1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "indvars"
32 
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(
38     NumSimplifiedSDiv,
39     "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41     NumSimplifiedSRem,
42     "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
44 
45 namespace {
46   /// This is a utility for simplifying induction variables
47   /// based on ScalarEvolution. It is the primary instrument of the
48   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49   /// other loop passes that preserve SCEV.
50   class SimplifyIndvar {
51     Loop             *L;
52     LoopInfo         *LI;
53     ScalarEvolution  *SE;
54     DominatorTree    *DT;
55     const TargetTransformInfo *TTI;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed = false;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, const TargetTransformInfo *TTI,
64                    SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67           DeadInsts(Dead) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82     bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
83 
84     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
85     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
86     bool eliminateTrunc(TruncInst *TI);
87     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
88     bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
89     void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
90     void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
91                              bool IsSigned);
92     void replaceRemWithNumerator(BinaryOperator *Rem);
93     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
94     void replaceSRemWithURem(BinaryOperator *Rem);
95     bool eliminateSDiv(BinaryOperator *SDiv);
96     bool strengthenOverflowingOperation(BinaryOperator *OBO,
97                                         Instruction *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
99   };
100 }
101 
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106                                         DominatorTree &DT) {
107   Instruction *CommonDom = nullptr;
108   for (auto *Insn : Instructions)
109     if (!CommonDom || DT.dominates(Insn, CommonDom))
110       CommonDom = Insn;
111     else if (!DT.dominates(CommonDom, Insn))
112       // If there is no dominance relation, use common dominator.
113       CommonDom =
114           DT.findNearestCommonDominator(CommonDom->getParent(),
115                                         Insn->getParent())->getTerminator();
116   assert(CommonDom && "Common dominator not found?");
117   return CommonDom;
118 }
119 
120 /// Fold an IV operand into its use.  This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
122 ///
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
124 ///
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129   Value *IVSrc = nullptr;
130   const unsigned OperIdx = 0;
131   const SCEV *FoldedExpr = nullptr;
132   bool MustDropExactFlag = false;
133   switch (UseInst->getOpcode()) {
134   default:
135     return nullptr;
136   case Instruction::UDiv:
137   case Instruction::LShr:
138     // We're only interested in the case where we know something about
139     // the numerator and have a constant denominator.
140     if (IVOperand != UseInst->getOperand(OperIdx) ||
141         !isa<ConstantInt>(UseInst->getOperand(1)))
142       return nullptr;
143 
144     // Attempt to fold a binary operator with constant operand.
145     // e.g. ((I + 1) >> 2) => I >> 2
146     if (!isa<BinaryOperator>(IVOperand)
147         || !isa<ConstantInt>(IVOperand->getOperand(1)))
148       return nullptr;
149 
150     IVSrc = IVOperand->getOperand(0);
151     // IVSrc must be the (SCEVable) IV, since the other operand is const.
152     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
153 
154     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155     if (UseInst->getOpcode() == Instruction::LShr) {
156       // Get a constant for the divisor. See createSCEV.
157       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158       if (D->getValue().uge(BitWidth))
159         return nullptr;
160 
161       D = ConstantInt::get(UseInst->getContext(),
162                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
163     }
164     const auto *LHS = SE->getSCEV(IVSrc);
165     const auto *RHS = SE->getSCEV(D);
166     FoldedExpr = SE->getUDivExpr(LHS, RHS);
167     // We might have 'exact' flag set at this point which will no longer be
168     // correct after we make the replacement.
169     if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
170       MustDropExactFlag = true;
171   }
172   // We have something that might fold it's operand. Compare SCEVs.
173   if (!SE->isSCEVable(UseInst->getType()))
174     return nullptr;
175 
176   // Bypass the operand if SCEV can prove it has no effect.
177   if (SE->getSCEV(UseInst) != FoldedExpr)
178     return nullptr;
179 
180   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
181                     << " -> " << *UseInst << '\n');
182 
183   UseInst->setOperand(OperIdx, IVSrc);
184   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
185 
186   if (MustDropExactFlag)
187     UseInst->dropPoisonGeneratingFlags();
188 
189   ++NumElimOperand;
190   Changed = true;
191   if (IVOperand->use_empty())
192     DeadInsts.emplace_back(IVOperand);
193   return IVSrc;
194 }
195 
196 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
197                                                Instruction *IVOperand) {
198   unsigned IVOperIdx = 0;
199   ICmpInst::Predicate Pred = ICmp->getPredicate();
200   if (IVOperand != ICmp->getOperand(0)) {
201     // Swapped
202     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
203     IVOperIdx = 1;
204     Pred = ICmpInst::getSwappedPredicate(Pred);
205   }
206 
207   // Get the SCEVs for the ICmp operands (in the specific context of the
208   // current loop)
209   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
210   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
211   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
212 
213   auto *PN = dyn_cast<PHINode>(IVOperand);
214   if (!PN)
215     return false;
216   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
217   if (!LIP)
218     return false;
219   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
220   const SCEV *InvariantLHS = LIP->LHS;
221   const SCEV *InvariantRHS = LIP->RHS;
222 
223   // Rewrite the comparison to a loop invariant comparison if it can be done
224   // cheaply, where cheaply means "we don't need to emit any new
225   // instructions".
226 
227   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
228   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
229   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
230 
231   // TODO: Support multiple entry loops?  (We currently bail out of these in
232   // the IndVarSimplify pass)
233   if (auto *BB = L->getLoopPredecessor()) {
234     const int Idx = PN->getBasicBlockIndex(BB);
235     if (Idx >= 0) {
236       Value *Incoming = PN->getIncomingValue(Idx);
237       const SCEV *IncomingS = SE->getSCEV(Incoming);
238       CheapExpansions[IncomingS] = Incoming;
239     }
240   }
241   Value *NewLHS = CheapExpansions[InvariantLHS];
242   Value *NewRHS = CheapExpansions[InvariantRHS];
243 
244   if (!NewLHS)
245     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
246       NewLHS = ConstLHS->getValue();
247   if (!NewRHS)
248     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
249       NewRHS = ConstRHS->getValue();
250 
251   if (!NewLHS || !NewRHS)
252     // We could not find an existing value to replace either LHS or RHS.
253     // Generating new instructions has subtler tradeoffs, so avoid doing that
254     // for now.
255     return false;
256 
257   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
258   ICmp->setPredicate(InvariantPredicate);
259   ICmp->setOperand(0, NewLHS);
260   ICmp->setOperand(1, NewRHS);
261   return true;
262 }
263 
264 /// SimplifyIVUsers helper for eliminating useless
265 /// comparisons against an induction variable.
266 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
267                                            Instruction *IVOperand) {
268   unsigned IVOperIdx = 0;
269   ICmpInst::Predicate Pred = ICmp->getPredicate();
270   ICmpInst::Predicate OriginalPred = Pred;
271   if (IVOperand != ICmp->getOperand(0)) {
272     // Swapped
273     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
274     IVOperIdx = 1;
275     Pred = ICmpInst::getSwappedPredicate(Pred);
276   }
277 
278   // Get the SCEVs for the ICmp operands (in the specific context of the
279   // current loop)
280   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
281   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
282   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
283 
284   // If the condition is always true or always false in the given context,
285   // replace it with a constant value.
286   SmallVector<Instruction *, 4> Users;
287   for (auto *U : ICmp->users())
288     Users.push_back(cast<Instruction>(U));
289   const Instruction *CtxI = findCommonDominator(Users, *DT);
290   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
291     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
292     DeadInsts.emplace_back(ICmp);
293     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
294   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
295     // fallthrough to end of function
296   } else if (ICmpInst::isSigned(OriginalPred) &&
297              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
298     // If we were unable to make anything above, all we can is to canonicalize
299     // the comparison hoping that it will open the doors for other
300     // optimizations. If we find out that we compare two non-negative values,
301     // we turn the instruction's predicate to its unsigned version. Note that
302     // we cannot rely on Pred here unless we check if we have swapped it.
