1247                                             const SCEVAddRecExpr *WideAR) {
1248   Instruction *NarrowUse = DU.NarrowUse;
1249   Instruction *NarrowDef = DU.NarrowDef;
1250   Instruction *WideDef = DU.WideDef;
1251 
1252   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1253 
1254   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1255 
1256   // We're trying to find X such that
1257   //
1258   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1259   //
1260   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1261   // and check using SCEV if any of them are correct.
1262 
1263   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1264   // correct solution to X.
1265   auto GuessNonIVOperand = [&](bool SignExt) {
1266     const SCEV *WideLHS;
1267     const SCEV *WideRHS;
1268 
1269     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1270       if (SignExt)
1271         return SE->getSignExtendExpr(S, Ty);
1272       return SE->getZeroExtendExpr(S, Ty);
1273     };
1274 
1275     if (IVOpIdx == 0) {
1276       WideLHS = SE->getSCEV(WideDef);
1277       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1278       WideRHS = GetExtend(NarrowRHS, WideType);
1279     } else {
1280       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1281       WideLHS = GetExtend(NarrowLHS, WideType);
1282       WideRHS = SE->getSCEV(WideDef);
1283     }
1284 
1285     // WideUse is "WideDef `op.wide` X" as described in the comment.
1286     const SCEV *WideUse =
1287       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1288 
1289     return WideUse == WideAR;
1290   };
1291 
1292   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1293   if (!GuessNonIVOperand(SignExtend)) {
1294     SignExtend = !SignExtend;
1295     if (!GuessNonIVOperand(SignExtend))
1296       return nullptr;
1297   }
1298 
1299   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1300                    ? WideDef
1301                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1302                                       SignExtend, NarrowUse);
1303   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1304                    ? WideDef
1305                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1306                                       SignExtend, NarrowUse);
1307 
1308   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1309   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1310                                         NarrowBO->getName());
1311 
1312   IRBuilder<> Builder(NarrowUse);
1313   Builder.Insert(WideBO);
1314   WideBO->copyIRFlags(NarrowBO);
1315   return WideBO;
1316 }
1317 
1318 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1319   auto It = ExtendKindMap.find(I);
1320   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1321   return It->second;
1322 }
1323 
1324 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1325                                      unsigned OpCode) const {
1326   switch (OpCode) {
1327   case Instruction::Add:
1328     return SE->getAddExpr(LHS, RHS);
1329   case Instruction::Sub:
1330     return SE->getMinusSCEV(LHS, RHS);
1331   case Instruction::Mul:
1332     return SE->getMulExpr(LHS, RHS);
1333   case Instruction::UDiv:
1334     return SE->getUDivExpr(LHS, RHS);
1335   default:
1336     llvm_unreachable("Unsupported opcode.");
1337   };
1338 }
1339 
1340 /// No-wrap operations can transfer sign extension of their result to their
1341 /// operands. Generate the SCEV value for the widened operation without
1342 /// actually modifying the IR yet. If the expression after extending the
1343 /// operands is an AddRec for this loop, return the AddRec and the kind of
1344 /// extension used.
1345 WidenIV::WidenedRecTy
1346 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1347   // Handle the common case of add<nsw/nuw>
1348   const unsigned OpCode = DU.NarrowUse->getOpcode();
1349   // Only Add/Sub/Mul instructions supported yet.
1350   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1351       OpCode != Instruction::Mul)
1352     return {nullptr, Unknown};
1353 
1354   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1355   // if extending the other will lead to a recurrence.
1356   const unsigned ExtendOperIdx =
1357       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1358   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1359 
1360   const SCEV *ExtendOperExpr = nullptr;
1361   const OverflowingBinaryOperator *OBO =
1362     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1363   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1364   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1365     ExtendOperExpr = SE->getSignExtendExpr(
1366       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1367   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1368     ExtendOperExpr = SE->getZeroExtendExpr(
1369       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1370   else
1371     return {nullptr, Unknown};
1372 
1373   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1374   // flags. This instruction may be guarded by control flow that the no-wrap
1375   // behavior depends on. Non-control-equivalent instructions can be mapped to
1376   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1377   // semantics to those operations.
