1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 const TargetTransformInfo *TTI; 58 SCEVExpander &Rewriter; 59 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 60 61 bool Changed; 62 63 public: 64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 65 LoopInfo *LI, const TargetTransformInfo *TTI, 66 SCEVExpander &Rewriter, 67 SmallVectorImpl<WeakTrackingVH> &Dead) 68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 69 DeadInsts(Dead), Changed(false) { 70 assert(LI && "IV simplification requires LoopInfo"); 71 } 72 73 bool hasChanged() const { return Changed; } 74 75 /// Iteratively perform simplification on a worklist of users of the 76 /// specified induction variable. This is the top-level driver that applies 77 /// all simplifications to users of an IV. 78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 79 80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 81 82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 84 85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 87 bool eliminateTrunc(TruncInst *TI); 88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 92 bool IsSigned); 93 void replaceRemWithNumerator(BinaryOperator *Rem); 94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 95 void replaceSRemWithURem(BinaryOperator *Rem); 96 bool eliminateSDiv(BinaryOperator *SDiv); 97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 99 }; 100 } 101 102 /// Find a point in code which dominates all given instructions. We can safely 103 /// assume that, whatever fact we can prove at the found point, this fact is 104 /// also true for each of the given instructions. 105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 106 DominatorTree &DT) { 107 Instruction *CommonDom = nullptr; 108 for (auto *Insn : Instructions) 109 if (!CommonDom || DT.dominates(Insn, CommonDom)) 110 CommonDom = Insn; 111 else if (!DT.dominates(CommonDom, Insn)) 112 // If there is no dominance relation, use common dominator. 113 CommonDom = 114 DT.findNearestCommonDominator(CommonDom->getParent(), 115 Insn->getParent())->getTerminator(); 116 assert(CommonDom && "Common dominator not found?"); 117 return CommonDom; 118 } 119 120 /// Fold an IV operand into its use. This removes increments of an 121 /// aligned IV when used by a instruction that ignores the low bits. 122 /// 123 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 124 /// 125 /// Return the operand of IVOperand for this induction variable if IVOperand can 126 /// be folded (in case more folding opportunities have been exposed). 127 /// Otherwise return null. 128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 129 Value *IVSrc = nullptr; 130 const unsigned OperIdx = 0; 131 const SCEV *FoldedExpr = nullptr; 132 bool MustDropExactFlag = false; 133 switch (UseInst->getOpcode()) { 134 default: 135 return nullptr; 136 case Instruction::UDiv: 137 case Instruction::LShr: 138 // We're only interested in the case where we know something about 139 // the numerator and have a constant denominator. 140 if (IVOperand != UseInst->getOperand(OperIdx) || 141 !isa<ConstantInt>(UseInst->getOperand(1))) 142 return nullptr; 143 144 // Attempt to fold a binary operator with constant operand. 145 // e.g. ((I + 1) >> 2) => I >> 2 146 if (!isa<BinaryOperator>(IVOperand) 147 || !isa<ConstantInt>(IVOperand->getOperand(1))) 148 return nullptr; 149 150 IVSrc = IVOperand->getOperand(0); 151 // IVSrc must be the (SCEVable) IV, since the other operand is const. 152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 153 154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 155 if (UseInst->getOpcode() == Instruction::LShr) { 156 // Get a constant for the divisor. See createSCEV. 157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 158 if (D->getValue().uge(BitWidth)) 159 return nullptr; 160 161 D = ConstantInt::get(UseInst->getContext(), 162 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 163 } 164 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 165 // We might have 'exact' flag set at this point which will no longer be 166 // correct after we make the replacement. 167 if (UseInst->isExact() && 168 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 169 MustDropExactFlag = true; 170 } 171 // We have something that might fold it's operand. Compare SCEVs. 172 if (!SE->isSCEVable(UseInst->getType())) 173 return nullptr; 174 175 // Bypass the operand if SCEV can prove it has no effect. 176 if (SE->getSCEV(UseInst) != FoldedExpr) 177 return nullptr; 178 179 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 180 << " -> " << *UseInst << '\n'); 181 182 UseInst->setOperand(OperIdx, IVSrc); 183 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 184 185 if (MustDropExactFlag) 186 UseInst->dropPoisonGeneratingFlags(); 187 188 ++NumElimOperand; 189 Changed = true; 190 if (IVOperand->use_empty()) 191 DeadInsts.emplace_back(IVOperand); 192 return IVSrc; 193 } 194 195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 196 Value *IVOperand) { 197 unsigned IVOperIdx = 0; 198 ICmpInst::Predicate Pred = ICmp->getPredicate(); 199 if (IVOperand != ICmp->getOperand(0)) { 200 // Swapped 201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 202 IVOperIdx = 1; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 // Get the SCEVs for the ICmp operands (in the specific context of the 207 // current loop) 208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 211 212 auto *PN = dyn_cast<PHINode>(IVOperand); 213 if (!PN) 214 return false; 215 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L); 216 if (!LIP) 217 return false; 218 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 219 const SCEV *InvariantLHS = LIP->LHS; 220 const SCEV *InvariantRHS = LIP->RHS; 221 222 // Rewrite the comparison to a loop invariant comparison if it can be done 223 // cheaply, where cheaply means "we don't need to emit any new 224 // instructions". 225 226 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 227 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 228 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 229 230 // TODO: Support multiple entry loops? (We currently bail out of these in 231 // the IndVarSimplify pass) 232 if (auto *BB = L->getLoopPredecessor()) { 233 const int Idx = PN->getBasicBlockIndex(BB); 234 if (Idx >= 0) { 235 Value *Incoming = PN->getIncomingValue(Idx); 236 const SCEV *IncomingS = SE->getSCEV(Incoming); 237 CheapExpansions[IncomingS] = Incoming; 238 } 239 } 240 Value *NewLHS = CheapExpansions[InvariantLHS]; 241 Value *NewRHS = CheapExpansions[InvariantRHS]; 242 243 if (!NewLHS) 244 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 245 NewLHS = ConstLHS->getValue(); 246 if (!NewRHS) 247 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 248 NewRHS = ConstRHS->getValue(); 249 250 if (!NewLHS || !NewRHS) 251 // We could not find an existing value to replace either LHS or RHS. 252 // Generating new instructions has subtler tradeoffs, so avoid doing that 253 // for now. 254 return false; 255 256 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 257 ICmp->setPredicate(InvariantPredicate); 258 ICmp->setOperand(0, NewLHS); 259 ICmp->setOperand(1, NewRHS); 260 return true; 261 } 262 263 /// SimplifyIVUsers helper for eliminating useless 264 /// comparisons against an induction variable. 265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 266 unsigned IVOperIdx = 0; 267 ICmpInst::Predicate Pred = ICmp->getPredicate(); 268 ICmpInst::Predicate OriginalPred = Pred; 269 if (IVOperand != ICmp->getOperand(0)) { 270 // Swapped 271 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 272 IVOperIdx = 1; 273 Pred = ICmpInst::getSwappedPredicate(Pred); 274 } 275 276 // Get the SCEVs for the ICmp operands (in the specific context of the 277 // current loop) 278 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 279 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 280 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 281 282 // If the condition is always true or always false in the given context, 283 // replace it with a constant value. 