1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "indvars" 32 33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 34 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 37 STATISTIC( 38 NumSimplifiedSDiv, 39 "Number of IV signed division operations converted to unsigned division"); 40 STATISTIC( 41 NumSimplifiedSRem, 42 "Number of IV signed remainder operations converted to unsigned remainder"); 43 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 44 45 namespace { 46 /// This is a utility for simplifying induction variables 47 /// based on ScalarEvolution. It is the primary instrument of the 48 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 49 /// other loop passes that preserve SCEV. 50 class SimplifyIndvar { 51 Loop *L; 52 LoopInfo *LI; 53 ScalarEvolution *SE; 54 DominatorTree *DT; 55 const TargetTransformInfo *TTI; 56 SCEVExpander &Rewriter; 57 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 58 59 bool Changed = false; 60 61 public: 62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 63 LoopInfo *LI, const TargetTransformInfo *TTI, 64 SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 67 DeadInsts(Dead) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 83 84 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 85 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 86 bool eliminateTrunc(TruncInst *TI); 87 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 88 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 89 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 90 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 91 bool IsSigned); 92 void replaceRemWithNumerator(BinaryOperator *Rem); 93 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 94 void replaceSRemWithURem(BinaryOperator *Rem); 95 bool eliminateSDiv(BinaryOperator *SDiv); 96 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 97 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 98 }; 99 } 100 101 /// Find a point in code which dominates all given instructions. We can safely 102 /// assume that, whatever fact we can prove at the found point, this fact is 103 /// also true for each of the given instructions. 104 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 105 DominatorTree &DT) { 106 Instruction *CommonDom = nullptr; 107 for (auto *Insn : Instructions) 108 if (!CommonDom || DT.dominates(Insn, CommonDom)) 109 CommonDom = Insn; 110 else if (!DT.dominates(CommonDom, Insn)) 111 // If there is no dominance relation, use common dominator. 112 CommonDom = 113 DT.findNearestCommonDominator(CommonDom->getParent(), 114 Insn->getParent())->getTerminator(); 115 assert(CommonDom && "Common dominator not found?"); 116 return CommonDom; 117 } 118 119 /// Fold an IV operand into its use. This removes increments of an 120 /// aligned IV when used by a instruction that ignores the low bits. 121 /// 122 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 123 /// 124 /// Return the operand of IVOperand for this induction variable if IVOperand can 125 /// be folded (in case more folding opportunities have been exposed). 126 /// Otherwise return null. 127 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 128 Value *IVSrc = nullptr; 129 const unsigned OperIdx = 0; 130 const SCEV *FoldedExpr = nullptr; 131 bool MustDropExactFlag = false; 132 switch (UseInst->getOpcode()) { 133 default: 134 return nullptr; 135 case Instruction::UDiv: 136 case Instruction::LShr: 137 // We're only interested in the case where we know something about 138 // the numerator and have a constant denominator. 139 if (IVOperand != UseInst->getOperand(OperIdx) || 140 !isa<ConstantInt>(UseInst->getOperand(1))) 141 return nullptr; 142 143 // Attempt to fold a binary operator with constant operand. 144 // e.g. ((I + 1) >> 2) => I >> 2 145 if (!isa<BinaryOperator>(IVOperand) 146 || !isa<ConstantInt>(IVOperand->getOperand(1))) 147 return nullptr; 148 149 IVSrc = IVOperand->getOperand(0); 150 // IVSrc must be the (SCEVable) IV, since the other operand is const. 151 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 152 153 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 154 if (UseInst->getOpcode() == Instruction::LShr) { 155 // Get a constant for the divisor. See createSCEV. 156 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 157 if (D->getValue().uge(BitWidth)) 158 return nullptr; 159 160 D = ConstantInt::get(UseInst->getContext(), 161 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 162 } 163 const auto *LHS = SE->getSCEV(IVSrc); 164 const auto *RHS = SE->getSCEV(D); 165 FoldedExpr = SE->getUDivExpr(LHS, RHS); 166 // We might have 'exact' flag set at this point which will no longer be 167 // correct after we make the replacement. 168 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 169 MustDropExactFlag = true; 170 } 171 // We have something that might fold it's operand. Compare SCEVs. 172 if (!SE->isSCEVable(UseInst->getType())) 173 return nullptr; 174 175 // Bypass the operand if SCEV can prove it has no effect. 176 if (SE->getSCEV(UseInst) != FoldedExpr) 177 return nullptr; 178 179 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 180 << " -> " << *UseInst << '\n'); 181 182 UseInst->setOperand(OperIdx, IVSrc); 183 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 184 185 if (MustDropExactFlag) 186 UseInst->dropPoisonGeneratingFlags(); 187 188 ++NumElimOperand; 189 Changed = true; 190 if (IVOperand->use_empty()) 191 DeadInsts.emplace_back(IVOperand); 192 return IVSrc; 193 } 194 195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 196 Value *IVOperand) { 197 unsigned IVOperIdx = 0; 198 ICmpInst::Predicate Pred = ICmp->getPredicate(); 199 if (IVOperand != ICmp->getOperand(0)) { 200 // Swapped 201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 202 IVOperIdx = 1; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 // Get the SCEVs for the ICmp operands (in the specific context of the 207 // current loop) 208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 211 212 auto *PN = dyn_cast<PHINode>(IVOperand); 213 if (!PN) 214 return false; 215 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L); 216 if (!LIP) 217 return false; 218 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 219 const SCEV *InvariantLHS = LIP->LHS; 220 const SCEV *InvariantRHS = LIP->RHS; 221 222 // Rewrite the comparison to a loop invariant comparison if it can be done 223 // cheaply, where cheaply means "we don't need to emit any new 224 // instructions". 225 226 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 227 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 228 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 229 230 // TODO: Support multiple entry loops? (We currently bail out of these in 231 // the IndVarSimplify pass) 232 if (auto *BB = L->getLoopPredecessor()) { 233 const int Idx = PN->getBasicBlockIndex(BB); 234 if (Idx >= 0) { 235 Value *Incoming = PN->getIncomingValue(Idx); 236 const SCEV *IncomingS = SE->getSCEV(Incoming); 237 CheapExpansions[IncomingS] = Incoming; 238 } 239 } 240 Value *NewLHS = CheapExpansions[InvariantLHS]; 241 Value *NewRHS = CheapExpansions[InvariantRHS]; 242 243 if (!NewLHS) 244 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 245 NewLHS = ConstLHS->getValue(); 246 if (!NewRHS) 247 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 248 NewRHS = ConstRHS->getValue(); 249 250 if (!NewLHS || !NewRHS) 251 // We could not find an existing value to replace either LHS or RHS. 252 // Generating new instructions has subtler tradeoffs, so avoid doing that 253 // for now. 254 return false; 255 256 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 257 ICmp->setPredicate(InvariantPredicate); 258 ICmp->setOperand(0, NewLHS); 259 ICmp->setOperand(1, NewRHS); 260 return true; 261 } 262 263 /// SimplifyIVUsers helper for eliminating useless 264 /// comparisons against an induction variable. 265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 266 unsigned IVOperIdx = 0; 267 ICmpInst::Predicate Pred = ICmp->getPredicate(); 268 ICmpInst::Predicate OriginalPred = Pred; 269 if (IVOperand != ICmp->getOperand(0)) { 270 // Swapped 271 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 272 IVOperIdx = 1; 273 Pred = ICmpInst::getSwappedPredicate(Pred); 274 } 275 276 // Get the SCEVs for the ICmp operands (in the specific context of the 277 // current loop) 278 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 279 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 280 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 281 282 // If the condition is always true or always false in the given context, 283 // replace it with a constant value. 