1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "indvars" 35 36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 40 41 namespace { 42 /// This is a utility for simplifying induction variables 43 /// based on ScalarEvolution. It is the primary instrument of the 44 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 45 /// other loop passes that preserve SCEV. 46 class SimplifyIndvar { 47 Loop *L; 48 LoopInfo *LI; 49 ScalarEvolution *SE; 50 51 SmallVectorImpl<WeakVH> &DeadInsts; 52 53 bool Changed; 54 55 public: 56 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI, 57 SmallVectorImpl<WeakVH> &Dead) 58 : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) { 59 assert(LI && "IV simplification requires LoopInfo"); 60 } 61 62 bool hasChanged() const { return Changed; } 63 64 /// Iteratively perform simplification on a worklist of users of the 65 /// specified induction variable. This is the top-level driver that applies 66 /// all simplicitions to users of an IV. 67 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 68 69 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 70 71 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 72 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 73 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 74 bool IsSigned); 75 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 76 77 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 78 const DominatorTree *DT); 79 }; 80 } 81 82 /// Fold an IV operand into its use. This removes increments of an 83 /// aligned IV when used by a instruction that ignores the low bits. 84 /// 85 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 86 /// 87 /// Return the operand of IVOperand for this induction variable if IVOperand can 88 /// be folded (in case more folding opportunities have been exposed). 89 /// Otherwise return null. 90 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 91 Value *IVSrc = nullptr; 92 unsigned OperIdx = 0; 93 const SCEV *FoldedExpr = nullptr; 94 switch (UseInst->getOpcode()) { 95 default: 96 return nullptr; 97 case Instruction::UDiv: 98 case Instruction::LShr: 99 // We're only interested in the case where we know something about 100 // the numerator and have a constant denominator. 101 if (IVOperand != UseInst->getOperand(OperIdx) || 102 !isa<ConstantInt>(UseInst->getOperand(1))) 103 return nullptr; 104 105 // Attempt to fold a binary operator with constant operand. 106 // e.g. ((I + 1) >> 2) => I >> 2 107 if (!isa<BinaryOperator>(IVOperand) 108 || !isa<ConstantInt>(IVOperand->getOperand(1))) 109 return nullptr; 110 111 IVSrc = IVOperand->getOperand(0); 112 // IVSrc must be the (SCEVable) IV, since the other operand is const. 113 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 114 115 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 116 if (UseInst->getOpcode() == Instruction::LShr) { 117 // Get a constant for the divisor. See createSCEV. 118 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 119 if (D->getValue().uge(BitWidth)) 120 return nullptr; 121 122 D = ConstantInt::get(UseInst->getContext(), 123 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 124 } 125 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 126 } 127 // We have something that might fold it's operand. Compare SCEVs. 128 if (!SE->isSCEVable(UseInst->getType())) 129 return nullptr; 130 131 // Bypass the operand if SCEV can prove it has no effect. 132 if (SE->getSCEV(UseInst) != FoldedExpr) 133 return nullptr; 134 135 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 136 << " -> " << *UseInst << '\n'); 137 138 UseInst->setOperand(OperIdx, IVSrc); 139 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 140 141 ++NumElimOperand; 142 Changed = true; 143 if (IVOperand->use_empty()) 144 DeadInsts.emplace_back(IVOperand); 145 return IVSrc; 146 } 147 148 /// SimplifyIVUsers helper for eliminating useless 149 /// comparisons against an induction variable. 150 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 151 unsigned IVOperIdx = 0; 152 ICmpInst::Predicate Pred = ICmp->getPredicate(); 153 if (IVOperand != ICmp->getOperand(0)) { 154 // Swapped 155 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 156 IVOperIdx = 1; 157 Pred = ICmpInst::getSwappedPredicate(Pred); 158 } 159 160 // Get the SCEVs for the ICmp operands. 161 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 162 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 163 164 // Simplify unnecessary loops away. 165 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 166 S = SE->getSCEVAtScope(S, ICmpLoop); 167 X = SE->getSCEVAtScope(X, ICmpLoop); 168 169 // If the condition is always true or always false, replace it with 170 // a constant value. 171 if (SE->isKnownPredicate(Pred, S, X)) 172 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 173 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 174 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 175 else 176 return; 177 178 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 179 ++NumElimCmp; 180 Changed = true; 181 DeadInsts.emplace_back(ICmp); 182 } 183 184 /// SimplifyIVUsers helper for eliminating useless 185 /// remainder operations operating on an induction variable. 186 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 187 Value *IVOperand, 188 bool IsSigned) { 189 // We're only interested in the case where we know something about 190 // the numerator. 191 if (IVOperand != Rem->getOperand(0)) 192 return; 193 194 // Get the SCEVs for the ICmp operands. 