303     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
304     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
305                       << '\n');
306     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
307   } else
308     return;
309 
310   ++NumElimCmp;
311   Changed = true;
312 }
313 
314 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
315   // Get the SCEVs for the ICmp operands.
316   auto *N = SE->getSCEV(SDiv->getOperand(0));
317   auto *D = SE->getSCEV(SDiv->getOperand(1));
318 
319   // Simplify unnecessary loops away.
320   const Loop *L = LI->getLoopFor(SDiv->getParent());
321   N = SE->getSCEVAtScope(N, L);
322   D = SE->getSCEVAtScope(D, L);
323 
324   // Replace sdiv by udiv if both of the operands are non-negative
325   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
326     auto *UDiv = BinaryOperator::Create(
327         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
328         SDiv->getName() + ".udiv", SDiv);
329     UDiv->setIsExact(SDiv->isExact());
330     SDiv->replaceAllUsesWith(UDiv);
331     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
332     ++NumSimplifiedSDiv;
333     Changed = true;
334     DeadInsts.push_back(SDiv);
335     return true;
336   }
337 
338   return false;
339 }
340 
341 // i %s n -> i %u n if i >= 0 and n >= 0
342 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
343   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
344   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
345                                       Rem->getName() + ".urem", Rem);
346   Rem->replaceAllUsesWith(URem);
347   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
348   ++NumSimplifiedSRem;
349   Changed = true;
350   DeadInsts.emplace_back(Rem);
351 }
352 
353 // i % n  -->  i  if i is in [0,n).
354 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
355   Rem->replaceAllUsesWith(Rem->getOperand(0));
356   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
357   ++NumElimRem;
358   Changed = true;
359   DeadInsts.emplace_back(Rem);
360 }
361 
362 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
363 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
364   auto *T = Rem->getType();
365   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
366   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
367   SelectInst *Sel =
368       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
369   Rem->replaceAllUsesWith(Sel);
370   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
371   ++NumElimRem;
372   Changed = true;
373   DeadInsts.emplace_back(Rem);
374 }
375 
376 /// SimplifyIVUsers helper for eliminating useless remainder operations
377 /// operating on an induction variable or replacing srem by urem.
378 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
379                                          Instruction *IVOperand,
380                                          bool IsSigned) {
381   auto *NValue = Rem->getOperand(0);
382   auto *DValue = Rem->getOperand(1);
383   // We're only interested in the case where we know something about
384   // the numerator, unless it is a srem, because we want to replace srem by urem
385   // in general.
386   bool UsedAsNumerator = IVOperand == NValue;
387   if (!UsedAsNumerator && !IsSigned)
388     return;
389 
390   const SCEV *N = SE->getSCEV(NValue);
391 
392   // Simplify unnecessary loops away.
393   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
394   N = SE->getSCEVAtScope(N, ICmpLoop);
395 
396   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
397 
398   // Do not proceed if the Numerator may be negative
399   if (!IsNumeratorNonNegative)
400     return;
401 
402   const SCEV *D = SE->getSCEV(DValue);
403   D = SE->getSCEVAtScope(D, ICmpLoop);
404 
405   if (UsedAsNumerator) {
406     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
407     if (SE->isKnownPredicate(LT, N, D)) {
408       replaceRemWithNumerator(Rem);
409       return;
410     }
411 
412     auto *T = Rem->getType();
413     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
414     if (SE->isKnownPredicate(LT, NLessOne, D)) {
415       replaceRemWithNumeratorOrZero(Rem);
416       return;
417     }
418   }
419 
420   // Try to replace SRem with URem, if both N and D are known non-negative.
421   // Since we had already check N, we only need to check D now
422   if (!IsSigned || !SE->isKnownNonNegative(D))
423     return;
424 
425   replaceSRemWithURem(Rem);
426 }
427 
428 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
429   const SCEV *LHS = SE->getSCEV(WO->getLHS());
430   const SCEV *RHS = SE->getSCEV(WO->getRHS());
431   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
432     return false;
433 
434   // Proved no overflow, nuke the overflow check and, if possible, the overflow
435   // intrinsic as well.
436 
437   BinaryOperator *NewResult = BinaryOperator::Create(
438       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
439 
440   if (WO->isSigned())
441     NewResult->setHasNoSignedWrap(true);
442   else
443     NewResult->setHasNoUnsignedWrap(true);
444 
445   SmallVector<ExtractValueInst *, 4> ToDelete;
446 
447   for (auto *U : WO->users()) {
448     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
449       if (EVI->getIndices()[0] == 1)
450         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
451       else {
452         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
453         EVI->replaceAllUsesWith(NewResult);
454       }
455       ToDelete.push_back(EVI);
456     }
457   }
458 
459   for (auto *EVI : ToDelete)
460     EVI->eraseFromParent();
461 
462   if (WO->use_empty())
463     WO->eraseFromParent();
464 
465   Changed = true;
466   return true;
467 }
468 
469 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
470   const SCEV *LHS = SE->getSCEV(SI->getLHS());
471   const SCEV *RHS = SE->getSCEV(SI->getRHS());
472   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
473     return false;
474 
475   BinaryOperator *BO = BinaryOperator::Create(
476       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
477   if (SI->isSigned())
478     BO->setHasNoSignedWrap();
479   else
480     BO->setHasNoUnsignedWrap();
481 
482   SI->replaceAllUsesWith(BO);
483   DeadInsts.emplace_back(SI);
484   Changed = true;
485   return true;
486 }
487 
488 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
489   // It is always legal to replace
490   //   icmp <pred> i32 trunc(iv), n
491   // with
492   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
493   // Or with
494   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
495   // Or with either of these if pred is an equality predicate.
496   //
497   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
498   // every comparison which uses trunc, it means that we can replace each of
499   // them with comparison of iv against sext/zext(n). We no longer need trunc
500   // after that.
501   //
502   // TODO: Should we do this if we can widen *some* comparisons, but not all
503   // of them? Sometimes it is enough to enable other optimizations, but the
504   // trunc instruction will stay in the loop.
505   Value *IV = TI->getOperand(0);
506   Type *IVTy = IV->getType();
507   const SCEV *IVSCEV = SE->getSCEV(IV);
508   const SCEV *TISCEV = SE->getSCEV(TI);
509 
510   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
511   // get rid of trunc
512   bool DoesSExtCollapse = false;
513   bool DoesZExtCollapse = false;
514   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
515     DoesSExtCollapse = true;
516   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
517     DoesZExtCollapse = true;
518 
519   // If neither sext nor zext does collapse, it is not profitable to do any
520   // transform. Bail.
521   if (!DoesSExtCollapse && !DoesZExtCollapse)
522     return false;
523 
524   // Collect users of the trunc that look like comparisons against invariants.
525   // Bail if we find something different.
526   SmallVector<ICmpInst *, 4> ICmpUsers;
527   for (auto *U : TI->users()) {
528     // We don't care about users in unreachable blocks.
529     if (isa<Instruction>(U) &&
530         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
531       continue;
532     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
533     if (!ICI) return false;
534     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
535     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
536         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
537       return false;
538     // If we cannot get rid of trunc, bail.
539     if (ICI->isSigned() && !DoesSExtCollapse)
540       return false;
541     if (ICI->isUnsigned() && !DoesZExtCollapse)
542       return false;
543     // For equality, either signed or unsigned works.
544     ICmpUsers.push_back(ICI);
545   }
546 
547   auto CanUseZExt = [&](ICmpInst *ICI) {
548     // Unsigned comparison can be widened as unsigned.
549     if (ICI->isUnsigned())
550       return true;
551     // Is it profitable to do zext?
552     if (!DoesZExtCollapse)
553       return false;
554     // For equality, we can safely zext both parts.
555     if (ICI->isEquality())
556       return true;
557     // Otherwise we can only use zext when comparing two non-negative or two
558     // negative values. But in practice, we will never pass DoesZExtCollapse
559     // check for a negative value, because zext(trunc(x)) is non-negative. So
560     // it only make sense to check for non-negativity here.
