1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ScalarEvolutionExpander.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "indvars" 33 34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 35 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 36 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 37 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 38 STATISTIC( 39 NumSimplifiedSDiv, 40 "Number of IV signed division operations converted to unsigned division"); 41 STATISTIC( 42 NumSimplifiedSRem, 43 "Number of IV signed remainder operations converted to unsigned remainder"); 44 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 45 46 namespace { 47 /// This is a utility for simplifying induction variables 48 /// based on ScalarEvolution. It is the primary instrument of the 49 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 50 /// other loop passes that preserve SCEV. 51 class SimplifyIndvar { 52 Loop *L; 53 LoopInfo *LI; 54 ScalarEvolution *SE; 55 DominatorTree *DT; 56 SCEVExpander &Rewriter; 57 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 58 59 bool Changed; 60 61 public: 62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 63 LoopInfo *LI, SCEVExpander &Rewriter, 64 SmallVectorImpl<WeakTrackingVH> &Dead) 65 : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), 66 Changed(false) { 67 assert(LI && "IV simplification requires LoopInfo"); 68 } 69 70 bool hasChanged() const { return Changed; } 71 72 /// Iteratively perform simplification on a worklist of users of the 73 /// specified induction variable. This is the top-level driver that applies 74 /// all simplifications to users of an IV. 75 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 76 77 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 78 79 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 80 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 81 82 bool eliminateOverflowIntrinsic(CallInst *CI); 83 bool eliminateTrunc(TruncInst *TI); 84 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 85 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 86 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 87 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 88 bool IsSigned); 89 void replaceRemWithNumerator(BinaryOperator *Rem); 90 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 91 void replaceSRemWithURem(BinaryOperator *Rem); 92 bool eliminateSDiv(BinaryOperator *SDiv); 93 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 94 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 95 }; 96 } 97 98 /// Fold an IV operand into its use. This removes increments of an 99 /// aligned IV when used by a instruction that ignores the low bits. 100 /// 101 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 102 /// 103 /// Return the operand of IVOperand for this induction variable if IVOperand can 104 /// be folded (in case more folding opportunities have been exposed). 105 /// Otherwise return null. 106 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 107 Value *IVSrc = nullptr; 108 const unsigned OperIdx = 0; 109 const SCEV *FoldedExpr = nullptr; 110 bool MustDropExactFlag = false; 111 switch (UseInst->getOpcode()) { 112 default: 113 return nullptr; 114 case Instruction::UDiv: 115 case Instruction::LShr: 116 // We're only interested in the case where we know something about 117 // the numerator and have a constant denominator. 118 if (IVOperand != UseInst->getOperand(OperIdx) || 119 !isa<ConstantInt>(UseInst->getOperand(1))) 120 return nullptr; 121 122 // Attempt to fold a binary operator with constant operand. 123 // e.g. ((I + 1) >> 2) => I >> 2 124 if (!isa<BinaryOperator>(IVOperand) 125 || !isa<ConstantInt>(IVOperand->getOperand(1))) 126 return nullptr; 127 128 IVSrc = IVOperand->getOperand(0); 129 // IVSrc must be the (SCEVable) IV, since the other operand is const. 130 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 131 132 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 133 if (UseInst->getOpcode() == Instruction::LShr) { 134 // Get a constant for the divisor. See createSCEV. 135 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 136 if (D->getValue().uge(BitWidth)) 137 return nullptr; 138 139 D = ConstantInt::get(UseInst->getContext(), 140 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 141 } 142 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 143 // We might have 'exact' flag set at this point which will no longer be 144 // correct after we make the replacement. 145 if (UseInst->isExact() && 146 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 147 MustDropExactFlag = true; 148 } 149 // We have something that might fold it's operand. Compare SCEVs. 