284 SmallVector<Instruction *, 4> Users; 285 for (auto *U : ICmp->users()) 286 Users.push_back(cast<Instruction>(U)); 287 const Instruction *CtxI = findCommonDominator(Users, *DT); 288 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 289 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 290 DeadInsts.emplace_back(ICmp); 291 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 292 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 293 // fallthrough to end of function 294 } else if (ICmpInst::isSigned(OriginalPred) && 295 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 296 // If we were unable to make anything above, all we can is to canonicalize 297 // the comparison hoping that it will open the doors for other 298 // optimizations. If we find out that we compare two non-negative values, 299 // we turn the instruction's predicate to its unsigned version. Note that 300 // we cannot rely on Pred here unless we check if we have swapped it. 301 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 302 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 303 << '\n'); 304 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 305 } else 306 return; 307 308 ++NumElimCmp; 309 Changed = true; 310 } 311 312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 313 // Get the SCEVs for the ICmp operands. 314 auto *N = SE->getSCEV(SDiv->getOperand(0)); 315 auto *D = SE->getSCEV(SDiv->getOperand(1)); 316 317 // Simplify unnecessary loops away. 318 const Loop *L = LI->getLoopFor(SDiv->getParent()); 319 N = SE->getSCEVAtScope(N, L); 320 D = SE->getSCEVAtScope(D, L); 321 322 // Replace sdiv by udiv if both of the operands are non-negative 323 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 324 auto *UDiv = BinaryOperator::Create( 325 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 326 SDiv->getName() + ".udiv", SDiv); 327 UDiv->setIsExact(SDiv->isExact()); 328 SDiv->replaceAllUsesWith(UDiv); 329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 330 ++NumSimplifiedSDiv; 331 Changed = true; 332 DeadInsts.push_back(SDiv); 333 return true; 334 } 335 336 return false; 337 } 338 339 // i %s n -> i %u n if i >= 0 and n >= 0 340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 342 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 343 Rem->getName() + ".urem", Rem); 344 Rem->replaceAllUsesWith(URem); 345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 346 ++NumSimplifiedSRem; 347 Changed = true; 348 DeadInsts.emplace_back(Rem); 349 } 350 351 // i % n --> i if i is in [0,n). 352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 353 Rem->replaceAllUsesWith(Rem->getOperand(0)); 354 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 355 ++NumElimRem; 356 Changed = true; 357 DeadInsts.emplace_back(Rem); 358 } 359 360 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 362 auto *T = Rem->getType(); 363 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 364 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 365 SelectInst *Sel = 366 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 367 Rem->replaceAllUsesWith(Sel); 368 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 369 ++NumElimRem; 370 Changed = true; 371 DeadInsts.emplace_back(Rem); 372 } 373 374 /// SimplifyIVUsers helper for eliminating useless remainder operations 375 /// operating on an induction variable or replacing srem by urem. 376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 377 bool IsSigned) { 378 auto *NValue = Rem->getOperand(0); 379 auto *DValue = Rem->getOperand(1); 380 // We're only interested in the case where we know something about 381 // the numerator, unless it is a srem, because we want to replace srem by urem 382 // in general. 383 bool UsedAsNumerator = IVOperand == NValue; 384 if (!UsedAsNumerator && !IsSigned) 385 return; 386 387 const SCEV *N = SE->getSCEV(NValue); 388 389 // Simplify unnecessary loops away. 390 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 391 N = SE->getSCEVAtScope(N, ICmpLoop); 392 393 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 394 395 // Do not proceed if the Numerator may be negative 396 if (!IsNumeratorNonNegative) 397 return; 398 399 const SCEV *D = SE->getSCEV(DValue); 400 D = SE->getSCEVAtScope(D, ICmpLoop); 401 402 if (UsedAsNumerator) { 403 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 404 if (SE->isKnownPredicate(LT, N, D)) { 405 replaceRemWithNumerator(Rem); 406 return; 407 } 408 409 auto *T = Rem->getType(); 410 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 411 if (SE->isKnownPredicate(LT, NLessOne, D)) { 412 replaceRemWithNumeratorOrZero(Rem); 413 return; 414 } 415 } 416 417 // Try to replace SRem with URem, if both N and D are known non-negative. 418 // Since we had already check N, we only need to check D now 419 if (!IsSigned || !SE->isKnownNonNegative(D)) 420 return; 421 422 replaceSRemWithURem(Rem); 423 } 424 425 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 426 bool Signed, const SCEV *LHS, const SCEV *RHS) { 427 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 428 SCEV::NoWrapFlags, unsigned); 429 switch (BinOp) { 430 default: 431 llvm_unreachable("Unsupported binary op"); 432 case Instruction::Add: 433 Operation = &ScalarEvolution::getAddExpr; 434 break; 435 case Instruction::Sub: 436 Operation = &ScalarEvolution::getMinusSCEV; 437 break; 438 case Instruction::Mul: 439 Operation = &ScalarEvolution::getMulExpr; 440 break; 441 } 442 443 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 444 Signed ? &ScalarEvolution::getSignExtendExpr 445 : &ScalarEvolution::getZeroExtendExpr; 446 447 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 448 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 449 auto *WideTy = 450 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 451 452 const SCEV *A = 453 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 454 WideTy, 0); 455 const SCEV *B = 456 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 457 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 458 return A == B; 459 } 460 461 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 462 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 463 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 464 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 465 return false; 466 467 // Proved no overflow, nuke the overflow check and, if possible, the overflow 468 // intrinsic as well. 469 470 BinaryOperator *NewResult = BinaryOperator::Create( 471 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 472 473 if (WO->isSigned()) 474 NewResult->setHasNoSignedWrap(true); 475 else 476 NewResult->setHasNoUnsignedWrap(true); 477 478 SmallVector<ExtractValueInst *, 4> ToDelete; 479 480 for (auto *U : WO->users()) { 481 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 482 if (EVI->getIndices()[0] == 1) 483 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 484 else { 485 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 486 EVI->replaceAllUsesWith(NewResult); 487 } 488 ToDelete.push_back(EVI); 489 } 490 } 491 492 for (auto *EVI : ToDelete) 493 EVI->eraseFromParent(); 494 495 if (WO->use_empty()) 496 WO->eraseFromParent(); 497 498 Changed = true; 499 return true; 500 } 501 502 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 503 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 504 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 505 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 506 return false; 507 508 BinaryOperator *BO = BinaryOperator::Create( 509 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 510 if (SI->isSigned()) 511 BO->setHasNoSignedWrap(); 512 else 513 BO->setHasNoUnsignedWrap(); 514 515 SI->replaceAllUsesWith(BO); 516 DeadInsts.emplace_back(SI); 517 Changed = true; 518 return true; 519 } 520 521 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 522 // It is always legal to replace 523 // icmp <pred> i32 trunc(iv), n 524 // with 525 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 526 // Or with 527 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 528 // Or with either of these if pred is an equality predicate. 529 // 530 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 531 // every comparison which uses trunc, it means that we can replace each of 532 // them with comparison of iv against sext/zext(n). We no longer need trunc 533 // after that. 534 // 535 // TODO: Should we do this if we can widen *some* comparisons, but not all 536 // of them? Sometimes it is enough to enable other optimizations, but the 537 // trunc instruction will stay in the loop. 538 Value *IV = TI->getOperand(0); 539 Type *IVTy = IV->getType(); 540 const SCEV *IVSCEV = SE->getSCEV(IV); 541 const SCEV *TISCEV = SE->getSCEV(TI); 542 543 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 544 // get rid of trunc 545 bool DoesSExtCollapse = false; 546 bool DoesZExtCollapse = false; 547 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 548 DoesSExtCollapse = true; 549 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 550 DoesZExtCollapse = true; 551 552 // If neither sext nor zext does collapse, it is not profitable to do any 553 // transform. Bail. 554 if (!DoesSExtCollapse && !DoesZExtCollapse) 555 return false; 556 557 // Collect users of the trunc that look like comparisons against invariants. 