284 SmallVector<Instruction *, 4> Users; 285 for (auto *U : ICmp->users()) 286 Users.push_back(cast<Instruction>(U)); 287 const Instruction *CtxI = findCommonDominator(Users, *DT); 288 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 289 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 290 DeadInsts.emplace_back(ICmp); 291 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 292 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 293 // fallthrough to end of function 294 } else if (ICmpInst::isSigned(OriginalPred) && 295 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 296 // If we were unable to make anything above, all we can is to canonicalize 297 // the comparison hoping that it will open the doors for other 298 // optimizations. If we find out that we compare two non-negative values, 299 // we turn the instruction's predicate to its unsigned version. Note that 300 // we cannot rely on Pred here unless we check if we have swapped it. 301 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 302 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 303 << '\n'); 304 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 305 } else 306 return; 307 308 ++NumElimCmp; 309 Changed = true; 310 } 311 312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 313 // Get the SCEVs for the ICmp operands. 314 auto *N = SE->getSCEV(SDiv->getOperand(0)); 315 auto *D = SE->getSCEV(SDiv->getOperand(1)); 316 317 // Simplify unnecessary loops away. 318 const Loop *L = LI->getLoopFor(SDiv->getParent()); 319 N = SE->getSCEVAtScope(N, L); 320 D = SE->getSCEVAtScope(D, L); 321 322 // Replace sdiv by udiv if both of the operands are non-negative 323 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 324 auto *UDiv = BinaryOperator::Create( 325 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 326 SDiv->getName() + ".udiv", SDiv); 327 UDiv->setIsExact(SDiv->isExact()); 328 SDiv->replaceAllUsesWith(UDiv); 329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 330 ++NumSimplifiedSDiv; 331 Changed = true; 332 DeadInsts.push_back(SDiv); 333 return true; 334 } 335 336 return false; 337 } 338 339 // i %s n -> i %u n if i >= 0 and n >= 0 340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 342 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 343 Rem->getName() + ".urem", Rem); 344 Rem->replaceAllUsesWith(URem); 345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 346 ++NumSimplifiedSRem; 347 Changed = true; 348 DeadInsts.emplace_back(Rem); 349 } 350 351 // i % n --> i if i is in [0,n). 352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 353 Rem->replaceAllUsesWith(Rem->getOperand(0)); 354 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 355 ++NumElimRem; 356 Changed = true; 357 DeadInsts.emplace_back(Rem); 358 } 359 360 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 362 auto *T = Rem->getType(); 363 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 364 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 365 SelectInst *Sel = 366 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 367 Rem->replaceAllUsesWith(Sel); 368 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 369 ++NumElimRem; 370 Changed = true; 371 DeadInsts.emplace_back(Rem); 372 } 373 374 /// SimplifyIVUsers helper for eliminating useless remainder operations 375 /// operating on an induction variable or replacing srem by urem. 376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 377 bool IsSigned) { 378 auto *NValue = Rem->getOperand(0); 379 auto *DValue = Rem->getOperand(1); 380 // We're only interested in the case where we know something about 381 // the numerator, unless it is a srem, because we want to replace srem by urem 382 // in general. 383 bool UsedAsNumerator = IVOperand == NValue; 384 if (!UsedAsNumerator && !IsSigned) 385 return; 386 387 const SCEV *N = SE->getSCEV(NValue); 388 389 // Simplify unnecessary loops away. 390 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 391 N = SE->getSCEVAtScope(N, ICmpLoop); 392 393 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 394 395 // Do not proceed if the Numerator may be negative 396 if (!IsNumeratorNonNegative) 397 return; 398 399 const SCEV *D = SE->getSCEV(DValue); 400 D = SE->getSCEVAtScope(D, ICmpLoop); 401 402 if (UsedAsNumerator) { 403 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 404 if (SE->isKnownPredicate(LT, N, D)) { 405 replaceRemWithNumerator(Rem); 406 return; 407 } 408 409 auto *T = Rem->getType(); 410 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 411 if (SE->isKnownPredicate(LT, NLessOne, D)) { 412 replaceRemWithNumeratorOrZero(Rem); 413 return; 414 } 415 } 416 417 // Try to replace SRem with URem, if both N and D are known non-negative. 418 // Since we had already check N, we only need to check D now 419 if (!IsSigned || !SE->isKnownNonNegative(D)) 420 return; 421 422 replaceSRemWithURem(Rem); 423 } 424 425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 426 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 427 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 428 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 429 return false; 430 431 // Proved no overflow, nuke the overflow check and, if possible, the overflow 432 // intrinsic as well. 433 434 BinaryOperator *NewResult = BinaryOperator::Create( 435 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 436 437 if (WO->isSigned()) 438 NewResult->setHasNoSignedWrap(true); 439 else 440 NewResult->setHasNoUnsignedWrap(true); 441 442 SmallVector<ExtractValueInst *, 4> ToDelete; 443 444 for (auto *U : WO->users()) { 445 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 446 if (EVI->getIndices()[0] == 1) 447 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 448 else { 449 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 450 EVI->replaceAllUsesWith(NewResult); 451 } 452 ToDelete.push_back(EVI); 453 } 454 } 455 456 for (auto *EVI : ToDelete) 457 EVI->eraseFromParent(); 458 459 if (WO->use_empty()) 460 WO->eraseFromParent(); 461 462 Changed = true; 463 return true; 464 } 465 466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 467 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 468 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 469 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 470 return false; 471 472 BinaryOperator *BO = BinaryOperator::Create( 473 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 474 if (SI->isSigned()) 475 BO->setHasNoSignedWrap(); 476 else 477 BO->setHasNoUnsignedWrap(); 478 479 SI->replaceAllUsesWith(BO); 480 DeadInsts.emplace_back(SI); 481 Changed = true; 482 return true; 483 } 484 485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 486 // It is always legal to replace 487 // icmp <pred> i32 trunc(iv), n 488 // with 489 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 490 // Or with 491 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 492 // Or with either of these if pred is an equality predicate. 493 // 494 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 495 // every comparison which uses trunc, it means that we can replace each of 496 // them with comparison of iv against sext/zext(n). We no longer need trunc 497 // after that. 498 // 499 // TODO: Should we do this if we can widen *some* comparisons, but not all 500 // of them? Sometimes it is enough to enable other optimizations, but the 501 // trunc instruction will stay in the loop. 502 Value *IV = TI->getOperand(0); 503 Type *IVTy = IV->getType(); 504 const SCEV *IVSCEV = SE->getSCEV(IV); 505 const SCEV *TISCEV = SE->getSCEV(TI); 506 507 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 508 // get rid of trunc 509 bool DoesSExtCollapse = false; 510 bool DoesZExtCollapse = false; 511 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 512 DoesSExtCollapse = true; 513 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 514 DoesZExtCollapse = true; 515 516 // If neither sext nor zext does collapse, it is not profitable to do any 517 // transform. Bail. 518 if (!DoesSExtCollapse && !DoesZExtCollapse) 519 return false; 520 521 // Collect users of the trunc that look like comparisons against invariants. 522 // Bail if we find something different. 523 SmallVector<ICmpInst *, 4> ICmpUsers; 524 for (auto *U : TI->users()) { 525 // We don't care about users in unreachable blocks. 526 if (isa<Instruction>(U) && 527 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 528 continue; 529 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 530 if (!ICI) return false; 531 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 532 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 533 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 534 return false; 535 // If we cannot get rid of trunc, bail. 536 if (ICI->isSigned() && !DoesSExtCollapse) 537 return false; 538 if (ICI->isUnsigned() && !DoesZExtCollapse) 539 return false; 540 // For equality, either signed or unsigned works. 541 ICmpUsers.push_back(ICI); 542 } 543 544 auto CanUseZExt = [&](ICmpInst *ICI) { 545 // Unsigned comparison can be widened as unsigned. 546 if (ICI->isUnsigned()) 547 return true; 548 // Is it profitable to do zext? 549 if (!DoesZExtCollapse) 550 return false; 551 // For equality, we can safely zext both parts. 552 if (ICI->isEquality()) 553 return true; 554 // Otherwise we can only use zext when comparing two non-negative or two 555 // negative values. But in practice, we will never pass DoesZExtCollapse 556 // check for a negative value, because zext(trunc(x)) is non-negative. So 557 // it only make sense to check for non-negativity here. 558 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 559 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 560 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 561 }; 562 // Replace all comparisons against trunc with comparisons against IV. 563 for (auto *ICI : ICmpUsers) { 564 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 565 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 566 Instruction *Ext = nullptr; 567 // For signed/unsigned predicate, replace the old comparison with comparison 568 // of immediate IV against sext/zext of the invariant argument. If we can 569 // use either sext or zext (i.e. we are dealing with equality predicate), 570 // then prefer zext as a more canonical form. 571 // TODO: If we see a signed comparison which can be turned into unsigned, 572 // we can do it here for canonicalization purposes. 