150 if (!SE->isSCEVable(UseInst->getType())) 151 return nullptr; 152 153 // Bypass the operand if SCEV can prove it has no effect. 154 if (SE->getSCEV(UseInst) != FoldedExpr) 155 return nullptr; 156 157 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 158 << " -> " << *UseInst << '\n'); 159 160 UseInst->setOperand(OperIdx, IVSrc); 161 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 162 163 if (MustDropExactFlag) 164 UseInst->dropPoisonGeneratingFlags(); 165 166 ++NumElimOperand; 167 Changed = true; 168 if (IVOperand->use_empty()) 169 DeadInsts.emplace_back(IVOperand); 170 return IVSrc; 171 } 172 173 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 174 Value *IVOperand) { 175 unsigned IVOperIdx = 0; 176 ICmpInst::Predicate Pred = ICmp->getPredicate(); 177 if (IVOperand != ICmp->getOperand(0)) { 178 // Swapped 179 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 180 IVOperIdx = 1; 181 Pred = ICmpInst::getSwappedPredicate(Pred); 182 } 183 184 // Get the SCEVs for the ICmp operands (in the specific context of the 185 // current loop) 186 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 187 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 188 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 189 190 ICmpInst::Predicate InvariantPredicate; 191 const SCEV *InvariantLHS, *InvariantRHS; 192 193 auto *PN = dyn_cast<PHINode>(IVOperand); 194 if (!PN) 195 return false; 196 if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 197 InvariantLHS, InvariantRHS)) 198 return false; 199 200 // Rewrite the comparison to a loop invariant comparison if it can be done 201 // cheaply, where cheaply means "we don't need to emit any new 202 // instructions". 203 204 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 205 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 206 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 207 208 // TODO: Support multiple entry loops? (We currently bail out of these in 209 // the IndVarSimplify pass) 210 if (auto *BB = L->getLoopPredecessor()) { 211 const int Idx = PN->getBasicBlockIndex(BB); 212 if (Idx >= 0) { 213 Value *Incoming = PN->getIncomingValue(Idx); 214 const SCEV *IncomingS = SE->getSCEV(Incoming); 215 CheapExpansions[IncomingS] = Incoming; 216 } 217 } 218 Value *NewLHS = CheapExpansions[InvariantLHS]; 219 Value *NewRHS = CheapExpansions[InvariantRHS]; 220 221 if (!NewLHS) 222 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 223 NewLHS = ConstLHS->getValue(); 224 if (!NewRHS) 225 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 226 NewRHS = ConstRHS->getValue(); 227 228 if (!NewLHS || !NewRHS) 229 // We could not find an existing value to replace either LHS or RHS. 230 // Generating new instructions has subtler tradeoffs, so avoid doing that 231 // for now. 232 return false; 233 234 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 235 ICmp->setPredicate(InvariantPredicate); 236 ICmp->setOperand(0, NewLHS); 237 ICmp->setOperand(1, NewRHS); 238 return true; 239 } 240 241 /// SimplifyIVUsers helper for eliminating useless 242 /// comparisons against an induction variable. 243 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 244 unsigned IVOperIdx = 0; 245 ICmpInst::Predicate Pred = ICmp->getPredicate(); 246 ICmpInst::Predicate OriginalPred = Pred; 247 if (IVOperand != ICmp->getOperand(0)) { 248 // Swapped 249 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 250 IVOperIdx = 1; 251 Pred = ICmpInst::getSwappedPredicate(Pred); 252 } 253 254 // Get the SCEVs for the ICmp operands (in the specific context of the 255 // current loop) 256 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 257 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 258 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 259 260 // If the condition is always true or always false, replace it with 261 // a constant value. 262 if (SE->isKnownPredicate(Pred, S, X)) { 263 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 264 DeadInsts.emplace_back(ICmp); 265 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 266 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 267 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 268 DeadInsts.emplace_back(ICmp); 269 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 270 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 271 // fallthrough to end of function 272 } else if (ICmpInst::isSigned(OriginalPred) && 273 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 274 // If we were unable to make anything above, all we can is to canonicalize 275 // the comparison hoping that it will open the doors for other 276 // optimizations. If we find out that we compare two non-negative values, 277 // we turn the instruction's predicate to its unsigned version. Note that 278 // we cannot rely on Pred here unless we check if we have swapped it. 279 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 280 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 281 << '\n'); 282 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 283 } else 284 return; 285 286 ++NumElimCmp; 287 Changed = true; 288 } 289 290 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 291 // Get the SCEVs for the ICmp operands. 