558 // Bail if we find something different. 559 SmallVector<ICmpInst *, 4> ICmpUsers; 560 for (auto *U : TI->users()) { 561 // We don't care about users in unreachable blocks. 562 if (isa<Instruction>(U) && 563 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 564 continue; 565 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 566 if (!ICI) return false; 567 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 568 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 569 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 570 return false; 571 // If we cannot get rid of trunc, bail. 572 if (ICI->isSigned() && !DoesSExtCollapse) 573 return false; 574 if (ICI->isUnsigned() && !DoesZExtCollapse) 575 return false; 576 // For equality, either signed or unsigned works. 577 ICmpUsers.push_back(ICI); 578 } 579 580 auto CanUseZExt = [&](ICmpInst *ICI) { 581 // Unsigned comparison can be widened as unsigned. 582 if (ICI->isUnsigned()) 583 return true; 584 // Is it profitable to do zext? 585 if (!DoesZExtCollapse) 586 return false; 587 // For equality, we can safely zext both parts. 588 if (ICI->isEquality()) 589 return true; 590 // Otherwise we can only use zext when comparing two non-negative or two 591 // negative values. But in practice, we will never pass DoesZExtCollapse 592 // check for a negative value, because zext(trunc(x)) is non-negative. So 593 // it only make sense to check for non-negativity here. 594 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 595 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 596 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 597 }; 598 // Replace all comparisons against trunc with comparisons against IV. 599 for (auto *ICI : ICmpUsers) { 600 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 601 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 602 Instruction *Ext = nullptr; 603 // For signed/unsigned predicate, replace the old comparison with comparison 604 // of immediate IV against sext/zext of the invariant argument. If we can 605 // use either sext or zext (i.e. we are dealing with equality predicate), 606 // then prefer zext as a more canonical form. 607 // TODO: If we see a signed comparison which can be turned into unsigned, 608 // we can do it here for canonicalization purposes. 609 ICmpInst::Predicate Pred = ICI->getPredicate(); 610 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 611 if (CanUseZExt(ICI)) { 612 assert(DoesZExtCollapse && "Unprofitable zext?"); 613 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 614 Pred = ICmpInst::getUnsignedPredicate(Pred); 615 } else { 616 assert(DoesSExtCollapse && "Unprofitable sext?"); 617 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 618 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 619 } 620 bool Changed; 621 L->makeLoopInvariant(Ext, Changed); 622 (void)Changed; 623 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 624 ICI->replaceAllUsesWith(NewICI); 625 DeadInsts.emplace_back(ICI); 626 } 627 628 // Trunc no longer needed. 629 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 630 DeadInsts.emplace_back(TI); 631 return true; 632 } 633 634 /// Eliminate an operation that consumes a simple IV and has no observable 635 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 636 /// but UseInst may not be. 637 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 638 Instruction *IVOperand) { 639 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 640 eliminateIVComparison(ICmp, IVOperand); 641 return true; 642 } 643 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 644 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 645 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 646 simplifyIVRemainder(Bin, IVOperand, IsSRem); 647 return true; 648 } 649 650 if (Bin->getOpcode() == Instruction::SDiv) 651 return eliminateSDiv(Bin); 652 } 653 654 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 655 if (eliminateOverflowIntrinsic(WO)) 656 return true; 657 658 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 659 if (eliminateSaturatingIntrinsic(SI)) 660 return true; 661 662 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 663 if (eliminateTrunc(TI)) 664 return true; 665 666 if (eliminateIdentitySCEV(UseInst, IVOperand)) 667 return true; 668 669 return false; 670 } 671 672 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 673 if (auto *BB = L->getLoopPreheader()) 674 return BB->getTerminator(); 675 676 return Hint; 677 } 678 679 /// Replace the UseInst with a loop invariant expression if it is safe. 680 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 681 if (!SE->isSCEVable(I->getType())) 682 return false; 683 684 // Get the symbolic expression for this instruction. 685 const SCEV *S = SE->getSCEV(I); 686 687 if (!SE->isLoopInvariant(S, L)) 688 return false; 689 690 // Do not generate something ridiculous even if S is loop invariant. 691 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 692 return false; 693 694 auto *IP = GetLoopInvariantInsertPosition(L, I); 695 696 if (!isSafeToExpandAt(S, IP, *SE)) { 697 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 698 << " with non-speculable loop invariant: " << *S << '\n'); 699 return false; 700 } 701 702 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 703 704 I->replaceAllUsesWith(Invariant); 705 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 706 << " with loop invariant: " << *S << '\n'); 707 ++NumFoldedUser; 708 Changed = true; 709 DeadInsts.emplace_back(I); 710 return true; 711 } 712 713 /// Eliminate any operation that SCEV can prove is an identity function. 714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 715 Instruction *IVOperand) { 716 if (!SE->isSCEVable(UseInst->getType()) || 717 (UseInst->getType() != IVOperand->getType()) || 718 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 719 return false; 720 721 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 722 // dominator tree, even if X is an operand to Y. For instance, in 723 // 724 // %iv = phi i32 {0,+,1} 725 // br %cond, label %left, label %merge 726 // 727 // left: 728 // %X = add i32 %iv, 0 729 // br label %merge 730 // 731 // merge: 732 // %M = phi (%X, %iv) 733 // 734 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 735 // %M.replaceAllUsesWith(%X) would be incorrect. 736 737 if (isa<PHINode>(UseInst)) 738 // If UseInst is not a PHI node then we know that IVOperand dominates 739 // UseInst directly from the legality of SSA. 740 if (!DT || !DT->dominates(IVOperand, UseInst)) 741 return false; 742 743 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 744 return false; 745 746 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 747 748 UseInst->replaceAllUsesWith(IVOperand); 749 ++NumElimIdentity; 750 Changed = true; 751 DeadInsts.emplace_back(UseInst); 752 return true; 753 } 754 755 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 756 /// unsigned-overflow. Returns true if anything changed, false otherwise. 757 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 758 Value *IVOperand) { 759 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 760 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 761 return false; 762 763 if (BO->getOpcode() != Instruction::Add && 764 BO->getOpcode() != Instruction::Sub && 765 BO->getOpcode() != Instruction::Mul) 766 return false; 767 768 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 769 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 770 bool Changed = false; 771 772 if (!BO->hasNoUnsignedWrap() && 773 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 774 BO->setHasNoUnsignedWrap(); 775 Changed = true; 776 } 777 778 if (!BO->hasNoSignedWrap() && 779 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 780 BO->setHasNoSignedWrap(); 781 Changed = true; 782 } 783 784 // The willNotOverflow() check might infer additional nowrap flags on addrecs 785 // while performing zero/sign extensions. We could call forgetValue() here 786 // to make sure those flags also propagate to any other SCEV expressions 787 // based on the addrec. However, this can have pathological compile-time 788 // impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 789 return Changed; 790 } 791 792 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 793 /// information from the IV's range. Returns true if anything changed, false 794 /// otherwise. 