1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "indvars" 35 36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 40 41 namespace { 42 /// This is a utility for simplifying induction variables 43 /// based on ScalarEvolution. It is the primary instrument of the 44 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 45 /// other loop passes that preserve SCEV. 46 class SimplifyIndvar { 47 Loop *L; 48 LoopInfo *LI; 49 ScalarEvolution *SE; 50 DominatorTree *DT; 51 52 SmallVectorImpl<WeakVH> &DeadInsts; 53 54 bool Changed; 55 56 public: 57 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 58 LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead) 59 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { 60 assert(LI && "IV simplification requires LoopInfo"); 61 } 62 63 bool hasChanged() const { return Changed; } 64 65 /// Iteratively perform simplification on a worklist of users of the 66 /// specified induction variable. This is the top-level driver that applies 67 /// all simplifications to users of an IV. 68 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 69 70 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 71 72 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 73 74 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 75 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 76 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 77 bool IsSigned); 78 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 79 80 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 81 const DominatorTree *DT); 82 }; 83 } 84 85 /// Fold an IV operand into its use. This removes increments of an 86 /// aligned IV when used by a instruction that ignores the low bits. 87 /// 88 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 89 /// 90 /// Return the operand of IVOperand for this induction variable if IVOperand can 91 /// be folded (in case more folding opportunities have been exposed). 92 /// Otherwise return null. 93 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 94 Value *IVSrc = nullptr; 95 unsigned OperIdx = 0; 96 const SCEV *FoldedExpr = nullptr; 97 switch (UseInst->getOpcode()) { 98 default: 99 return nullptr; 100 case Instruction::UDiv: 101 case Instruction::LShr: 102 // We're only interested in the case where we know something about 103 // the numerator and have a constant denominator. 104 if (IVOperand != UseInst->getOperand(OperIdx) || 105 !isa<ConstantInt>(UseInst->getOperand(1))) 106 return nullptr; 107 108 // Attempt to fold a binary operator with constant operand. 109 // e.g. ((I + 1) >> 2) => I >> 2 110 if (!isa<BinaryOperator>(IVOperand) 111 || !isa<ConstantInt>(IVOperand->getOperand(1))) 112 return nullptr; 113 114 IVSrc = IVOperand->getOperand(0); 115 // IVSrc must be the (SCEVable) IV, since the other operand is const. 116 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 117 118 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 119 if (UseInst->getOpcode() == Instruction::LShr) { 120 // Get a constant for the divisor. See createSCEV. 121 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 122 if (D->getValue().uge(BitWidth)) 123 return nullptr; 124 125 D = ConstantInt::get(UseInst->getContext(), 126 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 127 } 128 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 129 } 130 // We have something that might fold it's operand. Compare SCEVs. 131 if (!SE->isSCEVable(UseInst->getType())) 132 return nullptr; 133 134 // Bypass the operand if SCEV can prove it has no effect. 135 if (SE->getSCEV(UseInst) != FoldedExpr) 136 return nullptr; 137 138 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 139 << " -> " << *UseInst << '\n'); 140 141 UseInst->setOperand(OperIdx, IVSrc); 142 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 143 144 ++NumElimOperand; 145 Changed = true; 146 if (IVOperand->use_empty()) 147 DeadInsts.emplace_back(IVOperand); 148 return IVSrc; 149 } 150 151 /// SimplifyIVUsers helper for eliminating useless 152 /// comparisons against an induction variable. 153 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 154 unsigned IVOperIdx = 0; 155 ICmpInst::Predicate Pred = ICmp->getPredicate(); 156 if (IVOperand != ICmp->getOperand(0)) { 157 // Swapped 158 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 159 IVOperIdx = 1; 160 Pred = ICmpInst::getSwappedPredicate(Pred); 161 } 162 163 // Get the SCEVs for the ICmp operands. 164 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 165 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 166 167 // Simplify unnecessary loops away. 168 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 169 S = SE->getSCEVAtScope(S, ICmpLoop); 170 X = SE->getSCEVAtScope(X, ICmpLoop); 171 172 ICmpInst::Predicate InvariantPredicate; 173 const SCEV *InvariantLHS, *InvariantRHS; 174 175 // If the condition is always true or always false, replace it with 176 // a constant value. 