1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "indvars"
32 
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(
38     NumSimplifiedSDiv,
39     "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41     NumSimplifiedSRem,
42     "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
44 
45 namespace {
46   /// This is a utility for simplifying induction variables
47   /// based on ScalarEvolution. It is the primary instrument of the
48   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49   /// other loop passes that preserve SCEV.
50   class SimplifyIndvar {
51     Loop             *L;
52     LoopInfo         *LI;
53     ScalarEvolution  *SE;
54     DominatorTree    *DT;
55     const TargetTransformInfo *TTI;
56     SCEVExpander     &Rewriter;
57     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
58 
59     bool Changed = false;
60 
61   public:
62     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63                    LoopInfo *LI, const TargetTransformInfo *TTI,
64                    SCEVExpander &Rewriter,
65                    SmallVectorImpl<WeakTrackingVH> &Dead)
66         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67           DeadInsts(Dead) {
68       assert(LI && "IV simplification requires LoopInfo");
69     }
70 
71     bool hasChanged() const { return Changed; }
72 
73     /// Iteratively perform simplification on a worklist of users of the
74     /// specified induction variable. This is the top-level driver that applies
75     /// all simplifications to users of an IV.
76     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
77 
78     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
79 
80     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82     bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
83 
84     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
85     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
86     bool eliminateTrunc(TruncInst *TI);
87     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
88     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
89     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
90     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
91                              bool IsSigned);
92     void replaceRemWithNumerator(BinaryOperator *Rem);
93     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
94     void replaceSRemWithURem(BinaryOperator *Rem);
95     bool eliminateSDiv(BinaryOperator *SDiv);
96     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
97     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
98   };
99 }
100 
101 /// Find a point in code which dominates all given instructions. We can safely
102 /// assume that, whatever fact we can prove at the found point, this fact is
103 /// also true for each of the given instructions.
104 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
105                                         DominatorTree &DT) {
106   Instruction *CommonDom = nullptr;
107   for (auto *Insn : Instructions)
108     if (!CommonDom || DT.dominates(Insn, CommonDom))
109       CommonDom = Insn;
110     else if (!DT.dominates(CommonDom, Insn))
111       // If there is no dominance relation, use common dominator.
112       CommonDom =
113           DT.findNearestCommonDominator(CommonDom->getParent(),
114                                         Insn->getParent())->getTerminator();
115   assert(CommonDom && "Common dominator not found?");
116   return CommonDom;
117 }
118 
119 /// Fold an IV operand into its use.  This removes increments of an
120 /// aligned IV when used by a instruction that ignores the low bits.
121 ///
122 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
123 ///
124 /// Return the operand of IVOperand for this induction variable if IVOperand can
125 /// be folded (in case more folding opportunities have been exposed).
126 /// Otherwise return null.
127 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
128   Value *IVSrc = nullptr;
129   const unsigned OperIdx = 0;
130   const SCEV *FoldedExpr = nullptr;
131   bool MustDropExactFlag = false;
132   switch (UseInst->getOpcode()) {
133   default:
134     return nullptr;
135   case Instruction::UDiv:
136   case Instruction::LShr:
137     // We're only interested in the case where we know something about
138     // the numerator and have a constant denominator.
139     if (IVOperand != UseInst->getOperand(OperIdx) ||
140         !isa<ConstantInt>(UseInst->getOperand(1)))
141       return nullptr;
142 
143     // Attempt to fold a binary operator with constant operand.
144     // e.g. ((I + 1) >> 2) => I >> 2
145     if (!isa<BinaryOperator>(IVOperand)
146         || !isa<ConstantInt>(IVOperand->getOperand(1)))
147       return nullptr;
148 
149     IVSrc = IVOperand->getOperand(0);
150     // IVSrc must be the (SCEVable) IV, since the other operand is const.
151     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
152 
153     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
154     if (UseInst->getOpcode() == Instruction::LShr) {
155       // Get a constant for the divisor. See createSCEV.
156       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
157       if (D->getValue().uge(BitWidth))
158         return nullptr;
159 
160       D = ConstantInt::get(UseInst->getContext(),
161                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
162     }
163     const auto *LHS = SE->getSCEV(IVSrc);
164     const auto *RHS = SE->getSCEV(D);
165     FoldedExpr = SE->getUDivExpr(LHS, RHS);
166     // We might have 'exact' flag set at this point which will no longer be
167     // correct after we make the replacement.
168     if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
169       MustDropExactFlag = true;
170   }
171   // We have something that might fold it's operand. Compare SCEVs.
172   if (!SE->isSCEVable(UseInst->getType()))
173     return nullptr;
174 
175   // Bypass the operand if SCEV can prove it has no effect.
176   if (SE->getSCEV(UseInst) != FoldedExpr)
177     return nullptr;
178 
179   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180                     << " -> " << *UseInst << '\n');
181 
182   UseInst->setOperand(OperIdx, IVSrc);
183   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184 
185   if (MustDropExactFlag)
186     UseInst->dropPoisonGeneratingFlags();
187 
188   ++NumElimOperand;
189   Changed = true;
190   if (IVOperand->use_empty())
191     DeadInsts.emplace_back(IVOperand);
192   return IVSrc;
193 }
194 
195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196                                                Value *IVOperand) {
197   unsigned IVOperIdx = 0;
198   ICmpInst::Predicate Pred = ICmp->getPredicate();
199   if (IVOperand != ICmp->getOperand(0)) {
200     // Swapped
201     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202     IVOperIdx = 1;
203     Pred = ICmpInst::getSwappedPredicate(Pred);
204   }
205 
206   // Get the SCEVs for the ICmp operands (in the specific context of the
207   // current loop)
208   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
211 
212   auto *PN = dyn_cast<PHINode>(IVOperand);
213   if (!PN)
214     return false;
215   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216   if (!LIP)
217     return false;
218   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219   const SCEV *InvariantLHS = LIP->LHS;
220   const SCEV *InvariantRHS = LIP->RHS;
221 
222   // Rewrite the comparison to a loop invariant comparison if it can be done
223   // cheaply, where cheaply means "we don't need to emit any new
224   // instructions".
225 
226   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
229 
230   // TODO: Support multiple entry loops?  (We currently bail out of these in
231   // the IndVarSimplify pass)
232   if (auto *BB = L->getLoopPredecessor()) {
233     const int Idx = PN->getBasicBlockIndex(BB);
234     if (Idx >= 0) {
235       Value *Incoming = PN->getIncomingValue(Idx);
236       const SCEV *IncomingS = SE->getSCEV(Incoming);
237       CheapExpansions[IncomingS] = Incoming;
238     }
239   }
240   Value *NewLHS = CheapExpansions[InvariantLHS];
241   Value *NewRHS = CheapExpansions[InvariantRHS];
242 
243   if (!NewLHS)
244     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245       NewLHS = ConstLHS->getValue();
246   if (!NewRHS)
247     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248       NewRHS = ConstRHS->getValue();
249 
250   if (!NewLHS || !NewRHS)
251     // We could not find an existing value to replace either LHS or RHS.
252     // Generating new instructions has subtler tradeoffs, so avoid doing that
253     // for now.
254     return false;
255 
256   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257   ICmp->setPredicate(InvariantPredicate);
258   ICmp->setOperand(0, NewLHS);
259   ICmp->setOperand(1, NewRHS);
260   return true;
261 }
262 
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266   unsigned IVOperIdx = 0;
267   ICmpInst::Predicate Pred = ICmp->getPredicate();
268   ICmpInst::Predicate OriginalPred = Pred;
269   if (IVOperand != ICmp->getOperand(0)) {
270     // Swapped
271     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272     IVOperIdx = 1;
273     Pred = ICmpInst::getSwappedPredicate(Pred);
274   }
275 
276   // Get the SCEVs for the ICmp operands (in the specific context of the
277   // current loop)
278   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
281 
282   // If the condition is always true or always false in the given context,
283   // replace it with a constant value.