195 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 196 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 197 198 // Simplify unnecessary loops away. 199 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 200 S = SE->getSCEVAtScope(S, ICmpLoop); 201 X = SE->getSCEVAtScope(X, ICmpLoop); 202 203 // i % n --> i if i is in [0,n). 204 if ((!IsSigned || SE->isKnownNonNegative(S)) && 205 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 206 S, X)) 207 Rem->replaceAllUsesWith(Rem->getOperand(0)); 208 else { 209 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 210 const SCEV *LessOne = 211 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 212 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 213 return; 214 215 if (!SE->isKnownPredicate(IsSigned ? 216 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 217 LessOne, X)) 218 return; 219 220 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 221 Rem->getOperand(0), Rem->getOperand(1)); 222 SelectInst *Sel = 223 SelectInst::Create(ICmp, 224 ConstantInt::get(Rem->getType(), 0), 225 Rem->getOperand(0), "tmp", Rem); 226 Rem->replaceAllUsesWith(Sel); 227 } 228 229 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 230 ++NumElimRem; 231 Changed = true; 232 DeadInsts.emplace_back(Rem); 233 } 234 235 /// Eliminate an operation that consumes a simple IV and has 236 /// no observable side-effect given the range of IV values. 237 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 238 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 239 Instruction *IVOperand) { 240 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 241 eliminateIVComparison(ICmp, IVOperand); 242 return true; 243 } 244 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 245 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 246 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 247 eliminateIVRemainder(Rem, IVOperand, IsSigned); 248 return true; 249 } 250 } 251 252 // Eliminate any operation that SCEV can prove is an identity function. 253 if (!SE->isSCEVable(UseInst->getType()) || 254 (UseInst->getType() != IVOperand->getType()) || 255 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 256 return false; 257 258 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 259 260 UseInst->replaceAllUsesWith(IVOperand); 261 ++NumElimIdentity; 262 Changed = true; 263 DeadInsts.emplace_back(UseInst); 264 return true; 265 } 266 267 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 268 /// unsigned-overflow. Returns true if anything changed, false otherwise. 269 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 270 Value *IVOperand) { 271 272 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 273 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 274 return false; 275 276 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 277 SCEV::NoWrapFlags); 278 279 switch (BO->getOpcode()) { 280 default: 281 return false; 282 283 case Instruction::Add: 284 GetExprForBO = &ScalarEvolution::getAddExpr; 285 break; 286 287 case Instruction::Sub: 288 GetExprForBO = &ScalarEvolution::getMinusSCEV; 289 break; 290 291 case Instruction::Mul: 292 GetExprForBO = &ScalarEvolution::getMulExpr; 293 break; 294 } 295 296 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 297 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 298 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 299 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 300 301 bool Changed = false; 302 303 if (!BO->hasNoUnsignedWrap()) { 304 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 305 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 306 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 307 SCEV::FlagAnyWrap); 308 if (ExtendAfterOp == OpAfterExtend) { 309 BO->setHasNoUnsignedWrap(); 310 SE->forgetValue(BO); 311 Changed = true; 312 } 313 } 314 315 if (!BO->hasNoSignedWrap()) { 316 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 317 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 318 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 319 SCEV::FlagAnyWrap); 320 if (ExtendAfterOp == OpAfterExtend) { 321 BO->setHasNoSignedWrap(); 322 SE->forgetValue(BO); 323 Changed = true; 324 } 325 } 326 327 return Changed; 328 } 329 330 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 331 /// analysis and optimization. 332 /// 333 /// \return A new value representing the non-overflowing add if possible, 334 /// otherwise return the original value. 335 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 336 const DominatorTree *DT) { 337 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 338 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 339 return IVUser; 340 341 // Find a branch guarded by the overflow check. 342 BranchInst *Branch = nullptr; 343 Instruction *AddVal = nullptr; 344 for (User *U : II->users()) { 345 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 346 if (ExtractInst->getNumIndices() != 1) 347 continue; 348 if (ExtractInst->getIndices()[0] == 0) 349 AddVal = ExtractInst; 350 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 351 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 352 } 353 } 354 if (!AddVal || !Branch) 355 return IVUser; 356 357 BasicBlock *ContinueBB = Branch->getSuccessor(1); 358 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 359 return IVUser; 360 361 // Check if all users of the add are provably NSW. 362 bool AllNSW = true; 363 for (Use &U : AddVal->uses()) { 364 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 365 BasicBlock *UseBB = UseInst->getParent(); 366 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 367 UseBB = PHI->getIncomingBlock(U); 368 if (!DT->dominates(ContinueBB, UseBB)) { 369 AllNSW = false; 370 break; 371 } 372 } 373 } 374 if (!AllNSW) 375 return IVUser; 376 377 // Go for it... 378 IRBuilder<> Builder(IVUser); 379 Instruction *AddInst = dyn_cast<Instruction>( 380 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 381 382 // The caller expects the new add to have the same form as the intrinsic. The 383 // IV operand position must be the same. 384 assert((AddInst->getOpcode() == Instruction::Add && 385 AddInst->getOperand(0) == II->getOperand(0)) && 386 "Bad add instruction created from overflow intrinsic."); 387 388 AddVal->replaceAllUsesWith(AddInst); 389 DeadInsts.emplace_back(AddVal); 390 return AddInst; 391 } 392 393 /// Add all uses of Def to the current IV's worklist. 