177 if (SE->isKnownPredicate(Pred, S, X)) { 178 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 179 DeadInsts.emplace_back(ICmp); 180 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 181 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 182 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 183 DeadInsts.emplace_back(ICmp); 184 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 185 } else if (isa<PHINode>(IVOperand) && 186 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 187 InvariantLHS, InvariantRHS)) { 188 189 // Rewrite the comparison to a loop invariant comparison if it can be done 190 // cheaply, where cheaply means "we don't need to emit any new 191 // instructions". 192 193 Value *NewLHS = nullptr, *NewRHS = nullptr; 194 195 if (S == InvariantLHS || X == InvariantLHS) 196 NewLHS = 197 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 198 199 if (S == InvariantRHS || X == InvariantRHS) 200 NewRHS = 201 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 202 203 auto *PN = cast<PHINode>(IVOperand); 204 for (unsigned i = 0, e = PN->getNumIncomingValues(); 205 i != e && (!NewLHS || !NewRHS); 206 ++i) { 207 208 // If this is a value incoming from the backedge, then it cannot be a loop 209 // invariant value (since we know that IVOperand is an induction variable). 210 if (L->contains(PN->getIncomingBlock(i))) 211 continue; 212 213 // NB! This following assert does not fundamentally have to be true, but 214 // it is true today given how SCEV analyzes induction variables. 215 // Specifically, today SCEV will *not* recognize %iv as an induction 216 // variable in the following case: 217 // 218 // define void @f(i32 %k) { 219 // entry: 220 // br i1 undef, label %r, label %l 221 // 222 // l: 223 // %k.inc.l = add i32 %k, 1 224 // br label %loop 225 // 226 // r: 227 // %k.inc.r = add i32 %k, 1 228 // br label %loop 229 // 230 // loop: 231 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] 232 // %iv.inc = add i32 %iv, 1 233 // br label %loop 234 // } 235 // 236 // but if it starts to, at some point, then the assertion below will have 237 // to be changed to a runtime check. 238 239 Value *Incoming = PN->getIncomingValue(i); 240 241 #ifndef NDEBUG 242 if (auto *I = dyn_cast<Instruction>(Incoming)) 243 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); 244 #endif 245 246 const SCEV *IncomingS = SE->getSCEV(Incoming); 247 248 if (!NewLHS && IncomingS == InvariantLHS) 249 NewLHS = Incoming; 250 if (!NewRHS && IncomingS == InvariantRHS) 251 NewRHS = Incoming; 252 } 253 254 if (!NewLHS || !NewRHS) 255 // We could not find an existing value to replace either LHS or RHS. 256 // Generating new instructions has subtler tradeoffs, so avoid doing that 257 // for now. 258 return; 259 260 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 261 ICmp->setPredicate(InvariantPredicate); 262 ICmp->setOperand(0, NewLHS); 263 ICmp->setOperand(1, NewRHS); 264 } else 265 return; 266 267 ++NumElimCmp; 268 Changed = true; 269 } 270 271 /// SimplifyIVUsers helper for eliminating useless 272 /// remainder operations operating on an induction variable. 273 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 274 Value *IVOperand, 275 bool IsSigned) { 276 // We're only interested in the case where we know something about 277 // the numerator. 278 if (IVOperand != Rem->getOperand(0)) 279 return; 280 281 // Get the SCEVs for the ICmp operands. 282 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 283 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 284 285 // Simplify unnecessary loops away. 286 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 287 S = SE->getSCEVAtScope(S, ICmpLoop); 288 X = SE->getSCEVAtScope(X, ICmpLoop); 289 290 // i % n --> i if i is in [0,n). 291 if ((!IsSigned || SE->isKnownNonNegative(S)) && 292 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 293 S, X)) 294 Rem->replaceAllUsesWith(Rem->getOperand(0)); 295 else { 296 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 297 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 298 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 299 return; 300 301 if (!SE->isKnownPredicate(IsSigned ? 302 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 303 LessOne, X)) 304 return; 305 306 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 307 Rem->getOperand(0), Rem->getOperand(1)); 308 SelectInst *Sel = 309 SelectInst::Create(ICmp, 310 ConstantInt::get(Rem->getType(), 0), 311 Rem->getOperand(0), "tmp", Rem); 312 Rem->replaceAllUsesWith(Sel); 313 } 314 315 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 316 ++NumElimRem; 317 Changed = true; 318 DeadInsts.emplace_back(Rem); 319 } 320 321 /// Eliminate an operation that consumes a simple IV and has no observable 322 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 323 /// but UseInst may not be. 324 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 325 Instruction *IVOperand) { 326 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 327 eliminateIVComparison(ICmp, IVOperand); 328 return true; 329 } 330 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 331 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 332 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 333 eliminateIVRemainder(Rem, IVOperand, IsSigned); 334 return true; 335 } 336 } 337 338 if (eliminateIdentitySCEV(UseInst, IVOperand)) 339 return true; 340 341 return false; 342 } 343 344 /// Eliminate any operation that SCEV can prove is an identity function. 