1378   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1379   const SCEV *rhs = ExtendOperExpr;
1380 
1381   // Let's swap operands to the initial order for the case of non-commutative
1382   // operations, like SUB. See PR21014.
1383   if (ExtendOperIdx == 0)
1384     std::swap(lhs, rhs);
1385   const SCEVAddRecExpr *AddRec =
1386       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1387 
1388   if (!AddRec || AddRec->getLoop() != L)
1389     return {nullptr, Unknown};
1390 
1391   return {AddRec, ExtKind};
1392 }
1393 
1394 /// Is this instruction potentially interesting for further simplification after
1395 /// widening it's type? In other words, can the extend be safely hoisted out of
1396 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1397 /// so, return the extended recurrence and the kind of extension used. Otherwise
1398 /// return {nullptr, Unknown}.
1399 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1400   if (!DU.NarrowUse->getType()->isIntegerTy())
1401     return {nullptr, Unknown};
1402 
1403   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1404   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1405       SE->getTypeSizeInBits(WideType)) {
1406     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1407     // index. So don't follow this use.
1408     return {nullptr, Unknown};
1409   }
1410 
1411   const SCEV *WideExpr;
1412   ExtendKind ExtKind;
1413   if (DU.NeverNegative) {
1414     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1415     if (isa<SCEVAddRecExpr>(WideExpr))
1416       ExtKind = SignExtended;
1417     else {
1418       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1419       ExtKind = ZeroExtended;
1420     }
1421   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1422     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1423     ExtKind = SignExtended;
1424   } else {
1425     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1426     ExtKind = ZeroExtended;
1427   }
1428   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1429   if (!AddRec || AddRec->getLoop() != L)
1430     return {nullptr, Unknown};
1431   return {AddRec, ExtKind};
1432 }
1433 
1434 /// This IV user cannot be widened. Replace this use of the original narrow IV
1435 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1436 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1437                           LoopInfo *LI) {
1438   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1439   if (!InsertPt)
1440     return;
1441   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1442                     << *DU.NarrowUse << "\n");
1443   IRBuilder<> Builder(InsertPt);
1444   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1445   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1446 }
1447 
1448 /// If the narrow use is a compare instruction, then widen the compare
1449 //  (and possibly the other operand).  The extend operation is hoisted into the
1450 // loop preheader as far as possible.
1451 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1452   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1453   if (!Cmp)
1454     return false;
1455 
1456   // We can legally widen the comparison in the following two cases:
1457   //
1458   //  - The signedness of the IV extension and comparison match
1459   //
1460   //  - The narrow IV is always positive (and thus its sign extension is equal
1461   //    to its zero extension).  For instance, let's say we're zero extending
1462   //    %narrow for the following use
1463   //
1464   //      icmp slt i32 %narrow, %val   ... (A)
1465   //
1466   //    and %narrow is always positive.  Then
1467   //
1468   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1469   //          == icmp slt i32 zext(%narrow), sext(%val)
1470   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1471   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1472     return false;
1473 
1474   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1475   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1476   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1477   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1478 
1479   // Widen the compare instruction.
1480   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1481   if (!InsertPt)
1482     return false;
1483   IRBuilder<> Builder(InsertPt);
1484   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1485 
1486   // Widen the other operand of the compare, if necessary.