292 auto *N = SE->getSCEV(SDiv->getOperand(0)); 293 auto *D = SE->getSCEV(SDiv->getOperand(1)); 294 295 // Simplify unnecessary loops away. 296 const Loop *L = LI->getLoopFor(SDiv->getParent()); 297 N = SE->getSCEVAtScope(N, L); 298 D = SE->getSCEVAtScope(D, L); 299 300 // Replace sdiv by udiv if both of the operands are non-negative 301 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 302 auto *UDiv = BinaryOperator::Create( 303 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 304 SDiv->getName() + ".udiv", SDiv); 305 UDiv->setIsExact(SDiv->isExact()); 306 SDiv->replaceAllUsesWith(UDiv); 307 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 308 ++NumSimplifiedSDiv; 309 Changed = true; 310 DeadInsts.push_back(SDiv); 311 return true; 312 } 313 314 return false; 315 } 316 317 // i %s n -> i %u n if i >= 0 and n >= 0 318 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 319 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 320 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 321 Rem->getName() + ".urem", Rem); 322 Rem->replaceAllUsesWith(URem); 323 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 324 ++NumSimplifiedSRem; 325 Changed = true; 326 DeadInsts.emplace_back(Rem); 327 } 328 329 // i % n --> i if i is in [0,n). 330 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 331 Rem->replaceAllUsesWith(Rem->getOperand(0)); 332 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 333 ++NumElimRem; 334 Changed = true; 335 DeadInsts.emplace_back(Rem); 336 } 337 338 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 339 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 340 auto *T = Rem->getType(); 341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 342 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 343 SelectInst *Sel = 344 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 345 Rem->replaceAllUsesWith(Sel); 346 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 347 ++NumElimRem; 348 Changed = true; 349 DeadInsts.emplace_back(Rem); 350 } 351 352 /// SimplifyIVUsers helper for eliminating useless remainder operations 353 /// operating on an induction variable or replacing srem by urem. 354 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 355 bool IsSigned) { 356 auto *NValue = Rem->getOperand(0); 357 auto *DValue = Rem->getOperand(1); 358 // We're only interested in the case where we know something about 359 // the numerator, unless it is a srem, because we want to replace srem by urem 360 // in general. 361 bool UsedAsNumerator = IVOperand == NValue; 362 if (!UsedAsNumerator && !IsSigned) 363 return; 364 365 const SCEV *N = SE->getSCEV(NValue); 366 367 // Simplify unnecessary loops away. 368 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 369 N = SE->getSCEVAtScope(N, ICmpLoop); 370 371 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 372 373 // Do not proceed if the Numerator may be negative 374 if (!IsNumeratorNonNegative) 375 return; 376 377 const SCEV *D = SE->getSCEV(DValue); 378 D = SE->getSCEVAtScope(D, ICmpLoop); 379 380 if (UsedAsNumerator) { 381 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 382 if (SE->isKnownPredicate(LT, N, D)) { 383 replaceRemWithNumerator(Rem); 384 return; 385 } 386 387 auto *T = Rem->getType(); 388 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 389 if (SE->isKnownPredicate(LT, NLessOne, D)) { 390 replaceRemWithNumeratorOrZero(Rem); 391 return; 392 } 393 } 394 395 // Try to replace SRem with URem, if both N and D are known non-negative. 