284   SmallVector<Instruction *, 4> Users;
285   for (auto *U : ICmp->users())
286     Users.push_back(cast<Instruction>(U));
287   const Instruction *CtxI = findCommonDominator(Users, *DT);
288   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290     DeadInsts.emplace_back(ICmp);
291     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293     // fallthrough to end of function
294   } else if (ICmpInst::isSigned(OriginalPred) &&
295              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296     // If we were unable to make anything above, all we can is to canonicalize
297     // the comparison hoping that it will open the doors for other
298     // optimizations. If we find out that we compare two non-negative values,
299     // we turn the instruction's predicate to its unsigned version. Note that
300     // we cannot rely on Pred here unless we check if we have swapped it.
301     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303                       << '\n');
304     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305   } else
306     return;
307 
308   ++NumElimCmp;
309   Changed = true;
310 }
311 
312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313   // Get the SCEVs for the ICmp operands.
314   auto *N = SE->getSCEV(SDiv->getOperand(0));
315   auto *D = SE->getSCEV(SDiv->getOperand(1));
316 
317   // Simplify unnecessary loops away.
318   const Loop *L = LI->getLoopFor(SDiv->getParent());
319   N = SE->getSCEVAtScope(N, L);
320   D = SE->getSCEVAtScope(D, L);
321 
322   // Replace sdiv by udiv if both of the operands are non-negative
323   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324     auto *UDiv = BinaryOperator::Create(
325         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326         SDiv->getName() + ".udiv", SDiv);
327     UDiv->setIsExact(SDiv->isExact());
328     SDiv->replaceAllUsesWith(UDiv);
329     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330     ++NumSimplifiedSDiv;
331     Changed = true;
332     DeadInsts.push_back(SDiv);
333     return true;
334   }
335 
336   return false;
337 }
338 
339 // i %s n -> i %u n if i >= 0 and n >= 0
340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343                                       Rem->getName() + ".urem", Rem);
344   Rem->replaceAllUsesWith(URem);
345   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346   ++NumSimplifiedSRem;
347   Changed = true;
348   DeadInsts.emplace_back(Rem);
349 }
350 
351 // i % n  -->  i  if i is in [0,n).
352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353   Rem->replaceAllUsesWith(Rem->getOperand(0));
354   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355   ++NumElimRem;
356   Changed = true;
357   DeadInsts.emplace_back(Rem);
358 }
359 
360 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362   auto *T = Rem->getType();
363   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365   SelectInst *Sel =
366       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367   Rem->replaceAllUsesWith(Sel);
368   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369   ++NumElimRem;
370   Changed = true;
371   DeadInsts.emplace_back(Rem);
372 }
373 
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377                                          bool IsSigned) {
378   auto *NValue = Rem->getOperand(0);
379   auto *DValue = Rem->getOperand(1);
380   // We're only interested in the case where we know something about
381   // the numerator, unless it is a srem, because we want to replace srem by urem
382   // in general.
383   bool UsedAsNumerator = IVOperand == NValue;
384   if (!UsedAsNumerator && !IsSigned)
385     return;
386 
387   const SCEV *N = SE->getSCEV(NValue);
388 
389   // Simplify unnecessary loops away.
390   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391   N = SE->getSCEVAtScope(N, ICmpLoop);
392 
393   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
394 
395   // Do not proceed if the Numerator may be negative
396   if (!IsNumeratorNonNegative)
397     return;
398 
399   const SCEV *D = SE->getSCEV(DValue);
400   D = SE->getSCEVAtScope(D, ICmpLoop);
401 
402   if (UsedAsNumerator) {
403     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404     if (SE->isKnownPredicate(LT, N, D)) {
405       replaceRemWithNumerator(Rem);
406       return;
407     }
408 
409     auto *T = Rem->getType();
410     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411     if (SE->isKnownPredicate(LT, NLessOne, D)) {
412       replaceRemWithNumeratorOrZero(Rem);
413       return;
414     }
415   }
416 
417   // Try to replace SRem with URem, if both N and D are known non-negative.
418   // Since we had already check N, we only need to check D now
419   if (!IsSigned || !SE->isKnownNonNegative(D))
420     return;
421 
422   replaceSRemWithURem(Rem);
423 }
424 
425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
426   const SCEV *LHS = SE->getSCEV(WO->getLHS());
427   const SCEV *RHS = SE->getSCEV(WO->getRHS());
428   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
429     return false;
430 
431   // Proved no overflow, nuke the overflow check and, if possible, the overflow
432   // intrinsic as well.
433 
434   BinaryOperator *NewResult = BinaryOperator::Create(
435       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
436 
437   if (WO->isSigned())
438     NewResult->setHasNoSignedWrap(true);
439   else
440     NewResult->setHasNoUnsignedWrap(true);
441 
442   SmallVector<ExtractValueInst *, 4> ToDelete;
443 
444   for (auto *U : WO->users()) {
445     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446       if (EVI->getIndices()[0] == 1)
447         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
448       else {
449         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450         EVI->replaceAllUsesWith(NewResult);
451       }
452       ToDelete.push_back(EVI);
453     }
454   }
455 
456   for (auto *EVI : ToDelete)
457     EVI->eraseFromParent();
458 
459   if (WO->use_empty())
460     WO->eraseFromParent();
461 
462   Changed = true;
463   return true;
464 }
465 
466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
467   const SCEV *LHS = SE->getSCEV(SI->getLHS());
468   const SCEV *RHS = SE->getSCEV(SI->getRHS());
469   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
470     return false;
471 
472   BinaryOperator *BO = BinaryOperator::Create(
473       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
474   if (SI->isSigned())
475     BO->setHasNoSignedWrap();
476   else
477     BO->setHasNoUnsignedWrap();
478 
479   SI->replaceAllUsesWith(BO);
480   DeadInsts.emplace_back(SI);
481   Changed = true;
482   return true;
483 }
484 
485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
486   // It is always legal to replace
487   //   icmp <pred> i32 trunc(iv), n
488   // with
489   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
490   // Or with
491   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
492   // Or with either of these if pred is an equality predicate.
493   //
494   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
495   // every comparison which uses trunc, it means that we can replace each of
496   // them with comparison of iv against sext/zext(n). We no longer need trunc
497   // after that.
498   //
499   // TODO: Should we do this if we can widen *some* comparisons, but not all
500   // of them? Sometimes it is enough to enable other optimizations, but the
501   // trunc instruction will stay in the loop.
502   Value *IV = TI->getOperand(0);
503   Type *IVTy = IV->getType();
504   const SCEV *IVSCEV = SE->getSCEV(IV);
505   const SCEV *TISCEV = SE->getSCEV(TI);
506 
507   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
508   // get rid of trunc
509   bool DoesSExtCollapse = false;
510   bool DoesZExtCollapse = false;
511   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
512     DoesSExtCollapse = true;
513   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
514     DoesZExtCollapse = true;
515 
516   // If neither sext nor zext does collapse, it is not profitable to do any
517   // transform. Bail.
518   if (!DoesSExtCollapse && !DoesZExtCollapse)
519     return false;
520 
521   // Collect users of the trunc that look like comparisons against invariants.
522   // Bail if we find something different.
523   SmallVector<ICmpInst *, 4> ICmpUsers;
524   for (auto *U : TI->users()) {
525     // We don't care about users in unreachable blocks.
526     if (isa<Instruction>(U) &&
527         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
528       continue;
529     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
530     if (!ICI) return false;
531     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
532     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
533         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
534       return false;
535     // If we cannot get rid of trunc, bail.
536     if (ICI->isSigned() && !DoesSExtCollapse)
537       return false;
538     if (ICI->isUnsigned() && !DoesZExtCollapse)
539       return false;
540     // For equality, either signed or unsigned works.
541     ICmpUsers.push_back(ICI);
542   }
543 
544   auto CanUseZExt = [&](ICmpInst *ICI) {
545     // Unsigned comparison can be widened as unsigned.
546     if (ICI->isUnsigned())
547       return true;
548     // Is it profitable to do zext?
549     if (!DoesZExtCollapse)
550       return false;
551     // For equality, we can safely zext both parts.
