1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 const TargetTransformInfo *TTI; 58 SCEVExpander &Rewriter; 59 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 60 61 bool Changed; 62 63 public: 64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 65 LoopInfo *LI, const TargetTransformInfo *TTI, 66 SCEVExpander &Rewriter, 67 SmallVectorImpl<WeakTrackingVH> &Dead) 68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 69 DeadInsts(Dead), Changed(false) { 70 assert(LI && "IV simplification requires LoopInfo"); 71 } 72 73 bool hasChanged() const { return Changed; } 74 75 /// Iteratively perform simplification on a worklist of users of the 76 /// specified induction variable. This is the top-level driver that applies 77 /// all simplifications to users of an IV. 78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 79 80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 81 82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 84 85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 87 bool eliminateTrunc(TruncInst *TI); 88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 92 bool IsSigned); 93 void replaceRemWithNumerator(BinaryOperator *Rem); 94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 95 void replaceSRemWithURem(BinaryOperator *Rem); 96 bool eliminateSDiv(BinaryOperator *SDiv); 97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 99 }; 100 } 101 102 /// Find a point in code which dominates all given instructions. We can safely 103 /// assume that, whatever fact we can prove at the found point, this fact is 104 /// also true for each of the given instructions. 105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 106 DominatorTree &DT) { 107 Instruction *CommonDom = nullptr; 108 for (auto *Insn : Instructions) 109 if (!CommonDom || DT.dominates(Insn, CommonDom)) 110 CommonDom = Insn; 111 else if (!DT.dominates(CommonDom, Insn)) 112 // If there is no dominance relation, use common dominator. 113 CommonDom = 114 DT.findNearestCommonDominator(CommonDom->getParent(), 115 Insn->getParent())->getTerminator(); 116 assert(CommonDom && "Common dominator not found?"); 117 return CommonDom; 118 } 119 120 /// Fold an IV operand into its use. This removes increments of an 121 /// aligned IV when used by a instruction that ignores the low bits. 122 /// 123 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 124 /// 125 /// Return the operand of IVOperand for this induction variable if IVOperand can 126 /// be folded (in case more folding opportunities have been exposed). 127 /// Otherwise return null. 128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 129 Value *IVSrc = nullptr; 130 const unsigned OperIdx = 0; 131 const SCEV *FoldedExpr = nullptr; 132 bool MustDropExactFlag = false; 133 switch (UseInst->getOpcode()) { 134 default: 135 return nullptr; 136 case Instruction::UDiv: 137 case Instruction::LShr: 138 // We're only interested in the case where we know something about 139 // the numerator and have a constant denominator. 140 if (IVOperand != UseInst->getOperand(OperIdx) || 141 !isa<ConstantInt>(UseInst->getOperand(1))) 142 return nullptr; 143 144 // Attempt to fold a binary operator with constant operand. 145 // e.g. ((I + 1) >> 2) => I >> 2 146 if (!isa<BinaryOperator>(IVOperand) 147 || !isa<ConstantInt>(IVOperand->getOperand(1))) 148 return nullptr; 149 150 IVSrc = IVOperand->getOperand(0); 151 // IVSrc must be the (SCEVable) IV, since the other operand is const. 152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 153 154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 155 if (UseInst->getOpcode() == Instruction::LShr) { 156 // Get a constant for the divisor. See createSCEV. 157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 158 if (D->getValue().uge(BitWidth)) 159 return nullptr; 160 161 D = ConstantInt::get(UseInst->getContext(), 162 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 163 } 164 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 165 // We might have 'exact' flag set at this point which will no longer be 166 // correct after we make the replacement. 167 if (UseInst->isExact() && 168 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 169 MustDropExactFlag = true; 170 } 171 // We have something that might fold it's operand. Compare SCEVs. 172 if (!SE->isSCEVable(UseInst->getType())) 173 return nullptr; 174 175 // Bypass the operand if SCEV can prove it has no effect. 176 if (SE->getSCEV(UseInst) != FoldedExpr) 177 return nullptr; 178 179 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 180 << " -> " << *UseInst << '\n'); 181 182 UseInst->setOperand(OperIdx, IVSrc); 183 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 184 185 if (MustDropExactFlag) 186 UseInst->dropPoisonGeneratingFlags(); 187 188 ++NumElimOperand; 189 Changed = true; 190 if (IVOperand->use_empty()) 191 DeadInsts.emplace_back(IVOperand); 192 return IVSrc; 193 } 194 195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 196 Value *IVOperand) { 197 unsigned IVOperIdx = 0; 198 ICmpInst::Predicate Pred = ICmp->getPredicate(); 199 if (IVOperand != ICmp->getOperand(0)) { 200 // Swapped 201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 202 IVOperIdx = 1; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 // Get the SCEVs for the ICmp operands (in the specific context of the 207 // current loop) 208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 211 212 auto *PN = dyn_cast<PHINode>(IVOperand); 213 if (!PN) 214 return false; 215 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L); 216 if (!LIP) 217 return false; 218 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 219 const SCEV *InvariantLHS = LIP->LHS; 220 const SCEV *InvariantRHS = LIP->RHS; 221 222 // Rewrite the comparison to a loop invariant comparison if it can be done 223 // cheaply, where cheaply means "we don't need to emit any new 224 // instructions". 225 226 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 227 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 228 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 229 230 // TODO: Support multiple entry loops? (We currently bail out of these in 231 // the IndVarSimplify pass) 232 if (auto *BB = L->getLoopPredecessor()) { 233 const int Idx = PN->getBasicBlockIndex(BB); 234 if (Idx >= 0) { 235 Value *Incoming = PN->getIncomingValue(Idx); 236 const SCEV *IncomingS = SE->getSCEV(Incoming); 237 CheapExpansions[IncomingS] = Incoming; 238 } 239 } 240 Value *NewLHS = CheapExpansions[InvariantLHS]; 241 Value *NewRHS = CheapExpansions[InvariantRHS]; 242 243 if (!NewLHS) 244 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 245 NewLHS = ConstLHS->getValue(); 246 if (!NewRHS) 247 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 248 NewRHS = ConstRHS->getValue(); 249 250 if (!NewLHS || !NewRHS) 251 // We could not find an existing value to replace either LHS or RHS. 252 // Generating new instructions has subtler tradeoffs, so avoid doing that 253 // for now. 254 return false; 255 256 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 257 ICmp->setPredicate(InvariantPredicate); 258 ICmp->setOperand(0, NewLHS); 259 ICmp->setOperand(1, NewRHS); 260 return true; 261 } 262 263 /// SimplifyIVUsers helper for eliminating useless 264 /// comparisons against an induction variable. 265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 266 unsigned IVOperIdx = 0; 267 ICmpInst::Predicate Pred = ICmp->getPredicate(); 268 ICmpInst::Predicate OriginalPred = Pred; 269 if (IVOperand != ICmp->getOperand(0)) { 270 // Swapped 271 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 272 IVOperIdx = 1; 273 Pred = ICmpInst::getSwappedPredicate(Pred); 274 } 275 276 // Get the SCEVs for the ICmp operands (in the specific context of the 277 // current loop) 278 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 279 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 280 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 281 282 // If the condition is always true or always false in the given context, 283 // replace it with a constant value. 284 SmallVector<Instruction *, 4> Users; 285 for (auto *U : ICmp->users()) 286 Users.push_back(cast<Instruction>(U)); 287 const Instruction *CtxI = findCommonDominator(Users, *DT); 288 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 289 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 290 DeadInsts.emplace_back(ICmp); 291 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 292 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 293 // fallthrough to end of function 294 } else if (ICmpInst::isSigned(OriginalPred) && 295 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 296 // If we were unable to make anything above, all we can is to canonicalize 297 // the comparison hoping that it will open the doors for other 298 // optimizations. If we find out that we compare two non-negative values, 299 // we turn the instruction's predicate to its unsigned version. Note that 300 // we cannot rely on Pred here unless we check if we have swapped it. 301 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 302 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 303 << '\n'); 304 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 305 } else 306 return; 307 308 ++NumElimCmp; 309 Changed = true; 310 } 311 312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 313 // Get the SCEVs for the ICmp operands. 