1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/ScalarEvolutionExpander.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "indvars"
33 
34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
35 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
36 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
37 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
38 STATISTIC(
39     NumSimplifiedSDiv,
40     "Number of IV signed division operations converted to unsigned division");
41 STATISTIC(
42     NumSimplifiedSRem,
43     "Number of IV signed remainder operations converted to unsigned remainder");
44 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
45 
46 namespace {
47   /// This is a utility for simplifying induction variables
48   /// based on ScalarEvolution. It is the primary instrument of the
49   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
50   /// other loop passes that preserve SCEV.
51   class SimplifyIndvar {
52     Loop             *L;
53     LoopInfo         *LI;
54     ScalarEvolution  *SE;
55     DominatorTree    *DT;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, SCEVExpander &Rewriter,
64                    SmallVectorImpl<WeakTrackingVH> &Dead)
65         : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
66           Changed(false) {
67       assert(LI && "IV simplification requires LoopInfo");
68     }
69 
70     bool hasChanged() const { return Changed; }
71 
72     /// Iteratively perform simplification on a worklist of users of the
73     /// specified induction variable. This is the top-level driver that applies
74     /// all simplifications to users of an IV.
75     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
76 
77     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
78 
79     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
80     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
81 
82     bool eliminateOverflowIntrinsic(CallInst *CI);
83     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
84     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
85     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
86     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
87                              bool IsSigned);
88     void replaceRemWithNumerator(BinaryOperator *Rem);
89     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
90     void replaceSRemWithURem(BinaryOperator *Rem);
91     bool eliminateSDiv(BinaryOperator *SDiv);
92     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
93     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
94   };
95 }
96 
97 /// Fold an IV operand into its use.  This removes increments of an
98 /// aligned IV when used by a instruction that ignores the low bits.
99 ///
100 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
101 ///
102 /// Return the operand of IVOperand for this induction variable if IVOperand can
103 /// be folded (in case more folding opportunities have been exposed).
104 /// Otherwise return null.
105 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
106   Value *IVSrc = nullptr;
107   unsigned OperIdx = 0;
108   const SCEV *FoldedExpr = nullptr;
109   switch (UseInst->getOpcode()) {
110   default:
111     return nullptr;
112   case Instruction::UDiv:
113   case Instruction::LShr:
114     // We're only interested in the case where we know something about
115     // the numerator and have a constant denominator.
116     if (IVOperand != UseInst->getOperand(OperIdx) ||
117         !isa<ConstantInt>(UseInst->getOperand(1)))
118       return nullptr;
119 
120     // Attempt to fold a binary operator with constant operand.
121     // e.g. ((I + 1) >> 2) => I >> 2
122     if (!isa<BinaryOperator>(IVOperand)
123         || !isa<ConstantInt>(IVOperand->getOperand(1)))
124       return nullptr;
125 
126     IVSrc = IVOperand->getOperand(0);
127     // IVSrc must be the (SCEVable) IV, since the other operand is const.
128     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
129 
130     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
131     if (UseInst->getOpcode() == Instruction::LShr) {
132       // Get a constant for the divisor. See createSCEV.
133       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
134       if (D->getValue().uge(BitWidth))
135         return nullptr;
136 
137       D = ConstantInt::get(UseInst->getContext(),
138                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
139     }
140     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
141   }
142   // We have something that might fold it's operand. Compare SCEVs.
143   if (!SE->isSCEVable(UseInst->getType()))
144     return nullptr;
145 
146   // Bypass the operand if SCEV can prove it has no effect.