552     if (ICI->isEquality())
553       return true;
554     // Otherwise we can only use zext when comparing two non-negative or two
555     // negative values. But in practice, we will never pass DoesZExtCollapse
556     // check for a negative value, because zext(trunc(x)) is non-negative. So
557     // it only make sense to check for non-negativity here.
558     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
559     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
560     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
561   };
562   // Replace all comparisons against trunc with comparisons against IV.
563   for (auto *ICI : ICmpUsers) {
564     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
565     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
566     Instruction *Ext = nullptr;
567     // For signed/unsigned predicate, replace the old comparison with comparison
568     // of immediate IV against sext/zext of the invariant argument. If we can
569     // use either sext or zext (i.e. we are dealing with equality predicate),
570     // then prefer zext as a more canonical form.
571     // TODO: If we see a signed comparison which can be turned into unsigned,
572     // we can do it here for canonicalization purposes.
573     ICmpInst::Predicate Pred = ICI->getPredicate();
574     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
575     if (CanUseZExt(ICI)) {
576       assert(DoesZExtCollapse && "Unprofitable zext?");
577       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
578       Pred = ICmpInst::getUnsignedPredicate(Pred);
579     } else {
580       assert(DoesSExtCollapse && "Unprofitable sext?");
581       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
582       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
583     }
584     bool Changed;
585     L->makeLoopInvariant(Ext, Changed);
586     (void)Changed;
587     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
588     ICI->replaceAllUsesWith(NewICI);
589     DeadInsts.emplace_back(ICI);
590   }
591 
592   // Trunc no longer needed.
593   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
594   DeadInsts.emplace_back(TI);
595   return true;
596 }
597 
598 /// Eliminate an operation that consumes a simple IV and has no observable
599 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
600 /// but UseInst may not be.
601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
602                                      Instruction *IVOperand) {
603   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
604     eliminateIVComparison(ICmp, IVOperand);
605     return true;
606   }
607   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
608     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
609     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
610       simplifyIVRemainder(Bin, IVOperand, IsSRem);
611       return true;
612     }
613 
614     if (Bin->getOpcode() == Instruction::SDiv)
615       return eliminateSDiv(Bin);
616   }
617 
618   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
619     if (eliminateOverflowIntrinsic(WO))
620       return true;
621 
622   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
623     if (eliminateSaturatingIntrinsic(SI))
624       return true;
625 
626   if (auto *TI = dyn_cast<TruncInst>(UseInst))
627     if (eliminateTrunc(TI))
628       return true;
629 
630   if (eliminateIdentitySCEV(UseInst, IVOperand))
631     return true;
632 
633   return false;
634 }
635 
636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
637   if (auto *BB = L->getLoopPreheader())
638     return BB->getTerminator();
639 
640   return Hint;
641 }
642 
643 /// Replace the UseInst with a loop invariant expression if it is safe.
644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
645   if (!SE->isSCEVable(I->getType()))
646     return false;
647 
648   // Get the symbolic expression for this instruction.
649   const SCEV *S = SE->getSCEV(I);
650 
651   if (!SE->isLoopInvariant(S, L))
652     return false;
653 
654   // Do not generate something ridiculous even if S is loop invariant.
655   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
656     return false;
657 
658   auto *IP = GetLoopInvariantInsertPosition(L, I);
659 
660   if (!isSafeToExpandAt(S, IP, *SE)) {
661     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
662                       << " with non-speculable loop invariant: " << *S << '\n');
663     return false;
664   }
665 
666   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
667 
668   I->replaceAllUsesWith(Invariant);
669   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
670                     << " with loop invariant: " << *S << '\n');
671   ++NumFoldedUser;
672   Changed = true;
673   DeadInsts.emplace_back(I);
674   return true;
675 }
676 
677 /// Eliminate redundant type cast between integer and float.
678 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
679   if (UseInst->getOpcode() != CastInst::SIToFP)
680     return false;
681 
682   Value *IVOperand = UseInst->getOperand(0);
683   // Get the symbolic expression for this instruction.
684   ConstantRange IVRange = SE->getSignedRange(SE->getSCEV(IVOperand));
685   unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
686   if (IVRange.getActiveBits() <= DestNumSigBits) {
687     for (User *U : UseInst->users()) {
688       // Match for fptosi of sitofp and with same type.
689       auto *CI = dyn_cast<FPToSIInst>(U);
690       if (!CI || IVOperand->getType() != CI->getType())
691         continue;
692 
693       CI->replaceAllUsesWith(IVOperand);
694       DeadInsts.push_back(CI);
695       LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
696                         << " with: " << *IVOperand << '\n');
697 
698       ++NumFoldedUser;
699       Changed = true;
700     }
701   }
702 
703   return Changed;
704 }
705 
706 /// Eliminate any operation that SCEV can prove is an identity function.
707 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
708                                            Instruction *IVOperand) {
709   if (!SE->isSCEVable(UseInst->getType()) ||
710       (UseInst->getType() != IVOperand->getType()) ||
711       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
712     return false;
713 
714   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
715   // dominator tree, even if X is an operand to Y.  For instance, in
716   //
717   //     %iv = phi i32 {0,+,1}
718   //     br %cond, label %left, label %merge
719   //
720   //   left:
721   //     %X = add i32 %iv, 0
722   //     br label %merge
723   //
724   //   merge:
725   //     %M = phi (%X, %iv)
726   //
727   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
728   // %M.replaceAllUsesWith(%X) would be incorrect.
729 
730   if (isa<PHINode>(UseInst))
731     // If UseInst is not a PHI node then we know that IVOperand dominates
732     // UseInst directly from the legality of SSA.
733     if (!DT || !DT->dominates(IVOperand, UseInst))
734       return false;
735 
736   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
737     return false;
738 
739   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
740 
741   UseInst->replaceAllUsesWith(IVOperand);
742   ++NumElimIdentity;
743   Changed = true;
744   DeadInsts.emplace_back(UseInst);
745   return true;
746 }
747 
748 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
749 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
750 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
751                                                     Value *IVOperand) {
752   auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
753       cast<OverflowingBinaryOperator>(BO));
754 
755   if (!Flags)
756     return false;
757 
758   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
759                            SCEV::FlagNUW);
760   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
761                          SCEV::FlagNSW);
762 
763   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
764   // flags on addrecs while performing zero/sign extensions. We could call
765   // forgetValue() here to make sure those flags also propagate to any other
766   // SCEV expressions based on the addrec. However, this can have pathological
767   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
768   return true;
769 }
770 
771 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
772 /// information from the IV's range. Returns true if anything changed, false
773 /// otherwise.
774 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
775                                           Value *IVOperand) {
776   using namespace llvm::PatternMatch;
777 
778   if (BO->getOpcode() == Instruction::Shl) {
779     bool Changed = false;
780     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
781     for (auto *U : BO->users()) {
782       const APInt *C;
783       if (match(U,
784                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
785           match(U,
786                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
787         BinaryOperator *Shr = cast<BinaryOperator>(U);
788         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
789           Shr->setIsExact(true);
790           Changed = true;
791         }
792       }
793     }
794     return Changed;
795   }
796 
797   return false;
798 }
799 
800 /// Add all uses of Def to the current IV's worklist.
801 static void pushIVUsers(
802   Instruction *Def, Loop *L,
803   SmallPtrSet<Instruction*,16> &Simplified,
804   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
805 
806   for (User *U : Def->users()) {
807     Instruction *UI = cast<Instruction>(U);
808 
809     // Avoid infinite or exponential worklist processing.
810     // Also ensure unique worklist users.
811     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
812     // self edges first.
813     if (UI == Def)
814       continue;
815 
816     // Only change the current Loop, do not change the other parts (e.g. other
817     // Loops).
818     if (!L->contains(UI))
819       continue;
820 
821     // Do not push the same instruction more than once.
822     if (!Simplified.insert(UI).second)
823       continue;
824 
825     SimpleIVUsers.push_back(std::make_pair(UI, Def));
826   }
827 }
828 
829 /// Return true if this instruction generates a simple SCEV
830 /// expression in terms of that IV.