314 auto *N = SE->getSCEV(SDiv->getOperand(0)); 315 auto *D = SE->getSCEV(SDiv->getOperand(1)); 316 317 // Simplify unnecessary loops away. 318 const Loop *L = LI->getLoopFor(SDiv->getParent()); 319 N = SE->getSCEVAtScope(N, L); 320 D = SE->getSCEVAtScope(D, L); 321 322 // Replace sdiv by udiv if both of the operands are non-negative 323 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 324 auto *UDiv = BinaryOperator::Create( 325 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 326 SDiv->getName() + ".udiv", SDiv); 327 UDiv->setIsExact(SDiv->isExact()); 328 SDiv->replaceAllUsesWith(UDiv); 329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 330 ++NumSimplifiedSDiv; 331 Changed = true; 332 DeadInsts.push_back(SDiv); 333 return true; 334 } 335 336 return false; 337 } 338 339 // i %s n -> i %u n if i >= 0 and n >= 0 340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 342 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 343 Rem->getName() + ".urem", Rem); 344 Rem->replaceAllUsesWith(URem); 345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 346 ++NumSimplifiedSRem; 347 Changed = true; 348 DeadInsts.emplace_back(Rem); 349 } 350 351 // i % n --> i if i is in [0,n). 352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 353 Rem->replaceAllUsesWith(Rem->getOperand(0)); 354 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 355 ++NumElimRem; 356 Changed = true; 357 DeadInsts.emplace_back(Rem); 358 } 359 360 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 362 auto *T = Rem->getType(); 363 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 364 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 365 SelectInst *Sel = 366 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 367 Rem->replaceAllUsesWith(Sel); 368 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 369 ++NumElimRem; 370 Changed = true; 371 DeadInsts.emplace_back(Rem); 372 } 373 374 /// SimplifyIVUsers helper for eliminating useless remainder operations 375 /// operating on an induction variable or replacing srem by urem. 376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 377 bool IsSigned) { 378 auto *NValue = Rem->getOperand(0); 379 auto *DValue = Rem->getOperand(1); 380 // We're only interested in the case where we know something about 381 // the numerator, unless it is a srem, because we want to replace srem by urem 382 // in general. 383 bool UsedAsNumerator = IVOperand == NValue; 384 if (!UsedAsNumerator && !IsSigned) 385 return; 386 387 const SCEV *N = SE->getSCEV(NValue); 388 389 // Simplify unnecessary loops away. 390 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 391 N = SE->getSCEVAtScope(N, ICmpLoop); 392 393 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 394 395 // Do not proceed if the Numerator may be negative 396 if (!IsNumeratorNonNegative) 397 return; 398 399 const SCEV *D = SE->getSCEV(DValue); 400 D = SE->getSCEVAtScope(D, ICmpLoop); 401 402 if (UsedAsNumerator) { 403 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 404 if (SE->isKnownPredicate(LT, N, D)) { 405 replaceRemWithNumerator(Rem); 406 return; 407 } 408 409 auto *T = Rem->getType(); 410 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 411 if (SE->isKnownPredicate(LT, NLessOne, D)) { 412 replaceRemWithNumeratorOrZero(Rem); 413 return; 414 } 415 } 416 417 // Try to replace SRem with URem, if both N and D are known non-negative. 418 // Since we had already check N, we only need to check D now 419 if (!IsSigned || !SE->isKnownNonNegative(D)) 420 return; 421 422 replaceSRemWithURem(Rem); 423 } 424 425 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 426 bool Signed, const SCEV *LHS, const SCEV *RHS) { 427 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 428 SCEV::NoWrapFlags, unsigned); 429 switch (BinOp) { 430 default: 431 llvm_unreachable("Unsupported binary op"); 432 case Instruction::Add: 433 Operation = &ScalarEvolution::getAddExpr; 434 break; 435 case Instruction::Sub: 436 Operation = &ScalarEvolution::getMinusSCEV; 437 break; 438 case Instruction::Mul: 439 Operation = &ScalarEvolution::getMulExpr; 440 break; 441 } 442 443 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 444 Signed ? &ScalarEvolution::getSignExtendExpr 445 : &ScalarEvolution::getZeroExtendExpr; 446 447 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 448 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 449 auto *WideTy = 450 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 451 452 const SCEV *A = 453 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 454 WideTy, 0); 455 const SCEV *B = 456 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 457 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 458 return A == B; 459 } 460 461 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 462 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 463 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 464 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 465 return false; 466 467 // Proved no overflow, nuke the overflow check and, if possible, the overflow 468 // intrinsic as well. 469 470 BinaryOperator *NewResult = BinaryOperator::Create( 471 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 472 473 if (WO->isSigned()) 474 NewResult->setHasNoSignedWrap(true); 475 else 476 NewResult->setHasNoUnsignedWrap(true); 477 478 SmallVector<ExtractValueInst *, 4> ToDelete; 479 480 for (auto *U : WO->users()) { 481 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 482 if (EVI->getIndices()[0] == 1) 483 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 484 else { 485 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 486 EVI->replaceAllUsesWith(NewResult); 487 } 488 ToDelete.push_back(EVI); 489 } 490 } 491 492 for (auto *EVI : ToDelete) 493 EVI->eraseFromParent(); 494 495 if (WO->use_empty()) 496 WO->eraseFromParent(); 497 498 Changed = true; 499 return true; 500 } 501 502 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 503 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 504 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 505 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 506 return false; 507 508 BinaryOperator *BO = BinaryOperator::Create( 509 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 510 if (SI->isSigned()) 511 BO->setHasNoSignedWrap(); 512 else 513 BO->setHasNoUnsignedWrap(); 514 515 SI->replaceAllUsesWith(BO); 516 DeadInsts.emplace_back(SI); 517 Changed = true; 518 return true; 519 } 520 521 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 522 // It is always legal to replace 523 // icmp <pred> i32 trunc(iv), n 524 // with 525 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 526 // Or with 527 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 528 // Or with either of these if pred is an equality predicate. 529 // 530 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 531 // every comparison which uses trunc, it means that we can replace each of 532 // them with comparison of iv against sext/zext(n). We no longer need trunc 533 // after that. 534 // 535 // TODO: Should we do this if we can widen *some* comparisons, but not all 536 // of them? Sometimes it is enough to enable other optimizations, but the 537 // trunc instruction will stay in the loop. 538 Value *IV = TI->getOperand(0); 539 Type *IVTy = IV->getType(); 540 const SCEV *IVSCEV = SE->getSCEV(IV); 541 const SCEV *TISCEV = SE->getSCEV(TI); 542 543 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 544 // get rid of trunc 545 bool DoesSExtCollapse = false; 546 bool DoesZExtCollapse = false; 547 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 548 DoesSExtCollapse = true; 549 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 550 DoesZExtCollapse = true; 551 552 // If neither sext nor zext does collapse, it is not profitable to do any 553 // transform. Bail. 554 if (!DoesSExtCollapse && !DoesZExtCollapse) 555 return false; 556 557 // Collect users of the trunc that look like comparisons against invariants. 558 // Bail if we find something different. 559 SmallVector<ICmpInst *, 4> ICmpUsers; 560 for (auto *U : TI->users()) { 561 // We don't care about users in unreachable blocks. 562 if (isa<Instruction>(U) && 563 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 564 continue; 565 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 566 if (!ICI) return false; 567 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 568 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 569 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 570 return false; 571 // If we cannot get rid of trunc, bail. 572 if (ICI->isSigned() && !DoesSExtCollapse) 573 return false; 574 if (ICI->isUnsigned() && !DoesZExtCollapse) 575 return false; 576 // For equality, either signed or unsigned works. 577 ICmpUsers.push_back(ICI); 578 } 579 580 auto CanUseZExt = [&](ICmpInst *ICI) { 581 // Unsigned comparison can be widened as unsigned. 582 if (ICI->isUnsigned()) 583 return true; 584 // Is it profitable to do zext? 585 if (!DoesZExtCollapse) 586 return false; 587 // For equality, we can safely zext both parts. 