561     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
562     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
563     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
564   };
565   // Replace all comparisons against trunc with comparisons against IV.
566   for (auto *ICI : ICmpUsers) {
567     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
568     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
569     Instruction *Ext = nullptr;
570     // For signed/unsigned predicate, replace the old comparison with comparison
571     // of immediate IV against sext/zext of the invariant argument. If we can
572     // use either sext or zext (i.e. we are dealing with equality predicate),
573     // then prefer zext as a more canonical form.
574     // TODO: If we see a signed comparison which can be turned into unsigned,
575     // we can do it here for canonicalization purposes.
576     ICmpInst::Predicate Pred = ICI->getPredicate();
577     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
578     if (CanUseZExt(ICI)) {
579       assert(DoesZExtCollapse && "Unprofitable zext?");
580       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
581       Pred = ICmpInst::getUnsignedPredicate(Pred);
582     } else {
583       assert(DoesSExtCollapse && "Unprofitable sext?");
584       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
585       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
586     }
587     bool Changed;
588     L->makeLoopInvariant(Ext, Changed);
589     (void)Changed;
590     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
591     ICI->replaceAllUsesWith(NewICI);
592     DeadInsts.emplace_back(ICI);
593   }
594 
595   // Trunc no longer needed.
596   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
597   DeadInsts.emplace_back(TI);
598   return true;
599 }
600 
601 /// Eliminate an operation that consumes a simple IV and has no observable
602 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
603 /// but UseInst may not be.
604 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
605                                      Instruction *IVOperand) {
606   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
607     eliminateIVComparison(ICmp, IVOperand);
608     return true;
609   }
610   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
611     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
612     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
613       simplifyIVRemainder(Bin, IVOperand, IsSRem);
614       return true;
615     }
616 
617     if (Bin->getOpcode() == Instruction::SDiv)
618       return eliminateSDiv(Bin);
619   }
620 
621   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
622     if (eliminateOverflowIntrinsic(WO))
623       return true;
624 
625   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
626     if (eliminateSaturatingIntrinsic(SI))
627       return true;
628 
629   if (auto *TI = dyn_cast<TruncInst>(UseInst))
630     if (eliminateTrunc(TI))
631       return true;
632 
633   if (eliminateIdentitySCEV(UseInst, IVOperand))
634     return true;
635 
636   return false;
637 }
638 
639 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
640   if (auto *BB = L->getLoopPreheader())
641     return BB->getTerminator();
642 
643   return Hint;
644 }
645 
646 /// Replace the UseInst with a loop invariant expression if it is safe.
647 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
648   if (!SE->isSCEVable(I->getType()))
649     return false;
650 
651   // Get the symbolic expression for this instruction.
652   const SCEV *S = SE->getSCEV(I);
653 
654   if (!SE->isLoopInvariant(S, L))
655     return false;
656 
657   // Do not generate something ridiculous even if S is loop invariant.
658   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
659     return false;
660 
661   auto *IP = GetLoopInvariantInsertPosition(L, I);
662 
663   if (!isSafeToExpandAt(S, IP, *SE)) {
664     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
665                       << " with non-speculable loop invariant: " << *S << '\n');
666     return false;
667   }
668 
669   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
670 
671   I->replaceAllUsesWith(Invariant);
672   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
673                     << " with loop invariant: " << *S << '\n');
674   ++NumFoldedUser;
675   Changed = true;
676   DeadInsts.emplace_back(I);
677   return true;
678 }
679 
680 /// Eliminate redundant type cast between integer and float.
681 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
682   if (UseInst->getOpcode() != CastInst::SIToFP)
683     return false;
684 
685   Value *IVOperand = UseInst->getOperand(0);
686   // Get the symbolic expression for this instruction.
687   ConstantRange IVRange = SE->getSignedRange(SE->getSCEV(IVOperand));
688   unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
689   if (IVRange.getActiveBits() <= DestNumSigBits) {
690     for (User *U : UseInst->users()) {
691       // Match for fptosi of sitofp and with same type.
692       auto *CI = dyn_cast<FPToSIInst>(U);
693       if (!CI || IVOperand->getType() != CI->getType())
694         continue;
695 
696       CI->replaceAllUsesWith(IVOperand);
697       DeadInsts.push_back(CI);
698       LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
699                         << " with: " << *IVOperand << '\n');
700 
701       ++NumFoldedUser;
702       Changed = true;
703     }
704   }
705 
706   return Changed;
707 }
708 
709 /// Eliminate any operation that SCEV can prove is an identity function.
710 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
711                                            Instruction *IVOperand) {
712   if (!SE->isSCEVable(UseInst->getType()) ||
713       (UseInst->getType() != IVOperand->getType()) ||
714       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
715     return false;
716 
717   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
718   // dominator tree, even if X is an operand to Y.  For instance, in
719   //
720   //     %iv = phi i32 {0,+,1}
721   //     br %cond, label %left, label %merge
722   //
723   //   left:
724   //     %X = add i32 %iv, 0
725   //     br label %merge
726   //
727   //   merge:
728   //     %M = phi (%X, %iv)
729   //
730   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
731   // %M.replaceAllUsesWith(%X) would be incorrect.
732 
733   if (isa<PHINode>(UseInst))
734     // If UseInst is not a PHI node then we know that IVOperand dominates
735     // UseInst directly from the legality of SSA.
736     if (!DT || !DT->dominates(IVOperand, UseInst))
737       return false;
738 
739   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
740     return false;
741 
742   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
743 
744   UseInst->replaceAllUsesWith(IVOperand);
745   ++NumElimIdentity;
746   Changed = true;
747   DeadInsts.emplace_back(UseInst);
748   return true;
749 }
750 
751 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
752 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
753 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
754                                                     Instruction *IVOperand) {
755   auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
756       cast<OverflowingBinaryOperator>(BO));
757 
758   if (!Flags)
759     return false;
760 
761   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
762                            SCEV::FlagNUW);
763   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
764                          SCEV::FlagNSW);
765 
766   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
767   // flags on addrecs while performing zero/sign extensions. We could call
768   // forgetValue() here to make sure those flags also propagate to any other
769   // SCEV expressions based on the addrec. However, this can have pathological
770   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
771   return true;
772 }
773 
774 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
775 /// information from the IV's range. Returns true if anything changed, false
776 /// otherwise.
777 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
778                                           Instruction *IVOperand) {
779   using namespace llvm::PatternMatch;
780 
781   if (BO->getOpcode() == Instruction::Shl) {
782     bool Changed = false;
783     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
784     for (auto *U : BO->users()) {
785       const APInt *C;
786       if (match(U,
787                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
788           match(U,
789                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
790         BinaryOperator *Shr = cast<BinaryOperator>(U);
791         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
792           Shr->setIsExact(true);
793           Changed = true;
794         }
795       }
796     }
797     return Changed;
798   }
799 
800   return false;
801 }
802 
803 /// Add all uses of Def to the current IV's worklist.
804 static void pushIVUsers(
805   Instruction *Def, Loop *L,
806   SmallPtrSet<Instruction*,16> &Simplified,
807   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
808 
809   for (User *U : Def->users()) {
810     Instruction *UI = cast<Instruction>(U);
811 
812     // Avoid infinite or exponential worklist processing.
813     // Also ensure unique worklist users.
814     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
815     // self edges first.
816     if (UI == Def)
817       continue;
818 
819     // Only change the current Loop, do not change the other parts (e.g. other
820     // Loops).
821     if (!L->contains(UI))
822       continue;
823 
824     // Do not push the same instruction more than once.
825     if (!Simplified.insert(UI).second)
826       continue;
827 
828     SimpleIVUsers.push_back(std::make_pair(UI, Def));
829   }
830 }
831 
832 /// Return true if this instruction generates a simple SCEV
833 /// expression in terms of that IV.
834 ///
835 /// This is similar to IVUsers' isInteresting() but processes each instruction
836 /// non-recursively when the operand is already known to be a simpleIVUser.
