1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 38 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 39 40 namespace { 41 /// This is a utility for simplifying induction variables 42 /// based on ScalarEvolution. It is the primary instrument of the 43 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 44 /// other loop passes that preserve SCEV. 45 class SimplifyIndvar { 46 Loop *L; 47 LoopInfo *LI; 48 ScalarEvolution *SE; 49 DominatorTree *DT; 50 51 SmallVectorImpl<WeakVH> &DeadInsts; 52 53 bool Changed; 54 55 public: 56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 57 LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead) 58 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { 59 assert(LI && "IV simplification requires LoopInfo"); 60 } 61 62 bool hasChanged() const { return Changed; } 63 64 /// Iteratively perform simplification on a worklist of users of the 65 /// specified induction variable. This is the top-level driver that applies 66 /// all simplifications to users of an IV. 67 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 68 69 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 70 71 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 72 73 bool eliminateOverflowIntrinsic(CallInst *CI); 74 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 75 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 76 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 77 bool IsSigned); 78 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 79 80 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 81 const DominatorTree *DT); 82 }; 83 } 84 85 /// Fold an IV operand into its use. This removes increments of an 86 /// aligned IV when used by a instruction that ignores the low bits. 87 /// 88 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 89 /// 90 /// Return the operand of IVOperand for this induction variable if IVOperand can 91 /// be folded (in case more folding opportunities have been exposed). 92 /// Otherwise return null. 93 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 94 Value *IVSrc = nullptr; 95 unsigned OperIdx = 0; 96 const SCEV *FoldedExpr = nullptr; 97 switch (UseInst->getOpcode()) { 98 default: 99 return nullptr; 100 case Instruction::UDiv: 101 case Instruction::LShr: 102 // We're only interested in the case where we know something about 103 // the numerator and have a constant denominator. 104 if (IVOperand != UseInst->getOperand(OperIdx) || 105 !isa<ConstantInt>(UseInst->getOperand(1))) 106 return nullptr; 107 108 // Attempt to fold a binary operator with constant operand. 109 // e.g. ((I + 1) >> 2) => I >> 2 110 if (!isa<BinaryOperator>(IVOperand) 111 || !isa<ConstantInt>(IVOperand->getOperand(1))) 112 return nullptr; 113 114 IVSrc = IVOperand->getOperand(0); 115 // IVSrc must be the (SCEVable) IV, since the other operand is const. 116 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 117 118 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 119 if (UseInst->getOpcode() == Instruction::LShr) { 120 // Get a constant for the divisor. See createSCEV. 121 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 122 if (D->getValue().uge(BitWidth)) 123 return nullptr; 124 125 D = ConstantInt::get(UseInst->getContext(), 126 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 127 } 128 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 129 } 130 // We have something that might fold it's operand. Compare SCEVs. 131 if (!SE->isSCEVable(UseInst->getType())) 132 return nullptr; 133 134 // Bypass the operand if SCEV can prove it has no effect. 135 if (SE->getSCEV(UseInst) != FoldedExpr) 136 return nullptr; 137 138 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 139 << " -> " << *UseInst << '\n'); 140 141 UseInst->setOperand(OperIdx, IVSrc); 142 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 143 144 ++NumElimOperand; 145 Changed = true; 146 if (IVOperand->use_empty()) 147 DeadInsts.emplace_back(IVOperand); 148 return IVSrc; 149 } 150 151 /// SimplifyIVUsers helper for eliminating useless 152 /// comparisons against an induction variable. 153 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 154 unsigned IVOperIdx = 0; 155 ICmpInst::Predicate Pred = ICmp->getPredicate(); 156 if (IVOperand != ICmp->getOperand(0)) { 157 // Swapped 158 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 159 IVOperIdx = 1; 160 Pred = ICmpInst::getSwappedPredicate(Pred); 161 } 162 163 // Get the SCEVs for the ICmp operands. 164 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 165 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 166 167 // Simplify unnecessary loops away. 168 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 169 S = SE->getSCEVAtScope(S, ICmpLoop); 170 X = SE->getSCEVAtScope(X, ICmpLoop); 171 172 ICmpInst::Predicate InvariantPredicate; 173 const SCEV *InvariantLHS, *InvariantRHS; 174 175 // If the condition is always true or always false, replace it with 176 // a constant value. 