1487   if (CastWidth < IVWidth) {
1488     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1489     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1490   }
1491   return true;
1492 }
1493 
1494 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1495 // will not work when:
1496 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1497 // expand, eg. add %indvar, (load %addr)
1498 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1499 // While SCEV fails to avoid trunc, we can still try to use instruction
1500 // combining approach to prove trunc is not required. This can be further
1501 // extended with other instruction combining checks, but for now we handle the
1502 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1503 //
1504 // Src:
1505 //   %c = sub nsw %b, %indvar
1506 //   %d = sext %c to i64
1507 // Dst:
1508 //   %indvar.ext1 = sext %indvar to i64
1509 //   %m = sext %b to i64
1510 //   %d = sub nsw i64 %m, %indvar.ext1
1511 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1512 // trunc is required regardless of how %b is generated. This pattern is common
1513 // when calculating address in 64 bit architecture
1514 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1515   Instruction *NarrowUse = DU.NarrowUse;
1516   Instruction *NarrowDef = DU.NarrowDef;
1517   Instruction *WideDef = DU.WideDef;
1518 
1519   // Handle the common case of add<nsw/nuw>
1520   const unsigned OpCode = NarrowUse->getOpcode();
1521   // Only Add/Sub/Mul instructions are supported.
1522   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1523       OpCode != Instruction::Mul)
1524     return false;
1525 
1526   // The operand that is not defined by NarrowDef of DU. Let's call it the
1527   // other operand.
1528   assert((NarrowUse->getOperand(0) == NarrowDef ||
1529           NarrowUse->getOperand(1) == NarrowDef) &&
1530          "bad DU");
1531 
1532   const OverflowingBinaryOperator *OBO =
1533     cast<OverflowingBinaryOperator>(NarrowUse);
1534   ExtendKind ExtKind = getExtendKind(NarrowDef);
1535   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1536   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1537   auto AnotherOpExtKind = ExtKind;
1538 
1539   // Check that all uses are either:
1540   // - narrow def (in case of we are widening the IV increment);
1541   // - single-input LCSSA Phis;
1542   // - comparison of the chosen type;
1543   // - extend of the chosen type (raison d'etre).
1544   SmallVector<Instruction *, 4> ExtUsers;
1545   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1546   SmallVector<ICmpInst *, 4> ICmpUsers;
1547   for (Use &U : NarrowUse->uses()) {
1548     Instruction *User = cast<Instruction>(U.getUser());
1549     if (User == NarrowDef)
1550       continue;
1551     if (!L->contains(User)) {
1552       auto *LCSSAPhi = cast<PHINode>(User);
1553       // Make sure there is only 1 input, so that we don't have to split
1554       // critical edges.
1555       if (LCSSAPhi->getNumOperands() != 1)
1556         return false;
1557       LCSSAPhiUsers.push_back(LCSSAPhi);
1558       continue;
1559     }
1560     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1561       auto Pred = ICmp->getPredicate();
1562       // We have 3 types of predicates: signed, unsigned and equality
1563       // predicates. For equality, it's legal to widen icmp for either sign and
1564       // zero extend. For sign extend, we can also do so for signed predicates,
1565       // likeweise for zero extend we can widen icmp for unsigned predicates.
1566       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1567         return false;
1568       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1569         return false;
1570       ICmpUsers.push_back(ICmp);
1571       continue;
1572     }
1573     if (ExtKind == SignExtended)
1574       User = dyn_cast<SExtInst>(User);
1575     else
1576       User = dyn_cast<ZExtInst>(User);
1577     if (!User || User->getType() != WideType)
1578       return false;
1579     ExtUsers.push_back(User);
1580   }
1581   if (ExtUsers.empty()) {
1582     DeadInsts.emplace_back(NarrowUse);
1583     return true;
1584   }
1585 
1586   // We'll prove some facts that should be true in the context of ext users. If
1587   // there is no users, we are done now. If there are some, pick their common
1588   // dominator as context.
1589   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1590 
1591   if (!CanSignExtend && !CanZeroExtend) {
1592     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1593     // will most likely not see it. Let's try to prove it.
1594     if (OpCode != Instruction::Add)
1595       return false;
1596     if (ExtKind != ZeroExtended)
1597       return false;
1598     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1599     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1600     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1601     if (NarrowUse->getOperand(0) != NarrowDef)
1602       return false;
1603     if (!SE->isKnownNegative(RHS))
1604       return false;
1605     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1606                                                SE->getNegativeSCEV(RHS), CtxI);
1607     if (!ProvedSubNUW)
1608       return false;
1609     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1610     // neg(zext(neg(op))), which is basically sext(op).