837 ///
838 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
839   if (!SE->isSCEVable(I->getType()))
840     return false;
841 
842   // Get the symbolic expression for this instruction.
843   const SCEV *S = SE->getSCEV(I);
844 
845   // Only consider affine recurrences.
846   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
847   if (AR && AR->getLoop() == L)
848     return true;
849 
850   return false;
851 }
852 
853 /// Iteratively perform simplification on a worklist of users
854 /// of the specified induction variable. Each successive simplification may push
855 /// more users which may themselves be candidates for simplification.
856 ///
857 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
858 /// instructions in-place during analysis. Rather than rewriting induction
859 /// variables bottom-up from their users, it transforms a chain of IVUsers
860 /// top-down, updating the IR only when it encounters a clear optimization
861 /// opportunity.
862 ///
863 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
864 ///
865 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
866   if (!SE->isSCEVable(CurrIV->getType()))
867     return;
868 
869   // Instructions processed by SimplifyIndvar for CurrIV.
870   SmallPtrSet<Instruction*,16> Simplified;
871 
872   // Use-def pairs if IV users waiting to be processed for CurrIV.
873   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
874 
875   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
876   // called multiple times for the same LoopPhi. This is the proper thing to
877   // do for loop header phis that use each other.
878   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
879 
880   while (!SimpleIVUsers.empty()) {
881     std::pair<Instruction*, Instruction*> UseOper =
882       SimpleIVUsers.pop_back_val();
883     Instruction *UseInst = UseOper.first;
884 
885     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
886     // rather than try to do some complex analysis or transformation (such as
887     // widening) basing on it.
888     // TODO: Propagate TLI and pass it here to handle more cases.
889     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
890       DeadInsts.emplace_back(UseInst);
891       continue;
892     }
893 
894     // Bypass back edges to avoid extra work.
895     if (UseInst == CurrIV) continue;
896 
897     // Try to replace UseInst with a loop invariant before any other
898     // simplifications.
899     if (replaceIVUserWithLoopInvariant(UseInst))
900       continue;
901 
902     Instruction *IVOperand = UseOper.second;
903     for (unsigned N = 0; IVOperand; ++N) {
904       assert(N <= Simplified.size() && "runaway iteration");
905       (void) N;
906 
907       Value *NewOper = foldIVUser(UseInst, IVOperand);
908       if (!NewOper)
909         break; // done folding
910       IVOperand = dyn_cast<Instruction>(NewOper);
911     }
912     if (!IVOperand)
913       continue;
914 
915     if (eliminateIVUser(UseInst, IVOperand)) {
916       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
917       continue;
918     }
919 
920     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
921       if ((isa<OverflowingBinaryOperator>(BO) &&
922            strengthenOverflowingOperation(BO, IVOperand)) ||
923           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
924         // re-queue uses of the now modified binary operator and fall
925         // through to the checks that remain.
926         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
927       }
928     }
929 
930     // Try to use integer induction for FPToSI of float induction directly.
931     if (replaceFloatIVWithIntegerIV(UseInst)) {
932       // Re-queue the potentially new direct uses of IVOperand.
933       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
934       continue;
935     }
936 
937     CastInst *Cast = dyn_cast<CastInst>(UseInst);
938     if (V && Cast) {
939       V->visitCast(Cast);
940       continue;
941     }
942     if (isSimpleIVUser(UseInst, L, SE)) {
943       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
944     }
945   }
946 }
947 
948 namespace llvm {
949 
950 void IVVisitor::anchor() { }
951 
952 /// Simplify instructions that use this induction variable
953 /// by using ScalarEvolution to analyze the IV's recurrence.
954 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
955                        LoopInfo *LI, const TargetTransformInfo *TTI,
956                        SmallVectorImpl<WeakTrackingVH> &Dead,
957                        SCEVExpander &Rewriter, IVVisitor *V) {
958   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
959                      Rewriter, Dead);
960   SIV.simplifyUsers(CurrIV, V);
961   return SIV.hasChanged();
962 }
963 
964 /// Simplify users of induction variables within this
965 /// loop. This does not actually change or add IVs.
966 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
967                      LoopInfo *LI, const TargetTransformInfo *TTI,
968                      SmallVectorImpl<WeakTrackingVH> &Dead) {
969   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
970 #ifndef NDEBUG
971   Rewriter.setDebugType(DEBUG_TYPE);
972 #endif
973   bool Changed = false;
974   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
975     Changed |=
976         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
977   }
978   return Changed;
979 }
980 
981 } // namespace llvm
982 
983 namespace {
984 //===----------------------------------------------------------------------===//
985 // Widen Induction Variables - Extend the width of an IV to cover its
986 // widest uses.
987 //===----------------------------------------------------------------------===//
988 
989 class WidenIV {
990   // Parameters
991   PHINode *OrigPhi;
992   Type *WideType;
993 
994   // Context
995   LoopInfo        *LI;
996   Loop            *L;
997   ScalarEvolution *SE;
998   DominatorTree   *DT;
999 
1000   // Does the module have any calls to the llvm.experimental.guard intrinsic
1001   // at all? If not we can avoid scanning instructions looking for guards.
1002   bool HasGuards;
1003 
1004   bool UsePostIncrementRanges;
1005 
1006   // Statistics
1007   unsigned NumElimExt = 0;
1008   unsigned NumWidened = 0;
1009 
1010   // Result
1011   PHINode *WidePhi = nullptr;
1012   Instruction *WideInc = nullptr;
1013   const SCEV *WideIncExpr = nullptr;
1014   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1015 
1016   SmallPtrSet<Instruction *,16> Widened;
1017 
1018   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
1019 
1020   // A map tracking the kind of extension used to widen each narrow IV
1021   // and narrow IV user.
1022   // Key: pointer to a narrow IV or IV user.
1023   // Value: the kind of extension used to widen this Instruction.
1024   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1025 
1026   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1027 
1028   // A map with control-dependent ranges for post increment IV uses. The key is
1029   // a pair of IV def and a use of this def denoting the context. The value is
1030   // a ConstantRange representing possible values of the def at the given
1031   // context.
1032   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1033 
1034   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1035                                               Instruction *UseI) {
1036     DefUserPair Key(Def, UseI);
1037     auto It = PostIncRangeInfos.find(Key);
1038     return It == PostIncRangeInfos.end()
1039                ? Optional<ConstantRange>(None)
1040                : Optional<ConstantRange>(It->second);
1041   }
1042 
1043   void calculatePostIncRanges(PHINode *OrigPhi);
1044   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1045 
1046   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1047     DefUserPair Key(Def, UseI);
1048     auto It = PostIncRangeInfos.find(Key);
1049     if (It == PostIncRangeInfos.end())
1050       PostIncRangeInfos.insert({Key, R});
1051     else
1052       It->second = R.intersectWith(It->second);
1053   }
1054 
1055 public:
1056   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1057   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1058   /// pointers.
1059   struct NarrowIVDefUse {
1060     Instruction *NarrowDef = nullptr;
1061     Instruction *NarrowUse = nullptr;
1062     Instruction *WideDef = nullptr;
1063 
1064     // True if the narrow def is never negative.  Tracking this information lets
1065     // us use a sign extension instead of a zero extension or vice versa, when
1066     // profitable and legal.