345 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 346 Instruction *IVOperand) { 347 if (!SE->isSCEVable(UseInst->getType()) || 348 (UseInst->getType() != IVOperand->getType()) || 349 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 350 return false; 351 352 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 353 // dominator tree, even if X is an operand to Y. For instance, in 354 // 355 // %iv = phi i32 {0,+,1} 356 // br %cond, label %left, label %merge 357 // 358 // left: 359 // %X = add i32 %iv, 0 360 // br label %merge 361 // 362 // merge: 363 // %M = phi (%X, %iv) 364 // 365 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 366 // %M.replaceAllUsesWith(%X) would be incorrect. 367 368 if (isa<PHINode>(UseInst)) 369 // If UseInst is not a PHI node then we know that IVOperand dominates 370 // UseInst directly from the legality of SSA. 371 if (!DT || !DT->dominates(IVOperand, UseInst)) 372 return false; 373 374 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 375 return false; 376 377 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 378 379 UseInst->replaceAllUsesWith(IVOperand); 380 ++NumElimIdentity; 381 Changed = true; 382 DeadInsts.emplace_back(UseInst); 383 return true; 384 } 385 386 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 387 /// unsigned-overflow. Returns true if anything changed, false otherwise. 388 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 389 Value *IVOperand) { 390 391 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 392 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 393 return false; 394 395 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 396 SCEV::NoWrapFlags); 397 398 switch (BO->getOpcode()) { 399 default: 400 return false; 401 402 case Instruction::Add: 403 GetExprForBO = &ScalarEvolution::getAddExpr; 404 break; 405 406 case Instruction::Sub: 407 GetExprForBO = &ScalarEvolution::getMinusSCEV; 408 break; 409 410 case Instruction::Mul: 411 GetExprForBO = &ScalarEvolution::getMulExpr; 412 break; 413 } 414 415 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 416 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 417 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 418 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 419 420 bool Changed = false; 421 422 if (!BO->hasNoUnsignedWrap()) { 423 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 424 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 425 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 426 SCEV::FlagAnyWrap); 427 if (ExtendAfterOp == OpAfterExtend) { 428 BO->setHasNoUnsignedWrap(); 429 SE->forgetValue(BO); 430 Changed = true; 431 } 432 } 433 434 if (!BO->hasNoSignedWrap()) { 435 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 436 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 437 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 438 SCEV::FlagAnyWrap); 439 if (ExtendAfterOp == OpAfterExtend) { 440 BO->setHasNoSignedWrap(); 441 SE->forgetValue(BO); 442 Changed = true; 443 } 444 } 445 446 return Changed; 447 } 448 449 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 450 /// analysis and optimization. 451 /// 452 /// \return A new value representing the non-overflowing add if possible, 453 /// otherwise return the original value. 454 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 455 const DominatorTree *DT) { 456 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 457 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 458 return IVUser; 459 460 // Find a branch guarded by the overflow check. 461 BranchInst *Branch = nullptr; 462 Instruction *AddVal = nullptr; 463 for (User *U : II->users()) { 464 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 465 if (ExtractInst->getNumIndices() != 1) 466 continue; 467 if (ExtractInst->getIndices()[0] == 0) 468 AddVal = ExtractInst; 469 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 470 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 471 } 472 } 473 if (!AddVal || !Branch) 474 return IVUser; 475 476 BasicBlock *ContinueBB = Branch->getSuccessor(1); 477 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 478 return IVUser; 479 480 // Check if all users of the add are provably NSW. 481 bool AllNSW = true; 482 for (Use &U : AddVal->uses()) { 483 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 484 BasicBlock *UseBB = UseInst->getParent(); 485 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 486 UseBB = PHI->getIncomingBlock(U); 487 if (!DT->dominates(ContinueBB, UseBB)) { 488 AllNSW = false; 489 break; 490 } 491 } 492 } 493 if (!AllNSW) 494 return IVUser; 495 496 // Go for it... 497 IRBuilder<> Builder(IVUser); 498 Instruction *AddInst = dyn_cast<Instruction>( 499 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 500 501 // The caller expects the new add to have the same form as the intrinsic. The 502 // IV operand position must be the same. 503 assert((AddInst->getOpcode() == Instruction::Add && 504 AddInst->getOperand(0) == II->getOperand(0)) && 505 "Bad add instruction created from overflow intrinsic."); 506 507 AddVal->replaceAllUsesWith(AddInst); 508 DeadInsts.emplace_back(AddVal); 509 return AddInst; 510 } 511 512 /// Add all uses of Def to the current IV's worklist. 