1611     AnotherOpExtKind = SignExtended;
1612   }
1613 
1614   // Verifying that Defining operand is an AddRec
1615   const SCEV *Op1 = SE->getSCEV(WideDef);
1616   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1617   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1618     return false;
1619 
1620   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1621 
1622   // Generating a widening use instruction.
1623   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1624                    ? WideDef
1625                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1626                                       AnotherOpExtKind, NarrowUse);
1627   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1628                    ? WideDef
1629                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1630                                       AnotherOpExtKind, NarrowUse);
1631 
1632   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1633   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1634                                         NarrowBO->getName());
1635   IRBuilder<> Builder(NarrowUse);
1636   Builder.Insert(WideBO);
1637   WideBO->copyIRFlags(NarrowBO);
1638   ExtendKindMap[NarrowUse] = ExtKind;
1639 
1640   for (Instruction *User : ExtUsers) {
1641     assert(User->getType() == WideType && "Checked before!");
1642     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1643                       << *WideBO << "\n");
1644     ++NumElimExt;
1645     User->replaceAllUsesWith(WideBO);
1646     DeadInsts.emplace_back(User);
1647   }
1648 
1649   for (PHINode *User : LCSSAPhiUsers) {
1650     assert(User->getNumOperands() == 1 && "Checked before!");
1651     Builder.SetInsertPoint(User);
1652     auto *WidePN =
1653         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1654     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1655     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1656            "Not a LCSSA Phi?");
1657     WidePN->addIncoming(WideBO, LoopExitingBlock);
1658     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1659     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1660     User->replaceAllUsesWith(TruncPN);
1661     DeadInsts.emplace_back(User);
1662   }
1663 
1664   for (ICmpInst *User : ICmpUsers) {
1665     Builder.SetInsertPoint(User);
1666     auto ExtendedOp = [&](Value * V)->Value * {
1667       if (V == NarrowUse)
1668         return WideBO;
1669       if (ExtKind == ZeroExtended)
1670         return Builder.CreateZExt(V, WideBO->getType());
1671       else
1672         return Builder.CreateSExt(V, WideBO->getType());
1673     };
1674     auto Pred = User->getPredicate();
1675     auto *LHS = ExtendedOp(User->getOperand(0));
1676     auto *RHS = ExtendedOp(User->getOperand(1));
1677     auto *WideCmp =
1678         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1679     User->replaceAllUsesWith(WideCmp);
1680     DeadInsts.emplace_back(User);
1681   }
1682 
1683   return true;
1684 }
1685 
1686 /// Determine whether an individual user of the narrow IV can be widened. If so,
1687 /// return the wide clone of the user.
1688 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1689   assert(ExtendKindMap.count(DU.NarrowDef) &&
1690          "Should already know the kind of extension used to widen NarrowDef");
1691 
1692   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1693   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1694     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1695       // For LCSSA phis, sink the truncate outside the loop.
1696       // After SimplifyCFG most loop exit targets have a single predecessor.
1697       // Otherwise fall back to a truncate within the loop.
1698       if (UsePhi->getNumOperands() != 1)
1699         truncateIVUse(DU, DT, LI);
1700       else {
1701         // Widening the PHI requires us to insert a trunc.  The logical place
1702         // for this trunc is in the same BB as the PHI.  This is not possible if
1703         // the BB is terminated by a catchswitch.
1704         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1705           return nullptr;
1706 
1707         PHINode *WidePhi =
1708           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1709                           UsePhi);
1710         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1711         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1712         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1713         UsePhi->replaceAllUsesWith(Trunc);
1714         DeadInsts.emplace_back(UsePhi);
1715         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1716                           << *WidePhi << "\n");
1717       }
1718       return nullptr;
1719     }
1720   }
1721 
1722   // This narrow use can be widened by a sext if it's non-negative or its narrow
1723   // def was widended by a sext. Same for zext.