1067     bool NeverNegative = false;
1068 
1069     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1070                    bool NeverNegative)
1071         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1072           NeverNegative(NeverNegative) {}
1073   };
1074 
1075   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1076           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1077           bool HasGuards, bool UsePostIncrementRanges = true);
1078 
1079   PHINode *createWideIV(SCEVExpander &Rewriter);
1080 
1081   unsigned getNumElimExt() { return NumElimExt; };
1082   unsigned getNumWidened() { return NumWidened; };
1083 
1084 protected:
1085   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1086                           Instruction *Use);
1087 
1088   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1089   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1090                                      const SCEVAddRecExpr *WideAR);
1091   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1092 
1093   ExtendKind getExtendKind(Instruction *I);
1094 
1095   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1096 
1097   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1098 
1099   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1100 
1101   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1102                               unsigned OpCode) const;
1103 
1104   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1105 
1106   bool widenLoopCompare(NarrowIVDefUse DU);
1107   bool widenWithVariantUse(NarrowIVDefUse DU);
1108 
1109   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1110 
1111 private:
1112   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1113 };
1114 } // namespace
1115 
1116 /// Determine the insertion point for this user. By default, insert immediately
1117 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1118 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1119 /// common dominator for the incoming blocks. A nullptr can be returned if no
1120 /// viable location is found: it may happen if User is a PHI and Def only comes
1121 /// to this PHI from unreachable blocks.
1122 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1123                                           DominatorTree *DT, LoopInfo *LI) {
1124   PHINode *PHI = dyn_cast<PHINode>(User);
1125   if (!PHI)
1126     return User;
1127 
1128   Instruction *InsertPt = nullptr;
1129   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1130     if (PHI->getIncomingValue(i) != Def)
1131       continue;
1132 
1133     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1134 
1135     if (!DT->isReachableFromEntry(InsertBB))
1136       continue;
1137 
1138     if (!InsertPt) {
1139       InsertPt = InsertBB->getTerminator();
1140       continue;
1141     }
1142     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1143     InsertPt = InsertBB->getTerminator();
1144   }
1145 
1146   // If we have skipped all inputs, it means that Def only comes to Phi from
1147   // unreachable blocks.
1148   if (!InsertPt)
1149     return nullptr;
1150 
1151   auto *DefI = dyn_cast<Instruction>(Def);
1152   if (!DefI)
1153     return InsertPt;
1154 
1155   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1156 
1157   auto *L = LI->getLoopFor(DefI->getParent());
1158   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1159 
1160   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1161     if (LI->getLoopFor(DTN->getBlock()) == L)
1162       return DTN->getBlock()->getTerminator();
1163 
1164   llvm_unreachable("DefI dominates InsertPt!");
1165 }
1166 
1167 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1168           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1169           bool HasGuards, bool UsePostIncrementRanges)
1170       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1171         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1172         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1173         DeadInsts(DI) {
1174     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1175     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1176 }
1177 
1178 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1179                                  bool IsSigned, Instruction *Use) {
1180   // Set the debug location and conservative insertion point.
1181   IRBuilder<> Builder(Use);
1182   // Hoist the insertion point into loop preheaders as far as possible.
1183   for (const Loop *L = LI->getLoopFor(Use->getParent());
1184        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1185        L = L->getParentLoop())
1186     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1187 
1188   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1189                     Builder.CreateZExt(NarrowOper, WideType);
1190 }
1191 
1192 /// Instantiate a wide operation to replace a narrow operation. This only needs
1193 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1194 /// 0 for any operation we decide not to clone.
1195 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1196                                   const SCEVAddRecExpr *WideAR) {
1197   unsigned Opcode = DU.NarrowUse->getOpcode();
1198   switch (Opcode) {
1199   default:
1200     return nullptr;
1201   case Instruction::Add:
1202   case Instruction::Mul:
1203   case Instruction::UDiv:
1204   case Instruction::Sub:
1205     return cloneArithmeticIVUser(DU, WideAR);
1206 
1207   case Instruction::And:
1208   case Instruction::Or:
1209   case Instruction::Xor:
1210   case Instruction::Shl:
1211   case Instruction::LShr:
1212   case Instruction::AShr:
1213     return cloneBitwiseIVUser(DU);
1214   }
1215 }
1216 
1217 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1218   Instruction *NarrowUse = DU.NarrowUse;
1219   Instruction *NarrowDef = DU.NarrowDef;
1220   Instruction *WideDef = DU.WideDef;
1221 
1222   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1223 
1224   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1225   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1226   // invariant and will be folded or hoisted. If it actually comes from a
1227   // widened IV, it should be removed during a future call to widenIVUse.
1228   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1229   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1230                    ? WideDef
1231                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1232                                       IsSigned, NarrowUse);
1233   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1234                    ? WideDef
1235                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1236                                       IsSigned, NarrowUse);
1237 
1238   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1239   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1240                                         NarrowBO->getName());
1241   IRBuilder<> Builder(NarrowUse);
1242   Builder.Insert(WideBO);
1243   WideBO->copyIRFlags(NarrowBO);
1244   return WideBO;
1245 }
1246 
1247 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1248                                             const SCEVAddRecExpr *WideAR) {
1249   Instruction *NarrowUse = DU.NarrowUse;
1250   Instruction *NarrowDef = DU.NarrowDef;
1251   Instruction *WideDef = DU.WideDef;
1252 
1253   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1254 
1255   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1256 
1257   // We're trying to find X such that
1258   //
1259   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1260   //
1261   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1262   // and check using SCEV if any of them are correct.
1263 
1264   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1265   // correct solution to X.
1266   auto GuessNonIVOperand = [&](bool SignExt) {
1267     const SCEV *WideLHS;
1268     const SCEV *WideRHS;
1269 
1270     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1271       if (SignExt)
1272         return SE->getSignExtendExpr(S, Ty);
1273       return SE->getZeroExtendExpr(S, Ty);
1274     };
1275 
1276     if (IVOpIdx == 0) {
1277       WideLHS = SE->getSCEV(WideDef);
1278       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1279       WideRHS = GetExtend(NarrowRHS, WideType);
1280     } else {
1281       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1282       WideLHS = GetExtend(NarrowLHS, WideType);
1283       WideRHS = SE->getSCEV(WideDef);
1284     }
1285 
1286     // WideUse is "WideDef `op.wide` X" as described in the comment.
1287     const SCEV *WideUse =
1288       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1289 
1290     return WideUse == WideAR;
1291   };
1292 
1293   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1294   if (!GuessNonIVOperand(SignExtend)) {
1295     SignExtend = !SignExtend;
1296     if (!GuessNonIVOperand(SignExtend))
1297       return nullptr;
1298   }
1299 
1300   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1301                    ? WideDef
1302                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1303                                       SignExtend, NarrowUse);
1304   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1305                    ? WideDef
1306                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1307                                       SignExtend, NarrowUse);
1308 
1309   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1310   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1311                                         NarrowBO->getName());
1312 
1313   IRBuilder<> Builder(NarrowUse);
1314   Builder.Insert(WideBO);
1315   WideBO->copyIRFlags(NarrowBO);
1316   return WideBO;
1317 }
1318 
1319 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1320   auto It = ExtendKindMap.find(I);
1321   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1322   return It->second;
1323 }
1324 
1325 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1326                                      unsigned OpCode) const {
1327   switch (OpCode) {
1328   case Instruction::Add:
1329     return SE->getAddExpr(LHS, RHS);
1330   case Instruction::Sub:
1331     return SE->getMinusSCEV(LHS, RHS);
1332   case Instruction::Mul:
1333     return SE->getMulExpr(LHS, RHS);
1334   case Instruction::UDiv:
1335     return SE->getUDivExpr(LHS, RHS);
1336   default:
1337     llvm_unreachable("Unsupported opcode.");
1338   };
1339 }
1340 
1341 /// No-wrap operations can transfer sign extension of their result to their
1342 /// operands. Generate the SCEV value for the widened operation without
1343 /// actually modifying the IR yet. If the expression after extending the
1344 /// operands is an AddRec for this loop, return the AddRec and the kind of
1345 /// extension used.
1346 WidenIV::WidenedRecTy
1347 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1348   // Handle the common case of add<nsw/nuw>
1349   const unsigned OpCode = DU.NarrowUse->getOpcode();
1350   // Only Add/Sub/Mul instructions supported yet.
1351   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1352       OpCode != Instruction::Mul)
1353     return {nullptr, Unknown};
1354 
1355   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1356   // if extending the other will lead to a recurrence.