147   if (SE->getSCEV(UseInst) != FoldedExpr)
148     return nullptr;
149 
150   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
151                     << " -> " << *UseInst << '\n');
152 
153   UseInst->setOperand(OperIdx, IVSrc);
154   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
155 
156   ++NumElimOperand;
157   Changed = true;
158   if (IVOperand->use_empty())
159     DeadInsts.emplace_back(IVOperand);
160   return IVSrc;
161 }
162 
163 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
164                                                Value *IVOperand) {
165   unsigned IVOperIdx = 0;
166   ICmpInst::Predicate Pred = ICmp->getPredicate();
167   if (IVOperand != ICmp->getOperand(0)) {
168     // Swapped
169     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
170     IVOperIdx = 1;
171     Pred = ICmpInst::getSwappedPredicate(Pred);
172   }
173 
174   // Get the SCEVs for the ICmp operands (in the specific context of the
175   // current loop)
176   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
177   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
178   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
179 
180   ICmpInst::Predicate InvariantPredicate;
181   const SCEV *InvariantLHS, *InvariantRHS;
182 
183   auto *PN = dyn_cast<PHINode>(IVOperand);
184   if (!PN)
185     return false;
186   if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
187                                     InvariantLHS, InvariantRHS))
188     return false;
189 
190   // Rewrite the comparison to a loop invariant comparison if it can be done
191   // cheaply, where cheaply means "we don't need to emit any new
192   // instructions".
193 
194   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
195   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
196   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
197 
198   // TODO: Support multiple entry loops?  (We currently bail out of these in
199   // the IndVarSimplify pass)
200   if (auto *BB = L->getLoopPredecessor()) {
201     const int Idx = PN->getBasicBlockIndex(BB);
202     if (Idx >= 0) {
203       Value *Incoming = PN->getIncomingValue(Idx);
204       const SCEV *IncomingS = SE->getSCEV(Incoming);
205       CheapExpansions[IncomingS] = Incoming;
206     }
207   }
208   Value *NewLHS = CheapExpansions[InvariantLHS];
209   Value *NewRHS = CheapExpansions[InvariantRHS];
210 
211   if (!NewLHS)
212     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
213       NewLHS = ConstLHS->getValue();
214   if (!NewRHS)
215     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
216       NewRHS = ConstRHS->getValue();
217 
218   if (!NewLHS || !NewRHS)
219     // We could not find an existing value to replace either LHS or RHS.
220     // Generating new instructions has subtler tradeoffs, so avoid doing that
221     // for now.
222     return false;
223 
224   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
225   ICmp->setPredicate(InvariantPredicate);
226   ICmp->setOperand(0, NewLHS);
227   ICmp->setOperand(1, NewRHS);
228   return true;
229 }
230 
231 /// SimplifyIVUsers helper for eliminating useless
232 /// comparisons against an induction variable.
233 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
234   unsigned IVOperIdx = 0;
235   ICmpInst::Predicate Pred = ICmp->getPredicate();
236   ICmpInst::Predicate OriginalPred = Pred;
237   if (IVOperand != ICmp->getOperand(0)) {
238     // Swapped
239     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
240     IVOperIdx = 1;
241     Pred = ICmpInst::getSwappedPredicate(Pred);
242   }
243 
244   // Get the SCEVs for the ICmp operands (in the specific context of the
245   // current loop)
246   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
247   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
248   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
249 
250   // If the condition is always true or always false, replace it with
251   // a constant value.
252   if (SE->isKnownPredicate(Pred, S, X)) {
253     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
254     DeadInsts.emplace_back(ICmp);
255     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
256   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
257     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
258     DeadInsts.emplace_back(ICmp);
259     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
260   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
261     // fallthrough to end of function
262   } else if (ICmpInst::isSigned(OriginalPred) &&
263              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
264     // If we were unable to make anything above, all we can is to canonicalize
265     // the comparison hoping that it will open the doors for other
266     // optimizations. If we find out that we compare two non-negative values,
267     // we turn the instruction's predicate to its unsigned version. Note that
268     // we cannot rely on Pred here unless we check if we have swapped it.
269     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
270     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
271                       << '\n');
272     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
273   } else
274     return;
275 
276   ++NumElimCmp;
277   Changed = true;
278 }
279 
280 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
281   // Get the SCEVs for the ICmp operands.
282   auto *N = SE->getSCEV(SDiv->getOperand(0));
283   auto *D = SE->getSCEV(SDiv->getOperand(1));
284 
285   // Simplify unnecessary loops away.