396 // Since we had already check N, we only need to check D now 397 if (!IsSigned || !SE->isKnownNonNegative(D)) 398 return; 399 400 replaceSRemWithURem(Rem); 401 } 402 403 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { 404 auto *F = CI->getCalledFunction(); 405 if (!F) 406 return false; 407 408 typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( 409 const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); 410 typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( 411 const SCEV *, Type *, unsigned); 412 413 OperationFunctionTy Operation; 414 ExtensionFunctionTy Extension; 415 416 Instruction::BinaryOps RawOp; 417 418 // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we 419 // have nuw. 420 bool NoSignedOverflow; 421 422 switch (F->getIntrinsicID()) { 423 default: 424 return false; 425 426 case Intrinsic::sadd_with_overflow: 427 Operation = &ScalarEvolution::getAddExpr; 428 Extension = &ScalarEvolution::getSignExtendExpr; 429 RawOp = Instruction::Add; 430 NoSignedOverflow = true; 431 break; 432 433 case Intrinsic::uadd_with_overflow: 434 Operation = &ScalarEvolution::getAddExpr; 435 Extension = &ScalarEvolution::getZeroExtendExpr; 436 RawOp = Instruction::Add; 437 NoSignedOverflow = false; 438 break; 439 440 case Intrinsic::ssub_with_overflow: 441 Operation = &ScalarEvolution::getMinusSCEV; 442 Extension = &ScalarEvolution::getSignExtendExpr; 443 RawOp = Instruction::Sub; 444 NoSignedOverflow = true; 445 break; 446 447 case Intrinsic::usub_with_overflow: 448 Operation = &ScalarEvolution::getMinusSCEV; 449 Extension = &ScalarEvolution::getZeroExtendExpr; 450 RawOp = Instruction::Sub; 451 NoSignedOverflow = false; 452 break; 453 } 454 455 const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); 456 const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); 457 458 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 459 auto *WideTy = 460 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 461 462 const SCEV *A = 463 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 464 WideTy, 0); 465 const SCEV *B = 466 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 467 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 468 469 if (A != B) 470 return false; 471 472 // Proved no overflow, nuke the overflow check and, if possible, the overflow 473 // intrinsic as well. 474 475 BinaryOperator *NewResult = BinaryOperator::Create( 476 RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); 477 478 if (NoSignedOverflow) 479 NewResult->setHasNoSignedWrap(true); 480 else 481 NewResult->setHasNoUnsignedWrap(true); 482 483 SmallVector<ExtractValueInst *, 4> ToDelete; 484 485 for (auto *U : CI->users()) { 486 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 487 if (EVI->getIndices()[0] == 1) 488 EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); 489 else { 490 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 491 EVI->replaceAllUsesWith(NewResult); 492 } 493 ToDelete.push_back(EVI); 494 } 495 } 496 497 for (auto *EVI : ToDelete) 498 EVI->eraseFromParent(); 499 500 if (CI->use_empty()) 501 CI->eraseFromParent(); 502 503 return true; 504 } 505 506 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 507 // It is always legal to replace 508 // icmp <pred> i32 trunc(iv), n 509 // with 510 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 511 // Or with 512 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 513 // Or with either of these if pred is an equality predicate. 514 // 515 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 516 // every comparison which uses trunc, it means that we can replace each of 517 // them with comparison of iv against sext/zext(n). We no longer need trunc 518 // after that. 519 // 520 // TODO: Should we do this if we can widen *some* comparisons, but not all 521 // of them? Sometimes it is enough to enable other optimizations, but the 522 // trunc instruction will stay in the loop. 523 Value *IV = TI->getOperand(0); 524 Type *IVTy = IV->getType(); 525 const SCEV *IVSCEV = SE->getSCEV(IV); 526 const SCEV *TISCEV = SE->getSCEV(TI); 527 528 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 529 // get rid of trunc 530 bool DoesSExtCollapse = false; 531 bool DoesZExtCollapse = false; 532 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 533 DoesSExtCollapse = true; 534 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 535 DoesZExtCollapse = true; 536 537 // If neither sext nor zext does collapse, it is not profitable to do any 538 // transform. Bail. 539 if (!DoesSExtCollapse && !DoesZExtCollapse) 540 return false; 541 542 // Collect users of the trunc that look like comparisons against invariants. 543 // Bail if we find something different. 544 SmallVector<ICmpInst *, 4> ICmpUsers; 545 for (auto *U : TI->users()) { 546 // We don't care about users in unreachable blocks. 547 if (isa<Instruction>(U) && 548 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 549 continue; 550 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { 551 if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) { 552 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 553 // If we cannot get rid of trunc, bail. 554 if (ICI->isSigned() && !DoesSExtCollapse) 555 return false; 556 if (ICI->isUnsigned() && !DoesZExtCollapse) 557 return false; 558 // For equality, either signed or unsigned works. 