1357   const unsigned ExtendOperIdx =
1358       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1359   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1360 
1361   const SCEV *ExtendOperExpr = nullptr;
1362   const OverflowingBinaryOperator *OBO =
1363     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1364   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1365   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1366     ExtendOperExpr = SE->getSignExtendExpr(
1367       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1368   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1369     ExtendOperExpr = SE->getZeroExtendExpr(
1370       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1371   else
1372     return {nullptr, Unknown};
1373 
1374   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1375   // flags. This instruction may be guarded by control flow that the no-wrap
1376   // behavior depends on. Non-control-equivalent instructions can be mapped to
1377   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1378   // semantics to those operations.
1379   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1380   const SCEV *rhs = ExtendOperExpr;
1381 
1382   // Let's swap operands to the initial order for the case of non-commutative
1383   // operations, like SUB. See PR21014.
1384   if (ExtendOperIdx == 0)
1385     std::swap(lhs, rhs);
1386   const SCEVAddRecExpr *AddRec =
1387       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1388 
1389   if (!AddRec || AddRec->getLoop() != L)
1390     return {nullptr, Unknown};
1391 
1392   return {AddRec, ExtKind};
1393 }
1394 
1395 /// Is this instruction potentially interesting for further simplification after
1396 /// widening it's type? In other words, can the extend be safely hoisted out of
1397 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1398 /// so, return the extended recurrence and the kind of extension used. Otherwise
1399 /// return {nullptr, Unknown}.
1400 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1401   if (!DU.NarrowUse->getType()->isIntegerTy())
1402     return {nullptr, Unknown};
1403 
1404   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1405   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1406       SE->getTypeSizeInBits(WideType)) {
1407     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1408     // index. So don't follow this use.
1409     return {nullptr, Unknown};
1410   }
1411 
1412   const SCEV *WideExpr;
1413   ExtendKind ExtKind;
1414   if (DU.NeverNegative) {
1415     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1416     if (isa<SCEVAddRecExpr>(WideExpr))
1417       ExtKind = SignExtended;
1418     else {
1419       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1420       ExtKind = ZeroExtended;
1421     }
1422   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1423     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1424     ExtKind = SignExtended;
1425   } else {
1426     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1427     ExtKind = ZeroExtended;
1428   }
1429   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1430   if (!AddRec || AddRec->getLoop() != L)
1431     return {nullptr, Unknown};
1432   return {AddRec, ExtKind};
1433 }
1434 
1435 /// This IV user cannot be widened. Replace this use of the original narrow IV
1436 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1437 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1438                           LoopInfo *LI) {
1439   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1440   if (!InsertPt)
1441     return;
1442   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1443                     << *DU.NarrowUse << "\n");
1444   IRBuilder<> Builder(InsertPt);
1445   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1446   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1447 }
1448 
1449 /// If the narrow use is a compare instruction, then widen the compare
1450 //  (and possibly the other operand).  The extend operation is hoisted into the
1451 // loop preheader as far as possible.
1452 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1453   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1454   if (!Cmp)
1455     return false;
1456 
1457   // We can legally widen the comparison in the following two cases:
1458   //
1459   //  - The signedness of the IV extension and comparison match
1460   //
1461   //  - The narrow IV is always positive (and thus its sign extension is equal
1462   //    to its zero extension).  For instance, let's say we're zero extending
1463   //    %narrow for the following use
1464   //
1465   //      icmp slt i32 %narrow, %val   ... (A)
1466   //
1467   //    and %narrow is always positive.  Then
1468   //
1469   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1470   //          == icmp slt i32 zext(%narrow), sext(%val)
1471   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1472   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1473     return false;
1474 
1475   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1476   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1477   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1478   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1479 
1480   // Widen the compare instruction.
1481   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1482   if (!InsertPt)
1483     return false;
1484   IRBuilder<> Builder(InsertPt);
1485   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1486 
1487   // Widen the other operand of the compare, if necessary.
1488   if (CastWidth < IVWidth) {
1489     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1490     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1491   }
1492   return true;
1493 }
1494 
1495 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1496 // will not work when:
1497 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1498 // expand, eg. add %indvar, (load %addr)
1499 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1500 // While SCEV fails to avoid trunc, we can still try to use instruction
1501 // combining approach to prove trunc is not required. This can be further
1502 // extended with other instruction combining checks, but for now we handle the
1503 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1504 //
1505 // Src:
1506 //   %c = sub nsw %b, %indvar
1507 //   %d = sext %c to i64
1508 // Dst:
1509 //   %indvar.ext1 = sext %indvar to i64
1510 //   %m = sext %b to i64
1511 //   %d = sub nsw i64 %m, %indvar.ext1
1512 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1513 // trunc is required regardless of how %b is generated. This pattern is common
1514 // when calculating address in 64 bit architecture
1515 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1516   Instruction *NarrowUse = DU.NarrowUse;
1517   Instruction *NarrowDef = DU.NarrowDef;
1518   Instruction *WideDef = DU.WideDef;
1519 
1520   // Handle the common case of add<nsw/nuw>
1521   const unsigned OpCode = NarrowUse->getOpcode();
1522   // Only Add/Sub/Mul instructions are supported.
1523   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1524       OpCode != Instruction::Mul)
1525     return false;
1526 
1527   // The operand that is not defined by NarrowDef of DU. Let's call it the
1528   // other operand.
1529   assert((NarrowUse->getOperand(0) == NarrowDef ||
1530           NarrowUse->getOperand(1) == NarrowDef) &&
1531          "bad DU");
1532 
1533   const OverflowingBinaryOperator *OBO =
1534     cast<OverflowingBinaryOperator>(NarrowUse);
1535   ExtendKind ExtKind = getExtendKind(NarrowDef);
1536   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1537   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1538   auto AnotherOpExtKind = ExtKind;
1539 
1540   // Check that all uses are either:
1541   // - narrow def (in case of we are widening the IV increment);
1542   // - single-input LCSSA Phis;
1543   // - comparison of the chosen type;
1544   // - extend of the chosen type (raison d'etre).
1545   SmallVector<Instruction *, 4> ExtUsers;
1546   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1547   SmallVector<ICmpInst *, 4> ICmpUsers;
1548   for (Use &U : NarrowUse->uses()) {
1549     Instruction *User = cast<Instruction>(U.getUser());
1550     if (User == NarrowDef)
1551       continue;
1552     if (!L->contains(User)) {
1553       auto *LCSSAPhi = cast<PHINode>(User);
1554       // Make sure there is only 1 input, so that we don't have to split
1555       // critical edges.
1556       if (LCSSAPhi->getNumOperands() != 1)
1557         return false;
1558       LCSSAPhiUsers.push_back(LCSSAPhi);
1559       continue;
1560     }
1561     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1562       auto Pred = ICmp->getPredicate();
1563       // We have 3 types of predicates: signed, unsigned and equality
1564       // predicates. For equality, it's legal to widen icmp for either sign and
1565       // zero extend. For sign extend, we can also do so for signed predicates,
1566       // likeweise for zero extend we can widen icmp for unsigned predicates.
1567       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1568         return false;
1569       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1570         return false;
1571       ICmpUsers.push_back(ICmp);
1572       continue;
1573     }
1574     if (ExtKind == SignExtended)
1575       User = dyn_cast<SExtInst>(User);
1576     else
1577       User = dyn_cast<ZExtInst>(User);
1578     if (!User || User->getType() != WideType)
1579       return false;
1580     ExtUsers.push_back(User);
1581   }
1582   if (ExtUsers.empty()) {
1583     DeadInsts.emplace_back(NarrowUse);
1584     return true;
1585   }
1586 
1587   // We'll prove some facts that should be true in the context of ext users. If
1588   // there is no users, we are done now. If there are some, pick their common
1589   // dominator as context.
1590   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1591 
1592   if (!CanSignExtend && !CanZeroExtend) {
1593     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1594     // will most likely not see it. Let's try to prove it.