573 ICmpInst::Predicate Pred = ICI->getPredicate(); 574 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 575 if (CanUseZExt(ICI)) { 576 assert(DoesZExtCollapse && "Unprofitable zext?"); 577 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 578 Pred = ICmpInst::getUnsignedPredicate(Pred); 579 } else { 580 assert(DoesSExtCollapse && "Unprofitable sext?"); 581 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 582 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 583 } 584 bool Changed; 585 L->makeLoopInvariant(Ext, Changed); 586 (void)Changed; 587 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 588 ICI->replaceAllUsesWith(NewICI); 589 DeadInsts.emplace_back(ICI); 590 } 591 592 // Trunc no longer needed. 593 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 594 DeadInsts.emplace_back(TI); 595 return true; 596 } 597 598 /// Eliminate an operation that consumes a simple IV and has no observable 599 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 600 /// but UseInst may not be. 601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 602 Instruction *IVOperand) { 603 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 604 eliminateIVComparison(ICmp, IVOperand); 605 return true; 606 } 607 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 608 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 609 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 610 simplifyIVRemainder(Bin, IVOperand, IsSRem); 611 return true; 612 } 613 614 if (Bin->getOpcode() == Instruction::SDiv) 615 return eliminateSDiv(Bin); 616 } 617 618 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 619 if (eliminateOverflowIntrinsic(WO)) 620 return true; 621 622 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 623 if (eliminateSaturatingIntrinsic(SI)) 624 return true; 625 626 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 627 if (eliminateTrunc(TI)) 628 return true; 629 630 if (eliminateIdentitySCEV(UseInst, IVOperand)) 631 return true; 632 633 return false; 634 } 635 636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 637 if (auto *BB = L->getLoopPreheader()) 638 return BB->getTerminator(); 639 640 return Hint; 641 } 642 643 /// Replace the UseInst with a loop invariant expression if it is safe. 644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 645 if (!SE->isSCEVable(I->getType())) 646 return false; 647 648 // Get the symbolic expression for this instruction. 649 const SCEV *S = SE->getSCEV(I); 650 651 if (!SE->isLoopInvariant(S, L)) 652 return false; 653 654 // Do not generate something ridiculous even if S is loop invariant. 655 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 656 return false; 657 658 auto *IP = GetLoopInvariantInsertPosition(L, I); 659 660 if (!isSafeToExpandAt(S, IP, *SE)) { 661 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 662 << " with non-speculable loop invariant: " << *S << '\n'); 663 return false; 664 } 665 666 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 667 668 I->replaceAllUsesWith(Invariant); 669 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 670 << " with loop invariant: " << *S << '\n'); 671 ++NumFoldedUser; 672 Changed = true; 673 DeadInsts.emplace_back(I); 674 return true; 675 } 676 677 /// Eliminate redundant type cast between integer and float. 678 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 679 if (UseInst->getOpcode() != CastInst::SIToFP) 680 return false; 681 682 Value *IVOperand = UseInst->getOperand(0); 683 // Get the symbolic expression for this instruction. 684 ConstantRange IVRange = SE->getSignedRange(SE->getSCEV(IVOperand)); 685 unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 686 if (IVRange.getActiveBits() <= DestNumSigBits) { 687 for (User *U : UseInst->users()) { 688 // Match for fptosi of sitofp and with same type. 689 auto *CI = dyn_cast<FPToSIInst>(U); 690 if (!CI || IVOperand->getType() != CI->getType()) 691 continue; 692 693 CI->replaceAllUsesWith(IVOperand); 694 DeadInsts.push_back(CI); 695 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 696 << " with: " << *IVOperand << '\n'); 697 698 ++NumFoldedUser; 699 Changed = true; 700 } 701 } 702 703 return Changed; 704 } 705 706 /// Eliminate any operation that SCEV can prove is an identity function. 707 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 708 Instruction *IVOperand) { 709 if (!SE->isSCEVable(UseInst->getType()) || 710 (UseInst->getType() != IVOperand->getType()) || 711 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 712 return false; 713 714 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 715 // dominator tree, even if X is an operand to Y. For instance, in 716 // 717 // %iv = phi i32 {0,+,1} 718 // br %cond, label %left, label %merge 719 // 720 // left: 721 // %X = add i32 %iv, 0 722 // br label %merge 723 // 724 // merge: 725 // %M = phi (%X, %iv) 726 // 727 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 728 // %M.replaceAllUsesWith(%X) would be incorrect. 729 730 if (isa<PHINode>(UseInst)) 731 // If UseInst is not a PHI node then we know that IVOperand dominates 732 // UseInst directly from the legality of SSA. 733 if (!DT || !DT->dominates(IVOperand, UseInst)) 734 return false; 735 736 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 737 return false; 738 739 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 740 741 UseInst->replaceAllUsesWith(IVOperand); 742 ++NumElimIdentity; 743 Changed = true; 744 DeadInsts.emplace_back(UseInst); 745 return true; 746 } 747 748 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 749 /// unsigned-overflow. Returns true if anything changed, false otherwise. 750 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 751 Value *IVOperand) { 752 SCEV::NoWrapFlags Flags; 753 bool Deduced; 754 std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp( 755 cast<OverflowingBinaryOperator>(BO)); 756 757 if (!Deduced) 758 return Deduced; 759 760 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) == 761 SCEV::FlagNUW); 762 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) == 763 SCEV::FlagNSW); 764 765 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 766 // flags on addrecs while performing zero/sign extensions. We could call 767 // forgetValue() here to make sure those flags also propagate to any other 768 // SCEV expressions based on the addrec. However, this can have pathological 769 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 770 return Deduced; 771 } 772 773 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 774 /// information from the IV's range. Returns true if anything changed, false 775 /// otherwise. 776 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 777 Value *IVOperand) { 778 using namespace llvm::PatternMatch; 779 780 if (BO->getOpcode() == Instruction::Shl) { 781 bool Changed = false; 782 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 783 for (auto *U : BO->users()) { 784 const APInt *C; 785 if (match(U, 786 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 787 match(U, 788 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 789 BinaryOperator *Shr = cast<BinaryOperator>(U); 790 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 791 Shr->setIsExact(true); 792 Changed = true; 793 } 794 } 795 } 796 return Changed; 797 } 798 799 return false; 800 } 801 802 /// Add all uses of Def to the current IV's worklist. 803 static void pushIVUsers( 804 Instruction *Def, Loop *L, 805 SmallPtrSet<Instruction*,16> &Simplified, 806 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 807 808 for (User *U : Def->users()) { 809 Instruction *UI = cast<Instruction>(U); 810 811 // Avoid infinite or exponential worklist processing. 812 // Also ensure unique worklist users. 813 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 814 // self edges first. 815 if (UI == Def) 816 continue; 817 818 // Only change the current Loop, do not change the other parts (e.g. other 819 // Loops). 820 if (!L->contains(UI)) 821 continue; 822 823 // Do not push the same instruction more than once. 824 if (!Simplified.insert(UI).second) 825 continue; 826 827 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 828 } 829 } 830 831 /// Return true if this instruction generates a simple SCEV 832 /// expression in terms of that IV. 833 /// 834 /// This is similar to IVUsers' isInteresting() but processes each instruction 835 /// non-recursively when the operand is already known to be a simpleIVUser. 836 /// 837 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 838 if (!SE->isSCEVable(I->getType())) 839 return false; 840 841 // Get the symbolic expression for this instruction. 842 const SCEV *S = SE->getSCEV(I); 843 844 // Only consider affine recurrences. 