588 if (ICI->isEquality()) 589 return true; 590 // Otherwise we can only use zext when comparing two non-negative or two 591 // negative values. But in practice, we will never pass DoesZExtCollapse 592 // check for a negative value, because zext(trunc(x)) is non-negative. So 593 // it only make sense to check for non-negativity here. 594 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 595 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 596 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 597 }; 598 // Replace all comparisons against trunc with comparisons against IV. 599 for (auto *ICI : ICmpUsers) { 600 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 601 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 602 Instruction *Ext = nullptr; 603 // For signed/unsigned predicate, replace the old comparison with comparison 604 // of immediate IV against sext/zext of the invariant argument. If we can 605 // use either sext or zext (i.e. we are dealing with equality predicate), 606 // then prefer zext as a more canonical form. 607 // TODO: If we see a signed comparison which can be turned into unsigned, 608 // we can do it here for canonicalization purposes. 609 ICmpInst::Predicate Pred = ICI->getPredicate(); 610 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 611 if (CanUseZExt(ICI)) { 612 assert(DoesZExtCollapse && "Unprofitable zext?"); 613 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 614 Pred = ICmpInst::getUnsignedPredicate(Pred); 615 } else { 616 assert(DoesSExtCollapse && "Unprofitable sext?"); 617 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 618 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 619 } 620 bool Changed; 621 L->makeLoopInvariant(Ext, Changed); 622 (void)Changed; 623 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 624 ICI->replaceAllUsesWith(NewICI); 625 DeadInsts.emplace_back(ICI); 626 } 627 628 // Trunc no longer needed. 629 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 630 DeadInsts.emplace_back(TI); 631 return true; 632 } 633 634 /// Eliminate an operation that consumes a simple IV and has no observable 635 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 636 /// but UseInst may not be. 637 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 638 Instruction *IVOperand) { 639 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 640 eliminateIVComparison(ICmp, IVOperand); 641 return true; 642 } 643 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 644 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 645 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 646 simplifyIVRemainder(Bin, IVOperand, IsSRem); 647 return true; 648 } 649 650 if (Bin->getOpcode() == Instruction::SDiv) 651 return eliminateSDiv(Bin); 652 } 653 654 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 655 if (eliminateOverflowIntrinsic(WO)) 656 return true; 657 658 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 659 if (eliminateSaturatingIntrinsic(SI)) 660 return true; 661 662 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 663 if (eliminateTrunc(TI)) 664 return true; 665 666 if (eliminateIdentitySCEV(UseInst, IVOperand)) 667 return true; 668 669 return false; 670 } 671 672 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 673 if (auto *BB = L->getLoopPreheader()) 674 return BB->getTerminator(); 675 676 return Hint; 677 } 678 679 /// Replace the UseInst with a loop invariant expression if it is safe. 680 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 681 if (!SE->isSCEVable(I->getType())) 682 return false; 683 684 // Get the symbolic expression for this instruction. 685 const SCEV *S = SE->getSCEV(I); 686 687 if (!SE->isLoopInvariant(S, L)) 688 return false; 689 690 // Do not generate something ridiculous even if S is loop invariant. 691 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 692 return false; 693 694 auto *IP = GetLoopInvariantInsertPosition(L, I); 695 696 if (!isSafeToExpandAt(S, IP, *SE)) { 697 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 698 << " with non-speculable loop invariant: " << *S << '\n'); 699 return false; 700 } 701 702 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 703 704 I->replaceAllUsesWith(Invariant); 705 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 706 << " with loop invariant: " << *S << '\n'); 707 ++NumFoldedUser; 708 Changed = true; 709 DeadInsts.emplace_back(I); 710 return true; 711 } 712 713 /// Eliminate any operation that SCEV can prove is an identity function. 714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 715 Instruction *IVOperand) { 716 if (!SE->isSCEVable(UseInst->getType()) || 717 (UseInst->getType() != IVOperand->getType()) || 718 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 719 return false; 720 721 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 722 // dominator tree, even if X is an operand to Y. For instance, in 723 // 724 // %iv = phi i32 {0,+,1} 725 // br %cond, label %left, label %merge 726 // 727 // left: 728 // %X = add i32 %iv, 0 729 // br label %merge 730 // 731 // merge: 732 // %M = phi (%X, %iv) 733 // 734 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 735 // %M.replaceAllUsesWith(%X) would be incorrect. 736 737 if (isa<PHINode>(UseInst)) 738 // If UseInst is not a PHI node then we know that IVOperand dominates 739 // UseInst directly from the legality of SSA. 740 if (!DT || !DT->dominates(IVOperand, UseInst)) 741 return false; 742 743 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 744 return false; 745 746 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 747 748 UseInst->replaceAllUsesWith(IVOperand); 749 ++NumElimIdentity; 750 Changed = true; 751 DeadInsts.emplace_back(UseInst); 752 return true; 753 } 754 755 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 756 /// unsigned-overflow. Returns true if anything changed, false otherwise. 757 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 758 Value *IVOperand) { 759 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 760 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 761 return false; 762 763 if (BO->getOpcode() != Instruction::Add && 764 BO->getOpcode() != Instruction::Sub && 765 BO->getOpcode() != Instruction::Mul) 766 return false; 767 768 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 769 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 770 bool Changed = false; 771 772 if (!BO->hasNoUnsignedWrap() && 773 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 774 BO->setHasNoUnsignedWrap(); 775 SE->forgetValue(BO); 776 Changed = true; 777 } 778 779 if (!BO->hasNoSignedWrap() && 780 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 781 BO->setHasNoSignedWrap(); 782 SE->forgetValue(BO); 783 Changed = true; 784 } 785 786 return Changed; 787 } 788 789 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 790 /// information from the IV's range. Returns true if anything changed, false 791 /// otherwise. 792 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 793 Value *IVOperand) { 794 using namespace llvm::PatternMatch; 795 796 if (BO->getOpcode() == Instruction::Shl) { 797 bool Changed = false; 798 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 799 for (auto *U : BO->users()) { 800 const APInt *C; 801 if (match(U, 802 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 803 match(U, 804 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 805 BinaryOperator *Shr = cast<BinaryOperator>(U); 806 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 807 Shr->setIsExact(true); 808 Changed = true; 809 } 810 } 811 } 812 return Changed; 813 } 814 815 return false; 816 } 817 818 /// Add all uses of Def to the current IV's worklist. 819 static void pushIVUsers( 820 Instruction *Def, Loop *L, 821 SmallPtrSet<Instruction*,16> &Simplified, 822 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 823 824 for (User *U : Def->users()) { 825 Instruction *UI = cast<Instruction>(U); 826 827 // Avoid infinite or exponential worklist processing. 828 // Also ensure unique worklist users. 829 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 830 // self edges first. 831 if (UI == Def) 832 continue; 833 834 // Only change the current Loop, do not change the other parts (e.g. other 835 // Loops). 836 if (!L->contains(UI)) 837 continue; 838 839 // Do not push the same instruction more than once. 840 if (!Simplified.insert(UI).second) 841 continue; 842 843 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 844 } 845 } 846 847 /// Return true if this instruction generates a simple SCEV 848 /// expression in terms of that IV. 849 /// 850 /// This is similar to IVUsers' isInteresting() but processes each instruction 851 /// non-recursively when the operand is already known to be a simpleIVUser. 852 /// 853 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 854 if (!SE->isSCEVable(I->getType())) 855 return false; 856 857 // Get the symbolic expression for this instruction. 858 const SCEV *S = SE->getSCEV(I); 859 860 // Only consider affine recurrences. 861 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 862 if (AR && AR->getLoop() == L) 863 return true; 864 865 return false; 866 } 867 868 /// Iteratively perform simplification on a worklist of users 869 /// of the specified induction variable. Each successive simplification may push 870 /// more users which may themselves be candidates for simplification. 