795 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 796 Value *IVOperand) { 797 using namespace llvm::PatternMatch; 798 799 if (BO->getOpcode() == Instruction::Shl) { 800 bool Changed = false; 801 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 802 for (auto *U : BO->users()) { 803 const APInt *C; 804 if (match(U, 805 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 806 match(U, 807 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 808 BinaryOperator *Shr = cast<BinaryOperator>(U); 809 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 810 Shr->setIsExact(true); 811 Changed = true; 812 } 813 } 814 } 815 return Changed; 816 } 817 818 return false; 819 } 820 821 /// Add all uses of Def to the current IV's worklist. 822 static void pushIVUsers( 823 Instruction *Def, Loop *L, 824 SmallPtrSet<Instruction*,16> &Simplified, 825 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 826 827 for (User *U : Def->users()) { 828 Instruction *UI = cast<Instruction>(U); 829 830 // Avoid infinite or exponential worklist processing. 831 // Also ensure unique worklist users. 832 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 833 // self edges first. 834 if (UI == Def) 835 continue; 836 837 // Only change the current Loop, do not change the other parts (e.g. other 838 // Loops). 839 if (!L->contains(UI)) 840 continue; 841 842 // Do not push the same instruction more than once. 843 if (!Simplified.insert(UI).second) 844 continue; 845 846 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 847 } 848 } 849 850 /// Return true if this instruction generates a simple SCEV 851 /// expression in terms of that IV. 852 /// 853 /// This is similar to IVUsers' isInteresting() but processes each instruction 854 /// non-recursively when the operand is already known to be a simpleIVUser. 855 /// 856 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 857 if (!SE->isSCEVable(I->getType())) 858 return false; 859 860 // Get the symbolic expression for this instruction. 861 const SCEV *S = SE->getSCEV(I); 862 863 // Only consider affine recurrences. 864 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 865 if (AR && AR->getLoop() == L) 866 return true; 867 868 return false; 869 } 870 871 /// Iteratively perform simplification on a worklist of users 872 /// of the specified induction variable. Each successive simplification may push 873 /// more users which may themselves be candidates for simplification. 874 /// 875 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 876 /// instructions in-place during analysis. Rather than rewriting induction 877 /// variables bottom-up from their users, it transforms a chain of IVUsers 878 /// top-down, updating the IR only when it encounters a clear optimization 879 /// opportunity. 880 /// 881 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 882 /// 883 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 884 if (!SE->isSCEVable(CurrIV->getType())) 885 return; 886 887 // Instructions processed by SimplifyIndvar for CurrIV. 888 SmallPtrSet<Instruction*,16> Simplified; 889 890 // Use-def pairs if IV users waiting to be processed for CurrIV. 891 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 892 893 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 894 // called multiple times for the same LoopPhi. This is the proper thing to 895 // do for loop header phis that use each other. 896 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 897 898 while (!SimpleIVUsers.empty()) { 899 std::pair<Instruction*, Instruction*> UseOper = 900 SimpleIVUsers.pop_back_val(); 901 Instruction *UseInst = UseOper.first; 902 903 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 904 // rather than try to do some complex analysis or transformation (such as 905 // widening) basing on it. 906 // TODO: Propagate TLI and pass it here to handle more cases. 907 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 908 DeadInsts.emplace_back(UseInst); 909 continue; 910 } 911 912 // Bypass back edges to avoid extra work. 913 if (UseInst == CurrIV) continue; 914 915 // Try to replace UseInst with a loop invariant before any other 916 // simplifications. 917 if (replaceIVUserWithLoopInvariant(UseInst)) 918 continue; 919 920 Instruction *IVOperand = UseOper.second; 921 for (unsigned N = 0; IVOperand; ++N) { 922 assert(N <= Simplified.size() && "runaway iteration"); 923 924 Value *NewOper = foldIVUser(UseInst, IVOperand); 925 if (!NewOper) 926 break; // done folding 927 IVOperand = dyn_cast<Instruction>(NewOper); 928 } 929 if (!IVOperand) 930 continue; 931 932 if (eliminateIVUser(UseInst, IVOperand)) { 933 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 934 continue; 935 } 936 937 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 938 if ((isa<OverflowingBinaryOperator>(BO) && 939 strengthenOverflowingOperation(BO, IVOperand)) || 940 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 941 // re-queue uses of the now modified binary operator and fall 942 // through to the checks that remain. 943 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 944 } 945 } 946 947 CastInst *Cast = dyn_cast<CastInst>(UseInst); 948 if (V && Cast) { 949 V->visitCast(Cast); 950 continue; 951 } 952 if (isSimpleIVUser(UseInst, L, SE)) { 953 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 954 } 955 } 956 } 957 958 namespace llvm { 959 960 void IVVisitor::anchor() { } 961 962 /// Simplify instructions that use this induction variable 963 /// by using ScalarEvolution to analyze the IV's recurrence. 964 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 965 LoopInfo *LI, const TargetTransformInfo *TTI, 966 SmallVectorImpl<WeakTrackingVH> &Dead, 967 SCEVExpander &Rewriter, IVVisitor *V) { 968 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 969 Rewriter, Dead); 970 SIV.simplifyUsers(CurrIV, V); 971 return SIV.hasChanged(); 972 } 973 974 /// Simplify users of induction variables within this 975 /// loop. This does not actually change or add IVs. 976 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 977 LoopInfo *LI, const TargetTransformInfo *TTI, 978 SmallVectorImpl<WeakTrackingVH> &Dead) { 979 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 980 #ifndef NDEBUG 981 Rewriter.setDebugType(DEBUG_TYPE); 982 #endif 983 bool Changed = false; 984 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 985 Changed |= 986 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 987 } 988 return Changed; 989 } 990 991 } // namespace llvm 992 993 //===----------------------------------------------------------------------===// 994 // Widen Induction Variables - Extend the width of an IV to cover its 995 // widest uses. 996 //===----------------------------------------------------------------------===// 997 998 class WidenIV { 999 // Parameters 1000 PHINode *OrigPhi; 1001 Type *WideType; 1002 1003 // Context 1004 LoopInfo *LI; 1005 Loop *L; 1006 ScalarEvolution *SE; 1007 DominatorTree *DT; 1008 1009 // Does the module have any calls to the llvm.experimental.guard intrinsic 1010 // at all? If not we can avoid scanning instructions looking for guards. 1011 bool HasGuards; 1012 1013 bool UsePostIncrementRanges; 1014 1015 // Statistics 1016 unsigned NumElimExt = 0; 1017 unsigned NumWidened = 0; 1018 1019 // Result 1020 PHINode *WidePhi = nullptr; 1021 Instruction *WideInc = nullptr; 1022 const SCEV *WideIncExpr = nullptr; 1023 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1024 1025 SmallPtrSet<Instruction *,16> Widened; 1026 1027 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 1028 1029 // A map tracking the kind of extension used to widen each narrow IV 1030 // and narrow IV user. 1031 // Key: pointer to a narrow IV or IV user. 1032 // Value: the kind of extension used to widen this Instruction. 