845 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 846 if (AR && AR->getLoop() == L) 847 return true; 848 849 return false; 850 } 851 852 /// Iteratively perform simplification on a worklist of users 853 /// of the specified induction variable. Each successive simplification may push 854 /// more users which may themselves be candidates for simplification. 855 /// 856 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 857 /// instructions in-place during analysis. Rather than rewriting induction 858 /// variables bottom-up from their users, it transforms a chain of IVUsers 859 /// top-down, updating the IR only when it encounters a clear optimization 860 /// opportunity. 861 /// 862 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 863 /// 864 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 865 if (!SE->isSCEVable(CurrIV->getType())) 866 return; 867 868 // Instructions processed by SimplifyIndvar for CurrIV. 869 SmallPtrSet<Instruction*,16> Simplified; 870 871 // Use-def pairs if IV users waiting to be processed for CurrIV. 872 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 873 874 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 875 // called multiple times for the same LoopPhi. This is the proper thing to 876 // do for loop header phis that use each other. 877 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 878 879 while (!SimpleIVUsers.empty()) { 880 std::pair<Instruction*, Instruction*> UseOper = 881 SimpleIVUsers.pop_back_val(); 882 Instruction *UseInst = UseOper.first; 883 884 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 885 // rather than try to do some complex analysis or transformation (such as 886 // widening) basing on it. 887 // TODO: Propagate TLI and pass it here to handle more cases. 888 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 889 DeadInsts.emplace_back(UseInst); 890 continue; 891 } 892 893 // Bypass back edges to avoid extra work. 894 if (UseInst == CurrIV) continue; 895 896 // Try to replace UseInst with a loop invariant before any other 897 // simplifications. 898 if (replaceIVUserWithLoopInvariant(UseInst)) 899 continue; 900 901 Instruction *IVOperand = UseOper.second; 902 for (unsigned N = 0; IVOperand; ++N) { 903 assert(N <= Simplified.size() && "runaway iteration"); 904 (void) N; 905 906 Value *NewOper = foldIVUser(UseInst, IVOperand); 907 if (!NewOper) 908 break; // done folding 909 IVOperand = dyn_cast<Instruction>(NewOper); 910 } 911 if (!IVOperand) 912 continue; 913 914 if (eliminateIVUser(UseInst, IVOperand)) { 915 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 916 continue; 917 } 918 919 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 920 if ((isa<OverflowingBinaryOperator>(BO) && 921 strengthenOverflowingOperation(BO, IVOperand)) || 922 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 923 // re-queue uses of the now modified binary operator and fall 924 // through to the checks that remain. 925 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 926 } 927 } 928 929 // Try to use integer induction for FPToSI of float induction directly. 930 if (replaceFloatIVWithIntegerIV(UseInst)) { 931 // Re-queue the potentially new direct uses of IVOperand. 932 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 933 continue; 934 } 935 936 CastInst *Cast = dyn_cast<CastInst>(UseInst); 937 if (V && Cast) { 938 V->visitCast(Cast); 939 continue; 940 } 941 if (isSimpleIVUser(UseInst, L, SE)) { 942 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 943 } 944 } 945 } 946 947 namespace llvm { 948 949 void IVVisitor::anchor() { } 950 951 /// Simplify instructions that use this induction variable 952 /// by using ScalarEvolution to analyze the IV's recurrence. 953 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 954 LoopInfo *LI, const TargetTransformInfo *TTI, 955 SmallVectorImpl<WeakTrackingVH> &Dead, 956 SCEVExpander &Rewriter, IVVisitor *V) { 957 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 958 Rewriter, Dead); 959 SIV.simplifyUsers(CurrIV, V); 960 return SIV.hasChanged(); 961 } 962 963 /// Simplify users of induction variables within this 964 /// loop. This does not actually change or add IVs. 965 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 966 LoopInfo *LI, const TargetTransformInfo *TTI, 967 SmallVectorImpl<WeakTrackingVH> &Dead) { 968 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 969 #ifndef NDEBUG 970 Rewriter.setDebugType(DEBUG_TYPE); 971 #endif 972 bool Changed = false; 973 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 974 Changed |= 975 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 976 } 977 return Changed; 978 } 979 980 } // namespace llvm 981 982 namespace { 983 //===----------------------------------------------------------------------===// 984 // Widen Induction Variables - Extend the width of an IV to cover its 985 // widest uses. 986 //===----------------------------------------------------------------------===// 987 988 class WidenIV { 989 // Parameters 990 PHINode *OrigPhi; 991 Type *WideType; 992 993 // Context 994 LoopInfo *LI; 995 Loop *L; 996 ScalarEvolution *SE; 997 DominatorTree *DT; 998 999 // Does the module have any calls to the llvm.experimental.guard intrinsic 1000 // at all? If not we can avoid scanning instructions looking for guards. 1001 bool HasGuards; 1002 1003 bool UsePostIncrementRanges; 1004 1005 // Statistics 1006 unsigned NumElimExt = 0; 1007 unsigned NumWidened = 0; 1008 1009 // Result 1010 PHINode *WidePhi = nullptr; 1011 Instruction *WideInc = nullptr; 1012 const SCEV *WideIncExpr = nullptr; 1013 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1014 1015 SmallPtrSet<Instruction *,16> Widened; 1016 1017 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 1018 1019 // A map tracking the kind of extension used to widen each narrow IV 1020 // and narrow IV user. 1021 // Key: pointer to a narrow IV or IV user. 1022 // Value: the kind of extension used to widen this Instruction. 1023 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1024 1025 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1026 1027 // A map with control-dependent ranges for post increment IV uses. The key is 1028 // a pair of IV def and a use of this def denoting the context. The value is 1029 // a ConstantRange representing possible values of the def at the given 1030 // context. 1031 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1032 1033 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1034 Instruction *UseI) { 1035 DefUserPair Key(Def, UseI); 1036 auto It = PostIncRangeInfos.find(Key); 1037 return It == PostIncRangeInfos.end() 1038 ? Optional<ConstantRange>(None) 1039 : Optional<ConstantRange>(It->second); 1040 } 1041 1042 void calculatePostIncRanges(PHINode *OrigPhi); 1043 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1044 1045 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1046 DefUserPair Key(Def, UseI); 1047 auto It = PostIncRangeInfos.find(Key); 1048 if (It == PostIncRangeInfos.end()) 1049 PostIncRangeInfos.insert({Key, R}); 1050 else 1051 It->second = R.intersectWith(It->second); 1052 } 1053 1054 public: 1055 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1056 /// computes the same value as the Narrow IV def. This avoids caching Use* 1057 /// pointers. 1058 struct NarrowIVDefUse { 1059 Instruction *NarrowDef = nullptr; 1060 Instruction *NarrowUse = nullptr; 1061 Instruction *WideDef = nullptr; 1062 1063 // True if the narrow def is never negative. Tracking this information lets 1064 // us use a sign extension instead of a zero extension or vice versa, when 1065 // profitable and legal. 1066 bool NeverNegative = false; 1067 1068 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1069 bool NeverNegative) 1070 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1071 NeverNegative(NeverNegative) {} 1072 }; 1073 1074 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1075 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1076 bool HasGuards, bool UsePostIncrementRanges = true); 1077 1078 PHINode *createWideIV(SCEVExpander &Rewriter); 1079 1080 unsigned getNumElimExt() { return NumElimExt; }; 1081 unsigned getNumWidened() { return NumWidened; }; 1082 1083 protected: 1084 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1085 Instruction *Use); 1086 1087 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1088 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1089 const SCEVAddRecExpr *WideAR); 1090 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1091 1092 ExtendKind getExtendKind(Instruction *I); 1093 1094 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1095 1096 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1097 1098 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1099 1100 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1101 unsigned OpCode) const; 1102 1103 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1104 1105 bool widenLoopCompare(NarrowIVDefUse DU); 1106 bool widenWithVariantUse(NarrowIVDefUse DU); 1107 1108 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1109 1110 private: 1111 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1112 }; 1113 } // namespace 1114 1115 /// Determine the insertion point for this user. By default, insert immediately 1116 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1117 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1118 /// common dominator for the incoming blocks. A nullptr can be returned if no 1119 /// viable location is found: it may happen if User is a PHI and Def only comes 1120 /// to this PHI from unreachable blocks. 