871 /// 872 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 873 /// instructions in-place during analysis. Rather than rewriting induction 874 /// variables bottom-up from their users, it transforms a chain of IVUsers 875 /// top-down, updating the IR only when it encounters a clear optimization 876 /// opportunity. 877 /// 878 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 879 /// 880 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 881 if (!SE->isSCEVable(CurrIV->getType())) 882 return; 883 884 // Instructions processed by SimplifyIndvar for CurrIV. 885 SmallPtrSet<Instruction*,16> Simplified; 886 887 // Use-def pairs if IV users waiting to be processed for CurrIV. 888 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 889 890 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 891 // called multiple times for the same LoopPhi. This is the proper thing to 892 // do for loop header phis that use each other. 893 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 894 895 while (!SimpleIVUsers.empty()) { 896 std::pair<Instruction*, Instruction*> UseOper = 897 SimpleIVUsers.pop_back_val(); 898 Instruction *UseInst = UseOper.first; 899 900 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 901 // rather than try to do some complex analysis or transformation (such as 902 // widening) basing on it. 903 // TODO: Propagate TLI and pass it here to handle more cases. 904 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 905 DeadInsts.emplace_back(UseInst); 906 continue; 907 } 908 909 // Bypass back edges to avoid extra work. 910 if (UseInst == CurrIV) continue; 911 912 // Try to replace UseInst with a loop invariant before any other 913 // simplifications. 914 if (replaceIVUserWithLoopInvariant(UseInst)) 915 continue; 916 917 Instruction *IVOperand = UseOper.second; 918 for (unsigned N = 0; IVOperand; ++N) { 919 assert(N <= Simplified.size() && "runaway iteration"); 920 921 Value *NewOper = foldIVUser(UseInst, IVOperand); 922 if (!NewOper) 923 break; // done folding 924 IVOperand = dyn_cast<Instruction>(NewOper); 925 } 926 if (!IVOperand) 927 continue; 928 929 if (eliminateIVUser(UseInst, IVOperand)) { 930 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 931 continue; 932 } 933 934 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 935 if ((isa<OverflowingBinaryOperator>(BO) && 936 strengthenOverflowingOperation(BO, IVOperand)) || 937 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 938 // re-queue uses of the now modified binary operator and fall 939 // through to the checks that remain. 940 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 941 } 942 } 943 944 CastInst *Cast = dyn_cast<CastInst>(UseInst); 945 if (V && Cast) { 946 V->visitCast(Cast); 947 continue; 948 } 949 if (isSimpleIVUser(UseInst, L, SE)) { 950 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 951 } 952 } 953 } 954 955 namespace llvm { 956 957 void IVVisitor::anchor() { } 958 959 /// Simplify instructions that use this induction variable 960 /// by using ScalarEvolution to analyze the IV's recurrence. 961 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 962 LoopInfo *LI, const TargetTransformInfo *TTI, 963 SmallVectorImpl<WeakTrackingVH> &Dead, 964 SCEVExpander &Rewriter, IVVisitor *V) { 965 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 966 Rewriter, Dead); 967 SIV.simplifyUsers(CurrIV, V); 968 return SIV.hasChanged(); 969 } 970 971 /// Simplify users of induction variables within this 972 /// loop. This does not actually change or add IVs. 973 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 974 LoopInfo *LI, const TargetTransformInfo *TTI, 975 SmallVectorImpl<WeakTrackingVH> &Dead) { 976 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 977 #ifndef NDEBUG 978 Rewriter.setDebugType(DEBUG_TYPE); 979 #endif 980 bool Changed = false; 981 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 982 Changed |= 983 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 984 } 985 return Changed; 986 } 987 988 } // namespace llvm 989 990 //===----------------------------------------------------------------------===// 991 // Widen Induction Variables - Extend the width of an IV to cover its 992 // widest uses. 993 //===----------------------------------------------------------------------===// 994 995 class WidenIV { 996 // Parameters 997 PHINode *OrigPhi; 998 Type *WideType; 999 1000 // Context 1001 LoopInfo *LI; 1002 Loop *L; 1003 ScalarEvolution *SE; 1004 DominatorTree *DT; 1005 1006 // Does the module have any calls to the llvm.experimental.guard intrinsic 1007 // at all? If not we can avoid scanning instructions looking for guards. 1008 bool HasGuards; 1009 1010 bool UsePostIncrementRanges; 1011 1012 // Statistics 1013 unsigned NumElimExt = 0; 1014 unsigned NumWidened = 0; 1015 1016 // Result 1017 PHINode *WidePhi = nullptr; 1018 Instruction *WideInc = nullptr; 1019 const SCEV *WideIncExpr = nullptr; 1020 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1021 1022 SmallPtrSet<Instruction *,16> Widened; 1023 1024 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 1025 1026 // A map tracking the kind of extension used to widen each narrow IV 1027 // and narrow IV user. 1028 // Key: pointer to a narrow IV or IV user. 1029 // Value: the kind of extension used to widen this Instruction. 1030 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1031 1032 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1033 1034 // A map with control-dependent ranges for post increment IV uses. The key is 1035 // a pair of IV def and a use of this def denoting the context. The value is 1036 // a ConstantRange representing possible values of the def at the given 1037 // context. 1038 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1039 1040 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1041 Instruction *UseI) { 1042 DefUserPair Key(Def, UseI); 1043 auto It = PostIncRangeInfos.find(Key); 1044 return It == PostIncRangeInfos.end() 1045 ? Optional<ConstantRange>(None) 1046 : Optional<ConstantRange>(It->second); 1047 } 1048 1049 void calculatePostIncRanges(PHINode *OrigPhi); 1050 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1051 1052 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1053 DefUserPair Key(Def, UseI); 1054 auto It = PostIncRangeInfos.find(Key); 1055 if (It == PostIncRangeInfos.end()) 1056 PostIncRangeInfos.insert({Key, R}); 1057 else 1058 It->second = R.intersectWith(It->second); 1059 } 1060 1061 public: 1062 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1063 /// computes the same value as the Narrow IV def. This avoids caching Use* 1064 /// pointers. 1065 struct NarrowIVDefUse { 1066 Instruction *NarrowDef = nullptr; 1067 Instruction *NarrowUse = nullptr; 1068 Instruction *WideDef = nullptr; 1069 1070 // True if the narrow def is never negative. Tracking this information lets 1071 // us use a sign extension instead of a zero extension or vice versa, when 1072 // profitable and legal. 1073 bool NeverNegative = false; 1074 1075 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1076 bool NeverNegative) 1077 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1078 NeverNegative(NeverNegative) {} 1079 }; 1080 1081 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1082 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1083 bool HasGuards, bool UsePostIncrementRanges = true); 1084 1085 PHINode *createWideIV(SCEVExpander &Rewriter); 1086 1087 unsigned getNumElimExt() { return NumElimExt; }; 1088 unsigned getNumWidened() { return NumWidened; }; 1089 1090 protected: 1091 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1092 Instruction *Use); 1093 1094 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1095 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1096 const SCEVAddRecExpr *WideAR); 1097 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1098 1099 ExtendKind getExtendKind(Instruction *I); 1100 1101 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1102 1103 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1104 1105 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1106 1107 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1108 unsigned OpCode) const; 1109 1110 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1111 1112 bool widenLoopCompare(NarrowIVDefUse DU); 1113 bool widenWithVariantUse(NarrowIVDefUse DU); 1114 1115 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1116 1117 private: 1118 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1119 }; 1120 1121 1122 /// Determine the insertion point for this user. By default, insert immediately 1123 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1124 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1125 /// common dominator for the incoming blocks. A nullptr can be returned if no 1126 /// viable location is found: it may happen if User is a PHI and Def only comes 1127 /// to this PHI from unreachable blocks. 