177 if (SE->isKnownPredicate(Pred, S, X)) { 178 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 179 DeadInsts.emplace_back(ICmp); 180 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 181 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 182 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 183 DeadInsts.emplace_back(ICmp); 184 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 185 } else if (isa<PHINode>(IVOperand) && 186 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 187 InvariantLHS, InvariantRHS)) { 188 189 // Rewrite the comparison to a loop invariant comparison if it can be done 190 // cheaply, where cheaply means "we don't need to emit any new 191 // instructions". 192 193 Value *NewLHS = nullptr, *NewRHS = nullptr; 194 195 if (S == InvariantLHS || X == InvariantLHS) 196 NewLHS = 197 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 198 199 if (S == InvariantRHS || X == InvariantRHS) 200 NewRHS = 201 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 202 203 auto *PN = cast<PHINode>(IVOperand); 204 for (unsigned i = 0, e = PN->getNumIncomingValues(); 205 i != e && (!NewLHS || !NewRHS); 206 ++i) { 207 208 // If this is a value incoming from the backedge, then it cannot be a loop 209 // invariant value (since we know that IVOperand is an induction variable). 210 if (L->contains(PN->getIncomingBlock(i))) 211 continue; 212 213 // NB! This following assert does not fundamentally have to be true, but 214 // it is true today given how SCEV analyzes induction variables. 215 // Specifically, today SCEV will *not* recognize %iv as an induction 216 // variable in the following case: 217 // 218 // define void @f(i32 %k) { 219 // entry: 220 // br i1 undef, label %r, label %l 221 // 222 // l: 223 // %k.inc.l = add i32 %k, 1 224 // br label %loop 225 // 226 // r: 227 // %k.inc.r = add i32 %k, 1 228 // br label %loop 229 // 230 // loop: 231 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] 232 // %iv.inc = add i32 %iv, 1 233 // br label %loop 234 // } 235 // 236 // but if it starts to, at some point, then the assertion below will have 237 // to be changed to a runtime check. 238 239 Value *Incoming = PN->getIncomingValue(i); 240 241 #ifndef NDEBUG 242 if (auto *I = dyn_cast<Instruction>(Incoming)) 243 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); 244 #endif 245 246 const SCEV *IncomingS = SE->getSCEV(Incoming); 247 248 if (!NewLHS && IncomingS == InvariantLHS) 249 NewLHS = Incoming; 250 if (!NewRHS && IncomingS == InvariantRHS) 251 NewRHS = Incoming; 252 } 253 254 if (!NewLHS || !NewRHS) 255 // We could not find an existing value to replace either LHS or RHS. 256 // Generating new instructions has subtler tradeoffs, so avoid doing that 257 // for now. 258 return; 259 260 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 261 ICmp->setPredicate(InvariantPredicate); 262 ICmp->setOperand(0, NewLHS); 263 ICmp->setOperand(1, NewRHS); 264 } else 265 return; 266 267 ++NumElimCmp; 268 Changed = true; 269 } 270 271 /// SimplifyIVUsers helper for eliminating useless 272 /// remainder operations operating on an induction variable. 273 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 274 Value *IVOperand, 275 bool IsSigned) { 276 // We're only interested in the case where we know something about 277 // the numerator. 278 if (IVOperand != Rem->getOperand(0)) 279 return; 280 281 // Get the SCEVs for the ICmp operands. 282 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 283 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 284 285 // Simplify unnecessary loops away. 286 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 287 S = SE->getSCEVAtScope(S, ICmpLoop); 288 X = SE->getSCEVAtScope(X, ICmpLoop); 289 290 // i % n --> i if i is in [0,n). 291 if ((!IsSigned || SE->isKnownNonNegative(S)) && 292 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 293 S, X)) 294 Rem->replaceAllUsesWith(Rem->getOperand(0)); 295 else { 296 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 297 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 298 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 299 return; 300 301 if (!SE->isKnownPredicate(IsSigned ? 