1121 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1122 DominatorTree *DT, LoopInfo *LI) { 1123 PHINode *PHI = dyn_cast<PHINode>(User); 1124 if (!PHI) 1125 return User; 1126 1127 Instruction *InsertPt = nullptr; 1128 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1129 if (PHI->getIncomingValue(i) != Def) 1130 continue; 1131 1132 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1133 1134 if (!DT->isReachableFromEntry(InsertBB)) 1135 continue; 1136 1137 if (!InsertPt) { 1138 InsertPt = InsertBB->getTerminator(); 1139 continue; 1140 } 1141 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1142 InsertPt = InsertBB->getTerminator(); 1143 } 1144 1145 // If we have skipped all inputs, it means that Def only comes to Phi from 1146 // unreachable blocks. 1147 if (!InsertPt) 1148 return nullptr; 1149 1150 auto *DefI = dyn_cast<Instruction>(Def); 1151 if (!DefI) 1152 return InsertPt; 1153 1154 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1155 1156 auto *L = LI->getLoopFor(DefI->getParent()); 1157 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1158 1159 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1160 if (LI->getLoopFor(DTN->getBlock()) == L) 1161 return DTN->getBlock()->getTerminator(); 1162 1163 llvm_unreachable("DefI dominates InsertPt!"); 1164 } 1165 1166 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1167 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1168 bool HasGuards, bool UsePostIncrementRanges) 1169 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1170 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1171 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1172 DeadInsts(DI) { 1173 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1174 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1175 } 1176 1177 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1178 bool IsSigned, Instruction *Use) { 1179 // Set the debug location and conservative insertion point. 1180 IRBuilder<> Builder(Use); 1181 // Hoist the insertion point into loop preheaders as far as possible. 1182 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1183 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1184 L = L->getParentLoop()) 1185 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1186 1187 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1188 Builder.CreateZExt(NarrowOper, WideType); 1189 } 1190 1191 /// Instantiate a wide operation to replace a narrow operation. This only needs 1192 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1193 /// 0 for any operation we decide not to clone. 1194 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1195 const SCEVAddRecExpr *WideAR) { 1196 unsigned Opcode = DU.NarrowUse->getOpcode(); 1197 switch (Opcode) { 1198 default: 1199 return nullptr; 1200 case Instruction::Add: 1201 case Instruction::Mul: 1202 case Instruction::UDiv: 1203 case Instruction::Sub: 1204 return cloneArithmeticIVUser(DU, WideAR); 1205 1206 case Instruction::And: 1207 case Instruction::Or: 1208 case Instruction::Xor: 1209 case Instruction::Shl: 1210 case Instruction::LShr: 1211 case Instruction::AShr: 1212 return cloneBitwiseIVUser(DU); 1213 } 1214 } 1215 1216 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1217 Instruction *NarrowUse = DU.NarrowUse; 1218 Instruction *NarrowDef = DU.NarrowDef; 1219 Instruction *WideDef = DU.WideDef; 1220 1221 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1222 1223 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1224 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1225 // invariant and will be folded or hoisted. If it actually comes from a 1226 // widened IV, it should be removed during a future call to widenIVUse. 1227 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1228 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1229 ? WideDef 1230 : createExtendInst(NarrowUse->getOperand(0), WideType, 1231 IsSigned, NarrowUse); 1232 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1233 ? WideDef 1234 : createExtendInst(NarrowUse->getOperand(1), WideType, 1235 IsSigned, NarrowUse); 1236 1237 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1238 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1239 NarrowBO->getName()); 1240 IRBuilder<> Builder(NarrowUse); 1241 Builder.Insert(WideBO); 1242 WideBO->copyIRFlags(NarrowBO); 1243 return WideBO; 1244 } 1245 1246 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1247 const SCEVAddRecExpr *WideAR) { 1248 Instruction *NarrowUse = DU.NarrowUse; 1249 Instruction *NarrowDef = DU.NarrowDef; 1250 Instruction *WideDef = DU.WideDef; 1251 1252 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1253 1254 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1255 1256 // We're trying to find X such that 1257 // 1258 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1259 // 1260 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1261 // and check using SCEV if any of them are correct. 1262 1263 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1264 // correct solution to X. 1265 auto GuessNonIVOperand = [&](bool SignExt) { 1266 const SCEV *WideLHS; 1267 const SCEV *WideRHS; 1268 1269 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1270 if (SignExt) 1271 return SE->getSignExtendExpr(S, Ty); 1272 return SE->getZeroExtendExpr(S, Ty); 1273 }; 1274 1275 if (IVOpIdx == 0) { 1276 WideLHS = SE->getSCEV(WideDef); 1277 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1278 WideRHS = GetExtend(NarrowRHS, WideType); 1279 } else { 1280 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1281 WideLHS = GetExtend(NarrowLHS, WideType); 1282 WideRHS = SE->getSCEV(WideDef); 1283 } 1284 1285 // WideUse is "WideDef `op.wide` X" as described in the comment. 1286 const SCEV *WideUse = 1287 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1288 1289 return WideUse == WideAR; 1290 }; 1291 1292 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1293 if (!GuessNonIVOperand(SignExtend)) { 1294 SignExtend = !SignExtend; 1295 if (!GuessNonIVOperand(SignExtend)) 1296 return nullptr; 1297 } 1298 1299 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1300 ? WideDef 1301 : createExtendInst(NarrowUse->getOperand(0), WideType, 1302 SignExtend, NarrowUse); 1303 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1304 ? WideDef 1305 : createExtendInst(NarrowUse->getOperand(1), WideType, 1306 SignExtend, NarrowUse); 1307 1308 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1309 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1310 NarrowBO->getName()); 1311 1312 IRBuilder<> Builder(NarrowUse); 1313 Builder.Insert(WideBO); 1314 WideBO->copyIRFlags(NarrowBO); 1315 return WideBO; 1316 } 1317 1318 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1319 auto It = ExtendKindMap.find(I); 1320 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1321 return It->second; 1322 } 1323 1324 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1325 unsigned OpCode) const { 1326 switch (OpCode) { 1327 case Instruction::Add: 1328 return SE->getAddExpr(LHS, RHS); 1329 case Instruction::Sub: 1330 return SE->getMinusSCEV(LHS, RHS); 1331 case Instruction::Mul: 1332 return SE->getMulExpr(LHS, RHS); 1333 case Instruction::UDiv: 1334 return SE->getUDivExpr(LHS, RHS); 1335 default: 1336 llvm_unreachable("Unsupported opcode."); 1337 }; 1338 } 1339 1340 /// No-wrap operations can transfer sign extension of their result to their 1341 /// operands. Generate the SCEV value for the widened operation without 1342 /// actually modifying the IR yet. If the expression after extending the 1343 /// operands is an AddRec for this loop, return the AddRec and the kind of 1344 /// extension used. 1345 WidenIV::WidenedRecTy 1346 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1347 // Handle the common case of add<nsw/nuw> 1348 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1349 // Only Add/Sub/Mul instructions supported yet. 1350 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1351 OpCode != Instruction::Mul) 1352 return {nullptr, Unknown}; 1353 1354 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1355 // if extending the other will lead to a recurrence. 1356 const unsigned ExtendOperIdx = 1357 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1358 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1359 1360 const SCEV *ExtendOperExpr = nullptr; 1361 const OverflowingBinaryOperator *OBO = 1362 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1363 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1364 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1365 ExtendOperExpr = SE->getSignExtendExpr( 1366 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1367 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1368 ExtendOperExpr = SE->getZeroExtendExpr( 1369 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1370 else 1371 return {nullptr, Unknown}; 1372 1373 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1374 // flags. This instruction may be guarded by control flow that the no-wrap 1375 // behavior depends on. Non-control-equivalent instructions can be mapped to 1376 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1377 // semantics to those operations. 