1033 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1034 1035 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1036 1037 // A map with control-dependent ranges for post increment IV uses. The key is 1038 // a pair of IV def and a use of this def denoting the context. The value is 1039 // a ConstantRange representing possible values of the def at the given 1040 // context. 1041 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1042 1043 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1044 Instruction *UseI) { 1045 DefUserPair Key(Def, UseI); 1046 auto It = PostIncRangeInfos.find(Key); 1047 return It == PostIncRangeInfos.end() 1048 ? Optional<ConstantRange>(None) 1049 : Optional<ConstantRange>(It->second); 1050 } 1051 1052 void calculatePostIncRanges(PHINode *OrigPhi); 1053 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1054 1055 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1056 DefUserPair Key(Def, UseI); 1057 auto It = PostIncRangeInfos.find(Key); 1058 if (It == PostIncRangeInfos.end()) 1059 PostIncRangeInfos.insert({Key, R}); 1060 else 1061 It->second = R.intersectWith(It->second); 1062 } 1063 1064 public: 1065 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1066 /// computes the same value as the Narrow IV def. This avoids caching Use* 1067 /// pointers. 1068 struct NarrowIVDefUse { 1069 Instruction *NarrowDef = nullptr; 1070 Instruction *NarrowUse = nullptr; 1071 Instruction *WideDef = nullptr; 1072 1073 // True if the narrow def is never negative. Tracking this information lets 1074 // us use a sign extension instead of a zero extension or vice versa, when 1075 // profitable and legal. 1076 bool NeverNegative = false; 1077 1078 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1079 bool NeverNegative) 1080 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1081 NeverNegative(NeverNegative) {} 1082 }; 1083 1084 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1085 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1086 bool HasGuards, bool UsePostIncrementRanges = true); 1087 1088 PHINode *createWideIV(SCEVExpander &Rewriter); 1089 1090 unsigned getNumElimExt() { return NumElimExt; }; 1091 unsigned getNumWidened() { return NumWidened; }; 1092 1093 protected: 1094 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1095 Instruction *Use); 1096 1097 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1098 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1099 const SCEVAddRecExpr *WideAR); 1100 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1101 1102 ExtendKind getExtendKind(Instruction *I); 1103 1104 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1105 1106 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1107 1108 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1109 1110 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1111 unsigned OpCode) const; 1112 1113 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1114 1115 bool widenLoopCompare(NarrowIVDefUse DU); 1116 bool widenWithVariantUse(NarrowIVDefUse DU); 1117 1118 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1119 1120 private: 1121 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1122 }; 1123 1124 1125 /// Determine the insertion point for this user. By default, insert immediately 1126 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1127 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1128 /// common dominator for the incoming blocks. A nullptr can be returned if no 1129 /// viable location is found: it may happen if User is a PHI and Def only comes 1130 /// to this PHI from unreachable blocks. 1131 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1132 DominatorTree *DT, LoopInfo *LI) { 1133 PHINode *PHI = dyn_cast<PHINode>(User); 1134 if (!PHI) 1135 return User; 1136 1137 Instruction *InsertPt = nullptr; 1138 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1139 if (PHI->getIncomingValue(i) != Def) 1140 continue; 1141 1142 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1143 1144 if (!DT->isReachableFromEntry(InsertBB)) 1145 continue; 1146 1147 if (!InsertPt) { 1148 InsertPt = InsertBB->getTerminator(); 1149 continue; 1150 } 1151 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1152 InsertPt = InsertBB->getTerminator(); 1153 } 1154 1155 // If we have skipped all inputs, it means that Def only comes to Phi from 1156 // unreachable blocks. 1157 if (!InsertPt) 1158 return nullptr; 1159 1160 auto *DefI = dyn_cast<Instruction>(Def); 1161 if (!DefI) 1162 return InsertPt; 1163 1164 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1165 1166 auto *L = LI->getLoopFor(DefI->getParent()); 1167 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1168 1169 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1170 if (LI->getLoopFor(DTN->getBlock()) == L) 1171 return DTN->getBlock()->getTerminator(); 1172 1173 llvm_unreachable("DefI dominates InsertPt!"); 1174 } 1175 1176 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1177 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1178 bool HasGuards, bool UsePostIncrementRanges) 1179 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1180 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1181 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1182 DeadInsts(DI) { 1183 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1184 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1185 } 1186 1187 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1188 bool IsSigned, Instruction *Use) { 1189 // Set the debug location and conservative insertion point. 1190 IRBuilder<> Builder(Use); 1191 // Hoist the insertion point into loop preheaders as far as possible. 1192 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1193 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1194 L = L->getParentLoop()) 1195 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1196 1197 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1198 Builder.CreateZExt(NarrowOper, WideType); 1199 } 1200 1201 /// Instantiate a wide operation to replace a narrow operation. This only needs 1202 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1203 /// 0 for any operation we decide not to clone. 1204 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1205 const SCEVAddRecExpr *WideAR) { 1206 unsigned Opcode = DU.NarrowUse->getOpcode(); 1207 switch (Opcode) { 1208 default: 1209 return nullptr; 1210 case Instruction::Add: 1211 case Instruction::Mul: 1212 case Instruction::UDiv: 1213 case Instruction::Sub: 1214 return cloneArithmeticIVUser(DU, WideAR); 1215 1216 case Instruction::And: 1217 case Instruction::Or: 1218 case Instruction::Xor: 1219 case Instruction::Shl: 1220 case Instruction::LShr: 1221 case Instruction::AShr: 1222 return cloneBitwiseIVUser(DU); 1223 } 1224 } 1225 1226 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1227 Instruction *NarrowUse = DU.NarrowUse; 1228 Instruction *NarrowDef = DU.NarrowDef; 1229 Instruction *WideDef = DU.WideDef; 1230 1231 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1232 1233 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1234 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1235 // invariant and will be folded or hoisted. If it actually comes from a 1236 // widened IV, it should be removed during a future call to widenIVUse. 1237 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1238 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1239 ? WideDef 1240 : createExtendInst(NarrowUse->getOperand(0), WideType, 1241 IsSigned, NarrowUse); 1242 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1243 ? WideDef 1244 : createExtendInst(NarrowUse->getOperand(1), WideType, 1245 IsSigned, NarrowUse); 1246 1247 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1248 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1249 NarrowBO->getName()); 1250 IRBuilder<> Builder(NarrowUse); 1251 Builder.Insert(WideBO); 1252 WideBO->copyIRFlags(NarrowBO); 1253 return WideBO; 1254 } 1255 1256 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1257 const SCEVAddRecExpr *WideAR) { 1258 Instruction *NarrowUse = DU.NarrowUse; 1259 Instruction *NarrowDef = DU.NarrowDef; 1260 Instruction *WideDef = DU.WideDef; 1261 1262 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1263 1264 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1265 1266 // We're trying to find X such that 1267 // 1268 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1269 // 1270 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1271 // and check using SCEV if any of them are correct. 