1724   auto canWidenBySExt = [&]() {
1725     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1726   };
1727   auto canWidenByZExt = [&]() {
1728     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1729   };
1730 
1731   // Our raison d'etre! Eliminate sign and zero extension.
1732   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1733       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1734     Value *NewDef = DU.WideDef;
1735     if (DU.NarrowUse->getType() != WideType) {
1736       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1737       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1738       if (CastWidth < IVWidth) {
1739         // The cast isn't as wide as the IV, so insert a Trunc.
1740         IRBuilder<> Builder(DU.NarrowUse);
1741         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1742       }
1743       else {
1744         // A wider extend was hidden behind a narrower one. This may induce
1745         // another round of IV widening in which the intermediate IV becomes
1746         // dead. It should be very rare.
1747         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1748                           << " not wide enough to subsume " << *DU.NarrowUse
1749                           << "\n");
1750         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1751         NewDef = DU.NarrowUse;
1752       }
1753     }
1754     if (NewDef != DU.NarrowUse) {
1755       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1756                         << " replaced by " << *DU.WideDef << "\n");
1757       ++NumElimExt;
1758       DU.NarrowUse->replaceAllUsesWith(NewDef);
1759       DeadInsts.emplace_back(DU.NarrowUse);
1760     }
1761     // Now that the extend is gone, we want to expose it's uses for potential
1762     // further simplification. We don't need to directly inform SimplifyIVUsers
1763     // of the new users, because their parent IV will be processed later as a
1764     // new loop phi. If we preserved IVUsers analysis, we would also want to
1765     // push the uses of WideDef here.
1766 
1767     // No further widening is needed. The deceased [sz]ext had done it for us.
1768     return nullptr;
1769   }
1770 
1771   // Does this user itself evaluate to a recurrence after widening?
1772   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1773   if (!WideAddRec.first)
1774     WideAddRec = getWideRecurrence(DU);
1775 
1776   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1777   if (!WideAddRec.first) {
1778     // If use is a loop condition, try to promote the condition instead of
1779     // truncating the IV first.
1780     if (widenLoopCompare(DU))
1781       return nullptr;
1782 
1783     // We are here about to generate a truncate instruction that may hurt
1784     // performance because the scalar evolution expression computed earlier
1785     // in WideAddRec.first does not indicate a polynomial induction expression.
1786     // In that case, look at the operands of the use instruction to determine
1787     // if we can still widen the use instead of truncating its operand.
1788     if (widenWithVariantUse(DU))
1789       return nullptr;
1790 
1791     // This user does not evaluate to a recurrence after widening, so don't
1792     // follow it. Instead insert a Trunc to kill off the original use,
1793     // eventually isolating the original narrow IV so it can be removed.
1794     truncateIVUse(DU, DT, LI);
1795     return nullptr;
1796   }
1797 
1798   // Reuse the IV increment that SCEVExpander created as long as it dominates
1799   // NarrowUse.
1800   Instruction *WideUse = nullptr;
1801   if (WideAddRec.first == WideIncExpr &&
1802       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1803     WideUse = WideInc;
1804   else {
1805     WideUse = cloneIVUser(DU, WideAddRec.first);
1806     if (!WideUse)
1807       return nullptr;
1808   }
1809   // Evaluation of WideAddRec ensured that the narrow expression could be
1810   // extended outside the loop without overflow. This suggests that the wide use
1811   // evaluates to the same expression as the extended narrow use, but doesn't
1812   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1813   // where it fails, we simply throw away the newly created wide use.
1814   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1815     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1816                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1817                       << "\n");
1818     DeadInsts.emplace_back(WideUse);
1819     return nullptr;
1820   }
1821 
1822   // if we reached this point then we are going to replace
1823   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1824   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1825 
1826   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1827   // Returning WideUse pushes it on the worklist.
1828   return WideUse;
1829 }
1830 
1831 /// Add eligible users of NarrowDef to NarrowIVUsers.