513 static void pushIVUsers( 514 Instruction *Def, 515 SmallPtrSet<Instruction*,16> &Simplified, 516 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 517 518 for (User *U : Def->users()) { 519 Instruction *UI = cast<Instruction>(U); 520 521 // Avoid infinite or exponential worklist processing. 522 // Also ensure unique worklist users. 523 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 524 // self edges first. 525 if (UI != Def && Simplified.insert(UI).second) 526 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 527 } 528 } 529 530 /// Return true if this instruction generates a simple SCEV 531 /// expression in terms of that IV. 532 /// 533 /// This is similar to IVUsers' isInteresting() but processes each instruction 534 /// non-recursively when the operand is already known to be a simpleIVUser. 535 /// 536 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 537 if (!SE->isSCEVable(I->getType())) 538 return false; 539 540 // Get the symbolic expression for this instruction. 541 const SCEV *S = SE->getSCEV(I); 542 543 // Only consider affine recurrences. 544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 545 if (AR && AR->getLoop() == L) 546 return true; 547 548 return false; 549 } 550 551 /// Iteratively perform simplification on a worklist of users 552 /// of the specified induction variable. Each successive simplification may push 553 /// more users which may themselves be candidates for simplification. 554 /// 555 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 556 /// instructions in-place during analysis. Rather than rewriting induction 557 /// variables bottom-up from their users, it transforms a chain of IVUsers 558 /// top-down, updating the IR only when it encounters a clear optimization 559 /// opportunity. 560 /// 561 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 562 /// 563 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 564 if (!SE->isSCEVable(CurrIV->getType())) 565 return; 566 567 // Instructions processed by SimplifyIndvar for CurrIV. 568 SmallPtrSet<Instruction*,16> Simplified; 569 570 // Use-def pairs if IV users waiting to be processed for CurrIV. 571 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 572 573 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 574 // called multiple times for the same LoopPhi. This is the proper thing to 575 // do for loop header phis that use each other. 576 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 577 578 while (!SimpleIVUsers.empty()) { 579 std::pair<Instruction*, Instruction*> UseOper = 580 SimpleIVUsers.pop_back_val(); 581 Instruction *UseInst = UseOper.first; 582 583 // Bypass back edges to avoid extra work. 584 if (UseInst == CurrIV) continue; 585 586 if (V && V->shouldSplitOverflowInstrinsics()) { 587 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 588 if (!UseInst) 589 continue; 590 } 591 592 Instruction *IVOperand = UseOper.second; 593 for (unsigned N = 0; IVOperand; ++N) { 594 assert(N <= Simplified.size() && "runaway iteration"); 595 596 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 597 if (!NewOper) 598 break; // done folding 599 IVOperand = dyn_cast<Instruction>(NewOper); 600 } 601 if (!IVOperand) 602 continue; 603 604 if (eliminateIVUser(UseOper.first, IVOperand)) { 605 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 606 continue; 607 } 608 609 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 610 if (isa<OverflowingBinaryOperator>(BO) && 611 strengthenOverflowingOperation(BO, IVOperand)) { 612 // re-queue uses of the now modified binary operator and fall 613 // through to the checks that remain. 614 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 615 } 616 } 617 618 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 619 if (V && Cast) { 620 V->visitCast(Cast); 621 continue; 622 } 623 if (isSimpleIVUser(UseOper.first, L, SE)) { 624 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 625 } 626 } 627 } 628 629 namespace llvm { 630 631 void IVVisitor::anchor() { } 632 633 /// Simplify instructions that use this induction variable 634 /// by using ScalarEvolution to analyze the IV's recurrence. 635 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 636 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead, 637 IVVisitor *V) { 638 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); 639 SIV.simplifyUsers(CurrIV, V); 640 return SIV.hasChanged(); 641 } 642 643 /// Simplify users of induction variables within this 644 /// loop. This does not actually change or add IVs. 645 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 646 LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) { 647 bool Changed = false; 648 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 649 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); 650 } 651 return Changed; 652 } 653 654 } // namespace llvm 655