1128 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1129 DominatorTree *DT, LoopInfo *LI) { 1130 PHINode *PHI = dyn_cast<PHINode>(User); 1131 if (!PHI) 1132 return User; 1133 1134 Instruction *InsertPt = nullptr; 1135 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1136 if (PHI->getIncomingValue(i) != Def) 1137 continue; 1138 1139 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1140 1141 if (!DT->isReachableFromEntry(InsertBB)) 1142 continue; 1143 1144 if (!InsertPt) { 1145 InsertPt = InsertBB->getTerminator(); 1146 continue; 1147 } 1148 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1149 InsertPt = InsertBB->getTerminator(); 1150 } 1151 1152 // If we have skipped all inputs, it means that Def only comes to Phi from 1153 // unreachable blocks. 1154 if (!InsertPt) 1155 return nullptr; 1156 1157 auto *DefI = dyn_cast<Instruction>(Def); 1158 if (!DefI) 1159 return InsertPt; 1160 1161 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1162 1163 auto *L = LI->getLoopFor(DefI->getParent()); 1164 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1165 1166 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1167 if (LI->getLoopFor(DTN->getBlock()) == L) 1168 return DTN->getBlock()->getTerminator(); 1169 1170 llvm_unreachable("DefI dominates InsertPt!"); 1171 } 1172 1173 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1174 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1175 bool HasGuards, bool UsePostIncrementRanges) 1176 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1177 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1178 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1179 DeadInsts(DI) { 1180 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1181 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1182 } 1183 1184 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1185 bool IsSigned, Instruction *Use) { 1186 // Set the debug location and conservative insertion point. 1187 IRBuilder<> Builder(Use); 1188 // Hoist the insertion point into loop preheaders as far as possible. 1189 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1190 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1191 L = L->getParentLoop()) 1192 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1193 1194 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1195 Builder.CreateZExt(NarrowOper, WideType); 1196 } 1197 1198 /// Instantiate a wide operation to replace a narrow operation. This only needs 1199 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1200 /// 0 for any operation we decide not to clone. 1201 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1202 const SCEVAddRecExpr *WideAR) { 1203 unsigned Opcode = DU.NarrowUse->getOpcode(); 1204 switch (Opcode) { 1205 default: 1206 return nullptr; 1207 case Instruction::Add: 1208 case Instruction::Mul: 1209 case Instruction::UDiv: 1210 case Instruction::Sub: 1211 return cloneArithmeticIVUser(DU, WideAR); 1212 1213 case Instruction::And: 1214 case Instruction::Or: 1215 case Instruction::Xor: 1216 case Instruction::Shl: 1217 case Instruction::LShr: 1218 case Instruction::AShr: 1219 return cloneBitwiseIVUser(DU); 1220 } 1221 } 1222 1223 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1224 Instruction *NarrowUse = DU.NarrowUse; 1225 Instruction *NarrowDef = DU.NarrowDef; 1226 Instruction *WideDef = DU.WideDef; 1227 1228 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1229 1230 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1231 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1232 // invariant and will be folded or hoisted. If it actually comes from a 1233 // widened IV, it should be removed during a future call to widenIVUse. 1234 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1235 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1236 ? WideDef 1237 : createExtendInst(NarrowUse->getOperand(0), WideType, 1238 IsSigned, NarrowUse); 1239 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1240 ? WideDef 1241 : createExtendInst(NarrowUse->getOperand(1), WideType, 1242 IsSigned, NarrowUse); 1243 1244 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1245 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1246 NarrowBO->getName()); 1247 IRBuilder<> Builder(NarrowUse); 1248 Builder.Insert(WideBO); 1249 WideBO->copyIRFlags(NarrowBO); 1250 return WideBO; 1251 } 1252 1253 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1254 const SCEVAddRecExpr *WideAR) { 1255 Instruction *NarrowUse = DU.NarrowUse; 1256 Instruction *NarrowDef = DU.NarrowDef; 1257 Instruction *WideDef = DU.WideDef; 1258 1259 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1260 1261 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1262 1263 // We're trying to find X such that 1264 // 1265 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1266 // 1267 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1268 // and check using SCEV if any of them are correct. 1269 1270 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1271 // correct solution to X. 1272 auto GuessNonIVOperand = [&](bool SignExt) { 1273 const SCEV *WideLHS; 1274 const SCEV *WideRHS; 1275 1276 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1277 if (SignExt) 1278 return SE->getSignExtendExpr(S, Ty); 1279 return SE->getZeroExtendExpr(S, Ty); 1280 }; 1281 1282 if (IVOpIdx == 0) { 1283 WideLHS = SE->getSCEV(WideDef); 1284 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1285 WideRHS = GetExtend(NarrowRHS, WideType); 1286 } else { 1287 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1288 WideLHS = GetExtend(NarrowLHS, WideType); 1289 WideRHS = SE->getSCEV(WideDef); 1290 } 1291 1292 // WideUse is "WideDef `op.wide` X" as described in the comment. 1293 const SCEV *WideUse = 1294 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1295 1296 return WideUse == WideAR; 1297 }; 1298 1299 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1300 if (!GuessNonIVOperand(SignExtend)) { 1301 SignExtend = !SignExtend; 1302 if (!GuessNonIVOperand(SignExtend)) 1303 return nullptr; 1304 } 1305 1306 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1307 ? WideDef 1308 : createExtendInst(NarrowUse->getOperand(0), WideType, 1309 SignExtend, NarrowUse); 1310 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1311 ? WideDef 1312 : createExtendInst(NarrowUse->getOperand(1), WideType, 1313 SignExtend, NarrowUse); 1314 1315 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1316 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1317 NarrowBO->getName()); 1318 1319 IRBuilder<> Builder(NarrowUse); 1320 Builder.Insert(WideBO); 1321 WideBO->copyIRFlags(NarrowBO); 1322 return WideBO; 1323 } 1324 1325 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1326 auto It = ExtendKindMap.find(I); 1327 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1328 return It->second; 1329 } 1330 1331 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1332 unsigned OpCode) const { 1333 switch (OpCode) { 1334 case Instruction::Add: 1335 return SE->getAddExpr(LHS, RHS); 1336 case Instruction::Sub: 1337 return SE->getMinusSCEV(LHS, RHS); 1338 case Instruction::Mul: 1339 return SE->getMulExpr(LHS, RHS); 1340 case Instruction::UDiv: 1341 return SE->getUDivExpr(LHS, RHS); 1342 default: 1343 llvm_unreachable("Unsupported opcode."); 1344 }; 1345 } 1346 1347 /// No-wrap operations can transfer sign extension of their result to their 1348 /// operands. Generate the SCEV value for the widened operation without 1349 /// actually modifying the IR yet. If the expression after extending the 1350 /// operands is an AddRec for this loop, return the AddRec and the kind of 1351 /// extension used. 1352 WidenIV::WidenedRecTy 1353 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1354 // Handle the common case of add<nsw/nuw> 1355 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1356 // Only Add/Sub/Mul instructions supported yet. 1357 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1358 OpCode != Instruction::Mul) 1359 return {nullptr, Unknown}; 1360 1361 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1362 // if extending the other will lead to a recurrence. 1363 const unsigned ExtendOperIdx = 1364 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1365 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1366 1367 const SCEV *ExtendOperExpr = nullptr; 1368 const OverflowingBinaryOperator *OBO = 1369 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1370 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1371 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1372 ExtendOperExpr = SE->getSignExtendExpr( 1373 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1374 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1375 ExtendOperExpr = SE->getZeroExtendExpr( 1376 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1377 else 1378 return {nullptr, Unknown}; 1379 1380 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1381 // flags. This instruction may be guarded by control flow that the no-wrap 1382 // behavior depends on. Non-control-equivalent instructions can be mapped to 1383 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1384 // semantics to those operations. 1385 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1386 const SCEV *rhs = ExtendOperExpr; 1387 1388 // Let's swap operands to the initial order for the case of non-commutative 1389 // operations, like SUB. See PR21014. 