286   const Loop *L = LI->getLoopFor(SDiv->getParent());
287   N = SE->getSCEVAtScope(N, L);
288   D = SE->getSCEVAtScope(D, L);
289 
290   // Replace sdiv by udiv if both of the operands are non-negative
291   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
292     auto *UDiv = BinaryOperator::Create(
293         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
294         SDiv->getName() + ".udiv", SDiv);
295     UDiv->setIsExact(SDiv->isExact());
296     SDiv->replaceAllUsesWith(UDiv);
297     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
298     ++NumSimplifiedSDiv;
299     Changed = true;
300     DeadInsts.push_back(SDiv);
301     return true;
302   }
303 
304   return false;
305 }
306 
307 // i %s n -> i %u n if i >= 0 and n >= 0
308 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
309   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
310   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
311                                       Rem->getName() + ".urem", Rem);
312   Rem->replaceAllUsesWith(URem);
313   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
314   ++NumSimplifiedSRem;
315   Changed = true;
316   DeadInsts.emplace_back(Rem);
317 }
318 
319 // i % n  -->  i  if i is in [0,n).
320 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
321   Rem->replaceAllUsesWith(Rem->getOperand(0));
322   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
323   ++NumElimRem;
324   Changed = true;
325   DeadInsts.emplace_back(Rem);
326 }
327 
328 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
329 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
330   auto *T = Rem->getType();
331   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
332   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
333   SelectInst *Sel =
334       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
335   Rem->replaceAllUsesWith(Sel);
336   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
337   ++NumElimRem;
338   Changed = true;
339   DeadInsts.emplace_back(Rem);
340 }
341 
342 /// SimplifyIVUsers helper for eliminating useless remainder operations
343 /// operating on an induction variable or replacing srem by urem.
344 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
345                                          bool IsSigned) {
346   auto *NValue = Rem->getOperand(0);
347   auto *DValue = Rem->getOperand(1);
348   // We're only interested in the case where we know something about
349   // the numerator, unless it is a srem, because we want to replace srem by urem
350   // in general.
351   bool UsedAsNumerator = IVOperand == NValue;
352   if (!UsedAsNumerator && !IsSigned)
353     return;
354 
355   const SCEV *N = SE->getSCEV(NValue);
356 
357   // Simplify unnecessary loops away.
358   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
359   N = SE->getSCEVAtScope(N, ICmpLoop);
360 
361   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
362 
363   // Do not proceed if the Numerator may be negative
364   if (!IsNumeratorNonNegative)
365     return;
366 
367   const SCEV *D = SE->getSCEV(DValue);
368   D = SE->getSCEVAtScope(D, ICmpLoop);
369 
370   if (UsedAsNumerator) {
371     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
372     if (SE->isKnownPredicate(LT, N, D)) {
373       replaceRemWithNumerator(Rem);
374       return;
375     }
376 
377     auto *T = Rem->getType();
378     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
379     if (SE->isKnownPredicate(LT, NLessOne, D)) {
380       replaceRemWithNumeratorOrZero(Rem);
381       return;
382     }
383   }
384 
385   // Try to replace SRem with URem, if both N and D are known non-negative.
386   // Since we had already check N, we only need to check D now
387   if (!IsSigned || !SE->isKnownNonNegative(D))
388     return;
389 
390   replaceSRemWithURem(Rem);
391 }
392 
393 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
394   auto *F = CI->getCalledFunction();
395   if (!F)
396     return false;
397 
398   typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
399       const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
400   typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
401       const SCEV *, Type *, unsigned);
402 
403   OperationFunctionTy Operation;
404   ExtensionFunctionTy Extension;
405 
406   Instruction::BinaryOps RawOp;
407 
408   // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
409   // have nuw.