302 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 303 LessOne, X)) 304 return; 305 306 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 307 Rem->getOperand(0), Rem->getOperand(1)); 308 SelectInst *Sel = 309 SelectInst::Create(ICmp, 310 ConstantInt::get(Rem->getType(), 0), 311 Rem->getOperand(0), "tmp", Rem); 312 Rem->replaceAllUsesWith(Sel); 313 } 314 315 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 316 ++NumElimRem; 317 Changed = true; 318 DeadInsts.emplace_back(Rem); 319 } 320 321 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { 322 auto *F = CI->getCalledFunction(); 323 if (!F) 324 return false; 325 326 typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( 327 const SCEV *, const SCEV *, SCEV::NoWrapFlags); 328 typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( 329 const SCEV *, Type *); 330 331 OperationFunctionTy Operation; 332 ExtensionFunctionTy Extension; 333 334 Instruction::BinaryOps RawOp; 335 336 // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we 337 // have nuw. 338 bool NoSignedOverflow; 339 340 switch (F->getIntrinsicID()) { 341 default: 342 return false; 343 344 case Intrinsic::sadd_with_overflow: 345 Operation = &ScalarEvolution::getAddExpr; 346 Extension = &ScalarEvolution::getSignExtendExpr; 347 RawOp = Instruction::Add; 348 NoSignedOverflow = true; 349 break; 350 351 case Intrinsic::uadd_with_overflow: 352 Operation = &ScalarEvolution::getAddExpr; 353 Extension = &ScalarEvolution::getZeroExtendExpr; 354 RawOp = Instruction::Add; 355 NoSignedOverflow = false; 356 break; 357 358 case Intrinsic::ssub_with_overflow: 359 Operation = &ScalarEvolution::getMinusSCEV; 360 Extension = &ScalarEvolution::getSignExtendExpr; 361 RawOp = Instruction::Sub; 362 NoSignedOverflow = true; 363 break; 364 365 case Intrinsic::usub_with_overflow: 366 Operation = &ScalarEvolution::getMinusSCEV; 367 Extension = &ScalarEvolution::getZeroExtendExpr; 368 RawOp = Instruction::Sub; 369 NoSignedOverflow = false; 370 break; 371 } 372 373 const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); 374 const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); 375 376 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 377 auto *WideTy = 378 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 379 380 const SCEV *A = 381 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap), WideTy); 382 const SCEV *B = 383 (SE->*Operation)((SE->*Extension)(LHS, WideTy), 384 (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap); 385 386 if (A != B) 387 return false; 388 389 // Proved no overflow, nuke the overflow check and, if possible, the overflow 390 // intrinsic as well. 391 392 BinaryOperator *NewResult = BinaryOperator::Create( 393 RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); 394 395 if (NoSignedOverflow) 396 NewResult->setHasNoSignedWrap(true); 397 else 398 NewResult->setHasNoUnsignedWrap(true); 399 400 SmallVector<ExtractValueInst *, 4> ToDelete; 401 402 for (auto *U : CI->users()) { 403 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 404 if (EVI->getIndices()[0] == 1) 405 EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); 406 else { 407 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 408 EVI->replaceAllUsesWith(NewResult); 409 } 410 ToDelete.push_back(EVI); 411 } 412 } 413 414 for (auto *EVI : ToDelete) 415 EVI->eraseFromParent(); 416 417 if (CI->use_empty()) 418 CI->eraseFromParent(); 419 420 return true; 421 } 422 423 /// Eliminate an operation that consumes a simple IV and has no observable 424 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 425 /// but UseInst may not be. 426 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 427 Instruction *IVOperand) { 428 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 429 eliminateIVComparison(ICmp, IVOperand); 430 return true; 431 } 432 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 433 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 434 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 435 eliminateIVRemainder(Rem, IVOperand, IsSigned); 436 return true; 437 } 438 } 439 440 if (auto *CI = dyn_cast<CallInst>(UseInst)) 441 if (eliminateOverflowIntrinsic(CI)) 442 return true; 443 444 if (eliminateIdentitySCEV(UseInst, IVOperand)) 445 return true; 446 447 return false; 448 } 449 450 /// Eliminate any operation that SCEV can prove is an identity function. 451 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 452 Instruction *IVOperand) { 453 if (!SE->isSCEVable(UseInst->getType()) || 454 (UseInst->getType() != IVOperand->getType()) || 455 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 456 return false; 457 458 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 459 // dominator tree, even if X is an operand to Y. For instance, in 460 // 461 // %iv = phi i32 {0,+,1} 462 // br %cond, label %left, label %merge 463 // 464 // left: 465 // %X = add i32 %iv, 0 466 // br label %merge 467 // 468 // merge: 469 // %M = phi (%X, %iv) 470 // 471 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 472 // %M.replaceAllUsesWith(%X) would be incorrect. 