1378 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1379 const SCEV *rhs = ExtendOperExpr; 1380 1381 // Let's swap operands to the initial order for the case of non-commutative 1382 // operations, like SUB. See PR21014. 1383 if (ExtendOperIdx == 0) 1384 std::swap(lhs, rhs); 1385 const SCEVAddRecExpr *AddRec = 1386 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1387 1388 if (!AddRec || AddRec->getLoop() != L) 1389 return {nullptr, Unknown}; 1390 1391 return {AddRec, ExtKind}; 1392 } 1393 1394 /// Is this instruction potentially interesting for further simplification after 1395 /// widening it's type? In other words, can the extend be safely hoisted out of 1396 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1397 /// so, return the extended recurrence and the kind of extension used. Otherwise 1398 /// return {nullptr, Unknown}. 1399 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1400 if (!DU.NarrowUse->getType()->isIntegerTy()) 1401 return {nullptr, Unknown}; 1402 1403 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1404 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1405 SE->getTypeSizeInBits(WideType)) { 1406 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1407 // index. So don't follow this use. 1408 return {nullptr, Unknown}; 1409 } 1410 1411 const SCEV *WideExpr; 1412 ExtendKind ExtKind; 1413 if (DU.NeverNegative) { 1414 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1415 if (isa<SCEVAddRecExpr>(WideExpr)) 1416 ExtKind = SignExtended; 1417 else { 1418 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1419 ExtKind = ZeroExtended; 1420 } 1421 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1422 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1423 ExtKind = SignExtended; 1424 } else { 1425 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1426 ExtKind = ZeroExtended; 1427 } 1428 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1429 if (!AddRec || AddRec->getLoop() != L) 1430 return {nullptr, Unknown}; 1431 return {AddRec, ExtKind}; 1432 } 1433 1434 /// This IV user cannot be widened. Replace this use of the original narrow IV 1435 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1436 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1437 LoopInfo *LI) { 1438 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1439 if (!InsertPt) 1440 return; 1441 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1442 << *DU.NarrowUse << "\n"); 1443 IRBuilder<> Builder(InsertPt); 1444 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1445 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1446 } 1447 1448 /// If the narrow use is a compare instruction, then widen the compare 1449 // (and possibly the other operand). The extend operation is hoisted into the 1450 // loop preheader as far as possible. 1451 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1452 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1453 if (!Cmp) 1454 return false; 1455 1456 // We can legally widen the comparison in the following two cases: 1457 // 1458 // - The signedness of the IV extension and comparison match 1459 // 1460 // - The narrow IV is always positive (and thus its sign extension is equal 1461 // to its zero extension). For instance, let's say we're zero extending 1462 // %narrow for the following use 1463 // 1464 // icmp slt i32 %narrow, %val ... (A) 1465 // 1466 // and %narrow is always positive. Then 1467 // 1468 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1469 // == icmp slt i32 zext(%narrow), sext(%val) 1470 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1471 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1472 return false; 1473 1474 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1475 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1476 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1477 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1478 1479 // Widen the compare instruction. 1480 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1481 if (!InsertPt) 1482 return false; 1483 IRBuilder<> Builder(InsertPt); 1484 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1485 1486 // Widen the other operand of the compare, if necessary. 1487 if (CastWidth < IVWidth) { 1488 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1489 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1490 } 1491 return true; 1492 } 1493 1494 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1495 // will not work when: 1496 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1497 // expand, eg. add %indvar, (load %addr) 1498 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1499 // While SCEV fails to avoid trunc, we can still try to use instruction 1500 // combining approach to prove trunc is not required. This can be further 1501 // extended with other instruction combining checks, but for now we handle the 1502 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1503 // 1504 // Src: 1505 // %c = sub nsw %b, %indvar 1506 // %d = sext %c to i64 1507 // Dst: 1508 // %indvar.ext1 = sext %indvar to i64 1509 // %m = sext %b to i64 1510 // %d = sub nsw i64 %m, %indvar.ext1 1511 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1512 // trunc is required regardless of how %b is generated. This pattern is common 1513 // when calculating address in 64 bit architecture 1514 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1515 Instruction *NarrowUse = DU.NarrowUse; 1516 Instruction *NarrowDef = DU.NarrowDef; 1517 Instruction *WideDef = DU.WideDef; 1518 1519 // Handle the common case of add<nsw/nuw> 1520 const unsigned OpCode = NarrowUse->getOpcode(); 1521 // Only Add/Sub/Mul instructions are supported. 1522 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1523 OpCode != Instruction::Mul) 1524 return false; 1525 1526 // The operand that is not defined by NarrowDef of DU. Let's call it the 1527 // other operand. 1528 assert((NarrowUse->getOperand(0) == NarrowDef || 1529 NarrowUse->getOperand(1) == NarrowDef) && 1530 "bad DU"); 1531 1532 const OverflowingBinaryOperator *OBO = 1533 cast<OverflowingBinaryOperator>(NarrowUse); 1534 ExtendKind ExtKind = getExtendKind(NarrowDef); 1535 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap(); 1536 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap(); 1537 auto AnotherOpExtKind = ExtKind; 1538 1539 // Check that all uses are either: 1540 // - narrow def (in case of we are widening the IV increment); 1541 // - single-input LCSSA Phis; 1542 // - comparison of the chosen type; 1543 // - extend of the chosen type (raison d'etre). 1544 SmallVector<Instruction *, 4> ExtUsers; 1545 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1546 SmallVector<ICmpInst *, 4> ICmpUsers; 1547 for (Use &U : NarrowUse->uses()) { 1548 Instruction *User = cast<Instruction>(U.getUser()); 1549 if (User == NarrowDef) 1550 continue; 1551 if (!L->contains(User)) { 1552 auto *LCSSAPhi = cast<PHINode>(User); 1553 // Make sure there is only 1 input, so that we don't have to split 1554 // critical edges. 1555 if (LCSSAPhi->getNumOperands() != 1) 1556 return false; 1557 LCSSAPhiUsers.push_back(LCSSAPhi); 1558 continue; 1559 } 1560 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1561 auto Pred = ICmp->getPredicate(); 1562 // We have 3 types of predicates: signed, unsigned and equality 1563 // predicates. For equality, it's legal to widen icmp for either sign and 1564 // zero extend. For sign extend, we can also do so for signed predicates, 1565 // likeweise for zero extend we can widen icmp for unsigned predicates. 1566 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred)) 1567 return false; 1568 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred)) 1569 return false; 1570 ICmpUsers.push_back(ICmp); 1571 continue; 1572 } 1573 if (ExtKind == SignExtended) 1574 User = dyn_cast<SExtInst>(User); 1575 else 1576 User = dyn_cast<ZExtInst>(User); 1577 if (!User || User->getType() != WideType) 1578 return false; 1579 ExtUsers.push_back(User); 1580 } 1581 if (ExtUsers.empty()) { 1582 DeadInsts.emplace_back(NarrowUse); 1583 return true; 1584 } 1585 1586 // We'll prove some facts that should be true in the context of ext users. If 1587 // there is no users, we are done now. If there are some, pick their common 1588 // dominator as context. 1589 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1590 1591 if (!CanSignExtend && !CanZeroExtend) { 1592 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1593 // will most likely not see it. Let's try to prove it. 1594 if (OpCode != Instruction::Add) 1595 return false; 1596 if (ExtKind != ZeroExtended) 1597 return false; 1598 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1599 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1600 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1601 if (NarrowUse->getOperand(0) != NarrowDef) 1602 return false; 1603 if (!SE->isKnownNegative(RHS)) 1604 return false; 1605 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1606 SE->getNegativeSCEV(RHS), CtxI); 1607 if (!ProvedSubNUW) 1608 return false; 1609 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1610 // neg(zext(neg(op))), which is basically sext(op). 