831 ///
832 /// This is similar to IVUsers' isInteresting() but processes each instruction
833 /// non-recursively when the operand is already known to be a simpleIVUser.
834 ///
835 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
836   if (!SE->isSCEVable(I->getType()))
837     return false;
838 
839   // Get the symbolic expression for this instruction.
840   const SCEV *S = SE->getSCEV(I);
841 
842   // Only consider affine recurrences.
843   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
844   if (AR && AR->getLoop() == L)
845     return true;
846 
847   return false;
848 }
849 
850 /// Iteratively perform simplification on a worklist of users
851 /// of the specified induction variable. Each successive simplification may push
852 /// more users which may themselves be candidates for simplification.
853 ///
854 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
855 /// instructions in-place during analysis. Rather than rewriting induction
856 /// variables bottom-up from their users, it transforms a chain of IVUsers
857 /// top-down, updating the IR only when it encounters a clear optimization
858 /// opportunity.
859 ///
860 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
861 ///
862 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
863   if (!SE->isSCEVable(CurrIV->getType()))
864     return;
865 
866   // Instructions processed by SimplifyIndvar for CurrIV.
867   SmallPtrSet<Instruction*,16> Simplified;
868 
869   // Use-def pairs if IV users waiting to be processed for CurrIV.
870   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
871 
872   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
873   // called multiple times for the same LoopPhi. This is the proper thing to
874   // do for loop header phis that use each other.
875   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
876 
877   while (!SimpleIVUsers.empty()) {
878     std::pair<Instruction*, Instruction*> UseOper =
879       SimpleIVUsers.pop_back_val();
880     Instruction *UseInst = UseOper.first;
881 
882     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
883     // rather than try to do some complex analysis or transformation (such as
884     // widening) basing on it.
885     // TODO: Propagate TLI and pass it here to handle more cases.
886     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
887       DeadInsts.emplace_back(UseInst);
888       continue;
889     }
890 
891     // Bypass back edges to avoid extra work.
892     if (UseInst == CurrIV) continue;
893 
894     // Try to replace UseInst with a loop invariant before any other
895     // simplifications.
896     if (replaceIVUserWithLoopInvariant(UseInst))
897       continue;
898 
899     Instruction *IVOperand = UseOper.second;
900     for (unsigned N = 0; IVOperand; ++N) {
901       assert(N <= Simplified.size() && "runaway iteration");
902       (void) N;
903 
904       Value *NewOper = foldIVUser(UseInst, IVOperand);
905       if (!NewOper)
906         break; // done folding
907       IVOperand = dyn_cast<Instruction>(NewOper);
908     }
909     if (!IVOperand)
910       continue;
911 
912     if (eliminateIVUser(UseInst, IVOperand)) {
913       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
914       continue;
915     }
916 
917     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
918       if ((isa<OverflowingBinaryOperator>(BO) &&
919            strengthenOverflowingOperation(BO, IVOperand)) ||
920           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
921         // re-queue uses of the now modified binary operator and fall
922         // through to the checks that remain.
923         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
924       }
925     }
926 
927     // Try to use integer induction for FPToSI of float induction directly.
928     if (replaceFloatIVWithIntegerIV(UseInst)) {
929       // Re-queue the potentially new direct uses of IVOperand.
930       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
931       continue;
932     }
933 
934     CastInst *Cast = dyn_cast<CastInst>(UseInst);
935     if (V && Cast) {
936       V->visitCast(Cast);
937       continue;
938     }
939     if (isSimpleIVUser(UseInst, L, SE)) {
940       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
941     }
942   }
943 }
944 
945 namespace llvm {
946 
947 void IVVisitor::anchor() { }
948 
949 /// Simplify instructions that use this induction variable
950 /// by using ScalarEvolution to analyze the IV's recurrence.
951 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
952                        LoopInfo *LI, const TargetTransformInfo *TTI,
953                        SmallVectorImpl<WeakTrackingVH> &Dead,
954                        SCEVExpander &Rewriter, IVVisitor *V) {
955   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
956                      Rewriter, Dead);
957   SIV.simplifyUsers(CurrIV, V);
958   return SIV.hasChanged();
959 }
960 
961 /// Simplify users of induction variables within this
962 /// loop. This does not actually change or add IVs.
963 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
964                      LoopInfo *LI, const TargetTransformInfo *TTI,
965                      SmallVectorImpl<WeakTrackingVH> &Dead) {
966   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
967 #ifndef NDEBUG
968   Rewriter.setDebugType(DEBUG_TYPE);
969 #endif
970   bool Changed = false;
971   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
972     Changed |=
973         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
974   }
975   return Changed;
976 }
977 
978 } // namespace llvm
979 
980 namespace {
981 //===----------------------------------------------------------------------===//
982 // Widen Induction Variables - Extend the width of an IV to cover its
983 // widest uses.
984 //===----------------------------------------------------------------------===//
985 
986 class WidenIV {
987   // Parameters
988   PHINode *OrigPhi;
989   Type *WideType;
990 
991   // Context
992   LoopInfo        *LI;
993   Loop            *L;
994   ScalarEvolution *SE;
995   DominatorTree   *DT;
996 
997   // Does the module have any calls to the llvm.experimental.guard intrinsic
998   // at all? If not we can avoid scanning instructions looking for guards.
999   bool HasGuards;
1000 
1001   bool UsePostIncrementRanges;
1002 
1003   // Statistics
1004   unsigned NumElimExt = 0;
1005   unsigned NumWidened = 0;
1006 
1007   // Result
1008   PHINode *WidePhi = nullptr;
1009   Instruction *WideInc = nullptr;
1010   const SCEV *WideIncExpr = nullptr;
1011   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1012 
1013   SmallPtrSet<Instruction *,16> Widened;
1014 
1015   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
1016 
1017   // A map tracking the kind of extension used to widen each narrow IV
1018   // and narrow IV user.
1019   // Key: pointer to a narrow IV or IV user.
1020   // Value: the kind of extension used to widen this Instruction.
1021   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1022 
1023   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1024 
1025   // A map with control-dependent ranges for post increment IV uses. The key is
1026   // a pair of IV def and a use of this def denoting the context. The value is
1027   // a ConstantRange representing possible values of the def at the given
1028   // context.
1029   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1030 
1031   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1032                                               Instruction *UseI) {
1033     DefUserPair Key(Def, UseI);
1034     auto It = PostIncRangeInfos.find(Key);
1035     return It == PostIncRangeInfos.end()
1036                ? Optional<ConstantRange>(None)
1037                : Optional<ConstantRange>(It->second);
1038   }
1039 
1040   void calculatePostIncRanges(PHINode *OrigPhi);
1041   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1042 
1043   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1044     DefUserPair Key(Def, UseI);
1045     auto It = PostIncRangeInfos.find(Key);
1046     if (It == PostIncRangeInfos.end())
1047       PostIncRangeInfos.insert({Key, R});
1048     else
1049       It->second = R.intersectWith(It->second);
1050   }
1051 
1052 public:
1053   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1054   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1055   /// pointers.
1056   struct NarrowIVDefUse {
1057     Instruction *NarrowDef = nullptr;
1058     Instruction *NarrowUse = nullptr;
1059     Instruction *WideDef = nullptr;
1060 
1061     // True if the narrow def is never negative.  Tracking this information lets
1062     // us use a sign extension instead of a zero extension or vice versa, when
1063     // profitable and legal.