1390 if (ExtendOperIdx == 0) 1391 std::swap(lhs, rhs); 1392 const SCEVAddRecExpr *AddRec = 1393 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1394 1395 if (!AddRec || AddRec->getLoop() != L) 1396 return {nullptr, Unknown}; 1397 1398 return {AddRec, ExtKind}; 1399 } 1400 1401 /// Is this instruction potentially interesting for further simplification after 1402 /// widening it's type? In other words, can the extend be safely hoisted out of 1403 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1404 /// so, return the extended recurrence and the kind of extension used. Otherwise 1405 /// return {nullptr, Unknown}. 1406 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1407 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1408 return {nullptr, Unknown}; 1409 1410 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1411 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1412 SE->getTypeSizeInBits(WideType)) { 1413 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1414 // index. So don't follow this use. 1415 return {nullptr, Unknown}; 1416 } 1417 1418 const SCEV *WideExpr; 1419 ExtendKind ExtKind; 1420 if (DU.NeverNegative) { 1421 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1422 if (isa<SCEVAddRecExpr>(WideExpr)) 1423 ExtKind = SignExtended; 1424 else { 1425 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1426 ExtKind = ZeroExtended; 1427 } 1428 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1429 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1430 ExtKind = SignExtended; 1431 } else { 1432 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1433 ExtKind = ZeroExtended; 1434 } 1435 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1436 if (!AddRec || AddRec->getLoop() != L) 1437 return {nullptr, Unknown}; 1438 return {AddRec, ExtKind}; 1439 } 1440 1441 /// This IV user cannot be widened. Replace this use of the original narrow IV 1442 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1443 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1444 LoopInfo *LI) { 1445 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1446 if (!InsertPt) 1447 return; 1448 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1449 << *DU.NarrowUse << "\n"); 1450 IRBuilder<> Builder(InsertPt); 1451 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1452 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1453 } 1454 1455 /// If the narrow use is a compare instruction, then widen the compare 1456 // (and possibly the other operand). The extend operation is hoisted into the 1457 // loop preheader as far as possible. 1458 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1459 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1460 if (!Cmp) 1461 return false; 1462 1463 // We can legally widen the comparison in the following two cases: 1464 // 1465 // - The signedness of the IV extension and comparison match 1466 // 1467 // - The narrow IV is always positive (and thus its sign extension is equal 1468 // to its zero extension). For instance, let's say we're zero extending 1469 // %narrow for the following use 1470 // 1471 // icmp slt i32 %narrow, %val ... (A) 1472 // 1473 // and %narrow is always positive. Then 1474 // 1475 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1476 // == icmp slt i32 zext(%narrow), sext(%val) 1477 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1478 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1479 return false; 1480 1481 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1482 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1483 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1484 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1485 1486 // Widen the compare instruction. 1487 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1488 if (!InsertPt) 1489 return false; 1490 IRBuilder<> Builder(InsertPt); 1491 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1492 1493 // Widen the other operand of the compare, if necessary. 1494 if (CastWidth < IVWidth) { 1495 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1496 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1497 } 1498 return true; 1499 } 1500 1501 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1502 // will not work when: 1503 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1504 // expand, eg. add %indvar, (load %addr) 1505 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1506 // While SCEV fails to avoid trunc, we can still try to use instruction 1507 // combining approach to prove trunc is not required. This can be further 1508 // extended with other instruction combining checks, but for now we handle the 1509 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1510 // 1511 // Src: 1512 // %c = sub nsw %b, %indvar 1513 // %d = sext %c to i64 1514 // Dst: 1515 // %indvar.ext1 = sext %indvar to i64 1516 // %m = sext %b to i64 1517 // %d = sub nsw i64 %m, %indvar.ext1 1518 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1519 // trunc is required regardless of how %b is generated. This pattern is common 1520 // when calculating address in 64 bit architecture 1521 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1522 Instruction *NarrowUse = DU.NarrowUse; 1523 Instruction *NarrowDef = DU.NarrowDef; 1524 Instruction *WideDef = DU.WideDef; 1525 1526 // Handle the common case of add<nsw/nuw> 1527 const unsigned OpCode = NarrowUse->getOpcode(); 1528 // Only Add/Sub/Mul instructions are supported. 1529 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1530 OpCode != Instruction::Mul) 1531 return false; 1532 1533 // The operand that is not defined by NarrowDef of DU. Let's call it the 1534 // other operand. 1535 assert((NarrowUse->getOperand(0) == NarrowDef || 1536 NarrowUse->getOperand(1) == NarrowDef) && 1537 "bad DU"); 1538 1539 const OverflowingBinaryOperator *OBO = 1540 cast<OverflowingBinaryOperator>(NarrowUse); 1541 ExtendKind ExtKind = getExtendKind(NarrowDef); 1542 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap(); 1543 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap(); 1544 auto AnotherOpExtKind = ExtKind; 1545 1546 // Check that all uses are either: 1547 // - narrow def (in case of we are widening the IV increment); 1548 // - single-input LCSSA Phis; 1549 // - comparison of the chosen type; 1550 // - extend of the chosen type (raison d'etre). 1551 SmallVector<Instruction *, 4> ExtUsers; 1552 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1553 SmallVector<ICmpInst *, 4> ICmpUsers; 1554 for (Use &U : NarrowUse->uses()) { 1555 Instruction *User = cast<Instruction>(U.getUser()); 1556 if (User == NarrowDef) 1557 continue; 1558 if (!L->contains(User)) { 1559 auto *LCSSAPhi = cast<PHINode>(User); 1560 // Make sure there is only 1 input, so that we don't have to split 1561 // critical edges. 1562 if (LCSSAPhi->getNumOperands() != 1) 1563 return false; 1564 LCSSAPhiUsers.push_back(LCSSAPhi); 1565 continue; 1566 } 1567 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1568 auto Pred = ICmp->getPredicate(); 1569 // We have 3 types of predicates: signed, unsigned and equality 1570 // predicates. For equality, it's legal to widen icmp for either sign and 1571 // zero extend. For sign extend, we can also do so for signed predicates, 1572 // likeweise for zero extend we can widen icmp for unsigned predicates. 1573 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred)) 1574 return false; 1575 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred)) 1576 return false; 1577 ICmpUsers.push_back(ICmp); 1578 continue; 1579 } 1580 if (ExtKind == SignExtended) 1581 User = dyn_cast<SExtInst>(User); 1582 else 1583 User = dyn_cast<ZExtInst>(User); 1584 if (!User || User->getType() != WideType) 1585 return false; 1586 ExtUsers.push_back(User); 1587 } 1588 if (ExtUsers.empty()) { 1589 DeadInsts.emplace_back(NarrowUse); 1590 return true; 1591 } 1592 1593 // We'll prove some facts that should be true in the context of ext users. If 1594 // there is no users, we are done now. If there are some, pick their common 1595 // dominator as context. 1596 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1597 1598 if (!CanSignExtend && !CanZeroExtend) { 1599 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1600 // will most likely not see it. Let's try to prove it. 1601 if (OpCode != Instruction::Add) 1602 return false; 1603 if (ExtKind != ZeroExtended) 1604 return false; 1605 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1606 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1607 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1608 if (NarrowUse->getOperand(0) != NarrowDef) 1609 return false; 1610 if (!SE->isKnownNegative(RHS)) 1611 return false; 1612 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1613 SE->getNegativeSCEV(RHS), CtxI); 1614 if (!ProvedSubNUW) 1615 return false; 1616 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1617 // neg(zext(neg(op))), which is basically sext(op). 1618 AnotherOpExtKind = SignExtended; 1619 } 1620 1621 // Verifying that Defining operand is an AddRec 1622 const SCEV *Op1 = SE->getSCEV(WideDef); 1623 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1624 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1625 return false; 1626 1627 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1628 1629 // Generating a widening use instruction. 