1832 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1833   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1834   bool NonNegativeDef =
1835       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1836                            SE->getZero(NarrowSCEV->getType()));
1837   for (User *U : NarrowDef->users()) {
1838     Instruction *NarrowUser = cast<Instruction>(U);
1839 
1840     // Handle data flow merges and bizarre phi cycles.
1841     if (!Widened.insert(NarrowUser).second)
1842       continue;
1843 
1844     bool NonNegativeUse = false;
1845     if (!NonNegativeDef) {
1846       // We might have a control-dependent range information for this context.
1847       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1848         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1849     }
1850 
1851     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1852                                NonNegativeDef || NonNegativeUse);
1853   }
1854 }
1855 
1856 /// Process a single induction variable. First use the SCEVExpander to create a
1857 /// wide induction variable that evaluates to the same recurrence as the
1858 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1859 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1860 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1861 ///
1862 /// It would be simpler to delete uses as they are processed, but we must avoid
1863 /// invalidating SCEV expressions.
1864 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1865   // Is this phi an induction variable?
1866   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1867   if (!AddRec)
1868     return nullptr;
1869 
1870   // Widen the induction variable expression.
1871   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1872                                ? SE->getSignExtendExpr(AddRec, WideType)
1873                                : SE->getZeroExtendExpr(AddRec, WideType);
1874 
1875   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1876          "Expect the new IV expression to preserve its type");
1877 
1878   // Can the IV be extended outside the loop without overflow?
1879   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1880   if (!AddRec || AddRec->getLoop() != L)
1881     return nullptr;
1882 
1883   // An AddRec must have loop-invariant operands. Since this AddRec is
1884   // materialized by a loop header phi, the expression cannot have any post-loop
1885   // operands, so they must dominate the loop header.
1886   assert(
1887       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1888       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1889       "Loop header phi recurrence inputs do not dominate the loop");
1890 
1891   // Iterate over IV uses (including transitive ones) looking for IV increments
1892   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1893   // the increment calculate control-dependent range information basing on
1894   // dominating conditions inside of the loop (e.g. a range check inside of the
1895   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1896   //
1897   // Control-dependent range information is later used to prove that a narrow
1898   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1899   // this on demand because when pushNarrowIVUsers needs this information some
1900   // of the dominating conditions might be already widened.
1901   if (UsePostIncrementRanges)
1902     calculatePostIncRanges(OrigPhi);
1903 
1904   // The rewriter provides a value for the desired IV expression. This may
1905   // either find an existing phi or materialize a new one. Either way, we
1906   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1907   // of the phi-SCC dominates the loop entry.
1908   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1909   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1910   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1911   // inttoptr, ptrtoint, just skip for now.
1912   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1913     // if the cast node is an inserted instruction without any user, we should
1914     // remove it to make sure the pass don't touch the function as we can not
1915     // wide the phi.
1916     if (ExpandInst->hasNUses(0) &&
1917         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1918       DeadInsts.emplace_back(ExpandInst);
1919     return nullptr;
1920   }
1921 
1922   // Remembering the WideIV increment generated by SCEVExpander allows
1923   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1924   // employ a general reuse mechanism because the call above is the only call to
1925   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1926   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1927     WideInc =
1928       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1929     WideIncExpr = SE->getSCEV(WideInc);
1930     // Propagate the debug location associated with the original loop increment
1931     // to the new (widened) increment.
1932     auto *OrigInc =
1933       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1934     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1935   }
1936 
1937   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1938   ++NumWidened;
1939 
1940   // Traverse the def-use chain using a worklist starting at the original IV.
1941   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1942 
1943   Widened.insert(OrigPhi);
1944   pushNarrowIVUsers(OrigPhi, WidePhi);
1945 
1946   while (!NarrowIVUsers.empty()) {
1947     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1948 
1949     // Process a def-use edge. This may replace the use, so don't hold a
1950     // use_iterator across it.
1951     Instruction *WideUse = widenIVUse(DU, Rewriter);
1952 
1953     // Follow all def-use edges from the previous narrow use.