1064     bool NeverNegative = false;
1065 
1066     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1067                    bool NeverNegative)
1068         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1069           NeverNegative(NeverNegative) {}
1070   };
1071 
1072   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1073           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1074           bool HasGuards, bool UsePostIncrementRanges = true);
1075 
1076   PHINode *createWideIV(SCEVExpander &Rewriter);
1077 
1078   unsigned getNumElimExt() { return NumElimExt; };
1079   unsigned getNumWidened() { return NumWidened; };
1080 
1081 protected:
1082   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1083                           Instruction *Use);
1084 
1085   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1086   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1087                                      const SCEVAddRecExpr *WideAR);
1088   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1089 
1090   ExtendKind getExtendKind(Instruction *I);
1091 
1092   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1093 
1094   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1095 
1096   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1097 
1098   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1099                               unsigned OpCode) const;
1100 
1101   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1102 
1103   bool widenLoopCompare(NarrowIVDefUse DU);
1104   bool widenWithVariantUse(NarrowIVDefUse DU);
1105 
1106   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1107 
1108 private:
1109   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1110 };
1111 } // namespace
1112 
1113 /// Determine the insertion point for this user. By default, insert immediately
1114 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1115 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1116 /// common dominator for the incoming blocks. A nullptr can be returned if no
1117 /// viable location is found: it may happen if User is a PHI and Def only comes
1118 /// to this PHI from unreachable blocks.
1119 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1120                                           DominatorTree *DT, LoopInfo *LI) {
1121   PHINode *PHI = dyn_cast<PHINode>(User);
1122   if (!PHI)
1123     return User;
1124 
1125   Instruction *InsertPt = nullptr;
1126   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1127     if (PHI->getIncomingValue(i) != Def)
1128       continue;
1129 
1130     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1131 
1132     if (!DT->isReachableFromEntry(InsertBB))
1133       continue;
1134 
1135     if (!InsertPt) {
1136       InsertPt = InsertBB->getTerminator();
1137       continue;
1138     }
1139     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1140     InsertPt = InsertBB->getTerminator();
1141   }
1142 
1143   // If we have skipped all inputs, it means that Def only comes to Phi from
1144   // unreachable blocks.
1145   if (!InsertPt)
1146     return nullptr;
1147 
1148   auto *DefI = dyn_cast<Instruction>(Def);
1149   if (!DefI)
1150     return InsertPt;
1151 
1152   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1153 
1154   auto *L = LI->getLoopFor(DefI->getParent());
1155   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1156 
1157   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1158     if (LI->getLoopFor(DTN->getBlock()) == L)
1159       return DTN->getBlock()->getTerminator();
1160 
1161   llvm_unreachable("DefI dominates InsertPt!");
1162 }
1163 
1164 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1165           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1166           bool HasGuards, bool UsePostIncrementRanges)
1167       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1168         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1169         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1170         DeadInsts(DI) {
1171     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1172     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1173 }
1174 
1175 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1176                                  bool IsSigned, Instruction *Use) {
1177   // Set the debug location and conservative insertion point.
1178   IRBuilder<> Builder(Use);
1179   // Hoist the insertion point into loop preheaders as far as possible.
1180   for (const Loop *L = LI->getLoopFor(Use->getParent());
1181        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1182        L = L->getParentLoop())
1183     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1184 
1185   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1186                     Builder.CreateZExt(NarrowOper, WideType);
1187 }
1188 
1189 /// Instantiate a wide operation to replace a narrow operation. This only needs
1190 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1191 /// 0 for any operation we decide not to clone.
1192 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1193                                   const SCEVAddRecExpr *WideAR) {
1194   unsigned Opcode = DU.NarrowUse->getOpcode();
1195   switch (Opcode) {
1196   default:
1197     return nullptr;
1198   case Instruction::Add:
1199   case Instruction::Mul:
1200   case Instruction::UDiv:
1201   case Instruction::Sub:
1202     return cloneArithmeticIVUser(DU, WideAR);
1203 
1204   case Instruction::And:
1205   case Instruction::Or:
1206   case Instruction::Xor:
1207   case Instruction::Shl:
1208   case Instruction::LShr:
1209   case Instruction::AShr:
1210     return cloneBitwiseIVUser(DU);
1211   }
1212 }
1213 
1214 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1215   Instruction *NarrowUse = DU.NarrowUse;
1216   Instruction *NarrowDef = DU.NarrowDef;
1217   Instruction *WideDef = DU.WideDef;
1218 
1219   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1220 
1221   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1222   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1223   // invariant and will be folded or hoisted. If it actually comes from a
1224   // widened IV, it should be removed during a future call to widenIVUse.
1225   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1226   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1227                    ? WideDef
1228                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1229                                       IsSigned, NarrowUse);
1230   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1231                    ? WideDef
1232                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1233                                       IsSigned, NarrowUse);
1234 
1235   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1236   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1237                                         NarrowBO->getName());
1238   IRBuilder<> Builder(NarrowUse);
1239   Builder.Insert(WideBO);
1240   WideBO->copyIRFlags(NarrowBO);
1241   return WideBO;
1242 }
1243 
1244 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1245                                             const SCEVAddRecExpr *WideAR) {
1246   Instruction *NarrowUse = DU.NarrowUse;
1247   Instruction *NarrowDef = DU.NarrowDef;
1248   Instruction *WideDef = DU.WideDef;
1249 
1250   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1251 
1252   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1253 
1254   // We're trying to find X such that
1255   //
1256   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1257   //
1258   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1259   // and check using SCEV if any of them are correct.
1260 
1261   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1262   // correct solution to X.
1263   auto GuessNonIVOperand = [&](bool SignExt) {
1264     const SCEV *WideLHS;
1265     const SCEV *WideRHS;
1266 
1267     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1268       if (SignExt)
1269         return SE->getSignExtendExpr(S, Ty);
1270       return SE->getZeroExtendExpr(S, Ty);
1271     };
1272 
1273     if (IVOpIdx == 0) {
1274       WideLHS = SE->getSCEV(WideDef);
1275       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1276       WideRHS = GetExtend(NarrowRHS, WideType);
1277     } else {
1278       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1279       WideLHS = GetExtend(NarrowLHS, WideType);
1280       WideRHS = SE->getSCEV(WideDef);
1281     }
1282 
1283     // WideUse is "WideDef `op.wide` X" as described in the comment.
1284     const SCEV *WideUse =
1285       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1286 
1287     return WideUse == WideAR;
1288   };
1289 
1290   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1291   if (!GuessNonIVOperand(SignExtend)) {
1292     SignExtend = !SignExtend;
1293     if (!GuessNonIVOperand(SignExtend))
1294       return nullptr;
1295   }
1296 
1297   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1298                    ? WideDef
1299                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1300                                       SignExtend, NarrowUse);
1301   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1302                    ? WideDef
1303                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1304                                       SignExtend, NarrowUse);
1305 
1306   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1307   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1308                                         NarrowBO->getName());
1309 
1310   IRBuilder<> Builder(NarrowUse);
1311   Builder.Insert(WideBO);
1312   WideBO->copyIRFlags(NarrowBO);
1313   return WideBO;
1314 }
1315 
1316 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1317   auto It = ExtendKindMap.find(I);
1318   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1319   return It->second;
1320 }
1321 
1322 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1323                                      unsigned OpCode) const {
1324   switch (OpCode) {
1325   case Instruction::Add:
1326     return SE->getAddExpr(LHS, RHS);
1327   case Instruction::Sub:
1328     return SE->getMinusSCEV(LHS, RHS);
1329   case Instruction::Mul:
1330     return SE->getMulExpr(LHS, RHS);
1331   case Instruction::UDiv:
1332     return SE->getUDivExpr(LHS, RHS);
1333   default:
1334     llvm_unreachable("Unsupported opcode.");
1335   };
1336 }
1337 
1338 /// No-wrap operations can transfer sign extension of their result to their
1339 /// operands. Generate the SCEV value for the widened operation without
1340 /// actually modifying the IR yet. If the expression after extending the
1341 /// operands is an AddRec for this loop, return the AddRec and the kind of
1342 /// extension used.
1343 WidenIV::WidenedRecTy
1344 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1345   // Handle the common case of add<nsw/nuw>
1346   const unsigned OpCode = DU.NarrowUse->getOpcode();
1347   // Only Add/Sub/Mul instructions supported yet.
1348   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1349       OpCode != Instruction::Mul)
1350     return {nullptr, Unknown};
1351 
1352   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1353   // if extending the other will lead to a recurrence.