410   bool NoSignedOverflow;
411 
412   switch (F->getIntrinsicID()) {
413   default:
414     return false;
415 
416   case Intrinsic::sadd_with_overflow:
417     Operation = &ScalarEvolution::getAddExpr;
418     Extension = &ScalarEvolution::getSignExtendExpr;
419     RawOp = Instruction::Add;
420     NoSignedOverflow = true;
421     break;
422 
423   case Intrinsic::uadd_with_overflow:
424     Operation = &ScalarEvolution::getAddExpr;
425     Extension = &ScalarEvolution::getZeroExtendExpr;
426     RawOp = Instruction::Add;
427     NoSignedOverflow = false;
428     break;
429 
430   case Intrinsic::ssub_with_overflow:
431     Operation = &ScalarEvolution::getMinusSCEV;
432     Extension = &ScalarEvolution::getSignExtendExpr;
433     RawOp = Instruction::Sub;
434     NoSignedOverflow = true;
435     break;
436 
437   case Intrinsic::usub_with_overflow:
438     Operation = &ScalarEvolution::getMinusSCEV;
439     Extension = &ScalarEvolution::getZeroExtendExpr;
440     RawOp = Instruction::Sub;
441     NoSignedOverflow = false;
442     break;
443   }
444 
445   const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
446   const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
447 
448   auto *NarrowTy = cast<IntegerType>(LHS->getType());
449   auto *WideTy =
450     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
451 
452   const SCEV *A =
453       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
454                        WideTy, 0);
455   const SCEV *B =
456       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
457                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
458 
459   if (A != B)
460     return false;
461 
462   // Proved no overflow, nuke the overflow check and, if possible, the overflow
463   // intrinsic as well.
464 
465   BinaryOperator *NewResult = BinaryOperator::Create(
466       RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
467 
468   if (NoSignedOverflow)
469     NewResult->setHasNoSignedWrap(true);
470   else
471     NewResult->setHasNoUnsignedWrap(true);
472 
473   SmallVector<ExtractValueInst *, 4> ToDelete;
474 
475   for (auto *U : CI->users()) {
476     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
477       if (EVI->getIndices()[0] == 1)
478         EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
479       else {
480         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
481         EVI->replaceAllUsesWith(NewResult);
482       }
483       ToDelete.push_back(EVI);
484     }
485   }
486 
487   for (auto *EVI : ToDelete)
488     EVI->eraseFromParent();
489 
490   if (CI->use_empty())
491     CI->eraseFromParent();
492 
493   return true;
494 }
495 
496 /// Eliminate an operation that consumes a simple IV and has no observable
497 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
498 /// but UseInst may not be.
499 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
500                                      Instruction *IVOperand) {
501   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
502     eliminateIVComparison(ICmp, IVOperand);
503     return true;
504   }
505   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
506     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
507     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
508       simplifyIVRemainder(Bin, IVOperand, IsSRem);
509       return true;
510     }
511 
512     if (Bin->getOpcode() == Instruction::SDiv)
513       return eliminateSDiv(Bin);
514   }
515 
516   if (auto *CI = dyn_cast<CallInst>(UseInst))
517     if (eliminateOverflowIntrinsic(CI))
518       return true;
519 
520   if (eliminateIdentitySCEV(UseInst, IVOperand))
521     return true;
522 
523   return false;
524 }
525 
526 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
527   if (auto *BB = L->getLoopPreheader())
528     return BB->getTerminator();
529 
530   return Hint;
531 }
532 
533 /// Replace the UseInst with a constant if possible.
534 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
535   if (!SE->isSCEVable(I->getType()))
536     return false;
537 
538   // Get the symbolic expression for this instruction.
539   const SCEV *S = SE->getSCEV(I);
540 
541   if (!SE->isLoopInvariant(S, L))
542     return false;
543 
544   // Do not generate something ridiculous even if S is loop invariant.
545   if (Rewriter.isHighCostExpansion(S, L, I))
546     return false;
547 
548   auto *IP = GetLoopInvariantInsertPosition(L, I);
549   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
550 
551   I->replaceAllUsesWith(Invariant);
552   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
553                     << " with loop invariant: " << *S << '\n');
554   ++NumFoldedUser;
555   Changed = true;
556   DeadInsts.emplace_back(I);
557   return true;
558 }
559 
560 /// Eliminate any operation that SCEV can prove is an identity function.