1272 1273 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1274 // correct solution to X. 1275 auto GuessNonIVOperand = [&](bool SignExt) { 1276 const SCEV *WideLHS; 1277 const SCEV *WideRHS; 1278 1279 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1280 if (SignExt) 1281 return SE->getSignExtendExpr(S, Ty); 1282 return SE->getZeroExtendExpr(S, Ty); 1283 }; 1284 1285 if (IVOpIdx == 0) { 1286 WideLHS = SE->getSCEV(WideDef); 1287 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1288 WideRHS = GetExtend(NarrowRHS, WideType); 1289 } else { 1290 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1291 WideLHS = GetExtend(NarrowLHS, WideType); 1292 WideRHS = SE->getSCEV(WideDef); 1293 } 1294 1295 // WideUse is "WideDef `op.wide` X" as described in the comment. 1296 const SCEV *WideUse = 1297 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1298 1299 return WideUse == WideAR; 1300 }; 1301 1302 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1303 if (!GuessNonIVOperand(SignExtend)) { 1304 SignExtend = !SignExtend; 1305 if (!GuessNonIVOperand(SignExtend)) 1306 return nullptr; 1307 } 1308 1309 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1310 ? WideDef 1311 : createExtendInst(NarrowUse->getOperand(0), WideType, 1312 SignExtend, NarrowUse); 1313 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1314 ? WideDef 1315 : createExtendInst(NarrowUse->getOperand(1), WideType, 1316 SignExtend, NarrowUse); 1317 1318 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1319 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1320 NarrowBO->getName()); 1321 1322 IRBuilder<> Builder(NarrowUse); 1323 Builder.Insert(WideBO); 1324 WideBO->copyIRFlags(NarrowBO); 1325 return WideBO; 1326 } 1327 1328 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1329 auto It = ExtendKindMap.find(I); 1330 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1331 return It->second; 1332 } 1333 1334 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1335 unsigned OpCode) const { 1336 switch (OpCode) { 1337 case Instruction::Add: 1338 return SE->getAddExpr(LHS, RHS); 1339 case Instruction::Sub: 1340 return SE->getMinusSCEV(LHS, RHS); 1341 case Instruction::Mul: 1342 return SE->getMulExpr(LHS, RHS); 1343 case Instruction::UDiv: 1344 return SE->getUDivExpr(LHS, RHS); 1345 default: 1346 llvm_unreachable("Unsupported opcode."); 1347 }; 1348 } 1349 1350 /// No-wrap operations can transfer sign extension of their result to their 1351 /// operands. Generate the SCEV value for the widened operation without 1352 /// actually modifying the IR yet. If the expression after extending the 1353 /// operands is an AddRec for this loop, return the AddRec and the kind of 1354 /// extension used. 1355 WidenIV::WidenedRecTy 1356 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1357 // Handle the common case of add<nsw/nuw> 1358 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1359 // Only Add/Sub/Mul instructions supported yet. 1360 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1361 OpCode != Instruction::Mul) 1362 return {nullptr, Unknown}; 1363 1364 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1365 // if extending the other will lead to a recurrence. 1366 const unsigned ExtendOperIdx = 1367 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1368 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1369 1370 const SCEV *ExtendOperExpr = nullptr; 1371 const OverflowingBinaryOperator *OBO = 1372 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1373 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1374 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1375 ExtendOperExpr = SE->getSignExtendExpr( 1376 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1377 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1378 ExtendOperExpr = SE->getZeroExtendExpr( 1379 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1380 else 1381 return {nullptr, Unknown}; 1382 1383 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1384 // flags. This instruction may be guarded by control flow that the no-wrap 1385 // behavior depends on. Non-control-equivalent instructions can be mapped to 1386 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1387 // semantics to those operations. 1388 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1389 const SCEV *rhs = ExtendOperExpr; 1390 1391 // Let's swap operands to the initial order for the case of non-commutative 1392 // operations, like SUB. See PR21014. 1393 if (ExtendOperIdx == 0) 1394 std::swap(lhs, rhs); 1395 const SCEVAddRecExpr *AddRec = 1396 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1397 1398 if (!AddRec || AddRec->getLoop() != L) 1399 return {nullptr, Unknown}; 1400 1401 return {AddRec, ExtKind}; 1402 } 1403 1404 /// Is this instruction potentially interesting for further simplification after 1405 /// widening it's type? In other words, can the extend be safely hoisted out of 1406 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1407 /// so, return the extended recurrence and the kind of extension used. Otherwise 1408 /// return {nullptr, Unknown}. 1409 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1410 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1411 return {nullptr, Unknown}; 1412 1413 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1414 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1415 SE->getTypeSizeInBits(WideType)) { 1416 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1417 // index. So don't follow this use. 1418 return {nullptr, Unknown}; 1419 } 1420 1421 const SCEV *WideExpr; 1422 ExtendKind ExtKind; 1423 if (DU.NeverNegative) { 1424 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1425 if (isa<SCEVAddRecExpr>(WideExpr)) 1426 ExtKind = SignExtended; 1427 else { 1428 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1429 ExtKind = ZeroExtended; 1430 } 1431 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1432 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1433 ExtKind = SignExtended; 1434 } else { 1435 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1436 ExtKind = ZeroExtended; 1437 } 1438 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1439 if (!AddRec || AddRec->getLoop() != L) 1440 return {nullptr, Unknown}; 1441 return {AddRec, ExtKind}; 1442 } 1443 1444 /// This IV user cannot be widened. Replace this use of the original narrow IV 1445 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1446 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1447 LoopInfo *LI) { 1448 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1449 if (!InsertPt) 1450 return; 1451 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1452 << *DU.NarrowUse << "\n"); 1453 IRBuilder<> Builder(InsertPt); 1454 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1455 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1456 } 1457 1458 /// If the narrow use is a compare instruction, then widen the compare 1459 // (and possibly the other operand). The extend operation is hoisted into the 1460 // loop preheader as far as possible. 1461 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1462 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1463 if (!Cmp) 1464 return false; 1465 1466 // We can legally widen the comparison in the following two cases: 1467 // 1468 // - The signedness of the IV extension and comparison match 1469 // 1470 // - The narrow IV is always positive (and thus its sign extension is equal 1471 // to its zero extension). For instance, let's say we're zero extending 1472 // %narrow for the following use 1473 // 1474 // icmp slt i32 %narrow, %val ... (A) 1475 // 1476 // and %narrow is always positive. Then 1477 // 1478 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1479 // == icmp slt i32 zext(%narrow), sext(%val) 1480 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1481 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1482 return false; 1483 1484 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1485 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1486 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1487 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1488 1489 // Widen the compare instruction. 1490 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1491 if (!InsertPt) 1492 return false; 1493 IRBuilder<> Builder(InsertPt); 1494 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1495 1496 // Widen the other operand of the compare, if necessary. 