394 static void pushIVUsers( 395 Instruction *Def, 396 SmallPtrSet<Instruction*,16> &Simplified, 397 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 398 399 for (User *U : Def->users()) { 400 Instruction *UI = cast<Instruction>(U); 401 402 // Avoid infinite or exponential worklist processing. 403 // Also ensure unique worklist users. 404 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 405 // self edges first. 406 if (UI != Def && Simplified.insert(UI).second) 407 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 408 } 409 } 410 411 /// Return true if this instruction generates a simple SCEV 412 /// expression in terms of that IV. 413 /// 414 /// This is similar to IVUsers' isInteresting() but processes each instruction 415 /// non-recursively when the operand is already known to be a simpleIVUser. 416 /// 417 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 418 if (!SE->isSCEVable(I->getType())) 419 return false; 420 421 // Get the symbolic expression for this instruction. 422 const SCEV *S = SE->getSCEV(I); 423 424 // Only consider affine recurrences. 425 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 426 if (AR && AR->getLoop() == L) 427 return true; 428 429 return false; 430 } 431 432 /// Iteratively perform simplification on a worklist of users 433 /// of the specified induction variable. Each successive simplification may push 434 /// more users which may themselves be candidates for simplification. 435 /// 436 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 437 /// instructions in-place during analysis. Rather than rewriting induction 438 /// variables bottom-up from their users, it transforms a chain of IVUsers 439 /// top-down, updating the IR only when it encouters a clear optimization 440 /// opportunitiy. 441 /// 442 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 443 /// 444 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 445 if (!SE->isSCEVable(CurrIV->getType())) 446 return; 447 448 // Instructions processed by SimplifyIndvar for CurrIV. 449 SmallPtrSet<Instruction*,16> Simplified; 450 451 // Use-def pairs if IV users waiting to be processed for CurrIV. 452 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 453 454 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 455 // called multiple times for the same LoopPhi. This is the proper thing to 456 // do for loop header phis that use each other. 457 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 458 459 while (!SimpleIVUsers.empty()) { 460 std::pair<Instruction*, Instruction*> UseOper = 461 SimpleIVUsers.pop_back_val(); 462 Instruction *UseInst = UseOper.first; 463 464 // Bypass back edges to avoid extra work. 465 if (UseInst == CurrIV) continue; 466 467 if (V && V->shouldSplitOverflowInstrinsics()) { 468 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 469 if (!UseInst) 470 continue; 471 } 472 473 Instruction *IVOperand = UseOper.second; 474 for (unsigned N = 0; IVOperand; ++N) { 475 assert(N <= Simplified.size() && "runaway iteration"); 476 477 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 478 if (!NewOper) 479 break; // done folding 480 IVOperand = dyn_cast<Instruction>(NewOper); 481 } 482 if (!IVOperand) 483 continue; 484 485 if (eliminateIVUser(UseOper.first, IVOperand)) { 486 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 487 continue; 488 } 489 490 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 491 if (isa<OverflowingBinaryOperator>(BO) && 492 strengthenOverflowingOperation(BO, IVOperand)) { 493 // re-queue uses of the now modified binary operator and fall 494 // through to the checks that remain. 495 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 496 } 497 } 498 499 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 500 if (V && Cast) { 501 V->visitCast(Cast); 502 continue; 503 } 504 if (isSimpleIVUser(UseOper.first, L, SE)) { 505 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 506 } 507 } 508 } 509 510 namespace llvm { 511 512 void IVVisitor::anchor() { } 513 514 /// Simplify instructions that use this induction variable 515 /// by using ScalarEvolution to analyze the IV's recurrence. 516 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 517 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 518 { 519 LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 520 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead); 521 SIV.simplifyUsers(CurrIV, V); 522 return SIV.hasChanged(); 523 } 524 525 /// Simplify users of induction variables within this 526 /// loop. This does not actually change or add IVs. 527 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 528 SmallVectorImpl<WeakVH> &Dead) { 529 bool Changed = false; 530 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 531 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 532 } 533 return Changed; 534 } 535 536 } // namespace llvm 537