1611 AnotherOpExtKind = SignExtended; 1612 } 1613 1614 // Verifying that Defining operand is an AddRec 1615 const SCEV *Op1 = SE->getSCEV(WideDef); 1616 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1617 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1618 return false; 1619 1620 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1621 1622 // Generating a widening use instruction. 1623 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1624 ? WideDef 1625 : createExtendInst(NarrowUse->getOperand(0), WideType, 1626 AnotherOpExtKind, NarrowUse); 1627 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1628 ? WideDef 1629 : createExtendInst(NarrowUse->getOperand(1), WideType, 1630 AnotherOpExtKind, NarrowUse); 1631 1632 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1633 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1634 NarrowBO->getName()); 1635 IRBuilder<> Builder(NarrowUse); 1636 Builder.Insert(WideBO); 1637 WideBO->copyIRFlags(NarrowBO); 1638 ExtendKindMap[NarrowUse] = ExtKind; 1639 1640 for (Instruction *User : ExtUsers) { 1641 assert(User->getType() == WideType && "Checked before!"); 1642 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1643 << *WideBO << "\n"); 1644 ++NumElimExt; 1645 User->replaceAllUsesWith(WideBO); 1646 DeadInsts.emplace_back(User); 1647 } 1648 1649 for (PHINode *User : LCSSAPhiUsers) { 1650 assert(User->getNumOperands() == 1 && "Checked before!"); 1651 Builder.SetInsertPoint(User); 1652 auto *WidePN = 1653 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1654 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1655 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1656 "Not a LCSSA Phi?"); 1657 WidePN->addIncoming(WideBO, LoopExitingBlock); 1658 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1659 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1660 User->replaceAllUsesWith(TruncPN); 1661 DeadInsts.emplace_back(User); 1662 } 1663 1664 for (ICmpInst *User : ICmpUsers) { 1665 Builder.SetInsertPoint(User); 1666 auto ExtendedOp = [&](Value * V)->Value * { 1667 if (V == NarrowUse) 1668 return WideBO; 1669 if (ExtKind == ZeroExtended) 1670 return Builder.CreateZExt(V, WideBO->getType()); 1671 else 1672 return Builder.CreateSExt(V, WideBO->getType()); 1673 }; 1674 auto Pred = User->getPredicate(); 1675 auto *LHS = ExtendedOp(User->getOperand(0)); 1676 auto *RHS = ExtendedOp(User->getOperand(1)); 1677 auto *WideCmp = 1678 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1679 User->replaceAllUsesWith(WideCmp); 1680 DeadInsts.emplace_back(User); 1681 } 1682 1683 return true; 1684 } 1685 1686 /// Determine whether an individual user of the narrow IV can be widened. If so, 1687 /// return the wide clone of the user. 1688 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1689 assert(ExtendKindMap.count(DU.NarrowDef) && 1690 "Should already know the kind of extension used to widen NarrowDef"); 1691 1692 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1693 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1694 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1695 // For LCSSA phis, sink the truncate outside the loop. 1696 // After SimplifyCFG most loop exit targets have a single predecessor. 1697 // Otherwise fall back to a truncate within the loop. 1698 if (UsePhi->getNumOperands() != 1) 1699 truncateIVUse(DU, DT, LI); 1700 else { 1701 // Widening the PHI requires us to insert a trunc. The logical place 1702 // for this trunc is in the same BB as the PHI. This is not possible if 1703 // the BB is terminated by a catchswitch. 1704 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1705 return nullptr; 1706 1707 PHINode *WidePhi = 1708 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1709 UsePhi); 1710 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1711 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1712 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1713 UsePhi->replaceAllUsesWith(Trunc); 1714 DeadInsts.emplace_back(UsePhi); 1715 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1716 << *WidePhi << "\n"); 1717 } 1718 return nullptr; 1719 } 1720 } 1721 1722 // This narrow use can be widened by a sext if it's non-negative or its narrow 1723 // def was widended by a sext. Same for zext. 1724 auto canWidenBySExt = [&]() { 1725 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1726 }; 1727 auto canWidenByZExt = [&]() { 1728 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1729 }; 1730 1731 // Our raison d'etre! Eliminate sign and zero extension. 1732 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1733 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1734 Value *NewDef = DU.WideDef; 1735 if (DU.NarrowUse->getType() != WideType) { 1736 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1737 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1738 if (CastWidth < IVWidth) { 1739 // The cast isn't as wide as the IV, so insert a Trunc. 1740 IRBuilder<> Builder(DU.NarrowUse); 1741 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1742 } 1743 else { 1744 // A wider extend was hidden behind a narrower one. This may induce 1745 // another round of IV widening in which the intermediate IV becomes 1746 // dead. It should be very rare. 1747 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1748 << " not wide enough to subsume " << *DU.NarrowUse 1749 << "\n"); 1750 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1751 NewDef = DU.NarrowUse; 1752 } 1753 } 1754 if (NewDef != DU.NarrowUse) { 1755 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1756 << " replaced by " << *DU.WideDef << "\n"); 1757 ++NumElimExt; 1758 DU.NarrowUse->replaceAllUsesWith(NewDef); 1759 DeadInsts.emplace_back(DU.NarrowUse); 1760 } 1761 // Now that the extend is gone, we want to expose it's uses for potential 1762 // further simplification. We don't need to directly inform SimplifyIVUsers 1763 // of the new users, because their parent IV will be processed later as a 1764 // new loop phi. If we preserved IVUsers analysis, we would also want to 1765 // push the uses of WideDef here. 1766 1767 // No further widening is needed. The deceased [sz]ext had done it for us. 1768 return nullptr; 1769 } 1770 1771 // Does this user itself evaluate to a recurrence after widening? 1772 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1773 if (!WideAddRec.first) 1774 WideAddRec = getWideRecurrence(DU); 1775 1776 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1777 if (!WideAddRec.first) { 1778 // If use is a loop condition, try to promote the condition instead of 1779 // truncating the IV first. 1780 if (widenLoopCompare(DU)) 1781 return nullptr; 1782 1783 // We are here about to generate a truncate instruction that may hurt 1784 // performance because the scalar evolution expression computed earlier 1785 // in WideAddRec.first does not indicate a polynomial induction expression. 1786 // In that case, look at the operands of the use instruction to determine 1787 // if we can still widen the use instead of truncating its operand. 1788 if (widenWithVariantUse(DU)) 1789 return nullptr; 1790 1791 // This user does not evaluate to a recurrence after widening, so don't 1792 // follow it. Instead insert a Trunc to kill off the original use, 1793 // eventually isolating the original narrow IV so it can be removed. 1794 truncateIVUse(DU, DT, LI); 1795 return nullptr; 1796 } 1797 1798 // Reuse the IV increment that SCEVExpander created as long as it dominates 1799 // NarrowUse. 1800 Instruction *WideUse = nullptr; 1801 if (WideAddRec.first == WideIncExpr && 1802 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1803 WideUse = WideInc; 1804 else { 1805 WideUse = cloneIVUser(DU, WideAddRec.first); 1806 if (!WideUse) 1807 return nullptr; 1808 } 1809 // Evaluation of WideAddRec ensured that the narrow expression could be 1810 // extended outside the loop without overflow. This suggests that the wide use 1811 // evaluates to the same expression as the extended narrow use, but doesn't 1812 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1813 // where it fails, we simply throw away the newly created wide use. 1814 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1815 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1816 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1817 << "\n"); 1818 DeadInsts.emplace_back(WideUse); 1819 return nullptr; 1820 } 1821 1822 // if we reached this point then we are going to replace 1823 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1824 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1825 1826 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1827 // Returning WideUse pushes it on the worklist. 1828 return WideUse; 1829 } 1830 1831 /// Add eligible users of NarrowDef to NarrowIVUsers. 1832 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1833 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1834 bool NonNegativeDef = 1835 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1836 SE->getZero(NarrowSCEV->getType())); 1837 for (User *U : NarrowDef->users()) { 1838 Instruction *NarrowUser = cast<Instruction>(U); 1839 1840 // Handle data flow merges and bizarre phi cycles. 1841 if (!Widened.insert(NarrowUser).second) 1842 continue; 1843 1844 bool NonNegativeUse = false; 1845 if (!NonNegativeDef) { 1846 // We might have a control-dependent range information for this context. 