1354   const unsigned ExtendOperIdx =
1355       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1356   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1357 
1358   const SCEV *ExtendOperExpr = nullptr;
1359   const OverflowingBinaryOperator *OBO =
1360     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1361   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1362   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1363     ExtendOperExpr = SE->getSignExtendExpr(
1364       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1365   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1366     ExtendOperExpr = SE->getZeroExtendExpr(
1367       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1368   else
1369     return {nullptr, Unknown};
1370 
1371   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1372   // flags. This instruction may be guarded by control flow that the no-wrap
1373   // behavior depends on. Non-control-equivalent instructions can be mapped to
1374   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1375   // semantics to those operations.
1376   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1377   const SCEV *rhs = ExtendOperExpr;
1378 
1379   // Let's swap operands to the initial order for the case of non-commutative
1380   // operations, like SUB. See PR21014.
1381   if (ExtendOperIdx == 0)
1382     std::swap(lhs, rhs);
1383   const SCEVAddRecExpr *AddRec =
1384       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1385 
1386   if (!AddRec || AddRec->getLoop() != L)
1387     return {nullptr, Unknown};
1388 
1389   return {AddRec, ExtKind};
1390 }
1391 
1392 /// Is this instruction potentially interesting for further simplification after
1393 /// widening it's type? In other words, can the extend be safely hoisted out of
1394 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1395 /// so, return the extended recurrence and the kind of extension used. Otherwise
1396 /// return {nullptr, Unknown}.
1397 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1398   if (!DU.NarrowUse->getType()->isIntegerTy())
1399     return {nullptr, Unknown};
1400 
1401   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1402   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1403       SE->getTypeSizeInBits(WideType)) {
1404     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1405     // index. So don't follow this use.
1406     return {nullptr, Unknown};
1407   }
1408 
1409   const SCEV *WideExpr;
1410   ExtendKind ExtKind;
1411   if (DU.NeverNegative) {
1412     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1413     if (isa<SCEVAddRecExpr>(WideExpr))
1414       ExtKind = SignExtended;
1415     else {
1416       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1417       ExtKind = ZeroExtended;
1418     }
1419   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1420     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1421     ExtKind = SignExtended;
1422   } else {
1423     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1424     ExtKind = ZeroExtended;
1425   }
1426   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1427   if (!AddRec || AddRec->getLoop() != L)
1428     return {nullptr, Unknown};
1429   return {AddRec, ExtKind};
1430 }
1431 
1432 /// This IV user cannot be widened. Replace this use of the original narrow IV
1433 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1434 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1435                           LoopInfo *LI) {
1436   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1437   if (!InsertPt)
1438     return;
1439   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1440                     << *DU.NarrowUse << "\n");
1441   IRBuilder<> Builder(InsertPt);
1442   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1443   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1444 }
1445 
1446 /// If the narrow use is a compare instruction, then widen the compare
1447 //  (and possibly the other operand).  The extend operation is hoisted into the
1448 // loop preheader as far as possible.
1449 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1450   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1451   if (!Cmp)
1452     return false;
1453 
1454   // We can legally widen the comparison in the following two cases:
1455   //
1456   //  - The signedness of the IV extension and comparison match
1457   //
1458   //  - The narrow IV is always positive (and thus its sign extension is equal
1459   //    to its zero extension).  For instance, let's say we're zero extending
1460   //    %narrow for the following use
1461   //
1462   //      icmp slt i32 %narrow, %val   ... (A)
1463   //
1464   //    and %narrow is always positive.  Then
1465   //
1466   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1467   //          == icmp slt i32 zext(%narrow), sext(%val)
1468   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1469   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1470     return false;
1471 
1472   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1473   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1474   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1475   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1476 
1477   // Widen the compare instruction.
1478   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1479   if (!InsertPt)
1480     return false;
1481   IRBuilder<> Builder(InsertPt);
1482   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1483 
1484   // Widen the other operand of the compare, if necessary.
1485   if (CastWidth < IVWidth) {
1486     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1487     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1488   }
1489   return true;
1490 }
1491 
1492 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1493 // will not work when:
1494 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1495 // expand, eg. add %indvar, (load %addr)
1496 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1497 // While SCEV fails to avoid trunc, we can still try to use instruction
1498 // combining approach to prove trunc is not required. This can be further
1499 // extended with other instruction combining checks, but for now we handle the
1500 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1501 //
1502 // Src:
1503 //   %c = sub nsw %b, %indvar
1504 //   %d = sext %c to i64
1505 // Dst:
1506 //   %indvar.ext1 = sext %indvar to i64
1507 //   %m = sext %b to i64
1508 //   %d = sub nsw i64 %m, %indvar.ext1
1509 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1510 // trunc is required regardless of how %b is generated. This pattern is common
1511 // when calculating address in 64 bit architecture
1512 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1513   Instruction *NarrowUse = DU.NarrowUse;
1514   Instruction *NarrowDef = DU.NarrowDef;
1515   Instruction *WideDef = DU.WideDef;
1516 
1517   // Handle the common case of add<nsw/nuw>
1518   const unsigned OpCode = NarrowUse->getOpcode();
1519   // Only Add/Sub/Mul instructions are supported.
1520   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1521       OpCode != Instruction::Mul)
1522     return false;
1523 
1524   // The operand that is not defined by NarrowDef of DU. Let's call it the
1525   // other operand.
1526   assert((NarrowUse->getOperand(0) == NarrowDef ||
1527           NarrowUse->getOperand(1) == NarrowDef) &&
1528          "bad DU");
1529 
1530   const OverflowingBinaryOperator *OBO =
1531     cast<OverflowingBinaryOperator>(NarrowUse);
1532   ExtendKind ExtKind = getExtendKind(NarrowDef);
1533   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1534   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1535   auto AnotherOpExtKind = ExtKind;
1536 
1537   // Check that all uses are either:
1538   // - narrow def (in case of we are widening the IV increment);
1539   // - single-input LCSSA Phis;
1540   // - comparison of the chosen type;
1541   // - extend of the chosen type (raison d'etre).
1542   SmallVector<Instruction *, 4> ExtUsers;
1543   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1544   SmallVector<ICmpInst *, 4> ICmpUsers;
1545   for (Use &U : NarrowUse->uses()) {
1546     Instruction *User = cast<Instruction>(U.getUser());
1547     if (User == NarrowDef)
1548       continue;
1549     if (!L->contains(User)) {
1550       auto *LCSSAPhi = cast<PHINode>(User);
1551       // Make sure there is only 1 input, so that we don't have to split
1552       // critical edges.
1553       if (LCSSAPhi->getNumOperands() != 1)
1554         return false;
1555       LCSSAPhiUsers.push_back(LCSSAPhi);
1556       continue;
1557     }
1558     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1559       auto Pred = ICmp->getPredicate();
1560       // We have 3 types of predicates: signed, unsigned and equality
1561       // predicates. For equality, it's legal to widen icmp for either sign and
1562       // zero extend. For sign extend, we can also do so for signed predicates,
1563       // likeweise for zero extend we can widen icmp for unsigned predicates.
1564       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1565         return false;
1566       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1567         return false;
1568       ICmpUsers.push_back(ICmp);
1569       continue;
1570     }
1571     if (ExtKind == SignExtended)
1572       User = dyn_cast<SExtInst>(User);
1573     else
1574       User = dyn_cast<ZExtInst>(User);
1575     if (!User || User->getType() != WideType)
1576       return false;
1577     ExtUsers.push_back(User);
1578   }
1579   if (ExtUsers.empty()) {
1580     DeadInsts.emplace_back(NarrowUse);
1581     return true;
1582   }
1583 
1584   // We'll prove some facts that should be true in the context of ext users. If
1585   // there is no users, we are done now. If there are some, pick their common
1586   // dominator as context.
1587   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1588 
1589   if (!CanSignExtend && !CanZeroExtend) {
1590     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1591     // will most likely not see it. Let's try to prove it.