1954     if (WideUse)
1955       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1956 
1957     // widenIVUse may have removed the def-use edge.
1958     if (DU.NarrowDef->use_empty())
1959       DeadInsts.emplace_back(DU.NarrowDef);
1960   }
1961 
1962   // Attach any debug information to the new PHI.
1963   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1964 
1965   return WidePhi;
1966 }
1967 
1968 /// Calculates control-dependent range for the given def at the given context
1969 /// by looking at dominating conditions inside of the loop
1970 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1971                                     Instruction *NarrowUser) {
1972   using namespace llvm::PatternMatch;
1973 
1974   Value *NarrowDefLHS;
1975   const APInt *NarrowDefRHS;
1976   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1977                                  m_APInt(NarrowDefRHS))) ||
1978       !NarrowDefRHS->isNonNegative())
1979     return;
1980 
1981   auto UpdateRangeFromCondition = [&] (Value *Condition,
1982                                        bool TrueDest) {
1983     CmpInst::Predicate Pred;
1984     Value *CmpRHS;
1985     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1986                                  m_Value(CmpRHS))))
1987       return;
1988 
1989     CmpInst::Predicate P =
1990             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1991 
1992     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1993     auto CmpConstrainedLHSRange =
1994             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1995     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1996         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1997 
1998     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1999   };
2000 
2001   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2002     if (!HasGuards)
2003       return;
2004 
2005     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2006                                      Ctx->getParent()->rend())) {
2007       Value *C = nullptr;
2008       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2009         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2010     }
2011   };
2012 
2013   UpdateRangeFromGuards(NarrowUser);
2014 
2015   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2016   // If NarrowUserBB is statically unreachable asking dominator queries may
2017   // yield surprising results. (e.g. the block may not have a dom tree node)
2018   if (!DT->isReachableFromEntry(NarrowUserBB))
2019     return;
2020 
2021   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2022        L->contains(DTB->getBlock());
2023        DTB = DTB->getIDom()) {
2024     auto *BB = DTB->getBlock();
2025     auto *TI = BB->getTerminator();
2026     UpdateRangeFromGuards(TI);
2027 
2028     auto *BI = dyn_cast<BranchInst>(TI);
2029     if (!BI || !BI->isConditional())
2030       continue;
2031 
2032     auto *TrueSuccessor = BI->getSuccessor(0);
2033     auto *FalseSuccessor = BI->getSuccessor(1);
2034 
2035     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2036       return BBE.isSingleEdge() &&
2037              DT->dominates(BBE, NarrowUser->getParent());
2038     };
2039 
2040     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2041       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2042 
2043     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2044       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2045   }
2046 }
2047 
2048 /// Calculates PostIncRangeInfos map for the given IV
2049 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2050   SmallPtrSet<Instruction *, 16> Visited;
2051   SmallVector<Instruction *, 6> Worklist;
2052   Worklist.push_back(OrigPhi);
2053   Visited.insert(OrigPhi);
2054 
2055   while (!Worklist.empty()) {
2056     Instruction *NarrowDef = Worklist.pop_back_val();
2057 
2058     for (Use &U : NarrowDef->uses()) {
2059       auto *NarrowUser = cast<Instruction>(U.getUser());
2060 
2061       // Don't go looking outside the current loop.
2062       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2063       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2064         continue;
2065 
2066       if (!Visited.insert(NarrowUser).second)
2067         continue;
2068 
2069       Worklist.push_back(NarrowUser);
2070 
2071       calculatePostIncRange(NarrowDef, NarrowUser);
2072     }
2073   }
2074 }
2075 
2076 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2077     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2078     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2079     unsigned &NumElimExt, unsigned &NumWidened,
2080     bool HasGuards, bool UsePostIncrementRanges) {
2081   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2082   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2083   NumElimExt = Widener.getNumElimExt();
2084   NumWidened = Widener.getNumWidened();
2085   return WidePHI;
2086 }
2087