473 474 if (isa<PHINode>(UseInst)) 475 // If UseInst is not a PHI node then we know that IVOperand dominates 476 // UseInst directly from the legality of SSA. 477 if (!DT || !DT->dominates(IVOperand, UseInst)) 478 return false; 479 480 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 481 return false; 482 483 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 484 485 UseInst->replaceAllUsesWith(IVOperand); 486 ++NumElimIdentity; 487 Changed = true; 488 DeadInsts.emplace_back(UseInst); 489 return true; 490 } 491 492 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 493 /// unsigned-overflow. Returns true if anything changed, false otherwise. 494 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 495 Value *IVOperand) { 496 497 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 498 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 499 return false; 500 501 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 502 SCEV::NoWrapFlags); 503 504 switch (BO->getOpcode()) { 505 default: 506 return false; 507 508 case Instruction::Add: 509 GetExprForBO = &ScalarEvolution::getAddExpr; 510 break; 511 512 case Instruction::Sub: 513 GetExprForBO = &ScalarEvolution::getMinusSCEV; 514 break; 515 516 case Instruction::Mul: 517 GetExprForBO = &ScalarEvolution::getMulExpr; 518 break; 519 } 520 521 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 522 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 523 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 524 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 525 526 bool Changed = false; 527 528 if (!BO->hasNoUnsignedWrap()) { 529 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 530 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 531 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 532 SCEV::FlagAnyWrap); 533 if (ExtendAfterOp == OpAfterExtend) { 534 BO->setHasNoUnsignedWrap(); 535 SE->forgetValue(BO); 536 Changed = true; 537 } 538 } 539 540 if (!BO->hasNoSignedWrap()) { 541 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 542 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 543 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 544 SCEV::FlagAnyWrap); 545 if (ExtendAfterOp == OpAfterExtend) { 546 BO->setHasNoSignedWrap(); 547 SE->forgetValue(BO); 548 Changed = true; 549 } 550 } 551 552 return Changed; 553 } 554 555 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 556 /// analysis and optimization. 557 /// 558 /// \return A new value representing the non-overflowing add if possible, 559 /// otherwise return the original value. 560 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 561 const DominatorTree *DT) { 562 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 563 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 564 return IVUser; 565 566 // Find a branch guarded by the overflow check. 567 BranchInst *Branch = nullptr; 568 Instruction *AddVal = nullptr; 569 for (User *U : II->users()) { 570 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 571 if (ExtractInst->getNumIndices() != 1) 572 continue; 573 if (ExtractInst->getIndices()[0] == 0) 574 AddVal = ExtractInst; 575 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 576 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 577 } 578 } 579 if (!AddVal || !Branch) 580 return IVUser; 581 582 BasicBlock *ContinueBB = Branch->getSuccessor(1); 583 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 584 return IVUser; 585 586 // Check if all users of the add are provably NSW. 587 bool AllNSW = true; 588 for (Use &U : AddVal->uses()) { 589 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 590 BasicBlock *UseBB = UseInst->getParent(); 591 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 592 UseBB = PHI->getIncomingBlock(U); 593 if (!DT->dominates(ContinueBB, UseBB)) { 594 AllNSW = false; 595 break; 596 } 597 } 598 } 599 if (!AllNSW) 600 return IVUser; 601 602 // Go for it... 603 IRBuilder<> Builder(IVUser); 604 Instruction *AddInst = dyn_cast<Instruction>( 605 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 606 607 // The caller expects the new add to have the same form as the intrinsic. The 608 // IV operand position must be the same. 609 assert((AddInst->getOpcode() == Instruction::Add && 610 AddInst->getOperand(0) == II->getOperand(0)) && 611 "Bad add instruction created from overflow intrinsic."); 612 613 AddVal->replaceAllUsesWith(AddInst); 614 DeadInsts.emplace_back(AddVal); 615 return AddInst; 616 } 617 618 /// Add all uses of Def to the current IV's worklist. 