1630 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1631 ? WideDef 1632 : createExtendInst(NarrowUse->getOperand(0), WideType, 1633 AnotherOpExtKind, NarrowUse); 1634 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1635 ? WideDef 1636 : createExtendInst(NarrowUse->getOperand(1), WideType, 1637 AnotherOpExtKind, NarrowUse); 1638 1639 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1640 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1641 NarrowBO->getName()); 1642 IRBuilder<> Builder(NarrowUse); 1643 Builder.Insert(WideBO); 1644 WideBO->copyIRFlags(NarrowBO); 1645 ExtendKindMap[NarrowUse] = ExtKind; 1646 1647 for (Instruction *User : ExtUsers) { 1648 assert(User->getType() == WideType && "Checked before!"); 1649 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1650 << *WideBO << "\n"); 1651 ++NumElimExt; 1652 User->replaceAllUsesWith(WideBO); 1653 DeadInsts.emplace_back(User); 1654 } 1655 1656 for (PHINode *User : LCSSAPhiUsers) { 1657 assert(User->getNumOperands() == 1 && "Checked before!"); 1658 Builder.SetInsertPoint(User); 1659 auto *WidePN = 1660 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1661 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1662 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1663 "Not a LCSSA Phi?"); 1664 WidePN->addIncoming(WideBO, LoopExitingBlock); 1665 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1666 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1667 User->replaceAllUsesWith(TruncPN); 1668 DeadInsts.emplace_back(User); 1669 } 1670 1671 for (ICmpInst *User : ICmpUsers) { 1672 Builder.SetInsertPoint(User); 1673 auto ExtendedOp = [&](Value * V)->Value * { 1674 if (V == NarrowUse) 1675 return WideBO; 1676 if (ExtKind == ZeroExtended) 1677 return Builder.CreateZExt(V, WideBO->getType()); 1678 else 1679 return Builder.CreateSExt(V, WideBO->getType()); 1680 }; 1681 auto Pred = User->getPredicate(); 1682 auto *LHS = ExtendedOp(User->getOperand(0)); 1683 auto *RHS = ExtendedOp(User->getOperand(1)); 1684 auto *WideCmp = 1685 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1686 User->replaceAllUsesWith(WideCmp); 1687 DeadInsts.emplace_back(User); 1688 } 1689 1690 return true; 1691 } 1692 1693 /// Determine whether an individual user of the narrow IV can be widened. If so, 1694 /// return the wide clone of the user. 1695 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1696 assert(ExtendKindMap.count(DU.NarrowDef) && 1697 "Should already know the kind of extension used to widen NarrowDef"); 1698 1699 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1700 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1701 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1702 // For LCSSA phis, sink the truncate outside the loop. 1703 // After SimplifyCFG most loop exit targets have a single predecessor. 1704 // Otherwise fall back to a truncate within the loop. 1705 if (UsePhi->getNumOperands() != 1) 1706 truncateIVUse(DU, DT, LI); 1707 else { 1708 // Widening the PHI requires us to insert a trunc. The logical place 1709 // for this trunc is in the same BB as the PHI. This is not possible if 1710 // the BB is terminated by a catchswitch. 1711 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1712 return nullptr; 1713 1714 PHINode *WidePhi = 1715 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1716 UsePhi); 1717 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1718 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1719 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1720 UsePhi->replaceAllUsesWith(Trunc); 1721 DeadInsts.emplace_back(UsePhi); 1722 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1723 << *WidePhi << "\n"); 1724 } 1725 return nullptr; 1726 } 1727 } 1728 1729 // This narrow use can be widened by a sext if it's non-negative or its narrow 1730 // def was widended by a sext. Same for zext. 1731 auto canWidenBySExt = [&]() { 1732 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1733 }; 1734 auto canWidenByZExt = [&]() { 1735 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1736 }; 1737 1738 // Our raison d'etre! Eliminate sign and zero extension. 1739 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1740 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1741 Value *NewDef = DU.WideDef; 1742 if (DU.NarrowUse->getType() != WideType) { 1743 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1744 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1745 if (CastWidth < IVWidth) { 1746 // The cast isn't as wide as the IV, so insert a Trunc. 1747 IRBuilder<> Builder(DU.NarrowUse); 1748 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1749 } 1750 else { 1751 // A wider extend was hidden behind a narrower one. This may induce 1752 // another round of IV widening in which the intermediate IV becomes 1753 // dead. It should be very rare. 1754 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1755 << " not wide enough to subsume " << *DU.NarrowUse 1756 << "\n"); 1757 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1758 NewDef = DU.NarrowUse; 1759 } 1760 } 1761 if (NewDef != DU.NarrowUse) { 1762 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1763 << " replaced by " << *DU.WideDef << "\n"); 1764 ++NumElimExt; 1765 DU.NarrowUse->replaceAllUsesWith(NewDef); 1766 DeadInsts.emplace_back(DU.NarrowUse); 1767 } 1768 // Now that the extend is gone, we want to expose it's uses for potential 1769 // further simplification. We don't need to directly inform SimplifyIVUsers 1770 // of the new users, because their parent IV will be processed later as a 1771 // new loop phi. If we preserved IVUsers analysis, we would also want to 1772 // push the uses of WideDef here. 1773 1774 // No further widening is needed. The deceased [sz]ext had done it for us. 1775 return nullptr; 1776 } 1777 1778 // Does this user itself evaluate to a recurrence after widening? 1779 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1780 if (!WideAddRec.first) 1781 WideAddRec = getWideRecurrence(DU); 1782 1783 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1784 if (!WideAddRec.first) { 1785 // If use is a loop condition, try to promote the condition instead of 1786 // truncating the IV first. 1787 if (widenLoopCompare(DU)) 1788 return nullptr; 1789 1790 // We are here about to generate a truncate instruction that may hurt 1791 // performance because the scalar evolution expression computed earlier 1792 // in WideAddRec.first does not indicate a polynomial induction expression. 1793 // In that case, look at the operands of the use instruction to determine 1794 // if we can still widen the use instead of truncating its operand. 1795 if (widenWithVariantUse(DU)) 1796 return nullptr; 1797 1798 // This user does not evaluate to a recurrence after widening, so don't 1799 // follow it. Instead insert a Trunc to kill off the original use, 1800 // eventually isolating the original narrow IV so it can be removed. 1801 truncateIVUse(DU, DT, LI); 1802 return nullptr; 1803 } 1804 // Assume block terminators cannot evaluate to a recurrence. We can't to 1805 // insert a Trunc after a terminator if there happens to be a critical edge. 1806 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1807 "SCEV is not expected to evaluate a block terminator"); 1808 1809 // Reuse the IV increment that SCEVExpander created as long as it dominates 1810 // NarrowUse. 1811 Instruction *WideUse = nullptr; 1812 if (WideAddRec.first == WideIncExpr && 1813 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1814 WideUse = WideInc; 1815 else { 1816 WideUse = cloneIVUser(DU, WideAddRec.first); 1817 if (!WideUse) 1818 return nullptr; 1819 } 1820 // Evaluation of WideAddRec ensured that the narrow expression could be 1821 // extended outside the loop without overflow. This suggests that the wide use 1822 // evaluates to the same expression as the extended narrow use, but doesn't 1823 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1824 // where it fails, we simply throw away the newly created wide use. 1825 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1826 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1827 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1828 << "\n"); 1829 DeadInsts.emplace_back(WideUse); 1830 return nullptr; 1831 } 1832 1833 // if we reached this point then we are going to replace 1834 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1835 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1836 1837 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1838 // Returning WideUse pushes it on the worklist. 1839 return WideUse; 1840 } 1841 1842 /// Add eligible users of NarrowDef to NarrowIVUsers. 1843 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1844 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1845 bool NonNegativeDef = 1846 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1847 SE->getZero(NarrowSCEV->getType())); 1848 for (User *U : NarrowDef->users()) { 1849 Instruction *NarrowUser = cast<Instruction>(U); 1850 1851 // Handle data flow merges and bizarre phi cycles. 1852 if (!Widened.insert(NarrowUser).second) 1853 continue; 1854 1855 bool NonNegativeUse = false; 1856 if (!NonNegativeDef) { 1857 // We might have a control-dependent range information for this context. 