1497 if (CastWidth < IVWidth) { 1498 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1499 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1500 } 1501 return true; 1502 } 1503 1504 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1505 // will not work when: 1506 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1507 // expand, eg. add %indvar, (load %addr) 1508 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1509 // While SCEV fails to avoid trunc, we can still try to use instruction 1510 // combining approach to prove trunc is not required. This can be further 1511 // extended with other instruction combining checks, but for now we handle the 1512 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1513 // 1514 // Src: 1515 // %c = sub nsw %b, %indvar 1516 // %d = sext %c to i64 1517 // Dst: 1518 // %indvar.ext1 = sext %indvar to i64 1519 // %m = sext %b to i64 1520 // %d = sub nsw i64 %m, %indvar.ext1 1521 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1522 // trunc is required regardless of how %b is generated. This pattern is common 1523 // when calculating address in 64 bit architecture 1524 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1525 Instruction *NarrowUse = DU.NarrowUse; 1526 Instruction *NarrowDef = DU.NarrowDef; 1527 Instruction *WideDef = DU.WideDef; 1528 1529 // Handle the common case of add<nsw/nuw> 1530 const unsigned OpCode = NarrowUse->getOpcode(); 1531 // Only Add/Sub/Mul instructions are supported. 1532 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1533 OpCode != Instruction::Mul) 1534 return false; 1535 1536 // The operand that is not defined by NarrowDef of DU. Let's call it the 1537 // other operand. 1538 assert((NarrowUse->getOperand(0) == NarrowDef || 1539 NarrowUse->getOperand(1) == NarrowDef) && 1540 "bad DU"); 1541 1542 const OverflowingBinaryOperator *OBO = 1543 cast<OverflowingBinaryOperator>(NarrowUse); 1544 ExtendKind ExtKind = getExtendKind(NarrowDef); 1545 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap(); 1546 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap(); 1547 auto AnotherOpExtKind = ExtKind; 1548 1549 // Check that all uses are either: 1550 // - narrow def (in case of we are widening the IV increment); 1551 // - single-input LCSSA Phis; 1552 // - comparison of the chosen type; 1553 // - extend of the chosen type (raison d'etre). 1554 SmallVector<Instruction *, 4> ExtUsers; 1555 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1556 SmallVector<ICmpInst *, 4> ICmpUsers; 1557 for (Use &U : NarrowUse->uses()) { 1558 Instruction *User = cast<Instruction>(U.getUser()); 1559 if (User == NarrowDef) 1560 continue; 1561 if (!L->contains(User)) { 1562 auto *LCSSAPhi = cast<PHINode>(User); 1563 // Make sure there is only 1 input, so that we don't have to split 1564 // critical edges. 1565 if (LCSSAPhi->getNumOperands() != 1) 1566 return false; 1567 LCSSAPhiUsers.push_back(LCSSAPhi); 1568 continue; 1569 } 1570 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1571 auto Pred = ICmp->getPredicate(); 1572 // We have 3 types of predicates: signed, unsigned and equality 1573 // predicates. For equality, it's legal to widen icmp for either sign and 1574 // zero extend. For sign extend, we can also do so for signed predicates, 1575 // likeweise for zero extend we can widen icmp for unsigned predicates. 1576 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred)) 1577 return false; 1578 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred)) 1579 return false; 1580 ICmpUsers.push_back(ICmp); 1581 continue; 1582 } 1583 if (ExtKind == SignExtended) 1584 User = dyn_cast<SExtInst>(User); 1585 else 1586 User = dyn_cast<ZExtInst>(User); 1587 if (!User || User->getType() != WideType) 1588 return false; 1589 ExtUsers.push_back(User); 1590 } 1591 if (ExtUsers.empty()) { 1592 DeadInsts.emplace_back(NarrowUse); 1593 return true; 1594 } 1595 1596 // We'll prove some facts that should be true in the context of ext users. If 1597 // there is no users, we are done now. If there are some, pick their common 1598 // dominator as context. 1599 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1600 1601 if (!CanSignExtend && !CanZeroExtend) { 1602 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1603 // will most likely not see it. Let's try to prove it. 1604 if (OpCode != Instruction::Add) 1605 return false; 1606 if (ExtKind != ZeroExtended) 1607 return false; 1608 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1609 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1610 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1611 if (NarrowUse->getOperand(0) != NarrowDef) 1612 return false; 1613 if (!SE->isKnownNegative(RHS)) 1614 return false; 1615 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1616 SE->getNegativeSCEV(RHS), CtxI); 1617 if (!ProvedSubNUW) 1618 return false; 1619 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1620 // neg(zext(neg(op))), which is basically sext(op). 1621 AnotherOpExtKind = SignExtended; 1622 } 1623 1624 // Verifying that Defining operand is an AddRec 1625 const SCEV *Op1 = SE->getSCEV(WideDef); 1626 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1627 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1628 return false; 1629 1630 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1631 1632 // Generating a widening use instruction. 1633 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1634 ? WideDef 1635 : createExtendInst(NarrowUse->getOperand(0), WideType, 1636 AnotherOpExtKind, NarrowUse); 1637 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1638 ? WideDef 1639 : createExtendInst(NarrowUse->getOperand(1), WideType, 1640 AnotherOpExtKind, NarrowUse); 1641 1642 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1643 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1644 NarrowBO->getName()); 1645 IRBuilder<> Builder(NarrowUse); 1646 Builder.Insert(WideBO); 1647 WideBO->copyIRFlags(NarrowBO); 1648 ExtendKindMap[NarrowUse] = ExtKind; 1649 1650 for (Instruction *User : ExtUsers) { 1651 assert(User->getType() == WideType && "Checked before!"); 1652 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1653 << *WideBO << "\n"); 1654 ++NumElimExt; 1655 User->replaceAllUsesWith(WideBO); 1656 DeadInsts.emplace_back(User); 1657 } 1658 1659 for (PHINode *User : LCSSAPhiUsers) { 1660 assert(User->getNumOperands() == 1 && "Checked before!"); 1661 Builder.SetInsertPoint(User); 1662 auto *WidePN = 1663 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1664 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1665 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1666 "Not a LCSSA Phi?"); 1667 WidePN->addIncoming(WideBO, LoopExitingBlock); 1668 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1669 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1670 User->replaceAllUsesWith(TruncPN); 1671 DeadInsts.emplace_back(User); 1672 } 1673 1674 for (ICmpInst *User : ICmpUsers) { 1675 Builder.SetInsertPoint(User); 1676 auto ExtendedOp = [&](Value * V)->Value * { 1677 if (V == NarrowUse) 1678 return WideBO; 1679 if (ExtKind == ZeroExtended) 1680 return Builder.CreateZExt(V, WideBO->getType()); 1681 else 1682 return Builder.CreateSExt(V, WideBO->getType()); 1683 }; 1684 auto Pred = User->getPredicate(); 1685 auto *LHS = ExtendedOp(User->getOperand(0)); 1686 auto *RHS = ExtendedOp(User->getOperand(1)); 1687 auto *WideCmp = 1688 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1689 User->replaceAllUsesWith(WideCmp); 1690 DeadInsts.emplace_back(User); 1691 } 1692 1693 return true; 1694 } 1695 1696 /// Determine whether an individual user of the narrow IV can be widened. If so, 1697 /// return the wide clone of the user. 1698 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1699 assert(ExtendKindMap.count(DU.NarrowDef) && 1700 "Should already know the kind of extension used to widen NarrowDef"); 1701 1702 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1703 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1704 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1705 // For LCSSA phis, sink the truncate outside the loop. 1706 // After SimplifyCFG most loop exit targets have a single predecessor. 