1595     if (OpCode != Instruction::Add)
1596       return false;
1597     if (ExtKind != ZeroExtended)
1598       return false;
1599     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1600     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1601     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1602     if (NarrowUse->getOperand(0) != NarrowDef)
1603       return false;
1604     if (!SE->isKnownNegative(RHS))
1605       return false;
1606     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1607                                                SE->getNegativeSCEV(RHS), CtxI);
1608     if (!ProvedSubNUW)
1609       return false;
1610     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1611     // neg(zext(neg(op))), which is basically sext(op).
1612     AnotherOpExtKind = SignExtended;
1613   }
1614 
1615   // Verifying that Defining operand is an AddRec
1616   const SCEV *Op1 = SE->getSCEV(WideDef);
1617   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1618   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1619     return false;
1620 
1621   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1622 
1623   // Generating a widening use instruction.
1624   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1625                    ? WideDef
1626                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1627                                       AnotherOpExtKind, NarrowUse);
1628   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1629                    ? WideDef
1630                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1631                                       AnotherOpExtKind, NarrowUse);
1632 
1633   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1634   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1635                                         NarrowBO->getName());
1636   IRBuilder<> Builder(NarrowUse);
1637   Builder.Insert(WideBO);
1638   WideBO->copyIRFlags(NarrowBO);
1639   ExtendKindMap[NarrowUse] = ExtKind;
1640 
1641   for (Instruction *User : ExtUsers) {
1642     assert(User->getType() == WideType && "Checked before!");
1643     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1644                       << *WideBO << "\n");
1645     ++NumElimExt;
1646     User->replaceAllUsesWith(WideBO);
1647     DeadInsts.emplace_back(User);
1648   }
1649 
1650   for (PHINode *User : LCSSAPhiUsers) {
1651     assert(User->getNumOperands() == 1 && "Checked before!");
1652     Builder.SetInsertPoint(User);
1653     auto *WidePN =
1654         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1655     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1656     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1657            "Not a LCSSA Phi?");
1658     WidePN->addIncoming(WideBO, LoopExitingBlock);
1659     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1660     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1661     User->replaceAllUsesWith(TruncPN);
1662     DeadInsts.emplace_back(User);
1663   }
1664 
1665   for (ICmpInst *User : ICmpUsers) {
1666     Builder.SetInsertPoint(User);
1667     auto ExtendedOp = [&](Value * V)->Value * {
1668       if (V == NarrowUse)
1669         return WideBO;
1670       if (ExtKind == ZeroExtended)
1671         return Builder.CreateZExt(V, WideBO->getType());
1672       else
1673         return Builder.CreateSExt(V, WideBO->getType());
1674     };
1675     auto Pred = User->getPredicate();
1676     auto *LHS = ExtendedOp(User->getOperand(0));
1677     auto *RHS = ExtendedOp(User->getOperand(1));
1678     auto *WideCmp =
1679         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1680     User->replaceAllUsesWith(WideCmp);
1681     DeadInsts.emplace_back(User);
1682   }
1683 
1684   return true;
1685 }
1686 
1687 /// Determine whether an individual user of the narrow IV can be widened. If so,
1688 /// return the wide clone of the user.
1689 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1690   assert(ExtendKindMap.count(DU.NarrowDef) &&
1691          "Should already know the kind of extension used to widen NarrowDef");
1692 
1693   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1694   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1695     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1696       // For LCSSA phis, sink the truncate outside the loop.
1697       // After SimplifyCFG most loop exit targets have a single predecessor.
1698       // Otherwise fall back to a truncate within the loop.
1699       if (UsePhi->getNumOperands() != 1)
1700         truncateIVUse(DU, DT, LI);
1701       else {
1702         // Widening the PHI requires us to insert a trunc.  The logical place
1703         // for this trunc is in the same BB as the PHI.  This is not possible if
1704         // the BB is terminated by a catchswitch.
1705         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1706           return nullptr;
1707 
1708         PHINode *WidePhi =
1709           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1710                           UsePhi);
1711         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1712         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1713         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1714         UsePhi->replaceAllUsesWith(Trunc);
1715         DeadInsts.emplace_back(UsePhi);
1716         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1717                           << *WidePhi << "\n");
1718       }
1719       return nullptr;
1720     }
1721   }
1722 
1723   // This narrow use can be widened by a sext if it's non-negative or its narrow
1724   // def was widended by a sext. Same for zext.
1725   auto canWidenBySExt = [&]() {
1726     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1727   };
1728   auto canWidenByZExt = [&]() {
1729     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1730   };
1731 
1732   // Our raison d'etre! Eliminate sign and zero extension.
1733   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1734       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1735     Value *NewDef = DU.WideDef;
1736     if (DU.NarrowUse->getType() != WideType) {
1737       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1738       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1739       if (CastWidth < IVWidth) {
1740         // The cast isn't as wide as the IV, so insert a Trunc.
1741         IRBuilder<> Builder(DU.NarrowUse);
1742         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1743       }
1744       else {
1745         // A wider extend was hidden behind a narrower one. This may induce
1746         // another round of IV widening in which the intermediate IV becomes
1747         // dead. It should be very rare.
1748         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1749                           << " not wide enough to subsume " << *DU.NarrowUse
1750                           << "\n");
1751         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1752         NewDef = DU.NarrowUse;
1753       }
1754     }
1755     if (NewDef != DU.NarrowUse) {
1756       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1757                         << " replaced by " << *DU.WideDef << "\n");
1758       ++NumElimExt;
1759       DU.NarrowUse->replaceAllUsesWith(NewDef);
1760       DeadInsts.emplace_back(DU.NarrowUse);
1761     }
1762     // Now that the extend is gone, we want to expose it's uses for potential
1763     // further simplification. We don't need to directly inform SimplifyIVUsers
1764     // of the new users, because their parent IV will be processed later as a
1765     // new loop phi. If we preserved IVUsers analysis, we would also want to
1766     // push the uses of WideDef here.
1767 
1768     // No further widening is needed. The deceased [sz]ext had done it for us.
1769     return nullptr;
1770   }
1771 
1772   // Does this user itself evaluate to a recurrence after widening?
1773   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1774   if (!WideAddRec.first)
1775     WideAddRec = getWideRecurrence(DU);
1776 
1777   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1778   if (!WideAddRec.first) {
1779     // If use is a loop condition, try to promote the condition instead of
1780     // truncating the IV first.
1781     if (widenLoopCompare(DU))
1782       return nullptr;
1783 
1784     // We are here about to generate a truncate instruction that may hurt
1785     // performance because the scalar evolution expression computed earlier
1786     // in WideAddRec.first does not indicate a polynomial induction expression.
1787     // In that case, look at the operands of the use instruction to determine
1788     // if we can still widen the use instead of truncating its operand.
1789     if (widenWithVariantUse(DU))
1790       return nullptr;
1791 
1792     // This user does not evaluate to a recurrence after widening, so don't
1793     // follow it. Instead insert a Trunc to kill off the original use,
1794     // eventually isolating the original narrow IV so it can be removed.
1795     truncateIVUse(DU, DT, LI);
1796     return nullptr;
1797   }
1798 
1799   // Reuse the IV increment that SCEVExpander created as long as it dominates
1800   // NarrowUse.
1801   Instruction *WideUse = nullptr;
1802   if (WideAddRec.first == WideIncExpr &&
1803       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1804     WideUse = WideInc;
1805   else {
1806     WideUse = cloneIVUser(DU, WideAddRec.first);
1807     if (!WideUse)
1808       return nullptr;
1809   }
1810   // Evaluation of WideAddRec ensured that the narrow expression could be
1811   // extended outside the loop without overflow. This suggests that the wide use
1812   // evaluates to the same expression as the extended narrow use, but doesn't
1813   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1814   // where it fails, we simply throw away the newly created wide use.
1815   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1816     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1817                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1818                       << "\n");
1819     DeadInsts.emplace_back(WideUse);
1820     return nullptr;
1821   }
1822 
1823   // if we reached this point then we are going to replace
1824   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1825   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1826 
1827   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1828   // Returning WideUse pushes it on the worklist.