619 static void pushIVUsers( 620 Instruction *Def, 621 SmallPtrSet<Instruction*,16> &Simplified, 622 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 623 624 for (User *U : Def->users()) { 625 Instruction *UI = cast<Instruction>(U); 626 627 // Avoid infinite or exponential worklist processing. 628 // Also ensure unique worklist users. 629 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 630 // self edges first. 631 if (UI != Def && Simplified.insert(UI).second) 632 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 633 } 634 } 635 636 /// Return true if this instruction generates a simple SCEV 637 /// expression in terms of that IV. 638 /// 639 /// This is similar to IVUsers' isInteresting() but processes each instruction 640 /// non-recursively when the operand is already known to be a simpleIVUser. 641 /// 642 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 643 if (!SE->isSCEVable(I->getType())) 644 return false; 645 646 // Get the symbolic expression for this instruction. 647 const SCEV *S = SE->getSCEV(I); 648 649 // Only consider affine recurrences. 650 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 651 if (AR && AR->getLoop() == L) 652 return true; 653 654 return false; 655 } 656 657 /// Iteratively perform simplification on a worklist of users 658 /// of the specified induction variable. Each successive simplification may push 659 /// more users which may themselves be candidates for simplification. 660 /// 661 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 662 /// instructions in-place during analysis. Rather than rewriting induction 663 /// variables bottom-up from their users, it transforms a chain of IVUsers 664 /// top-down, updating the IR only when it encounters a clear optimization 665 /// opportunity. 666 /// 667 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 668 /// 669 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 670 if (!SE->isSCEVable(CurrIV->getType())) 671 return; 672 673 // Instructions processed by SimplifyIndvar for CurrIV. 674 SmallPtrSet<Instruction*,16> Simplified; 675 676 // Use-def pairs if IV users waiting to be processed for CurrIV. 677 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 678 679 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 680 // called multiple times for the same LoopPhi. This is the proper thing to 681 // do for loop header phis that use each other. 682 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 683 684 while (!SimpleIVUsers.empty()) { 685 std::pair<Instruction*, Instruction*> UseOper = 686 SimpleIVUsers.pop_back_val(); 687 Instruction *UseInst = UseOper.first; 688 689 // Bypass back edges to avoid extra work. 690 if (UseInst == CurrIV) continue; 691 692 if (V && V->shouldSplitOverflowInstrinsics()) { 693 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 694 if (!UseInst) 695 continue; 696 } 697 698 Instruction *IVOperand = UseOper.second; 699 for (unsigned N = 0; IVOperand; ++N) { 700 assert(N <= Simplified.size() && "runaway iteration"); 701 702 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 703 if (!NewOper) 704 break; // done folding 705 IVOperand = dyn_cast<Instruction>(NewOper); 706 } 707 if (!IVOperand) 708 continue; 709 710 if (eliminateIVUser(UseOper.first, IVOperand)) { 711 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 712 continue; 713 } 714 715 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 716 if (isa<OverflowingBinaryOperator>(BO) && 717 strengthenOverflowingOperation(BO, IVOperand)) { 718 // re-queue uses of the now modified binary operator and fall 719 // through to the checks that remain. 720 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 721 } 722 } 723 724 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 725 if (V && Cast) { 726 V->visitCast(Cast); 727 continue; 728 } 729 if (isSimpleIVUser(UseOper.first, L, SE)) { 730 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 731 } 732 } 733 } 734 735 namespace llvm { 736 737 void IVVisitor::anchor() { } 738 739 /// Simplify instructions that use this induction variable 740 /// by using ScalarEvolution to analyze the IV's recurrence. 741 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 742 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead, 743 IVVisitor *V) { 744 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); 745 SIV.simplifyUsers(CurrIV, V); 746 return SIV.hasChanged(); 747 } 748 749 /// Simplify users of induction variables within this 750 /// loop. This does not actually change or add IVs. 751 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 752 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) { 753 bool Changed = false; 754 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 755 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); 756 } 757 return Changed; 758 } 759 760 } // namespace llvm 761