1858 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1859 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1860 } 1861 1862 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1863 NonNegativeDef || NonNegativeUse); 1864 } 1865 } 1866 1867 /// Process a single induction variable. First use the SCEVExpander to create a 1868 /// wide induction variable that evaluates to the same recurrence as the 1869 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1870 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1871 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1872 /// 1873 /// It would be simpler to delete uses as they are processed, but we must avoid 1874 /// invalidating SCEV expressions. 1875 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1876 // Is this phi an induction variable? 1877 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1878 if (!AddRec) 1879 return nullptr; 1880 1881 // Widen the induction variable expression. 1882 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1883 ? SE->getSignExtendExpr(AddRec, WideType) 1884 : SE->getZeroExtendExpr(AddRec, WideType); 1885 1886 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1887 "Expect the new IV expression to preserve its type"); 1888 1889 // Can the IV be extended outside the loop without overflow? 1890 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1891 if (!AddRec || AddRec->getLoop() != L) 1892 return nullptr; 1893 1894 // An AddRec must have loop-invariant operands. Since this AddRec is 1895 // materialized by a loop header phi, the expression cannot have any post-loop 1896 // operands, so they must dominate the loop header. 1897 assert( 1898 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1899 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1900 "Loop header phi recurrence inputs do not dominate the loop"); 1901 1902 // Iterate over IV uses (including transitive ones) looking for IV increments 1903 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1904 // the increment calculate control-dependent range information basing on 1905 // dominating conditions inside of the loop (e.g. a range check inside of the 1906 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1907 // 1908 // Control-dependent range information is later used to prove that a narrow 1909 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1910 // this on demand because when pushNarrowIVUsers needs this information some 1911 // of the dominating conditions might be already widened. 1912 if (UsePostIncrementRanges) 1913 calculatePostIncRanges(OrigPhi); 1914 1915 // The rewriter provides a value for the desired IV expression. This may 1916 // either find an existing phi or materialize a new one. Either way, we 1917 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1918 // of the phi-SCC dominates the loop entry. 1919 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1920 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1921 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1922 // inttoptr, ptrtoint, just skip for now. 1923 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1924 // if the cast node is an inserted instruction without any user, we should 1925 // remove it to make sure the pass don't touch the function as we can not 1926 // wide the phi. 1927 if (ExpandInst->hasNUses(0) && 1928 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1929 DeadInsts.emplace_back(ExpandInst); 1930 return nullptr; 1931 } 1932 1933 // Remembering the WideIV increment generated by SCEVExpander allows 1934 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1935 // employ a general reuse mechanism because the call above is the only call to 1936 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1937 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1938 WideInc = 1939 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1940 WideIncExpr = SE->getSCEV(WideInc); 1941 // Propagate the debug location associated with the original loop increment 1942 // to the new (widened) increment. 1943 auto *OrigInc = 1944 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1945 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1946 } 1947 1948 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1949 ++NumWidened; 1950 1951 // Traverse the def-use chain using a worklist starting at the original IV. 1952 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1953 1954 Widened.insert(OrigPhi); 1955 pushNarrowIVUsers(OrigPhi, WidePhi); 1956 1957 while (!NarrowIVUsers.empty()) { 1958 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1959 1960 // Process a def-use edge. This may replace the use, so don't hold a 1961 // use_iterator across it. 1962 Instruction *WideUse = widenIVUse(DU, Rewriter); 1963 1964 // Follow all def-use edges from the previous narrow use. 1965 if (WideUse) 1966 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1967 1968 // widenIVUse may have removed the def-use edge. 1969 if (DU.NarrowDef->use_empty()) 1970 DeadInsts.emplace_back(DU.NarrowDef); 1971 } 1972 1973 // Attach any debug information to the new PHI. 1974 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1975 1976 return WidePhi; 1977 } 1978 1979 /// Calculates control-dependent range for the given def at the given context 1980 /// by looking at dominating conditions inside of the loop 1981 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1982 Instruction *NarrowUser) { 1983 using namespace llvm::PatternMatch; 1984 1985 Value *NarrowDefLHS; 1986 const APInt *NarrowDefRHS; 1987 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1988 m_APInt(NarrowDefRHS))) || 1989 !NarrowDefRHS->isNonNegative()) 1990 return; 1991 1992 auto UpdateRangeFromCondition = [&] (Value *Condition, 1993 bool TrueDest) { 1994 CmpInst::Predicate Pred; 1995 Value *CmpRHS; 1996 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1997 m_Value(CmpRHS)))) 1998 return; 1999 2000 CmpInst::Predicate P = 2001 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2002 2003 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2004 auto CmpConstrainedLHSRange = 2005 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2006 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2007 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2008 2009 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2010 }; 2011 2012 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2013 if (!HasGuards) 2014 return; 2015 2016 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2017 Ctx->getParent()->rend())) { 2018 Value *C = nullptr; 2019 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2020 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2021 } 2022 }; 2023 2024 UpdateRangeFromGuards(NarrowUser); 2025 2026 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2027 // If NarrowUserBB is statically unreachable asking dominator queries may 2028 // yield surprising results. (e.g. the block may not have a dom tree node) 2029 if (!DT->isReachableFromEntry(NarrowUserBB)) 2030 return; 2031 2032 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2033 L->contains(DTB->getBlock()); 2034 DTB = DTB->getIDom()) { 2035 auto *BB = DTB->getBlock(); 2036 auto *TI = BB->getTerminator(); 2037 UpdateRangeFromGuards(TI); 2038 2039 auto *BI = dyn_cast<BranchInst>(TI); 2040 if (!BI || !BI->isConditional()) 2041 continue; 2042 2043 auto *TrueSuccessor = BI->getSuccessor(0); 2044 auto *FalseSuccessor = BI->getSuccessor(1); 2045 2046 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2047 return BBE.isSingleEdge() && 2048 DT->dominates(BBE, NarrowUser->getParent()); 2049 }; 2050 2051 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2052 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2053 2054 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2055 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2056 } 2057 } 2058 2059 /// Calculates PostIncRangeInfos map for the given IV 2060 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2061 SmallPtrSet<Instruction *, 16> Visited; 2062 SmallVector<Instruction *, 6> Worklist; 2063 Worklist.push_back(OrigPhi); 2064 Visited.insert(OrigPhi); 2065 2066 while (!Worklist.empty()) { 2067 Instruction *NarrowDef = Worklist.pop_back_val(); 2068 2069 for (Use &U : NarrowDef->uses()) { 2070 auto *NarrowUser = cast<Instruction>(U.getUser()); 2071 2072 // Don't go looking outside the current loop. 2073 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2074 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2075 continue; 2076 2077 if (!Visited.insert(NarrowUser).second) 2078 continue; 2079 2080 Worklist.push_back(NarrowUser); 2081 2082 calculatePostIncRange(NarrowDef, NarrowUser); 2083 } 2084 } 2085 } 2086 2087 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2088 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2089 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2090 unsigned &NumElimExt, unsigned &NumWidened, 2091 bool HasGuards, bool UsePostIncrementRanges) { 2092 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2093 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2094 NumElimExt = Widener.getNumElimExt(); 2095 NumWidened = Widener.getNumWidened(); 2096 return WidePHI; 2097 } 2098