1592     if (OpCode != Instruction::Add)
1593       return false;
1594     if (ExtKind != ZeroExtended)
1595       return false;
1596     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1597     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1598     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1599     if (NarrowUse->getOperand(0) != NarrowDef)
1600       return false;
1601     if (!SE->isKnownNegative(RHS))
1602       return false;
1603     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1604                                                SE->getNegativeSCEV(RHS), CtxI);
1605     if (!ProvedSubNUW)
1606       return false;
1607     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1608     // neg(zext(neg(op))), which is basically sext(op).
1609     AnotherOpExtKind = SignExtended;
1610   }
1611 
1612   // Verifying that Defining operand is an AddRec
1613   const SCEV *Op1 = SE->getSCEV(WideDef);
1614   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1615   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1616     return false;
1617 
1618   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1619 
1620   // Generating a widening use instruction.
1621   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1622                    ? WideDef
1623                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1624                                       AnotherOpExtKind, NarrowUse);
1625   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1626                    ? WideDef
1627                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1628                                       AnotherOpExtKind, NarrowUse);
1629 
1630   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1631   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1632                                         NarrowBO->getName());
1633   IRBuilder<> Builder(NarrowUse);
1634   Builder.Insert(WideBO);
1635   WideBO->copyIRFlags(NarrowBO);
1636   ExtendKindMap[NarrowUse] = ExtKind;
1637 
1638   for (Instruction *User : ExtUsers) {
1639     assert(User->getType() == WideType && "Checked before!");
1640     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1641                       << *WideBO << "\n");
1642     ++NumElimExt;
1643     User->replaceAllUsesWith(WideBO);
1644     DeadInsts.emplace_back(User);
1645   }
1646 
1647   for (PHINode *User : LCSSAPhiUsers) {
1648     assert(User->getNumOperands() == 1 && "Checked before!");
1649     Builder.SetInsertPoint(User);
1650     auto *WidePN =
1651         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1652     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1653     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1654            "Not a LCSSA Phi?");
1655     WidePN->addIncoming(WideBO, LoopExitingBlock);
1656     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1657     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1658     User->replaceAllUsesWith(TruncPN);
1659     DeadInsts.emplace_back(User);
1660   }
1661 
1662   for (ICmpInst *User : ICmpUsers) {
1663     Builder.SetInsertPoint(User);
1664     auto ExtendedOp = [&](Value * V)->Value * {
1665       if (V == NarrowUse)
1666         return WideBO;
1667       if (ExtKind == ZeroExtended)
1668         return Builder.CreateZExt(V, WideBO->getType());
1669       else
1670         return Builder.CreateSExt(V, WideBO->getType());
1671     };
1672     auto Pred = User->getPredicate();
1673     auto *LHS = ExtendedOp(User->getOperand(0));
1674     auto *RHS = ExtendedOp(User->getOperand(1));
1675     auto *WideCmp =
1676         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1677     User->replaceAllUsesWith(WideCmp);
1678     DeadInsts.emplace_back(User);
1679   }
1680 
1681   return true;
1682 }
1683 
1684 /// Determine whether an individual user of the narrow IV can be widened. If so,
1685 /// return the wide clone of the user.
1686 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1687   assert(ExtendKindMap.count(DU.NarrowDef) &&
1688          "Should already know the kind of extension used to widen NarrowDef");
1689 
1690   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1691   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1692     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1693       // For LCSSA phis, sink the truncate outside the loop.
1694       // After SimplifyCFG most loop exit targets have a single predecessor.
1695       // Otherwise fall back to a truncate within the loop.
1696       if (UsePhi->getNumOperands() != 1)
1697         truncateIVUse(DU, DT, LI);
1698       else {
1699         // Widening the PHI requires us to insert a trunc.  The logical place
1700         // for this trunc is in the same BB as the PHI.  This is not possible if
1701         // the BB is terminated by a catchswitch.
1702         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1703           return nullptr;
1704 
1705         PHINode *WidePhi =
1706           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1707                           UsePhi);
1708         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1709         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1710         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1711         UsePhi->replaceAllUsesWith(Trunc);
1712         DeadInsts.emplace_back(UsePhi);
1713         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1714                           << *WidePhi << "\n");
1715       }
1716       return nullptr;
1717     }
1718   }
1719 
1720   // This narrow use can be widened by a sext if it's non-negative or its narrow
1721   // def was widended by a sext. Same for zext.
1722   auto canWidenBySExt = [&]() {
1723     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1724   };
1725   auto canWidenByZExt = [&]() {
1726     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1727   };
1728 
1729   // Our raison d'etre! Eliminate sign and zero extension.
1730   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1731       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1732     Value *NewDef = DU.WideDef;
1733     if (DU.NarrowUse->getType() != WideType) {
1734       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1735       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1736       if (CastWidth < IVWidth) {
1737         // The cast isn't as wide as the IV, so insert a Trunc.
1738         IRBuilder<> Builder(DU.NarrowUse);
1739         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1740       }
1741       else {
1742         // A wider extend was hidden behind a narrower one. This may induce
1743         // another round of IV widening in which the intermediate IV becomes
1744         // dead. It should be very rare.
1745         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1746                           << " not wide enough to subsume " << *DU.NarrowUse
1747                           << "\n");
1748         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1749         NewDef = DU.NarrowUse;
1750       }
1751     }
1752     if (NewDef != DU.NarrowUse) {
1753       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1754                         << " replaced by " << *DU.WideDef << "\n");
1755       ++NumElimExt;
1756       DU.NarrowUse->replaceAllUsesWith(NewDef);
1757       DeadInsts.emplace_back(DU.NarrowUse);
1758     }
1759     // Now that the extend is gone, we want to expose it's uses for potential
1760     // further simplification. We don't need to directly inform SimplifyIVUsers
1761     // of the new users, because their parent IV will be processed later as a
1762     // new loop phi. If we preserved IVUsers analysis, we would also want to
1763     // push the uses of WideDef here.
1764 
1765     // No further widening is needed. The deceased [sz]ext had done it for us.
1766     return nullptr;
1767   }
1768 
1769   // Does this user itself evaluate to a recurrence after widening?
1770   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1771   if (!WideAddRec.first)
1772     WideAddRec = getWideRecurrence(DU);
1773 
1774   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1775   if (!WideAddRec.first) {
1776     // If use is a loop condition, try to promote the condition instead of
1777     // truncating the IV first.
1778     if (widenLoopCompare(DU))
1779       return nullptr;
1780 
1781     // We are here about to generate a truncate instruction that may hurt
1782     // performance because the scalar evolution expression computed earlier
1783     // in WideAddRec.first does not indicate a polynomial induction expression.
1784     // In that case, look at the operands of the use instruction to determine
1785     // if we can still widen the use instead of truncating its operand.
1786     if (widenWithVariantUse(DU))
1787       return nullptr;
1788 
1789     // This user does not evaluate to a recurrence after widening, so don't
1790     // follow it. Instead insert a Trunc to kill off the original use,
1791     // eventually isolating the original narrow IV so it can be removed.
1792     truncateIVUse(DU, DT, LI);
1793     return nullptr;
1794   }
1795 
1796   // Reuse the IV increment that SCEVExpander created as long as it dominates
1797   // NarrowUse.
1798   Instruction *WideUse = nullptr;
1799   if (WideAddRec.first == WideIncExpr &&
1800       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1801     WideUse = WideInc;
1802   else {
1803     WideUse = cloneIVUser(DU, WideAddRec.first);
1804     if (!WideUse)
1805       return nullptr;
1806   }
1807   // Evaluation of WideAddRec ensured that the narrow expression could be
1808   // extended outside the loop without overflow. This suggests that the wide use
1809   // evaluates to the same expression as the extended narrow use, but doesn't
1810   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1811   // where it fails, we simply throw away the newly created wide use.
1812   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1813     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1814                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1815                       << "\n");
1816     DeadInsts.emplace_back(WideUse);
1817     return nullptr;
1818   }
1819 
1820   // if we reached this point then we are going to replace
1821   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1822   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1823 
1824   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1825   // Returning WideUse pushes it on the worklist.