1829   return WideUse;
1830 }
1831 
1832 /// Add eligible users of NarrowDef to NarrowIVUsers.
1833 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1834   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1835   bool NonNegativeDef =
1836       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1837                            SE->getZero(NarrowSCEV->getType()));
1838   for (User *U : NarrowDef->users()) {
1839     Instruction *NarrowUser = cast<Instruction>(U);
1840 
1841     // Handle data flow merges and bizarre phi cycles.
1842     if (!Widened.insert(NarrowUser).second)
1843       continue;
1844 
1845     bool NonNegativeUse = false;
1846     if (!NonNegativeDef) {
1847       // We might have a control-dependent range information for this context.
1848       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1849         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1850     }
1851 
1852     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1853                                NonNegativeDef || NonNegativeUse);
1854   }
1855 }
1856 
1857 /// Process a single induction variable. First use the SCEVExpander to create a
1858 /// wide induction variable that evaluates to the same recurrence as the
1859 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1860 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1861 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1862 ///
1863 /// It would be simpler to delete uses as they are processed, but we must avoid
1864 /// invalidating SCEV expressions.
1865 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1866   // Is this phi an induction variable?
1867   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1868   if (!AddRec)
1869     return nullptr;
1870 
1871   // Widen the induction variable expression.
1872   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1873                                ? SE->getSignExtendExpr(AddRec, WideType)
1874                                : SE->getZeroExtendExpr(AddRec, WideType);
1875 
1876   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1877          "Expect the new IV expression to preserve its type");
1878 
1879   // Can the IV be extended outside the loop without overflow?
1880   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1881   if (!AddRec || AddRec->getLoop() != L)
1882     return nullptr;
1883 
1884   // An AddRec must have loop-invariant operands. Since this AddRec is
1885   // materialized by a loop header phi, the expression cannot have any post-loop
1886   // operands, so they must dominate the loop header.
1887   assert(
1888       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1889       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1890       "Loop header phi recurrence inputs do not dominate the loop");
1891 
1892   // Iterate over IV uses (including transitive ones) looking for IV increments
1893   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1894   // the increment calculate control-dependent range information basing on
1895   // dominating conditions inside of the loop (e.g. a range check inside of the
1896   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1897   //
1898   // Control-dependent range information is later used to prove that a narrow
1899   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1900   // this on demand because when pushNarrowIVUsers needs this information some
1901   // of the dominating conditions might be already widened.
1902   if (UsePostIncrementRanges)
1903     calculatePostIncRanges(OrigPhi);
1904 
1905   // The rewriter provides a value for the desired IV expression. This may
1906   // either find an existing phi or materialize a new one. Either way, we
1907   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1908   // of the phi-SCC dominates the loop entry.
1909   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1910   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1911   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1912   // inttoptr, ptrtoint, just skip for now.
1913   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1914     // if the cast node is an inserted instruction without any user, we should
1915     // remove it to make sure the pass don't touch the function as we can not
1916     // wide the phi.
1917     if (ExpandInst->hasNUses(0) &&
1918         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1919       DeadInsts.emplace_back(ExpandInst);
1920     return nullptr;
1921   }
1922 
1923   // Remembering the WideIV increment generated by SCEVExpander allows
1924   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1925   // employ a general reuse mechanism because the call above is the only call to
1926   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1927   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1928     WideInc =
1929       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1930     WideIncExpr = SE->getSCEV(WideInc);
1931     // Propagate the debug location associated with the original loop increment
1932     // to the new (widened) increment.
1933     auto *OrigInc =
1934       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1935     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1936   }
1937 
1938   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1939   ++NumWidened;
1940 
1941   // Traverse the def-use chain using a worklist starting at the original IV.
1942   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1943 
1944   Widened.insert(OrigPhi);
1945   pushNarrowIVUsers(OrigPhi, WidePhi);
1946 
1947   while (!NarrowIVUsers.empty()) {
1948     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1949 
1950     // Process a def-use edge. This may replace the use, so don't hold a
1951     // use_iterator across it.
1952     Instruction *WideUse = widenIVUse(DU, Rewriter);
1953 
1954     // Follow all def-use edges from the previous narrow use.
1955     if (WideUse)
1956       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1957 
1958     // widenIVUse may have removed the def-use edge.
1959     if (DU.NarrowDef->use_empty())
1960       DeadInsts.emplace_back(DU.NarrowDef);
1961   }
1962 
1963   // Attach any debug information to the new PHI.
1964   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1965 
1966   return WidePhi;
1967 }
1968 
1969 /// Calculates control-dependent range for the given def at the given context
1970 /// by looking at dominating conditions inside of the loop
1971 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1972                                     Instruction *NarrowUser) {
1973   using namespace llvm::PatternMatch;
1974 
1975   Value *NarrowDefLHS;
1976   const APInt *NarrowDefRHS;
1977   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1978                                  m_APInt(NarrowDefRHS))) ||
1979       !NarrowDefRHS->isNonNegative())
1980     return;
1981 
1982   auto UpdateRangeFromCondition = [&] (Value *Condition,
1983                                        bool TrueDest) {
1984     CmpInst::Predicate Pred;
1985     Value *CmpRHS;
1986     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1987                                  m_Value(CmpRHS))))
1988       return;
1989 
1990     CmpInst::Predicate P =
1991             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1992 
1993     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1994     auto CmpConstrainedLHSRange =
1995             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1996     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1997         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1998 
1999     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2000   };
2001 
2002   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2003     if (!HasGuards)
2004       return;
2005 
2006     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2007                                      Ctx->getParent()->rend())) {
2008       Value *C = nullptr;
2009       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2010         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2011     }
2012   };
2013 
2014   UpdateRangeFromGuards(NarrowUser);
2015 
2016   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2017   // If NarrowUserBB is statically unreachable asking dominator queries may
2018   // yield surprising results. (e.g. the block may not have a dom tree node)
2019   if (!DT->isReachableFromEntry(NarrowUserBB))
2020     return;
2021 
2022   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2023        L->contains(DTB->getBlock());
2024        DTB = DTB->getIDom()) {
2025     auto *BB = DTB->getBlock();
2026     auto *TI = BB->getTerminator();
2027     UpdateRangeFromGuards(TI);
2028 
2029     auto *BI = dyn_cast<BranchInst>(TI);
2030     if (!BI || !BI->isConditional())
2031       continue;
2032 
2033     auto *TrueSuccessor = BI->getSuccessor(0);
2034     auto *FalseSuccessor = BI->getSuccessor(1);
2035 
2036     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2037       return BBE.isSingleEdge() &&
2038              DT->dominates(BBE, NarrowUser->getParent());
2039     };
2040 
2041     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2042       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2043 
2044     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2045       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2046   }
2047 }
2048 
2049 /// Calculates PostIncRangeInfos map for the given IV
2050 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2051   SmallPtrSet<Instruction *, 16> Visited;
2052   SmallVector<Instruction *, 6> Worklist;
2053   Worklist.push_back(OrigPhi);
2054   Visited.insert(OrigPhi);
2055 
2056   while (!Worklist.empty()) {
2057     Instruction *NarrowDef = Worklist.pop_back_val();
2058 
2059     for (Use &U : NarrowDef->uses()) {
2060       auto *NarrowUser = cast<Instruction>(U.getUser());
2061 
2062       // Don't go looking outside the current loop.
2063       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2064       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2065         continue;
2066 
2067       if (!Visited.insert(NarrowUser).second)
2068         continue;
2069 
2070       Worklist.push_back(NarrowUser);
2071 
2072       calculatePostIncRange(NarrowDef, NarrowUser);
2073     }
2074   }
2075 }
2076 
2077 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2078     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2079     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2080     unsigned &NumElimExt, unsigned &NumWidened,
2081     bool HasGuards, bool UsePostIncrementRanges) {
2082   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2083   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2084   NumElimExt = Widener.getNumElimExt();
2085   NumWidened = Widener.getNumWidened();
2086   return WidePHI;
2087 }
2088