559 ICmpUsers.push_back(ICI); 560 } else 561 return false; 562 } else 563 return false; 564 } 565 566 auto CanUseZExt = [&](ICmpInst *ICI) { 567 // Unsigned comparison can be widened as unsigned. 568 if (ICI->isUnsigned()) 569 return true; 570 // Is it profitable to do zext? 571 if (!DoesZExtCollapse) 572 return false; 573 // For equality, we can safely zext both parts. 574 if (ICI->isEquality()) 575 return true; 576 // Otherwise we can only use zext when comparing two non-negative or two 577 // negative values. But in practice, we will never pass DoesZExtCollapse 578 // check for a negative value, because zext(trunc(x)) is non-negative. So 579 // it only make sense to check for non-negativity here. 580 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 581 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 582 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 583 }; 584 // Replace all comparisons against trunc with comparisons against IV. 585 for (auto *ICI : ICmpUsers) { 586 auto *Op1 = ICI->getOperand(1); 587 Instruction *Ext = nullptr; 588 // For signed/unsigned predicate, replace the old comparison with comparison 589 // of immediate IV against sext/zext of the invariant argument. If we can 590 // use either sext or zext (i.e. we are dealing with equality predicate), 591 // then prefer zext as a more canonical form. 592 // TODO: If we see a signed comparison which can be turned into unsigned, 593 // we can do it here for canonicalization purposes. 594 ICmpInst::Predicate Pred = ICI->getPredicate(); 595 if (CanUseZExt(ICI)) { 596 assert(DoesZExtCollapse && "Unprofitable zext?"); 597 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 598 Pred = ICmpInst::getUnsignedPredicate(Pred); 599 } else { 600 assert(DoesSExtCollapse && "Unprofitable sext?"); 601 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 602 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 603 } 604 bool Changed; 605 L->makeLoopInvariant(Ext, Changed); 606 (void)Changed; 607 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 608 ICI->replaceAllUsesWith(NewICI); 609 DeadInsts.emplace_back(ICI); 610 } 611 612 // Trunc no longer needed. 613 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 614 DeadInsts.emplace_back(TI); 615 return true; 616 } 617 618 /// Eliminate an operation that consumes a simple IV and has no observable 619 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 620 /// but UseInst may not be. 621 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 622 Instruction *IVOperand) { 623 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 624 eliminateIVComparison(ICmp, IVOperand); 625 return true; 626 } 627 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 628 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 629 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 630 simplifyIVRemainder(Bin, IVOperand, IsSRem); 631 return true; 632 } 633 634 if (Bin->getOpcode() == Instruction::SDiv) 635 return eliminateSDiv(Bin); 636 } 637 638 if (auto *CI = dyn_cast<CallInst>(UseInst)) 639 if (eliminateOverflowIntrinsic(CI)) 640 return true; 641 642 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 643 if (eliminateTrunc(TI)) 644 return true; 645 646 if (eliminateIdentitySCEV(UseInst, IVOperand)) 647 return true; 648 649 return false; 650 } 651 652 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 653 if (auto *BB = L->getLoopPreheader()) 654 return BB->getTerminator(); 655 656 return Hint; 657 } 658 659 /// Replace the UseInst with a constant if possible. 660 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 661 if (!SE->isSCEVable(I->getType())) 662 return false; 663 664 // Get the symbolic expression for this instruction. 665 const SCEV *S = SE->getSCEV(I); 666 667 if (!SE->isLoopInvariant(S, L)) 668 return false; 669 670 // Do not generate something ridiculous even if S is loop invariant. 671 if (Rewriter.isHighCostExpansion(S, L, I)) 672 return false; 673 674 auto *IP = GetLoopInvariantInsertPosition(L, I); 675 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 676 677 I->replaceAllUsesWith(Invariant); 678 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 679 << " with loop invariant: " << *S << '\n'); 680 ++NumFoldedUser; 681 Changed = true; 682 DeadInsts.emplace_back(I); 683 return true; 684 } 685 686 /// Eliminate any operation that SCEV can prove is an identity function. 