1826   return WideUse;
1827 }
1828 
1829 /// Add eligible users of NarrowDef to NarrowIVUsers.
1830 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1831   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1832   bool NonNegativeDef =
1833       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1834                            SE->getZero(NarrowSCEV->getType()));
1835   for (User *U : NarrowDef->users()) {
1836     Instruction *NarrowUser = cast<Instruction>(U);
1837 
1838     // Handle data flow merges and bizarre phi cycles.
1839     if (!Widened.insert(NarrowUser).second)
1840       continue;
1841 
1842     bool NonNegativeUse = false;
1843     if (!NonNegativeDef) {
1844       // We might have a control-dependent range information for this context.
1845       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1846         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1847     }
1848 
1849     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1850                                NonNegativeDef || NonNegativeUse);
1851   }
1852 }
1853 
1854 /// Process a single induction variable. First use the SCEVExpander to create a
1855 /// wide induction variable that evaluates to the same recurrence as the
1856 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1857 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1858 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1859 ///
1860 /// It would be simpler to delete uses as they are processed, but we must avoid
1861 /// invalidating SCEV expressions.
1862 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1863   // Is this phi an induction variable?
1864   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1865   if (!AddRec)
1866     return nullptr;
1867 
1868   // Widen the induction variable expression.
1869   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1870                                ? SE->getSignExtendExpr(AddRec, WideType)
1871                                : SE->getZeroExtendExpr(AddRec, WideType);
1872 
1873   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1874          "Expect the new IV expression to preserve its type");
1875 
1876   // Can the IV be extended outside the loop without overflow?
1877   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1878   if (!AddRec || AddRec->getLoop() != L)
1879     return nullptr;
1880 
1881   // An AddRec must have loop-invariant operands. Since this AddRec is
1882   // materialized by a loop header phi, the expression cannot have any post-loop
1883   // operands, so they must dominate the loop header.
1884   assert(
1885       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1886       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1887       "Loop header phi recurrence inputs do not dominate the loop");
1888 
1889   // Iterate over IV uses (including transitive ones) looking for IV increments
1890   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1891   // the increment calculate control-dependent range information basing on
1892   // dominating conditions inside of the loop (e.g. a range check inside of the
1893   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1894   //
1895   // Control-dependent range information is later used to prove that a narrow
1896   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1897   // this on demand because when pushNarrowIVUsers needs this information some
1898   // of the dominating conditions might be already widened.
1899   if (UsePostIncrementRanges)
1900     calculatePostIncRanges(OrigPhi);
1901 
1902   // The rewriter provides a value for the desired IV expression. This may
1903   // either find an existing phi or materialize a new one. Either way, we
1904   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1905   // of the phi-SCC dominates the loop entry.
1906   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1907   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1908   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1909   // inttoptr, ptrtoint, just skip for now.
1910   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1911     // if the cast node is an inserted instruction without any user, we should
1912     // remove it to make sure the pass don't touch the function as we can not
1913     // wide the phi.
1914     if (ExpandInst->hasNUses(0) &&
1915         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1916       DeadInsts.emplace_back(ExpandInst);
1917     return nullptr;
1918   }
1919 
1920   // Remembering the WideIV increment generated by SCEVExpander allows
1921   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1922   // employ a general reuse mechanism because the call above is the only call to
1923   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1924   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1925     WideInc =
1926       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1927     WideIncExpr = SE->getSCEV(WideInc);
1928     // Propagate the debug location associated with the original loop increment
1929     // to the new (widened) increment.
1930     auto *OrigInc =
1931       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1932     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1933   }
1934 
1935   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1936   ++NumWidened;
1937 
1938   // Traverse the def-use chain using a worklist starting at the original IV.
1939   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1940 
1941   Widened.insert(OrigPhi);
1942   pushNarrowIVUsers(OrigPhi, WidePhi);
1943 
1944   while (!NarrowIVUsers.empty()) {
1945     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1946 
1947     // Process a def-use edge. This may replace the use, so don't hold a
1948     // use_iterator across it.
1949     Instruction *WideUse = widenIVUse(DU, Rewriter);
1950 
1951     // Follow all def-use edges from the previous narrow use.
1952     if (WideUse)
1953       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1954 
1955     // widenIVUse may have removed the def-use edge.
1956     if (DU.NarrowDef->use_empty())
1957       DeadInsts.emplace_back(DU.NarrowDef);
1958   }
1959 
1960   // Attach any debug information to the new PHI.
1961   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1962 
1963   return WidePhi;
1964 }
1965 
1966 /// Calculates control-dependent range for the given def at the given context
1967 /// by looking at dominating conditions inside of the loop
1968 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1969                                     Instruction *NarrowUser) {
1970   using namespace llvm::PatternMatch;
1971 
1972   Value *NarrowDefLHS;
1973   const APInt *NarrowDefRHS;
1974   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1975                                  m_APInt(NarrowDefRHS))) ||
1976       !NarrowDefRHS->isNonNegative())
1977     return;
1978 
1979   auto UpdateRangeFromCondition = [&] (Value *Condition,
1980                                        bool TrueDest) {
1981     CmpInst::Predicate Pred;
1982     Value *CmpRHS;
1983     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1984                                  m_Value(CmpRHS))))
1985       return;
1986 
1987     CmpInst::Predicate P =
1988             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1989 
1990     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1991     auto CmpConstrainedLHSRange =
1992             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1993     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1994         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1995 
1996     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1997   };
1998 
1999   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2000     if (!HasGuards)
2001       return;
2002 
2003     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2004                                      Ctx->getParent()->rend())) {
2005       Value *C = nullptr;
2006       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2007         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2008     }
2009   };
2010 
2011   UpdateRangeFromGuards(NarrowUser);
2012 
2013   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2014   // If NarrowUserBB is statically unreachable asking dominator queries may
2015   // yield surprising results. (e.g. the block may not have a dom tree node)
2016   if (!DT->isReachableFromEntry(NarrowUserBB))
2017     return;
2018 
2019   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2020        L->contains(DTB->getBlock());
2021        DTB = DTB->getIDom()) {
2022     auto *BB = DTB->getBlock();
2023     auto *TI = BB->getTerminator();
2024     UpdateRangeFromGuards(TI);
2025 
2026     auto *BI = dyn_cast<BranchInst>(TI);
2027     if (!BI || !BI->isConditional())
2028       continue;
2029 
2030     auto *TrueSuccessor = BI->getSuccessor(0);
2031     auto *FalseSuccessor = BI->getSuccessor(1);
2032 
2033     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2034       return BBE.isSingleEdge() &&
2035              DT->dominates(BBE, NarrowUser->getParent());
2036     };
2037 
2038     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2039       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2040 
2041     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2042       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2043   }
2044 }
2045 
2046 /// Calculates PostIncRangeInfos map for the given IV
2047 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2048   SmallPtrSet<Instruction *, 16> Visited;
2049   SmallVector<Instruction *, 6> Worklist;
2050   Worklist.push_back(OrigPhi);
2051   Visited.insert(OrigPhi);
2052 
2053   while (!Worklist.empty()) {
2054     Instruction *NarrowDef = Worklist.pop_back_val();
2055 
2056     for (Use &U : NarrowDef->uses()) {
2057       auto *NarrowUser = cast<Instruction>(U.getUser());
2058 
2059       // Don't go looking outside the current loop.
2060       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2061       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2062         continue;
2063 
2064       if (!Visited.insert(NarrowUser).second)
2065         continue;
2066 
2067       Worklist.push_back(NarrowUser);
2068 
2069       calculatePostIncRange(NarrowDef, NarrowUser);
2070     }
2071   }
2072 }
2073 
2074 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2075     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2076     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2077     unsigned &NumElimExt, unsigned &NumWidened,
2078     bool HasGuards, bool UsePostIncrementRanges) {
2079   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2080   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2081   NumElimExt = Widener.getNumElimExt();
2082   NumWidened = Widener.getNumWidened();
2083   return WidePHI;
2084 }
2085