561 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
562                                            Instruction *IVOperand) {
563   if (!SE->isSCEVable(UseInst->getType()) ||
564       (UseInst->getType() != IVOperand->getType()) ||
565       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
566     return false;
567 
568   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
569   // dominator tree, even if X is an operand to Y.  For instance, in
570   //
571   //     %iv = phi i32 {0,+,1}
572   //     br %cond, label %left, label %merge
573   //
574   //   left:
575   //     %X = add i32 %iv, 0
576   //     br label %merge
577   //
578   //   merge:
579   //     %M = phi (%X, %iv)
580   //
581   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
582   // %M.replaceAllUsesWith(%X) would be incorrect.
583 
584   if (isa<PHINode>(UseInst))
585     // If UseInst is not a PHI node then we know that IVOperand dominates
586     // UseInst directly from the legality of SSA.
587     if (!DT || !DT->dominates(IVOperand, UseInst))
588       return false;
589 
590   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
591     return false;
592 
593   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
594 
595   UseInst->replaceAllUsesWith(IVOperand);
596   ++NumElimIdentity;
597   Changed = true;
598   DeadInsts.emplace_back(UseInst);
599   return true;
600 }
601 
602 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
603 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
604 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
605                                                     Value *IVOperand) {
606 
607   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
608   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
609     return false;
610 
611   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
612                                                SCEV::NoWrapFlags, unsigned);
613   switch (BO->getOpcode()) {
614   default:
615     return false;
616 
617   case Instruction::Add:
618     GetExprForBO = &ScalarEvolution::getAddExpr;
619     break;
620 
621   case Instruction::Sub:
622     GetExprForBO = &ScalarEvolution::getMinusSCEV;
623     break;
624 
625   case Instruction::Mul:
626     GetExprForBO = &ScalarEvolution::getMulExpr;
627     break;
628   }
629 
630   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
631   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
632   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
633   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
634 
635   bool Changed = false;
636 
637   if (!BO->hasNoUnsignedWrap()) {
638     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
639     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
640       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
641       SCEV::FlagAnyWrap, 0u);
642     if (ExtendAfterOp == OpAfterExtend) {
643       BO->setHasNoUnsignedWrap();
644       SE->forgetValue(BO);
645       Changed = true;
646     }
647   }
648 
649   if (!BO->hasNoSignedWrap()) {
650     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
651     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
652       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
653       SCEV::FlagAnyWrap, 0u);
654     if (ExtendAfterOp == OpAfterExtend) {
655       BO->setHasNoSignedWrap();
656       SE->forgetValue(BO);
657       Changed = true;
658     }
659   }
660 
661   return Changed;
662 }
663 
664 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
665 /// information from the IV's range. Returns true if anything changed, false
666 /// otherwise.
667 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
668                                           Value *IVOperand) {
669   using namespace llvm::PatternMatch;
670 
671   if (BO->getOpcode() == Instruction::Shl) {
672     bool Changed = false;
673     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
674     for (auto *U : BO->users()) {
675       const APInt *C;
676       if (match(U,
677                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
678           match(U,
679                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
680         BinaryOperator *Shr = cast<BinaryOperator>(U);
681         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
682           Shr->setIsExact(true);
683           Changed = true;
684         }
685       }
686     }
687     return Changed;
688   }
689 
690   return false;
691 }
692 
693 /// Add all uses of Def to the current IV's worklist.
694 static void pushIVUsers(
695   Instruction *Def, Loop *L,
696   SmallPtrSet<Instruction*,16> &Simplified,
697   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
698 
699   for (User *U : Def->users()) {
700     Instruction *UI = cast<Instruction>(U);
701 
702     // Avoid infinite or exponential worklist processing.
703     // Also ensure unique worklist users.
704     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
705     // self edges first.
706     if (UI == Def)
707       continue;
708 
709     // Only change the current Loop, do not change the other parts (e.g. other
710     // Loops).
711     if (!L->contains(UI))
712       continue;
713 
714     // Do not push the same instruction more than once.