687 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 688 Instruction *IVOperand) { 689 if (!SE->isSCEVable(UseInst->getType()) || 690 (UseInst->getType() != IVOperand->getType()) || 691 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 692 return false; 693 694 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 695 // dominator tree, even if X is an operand to Y. For instance, in 696 // 697 // %iv = phi i32 {0,+,1} 698 // br %cond, label %left, label %merge 699 // 700 // left: 701 // %X = add i32 %iv, 0 702 // br label %merge 703 // 704 // merge: 705 // %M = phi (%X, %iv) 706 // 707 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 708 // %M.replaceAllUsesWith(%X) would be incorrect. 709 710 if (isa<PHINode>(UseInst)) 711 // If UseInst is not a PHI node then we know that IVOperand dominates 712 // UseInst directly from the legality of SSA. 713 if (!DT || !DT->dominates(IVOperand, UseInst)) 714 return false; 715 716 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 717 return false; 718 719 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 720 721 UseInst->replaceAllUsesWith(IVOperand); 722 ++NumElimIdentity; 723 Changed = true; 724 DeadInsts.emplace_back(UseInst); 725 return true; 726 } 727 728 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 729 /// unsigned-overflow. Returns true if anything changed, false otherwise. 730 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 731 Value *IVOperand) { 732 733 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 734 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 735 return false; 736 737 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 738 SCEV::NoWrapFlags, unsigned); 739 switch (BO->getOpcode()) { 740 default: 741 return false; 742 743 case Instruction::Add: 744 GetExprForBO = &ScalarEvolution::getAddExpr; 745 break; 746 747 case Instruction::Sub: 748 GetExprForBO = &ScalarEvolution::getMinusSCEV; 749 break; 750 751 case Instruction::Mul: 752 GetExprForBO = &ScalarEvolution::getMulExpr; 753 break; 754 } 755 756 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 757 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 758 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 759 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 760 761 bool Changed = false; 762 763 if (!BO->hasNoUnsignedWrap()) { 764 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 765 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 766 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 767 SCEV::FlagAnyWrap, 0u); 768 if (ExtendAfterOp == OpAfterExtend) { 769 BO->setHasNoUnsignedWrap(); 770 SE->forgetValue(BO); 771 Changed = true; 772 } 773 } 774 775 if (!BO->hasNoSignedWrap()) { 776 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 777 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 778 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 779 SCEV::FlagAnyWrap, 0u); 780 if (ExtendAfterOp == OpAfterExtend) { 781 BO->setHasNoSignedWrap(); 782 SE->forgetValue(BO); 783 Changed = true; 784 } 785 } 786 787 return Changed; 788 } 789 790 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 791 /// information from the IV's range. Returns true if anything changed, false 792 /// otherwise. 793 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 794 Value *IVOperand) { 795 using namespace llvm::PatternMatch; 796 797 if (BO->getOpcode() == Instruction::Shl) { 798 bool Changed = false; 799 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 800 for (auto *U : BO->users()) { 801 const APInt *C; 802 if (match(U, 803 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 804 match(U, 805 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 806 BinaryOperator *Shr = cast<BinaryOperator>(U); 807 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 808 Shr->setIsExact(true); 809 Changed = true; 810 } 811 } 812 } 813 return Changed; 814 } 815 816 return false; 817 } 818 819 /// Add all uses of Def to the current IV's worklist. 820 static void pushIVUsers( 821 Instruction *Def, Loop *L, 822 SmallPtrSet<Instruction*,16> &Simplified, 823 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 824 825 for (User *U : Def->users()) { 826 Instruction *UI = cast<Instruction>(U); 827 828 // Avoid infinite or exponential worklist processing. 829 // Also ensure unique worklist users. 830 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 831 // self edges first. 832 if (UI == Def) 833 continue; 834 835 // Only change the current Loop, do not change the other parts (e.g. other 836 // Loops). 837 if (!L->contains(UI)) 838 continue; 839 840 // Do not push the same instruction more than once. 841 if (!Simplified.insert(UI).second) 842 continue; 843 844 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 845 } 846 } 847 848 /// Return true if this instruction generates a simple SCEV 849 /// expression in terms of that IV. 850 /// 851 /// This is similar to IVUsers' isInteresting() but processes each instruction 852 /// non-recursively when the operand is already known to be a simpleIVUser. 