1847 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1848 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1849 } 1850 1851 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1852 NonNegativeDef || NonNegativeUse); 1853 } 1854 } 1855 1856 /// Process a single induction variable. First use the SCEVExpander to create a 1857 /// wide induction variable that evaluates to the same recurrence as the 1858 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1859 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1860 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1861 /// 1862 /// It would be simpler to delete uses as they are processed, but we must avoid 1863 /// invalidating SCEV expressions. 1864 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1865 // Is this phi an induction variable? 1866 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1867 if (!AddRec) 1868 return nullptr; 1869 1870 // Widen the induction variable expression. 1871 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1872 ? SE->getSignExtendExpr(AddRec, WideType) 1873 : SE->getZeroExtendExpr(AddRec, WideType); 1874 1875 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1876 "Expect the new IV expression to preserve its type"); 1877 1878 // Can the IV be extended outside the loop without overflow? 1879 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1880 if (!AddRec || AddRec->getLoop() != L) 1881 return nullptr; 1882 1883 // An AddRec must have loop-invariant operands. Since this AddRec is 1884 // materialized by a loop header phi, the expression cannot have any post-loop 1885 // operands, so they must dominate the loop header. 1886 assert( 1887 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1888 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1889 "Loop header phi recurrence inputs do not dominate the loop"); 1890 1891 // Iterate over IV uses (including transitive ones) looking for IV increments 1892 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1893 // the increment calculate control-dependent range information basing on 1894 // dominating conditions inside of the loop (e.g. a range check inside of the 1895 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1896 // 1897 // Control-dependent range information is later used to prove that a narrow 1898 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1899 // this on demand because when pushNarrowIVUsers needs this information some 1900 // of the dominating conditions might be already widened. 1901 if (UsePostIncrementRanges) 1902 calculatePostIncRanges(OrigPhi); 1903 1904 // The rewriter provides a value for the desired IV expression. This may 1905 // either find an existing phi or materialize a new one. Either way, we 1906 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1907 // of the phi-SCC dominates the loop entry. 1908 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1909 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1910 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1911 // inttoptr, ptrtoint, just skip for now. 1912 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1913 // if the cast node is an inserted instruction without any user, we should 1914 // remove it to make sure the pass don't touch the function as we can not 1915 // wide the phi. 1916 if (ExpandInst->hasNUses(0) && 1917 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1918 DeadInsts.emplace_back(ExpandInst); 1919 return nullptr; 1920 } 1921 1922 // Remembering the WideIV increment generated by SCEVExpander allows 1923 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1924 // employ a general reuse mechanism because the call above is the only call to 1925 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1926 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1927 WideInc = 1928 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1929 WideIncExpr = SE->getSCEV(WideInc); 1930 // Propagate the debug location associated with the original loop increment 1931 // to the new (widened) increment. 1932 auto *OrigInc = 1933 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1934 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1935 } 1936 1937 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1938 ++NumWidened; 1939 1940 // Traverse the def-use chain using a worklist starting at the original IV. 1941 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1942 1943 Widened.insert(OrigPhi); 1944 pushNarrowIVUsers(OrigPhi, WidePhi); 1945 1946 while (!NarrowIVUsers.empty()) { 1947 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1948 1949 // Process a def-use edge. This may replace the use, so don't hold a 1950 // use_iterator across it. 1951 Instruction *WideUse = widenIVUse(DU, Rewriter); 1952 1953 // Follow all def-use edges from the previous narrow use. 1954 if (WideUse) 1955 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1956 1957 // widenIVUse may have removed the def-use edge. 1958 if (DU.NarrowDef->use_empty()) 1959 DeadInsts.emplace_back(DU.NarrowDef); 1960 } 1961 1962 // Attach any debug information to the new PHI. 1963 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1964 1965 return WidePhi; 1966 } 1967 1968 /// Calculates control-dependent range for the given def at the given context 1969 /// by looking at dominating conditions inside of the loop 1970 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1971 Instruction *NarrowUser) { 1972 using namespace llvm::PatternMatch; 1973 1974 Value *NarrowDefLHS; 1975 const APInt *NarrowDefRHS; 1976 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1977 m_APInt(NarrowDefRHS))) || 1978 !NarrowDefRHS->isNonNegative()) 1979 return; 1980 1981 auto UpdateRangeFromCondition = [&] (Value *Condition, 1982 bool TrueDest) { 1983 CmpInst::Predicate Pred; 1984 Value *CmpRHS; 1985 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1986 m_Value(CmpRHS)))) 1987 return; 1988 1989 CmpInst::Predicate P = 1990 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1991 1992 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1993 auto CmpConstrainedLHSRange = 1994 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1995 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 1996 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 1997 1998 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1999 }; 2000 2001 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2002 if (!HasGuards) 2003 return; 2004 2005 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2006 Ctx->getParent()->rend())) { 2007 Value *C = nullptr; 2008 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2009 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2010 } 2011 }; 2012 2013 UpdateRangeFromGuards(NarrowUser); 2014 2015 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2016 // If NarrowUserBB is statically unreachable asking dominator queries may 2017 // yield surprising results. (e.g. the block may not have a dom tree node) 2018 if (!DT->isReachableFromEntry(NarrowUserBB)) 2019 return; 2020 2021 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2022 L->contains(DTB->getBlock()); 2023 DTB = DTB->getIDom()) { 2024 auto *BB = DTB->getBlock(); 2025 auto *TI = BB->getTerminator(); 2026 UpdateRangeFromGuards(TI); 2027 2028 auto *BI = dyn_cast<BranchInst>(TI); 2029 if (!BI || !BI->isConditional()) 2030 continue; 2031 2032 auto *TrueSuccessor = BI->getSuccessor(0); 2033 auto *FalseSuccessor = BI->getSuccessor(1); 2034 2035 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2036 return BBE.isSingleEdge() && 2037 DT->dominates(BBE, NarrowUser->getParent()); 2038 }; 2039 2040 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2041 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2042 2043 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2044 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2045 } 2046 } 2047 2048 /// Calculates PostIncRangeInfos map for the given IV 2049 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2050 SmallPtrSet<Instruction *, 16> Visited; 2051 SmallVector<Instruction *, 6> Worklist; 2052 Worklist.push_back(OrigPhi); 2053 Visited.insert(OrigPhi); 2054 2055 while (!Worklist.empty()) { 2056 Instruction *NarrowDef = Worklist.pop_back_val(); 2057 2058 for (Use &U : NarrowDef->uses()) { 2059 auto *NarrowUser = cast<Instruction>(U.getUser()); 2060 2061 // Don't go looking outside the current loop. 2062 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2063 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2064 continue; 2065 2066 if (!Visited.insert(NarrowUser).second) 2067 continue; 2068 2069 Worklist.push_back(NarrowUser); 2070 2071 calculatePostIncRange(NarrowDef, NarrowUser); 2072 } 2073 } 2074 } 2075 2076 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2077 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2078 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2079 unsigned &NumElimExt, unsigned &NumWidened, 2080 bool HasGuards, bool UsePostIncrementRanges) { 2081 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2082 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2083 NumElimExt = Widener.getNumElimExt(); 2084 NumWidened = Widener.getNumWidened(); 2085 return WidePHI; 2086 } 2087