715     if (!Simplified.insert(UI).second)
716       continue;
717 
718     SimpleIVUsers.push_back(std::make_pair(UI, Def));
719   }
720 }
721 
722 /// Return true if this instruction generates a simple SCEV
723 /// expression in terms of that IV.
724 ///
725 /// This is similar to IVUsers' isInteresting() but processes each instruction
726 /// non-recursively when the operand is already known to be a simpleIVUser.
727 ///
728 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
729   if (!SE->isSCEVable(I->getType()))
730     return false;
731 
732   // Get the symbolic expression for this instruction.
733   const SCEV *S = SE->getSCEV(I);
734 
735   // Only consider affine recurrences.
736   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
737   if (AR && AR->getLoop() == L)
738     return true;
739 
740   return false;
741 }
742 
743 /// Iteratively perform simplification on a worklist of users
744 /// of the specified induction variable. Each successive simplification may push
745 /// more users which may themselves be candidates for simplification.
746 ///
747 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
748 /// instructions in-place during analysis. Rather than rewriting induction
749 /// variables bottom-up from their users, it transforms a chain of IVUsers
750 /// top-down, updating the IR only when it encounters a clear optimization
751 /// opportunity.
752 ///
753 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
754 ///
755 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
756   if (!SE->isSCEVable(CurrIV->getType()))
757     return;
758 
759   // Instructions processed by SimplifyIndvar for CurrIV.
760   SmallPtrSet<Instruction*,16> Simplified;
761 
762   // Use-def pairs if IV users waiting to be processed for CurrIV.
763   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
764 
765   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
766   // called multiple times for the same LoopPhi. This is the proper thing to
767   // do for loop header phis that use each other.
768   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
769 
770   while (!SimpleIVUsers.empty()) {
771     std::pair<Instruction*, Instruction*> UseOper =
772       SimpleIVUsers.pop_back_val();
773     Instruction *UseInst = UseOper.first;
774 
775     // Bypass back edges to avoid extra work.
776     if (UseInst == CurrIV) continue;
777 
778     // Try to replace UseInst with a loop invariant before any other
779     // simplifications.
780     if (replaceIVUserWithLoopInvariant(UseInst))
781       continue;
782 
783     Instruction *IVOperand = UseOper.second;
784     for (unsigned N = 0; IVOperand; ++N) {
785       assert(N <= Simplified.size() && "runaway iteration");
786 
787       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
788       if (!NewOper)
789         break; // done folding
790       IVOperand = dyn_cast<Instruction>(NewOper);
791     }
792     if (!IVOperand)
793       continue;
794 
795     if (eliminateIVUser(UseOper.first, IVOperand)) {
796       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
797       continue;
798     }
799 
800     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
801       if ((isa<OverflowingBinaryOperator>(BO) &&
802            strengthenOverflowingOperation(BO, IVOperand)) ||
803           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
804         // re-queue uses of the now modified binary operator and fall
805         // through to the checks that remain.
806         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
807       }
808     }
809 
810     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
811     if (V && Cast) {
812       V->visitCast(Cast);
813       continue;
814     }
815     if (isSimpleIVUser(UseOper.first, L, SE)) {
816       pushIVUsers(UseOper.first, L, Simplified, SimpleIVUsers);
817     }
818   }
819 }
820 
821 namespace llvm {
822 
823 void IVVisitor::anchor() { }
824 
825 /// Simplify instructions that use this induction variable
826 /// by using ScalarEvolution to analyze the IV's recurrence.
827 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
828                        LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
829                        SCEVExpander &Rewriter, IVVisitor *V) {
830   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
831                      Dead);
832   SIV.simplifyUsers(CurrIV, V);
833   return SIV.hasChanged();
834 }
835 
836 /// Simplify users of induction variables within this
837 /// loop. This does not actually change or add IVs.
838 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
839                      LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
840   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
841 #ifndef NDEBUG
842   Rewriter.setDebugType(DEBUG_TYPE);
843 #endif
844   bool Changed = false;
845   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
846     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
847   }
848   return Changed;
849 }
850 
851 } // namespace llvm
852