853 /// 854 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 855 if (!SE->isSCEVable(I->getType())) 856 return false; 857 858 // Get the symbolic expression for this instruction. 859 const SCEV *S = SE->getSCEV(I); 860 861 // Only consider affine recurrences. 862 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 863 if (AR && AR->getLoop() == L) 864 return true; 865 866 return false; 867 } 868 869 /// Iteratively perform simplification on a worklist of users 870 /// of the specified induction variable. Each successive simplification may push 871 /// more users which may themselves be candidates for simplification. 872 /// 873 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 874 /// instructions in-place during analysis. Rather than rewriting induction 875 /// variables bottom-up from their users, it transforms a chain of IVUsers 876 /// top-down, updating the IR only when it encounters a clear optimization 877 /// opportunity. 878 /// 879 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 880 /// 881 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 882 if (!SE->isSCEVable(CurrIV->getType())) 883 return; 884 885 // Instructions processed by SimplifyIndvar for CurrIV. 886 SmallPtrSet<Instruction*,16> Simplified; 887 888 // Use-def pairs if IV users waiting to be processed for CurrIV. 889 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 890 891 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 892 // called multiple times for the same LoopPhi. This is the proper thing to 893 // do for loop header phis that use each other. 894 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 895 896 while (!SimpleIVUsers.empty()) { 897 std::pair<Instruction*, Instruction*> UseOper = 898 SimpleIVUsers.pop_back_val(); 899 Instruction *UseInst = UseOper.first; 900 901 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 902 // rather than try to do some complex analysis or transformation (such as 903 // widening) basing on it. 904 // TODO: Propagate TLI and pass it here to handle more cases. 905 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 906 DeadInsts.emplace_back(UseInst); 907 continue; 908 } 909 910 // Bypass back edges to avoid extra work. 911 if (UseInst == CurrIV) continue; 912 913 // Try to replace UseInst with a loop invariant before any other 914 // simplifications. 915 if (replaceIVUserWithLoopInvariant(UseInst)) 916 continue; 917 918 Instruction *IVOperand = UseOper.second; 919 for (unsigned N = 0; IVOperand; ++N) { 920 assert(N <= Simplified.size() && "runaway iteration"); 921 922 Value *NewOper = foldIVUser(UseInst, IVOperand); 923 if (!NewOper) 924 break; // done folding 925 IVOperand = dyn_cast<Instruction>(NewOper); 926 } 927 if (!IVOperand) 928 continue; 929 930 if (eliminateIVUser(UseInst, IVOperand)) { 931 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 932 continue; 933 } 934 935 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 936 if ((isa<OverflowingBinaryOperator>(BO) && 937 strengthenOverflowingOperation(BO, IVOperand)) || 938 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 939 // re-queue uses of the now modified binary operator and fall 940 // through to the checks that remain. 941 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 942 } 943 } 944 945 CastInst *Cast = dyn_cast<CastInst>(UseInst); 946 if (V && Cast) { 947 V->visitCast(Cast); 948 continue; 949 } 950 if (isSimpleIVUser(UseInst, L, SE)) { 951 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 952 } 953 } 954 } 955 956 namespace llvm { 957 958 void IVVisitor::anchor() { } 959 960 /// Simplify instructions that use this induction variable 961 /// by using ScalarEvolution to analyze the IV's recurrence. 962 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 963 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, 964 SCEVExpander &Rewriter, IVVisitor *V) { 965 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, 966 Dead); 967 SIV.simplifyUsers(CurrIV, V); 968 return SIV.hasChanged(); 969 } 970 971 /// Simplify users of induction variables within this 972 /// loop. This does not actually change or add IVs. 973 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 974 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { 975 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 976 #ifndef NDEBUG 977 Rewriter.setDebugType(DEBUG_TYPE); 978 #endif 979 bool Changed = false; 980 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 981 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); 982 } 983 return Changed; 984 } 985 986 } // namespace llvm 987