1707 // Otherwise fall back to a truncate within the loop. 1708 if (UsePhi->getNumOperands() != 1) 1709 truncateIVUse(DU, DT, LI); 1710 else { 1711 // Widening the PHI requires us to insert a trunc. The logical place 1712 // for this trunc is in the same BB as the PHI. This is not possible if 1713 // the BB is terminated by a catchswitch. 1714 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1715 return nullptr; 1716 1717 PHINode *WidePhi = 1718 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1719 UsePhi); 1720 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1721 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1722 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1723 UsePhi->replaceAllUsesWith(Trunc); 1724 DeadInsts.emplace_back(UsePhi); 1725 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1726 << *WidePhi << "\n"); 1727 } 1728 return nullptr; 1729 } 1730 } 1731 1732 // This narrow use can be widened by a sext if it's non-negative or its narrow 1733 // def was widended by a sext. Same for zext. 1734 auto canWidenBySExt = [&]() { 1735 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1736 }; 1737 auto canWidenByZExt = [&]() { 1738 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1739 }; 1740 1741 // Our raison d'etre! Eliminate sign and zero extension. 1742 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1743 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1744 Value *NewDef = DU.WideDef; 1745 if (DU.NarrowUse->getType() != WideType) { 1746 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1747 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1748 if (CastWidth < IVWidth) { 1749 // The cast isn't as wide as the IV, so insert a Trunc. 1750 IRBuilder<> Builder(DU.NarrowUse); 1751 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1752 } 1753 else { 1754 // A wider extend was hidden behind a narrower one. This may induce 1755 // another round of IV widening in which the intermediate IV becomes 1756 // dead. It should be very rare. 1757 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1758 << " not wide enough to subsume " << *DU.NarrowUse 1759 << "\n"); 1760 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1761 NewDef = DU.NarrowUse; 1762 } 1763 } 1764 if (NewDef != DU.NarrowUse) { 1765 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1766 << " replaced by " << *DU.WideDef << "\n"); 1767 ++NumElimExt; 1768 DU.NarrowUse->replaceAllUsesWith(NewDef); 1769 DeadInsts.emplace_back(DU.NarrowUse); 1770 } 1771 // Now that the extend is gone, we want to expose it's uses for potential 1772 // further simplification. We don't need to directly inform SimplifyIVUsers 1773 // of the new users, because their parent IV will be processed later as a 1774 // new loop phi. If we preserved IVUsers analysis, we would also want to 1775 // push the uses of WideDef here. 1776 1777 // No further widening is needed. The deceased [sz]ext had done it for us. 1778 return nullptr; 1779 } 1780 1781 // Does this user itself evaluate to a recurrence after widening? 1782 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1783 if (!WideAddRec.first) 1784 WideAddRec = getWideRecurrence(DU); 1785 1786 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1787 if (!WideAddRec.first) { 1788 // If use is a loop condition, try to promote the condition instead of 1789 // truncating the IV first. 1790 if (widenLoopCompare(DU)) 1791 return nullptr; 1792 1793 // We are here about to generate a truncate instruction that may hurt 1794 // performance because the scalar evolution expression computed earlier 1795 // in WideAddRec.first does not indicate a polynomial induction expression. 1796 // In that case, look at the operands of the use instruction to determine 1797 // if we can still widen the use instead of truncating its operand. 1798 if (widenWithVariantUse(DU)) 1799 return nullptr; 1800 1801 // This user does not evaluate to a recurrence after widening, so don't 1802 // follow it. Instead insert a Trunc to kill off the original use, 1803 // eventually isolating the original narrow IV so it can be removed. 1804 truncateIVUse(DU, DT, LI); 1805 return nullptr; 1806 } 1807 // Assume block terminators cannot evaluate to a recurrence. We can't to 1808 // insert a Trunc after a terminator if there happens to be a critical edge. 1809 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1810 "SCEV is not expected to evaluate a block terminator"); 1811 1812 // Reuse the IV increment that SCEVExpander created as long as it dominates 1813 // NarrowUse. 1814 Instruction *WideUse = nullptr; 1815 if (WideAddRec.first == WideIncExpr && 1816 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1817 WideUse = WideInc; 1818 else { 1819 WideUse = cloneIVUser(DU, WideAddRec.first); 1820 if (!WideUse) 1821 return nullptr; 1822 } 1823 // Evaluation of WideAddRec ensured that the narrow expression could be 1824 // extended outside the loop without overflow. This suggests that the wide use 1825 // evaluates to the same expression as the extended narrow use, but doesn't 1826 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1827 // where it fails, we simply throw away the newly created wide use. 1828 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1829 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1830 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1831 << "\n"); 1832 DeadInsts.emplace_back(WideUse); 1833 return nullptr; 1834 } 1835 1836 // if we reached this point then we are going to replace 1837 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1838 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1839 1840 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1841 // Returning WideUse pushes it on the worklist. 1842 return WideUse; 1843 } 1844 1845 /// Add eligible users of NarrowDef to NarrowIVUsers. 1846 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1847 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1848 bool NonNegativeDef = 1849 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1850 SE->getZero(NarrowSCEV->getType())); 1851 for (User *U : NarrowDef->users()) { 1852 Instruction *NarrowUser = cast<Instruction>(U); 1853 1854 // Handle data flow merges and bizarre phi cycles. 1855 if (!Widened.insert(NarrowUser).second) 1856 continue; 1857 1858 bool NonNegativeUse = false; 1859 if (!NonNegativeDef) { 1860 // We might have a control-dependent range information for this context. 1861 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1862 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1863 } 1864 1865 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1866 NonNegativeDef || NonNegativeUse); 1867 } 1868 } 1869 1870 /// Process a single induction variable. First use the SCEVExpander to create a 1871 /// wide induction variable that evaluates to the same recurrence as the 1872 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1873 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1874 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1875 /// 1876 /// It would be simpler to delete uses as they are processed, but we must avoid 1877 /// invalidating SCEV expressions. 1878 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1879 // Is this phi an induction variable? 1880 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1881 if (!AddRec) 1882 return nullptr; 1883 1884 // Widen the induction variable expression. 1885 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1886 ? SE->getSignExtendExpr(AddRec, WideType) 1887 : SE->getZeroExtendExpr(AddRec, WideType); 1888 1889 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1890 "Expect the new IV expression to preserve its type"); 1891 1892 // Can the IV be extended outside the loop without overflow? 1893 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1894 if (!AddRec || AddRec->getLoop() != L) 1895 return nullptr; 1896 1897 // An AddRec must have loop-invariant operands. Since this AddRec is 1898 // materialized by a loop header phi, the expression cannot have any post-loop 1899 // operands, so they must dominate the loop header. 1900 assert( 1901 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1902 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1903 "Loop header phi recurrence inputs do not dominate the loop"); 1904 1905 // Iterate over IV uses (including transitive ones) looking for IV increments 1906 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1907 // the increment calculate control-dependent range information basing on 1908 // dominating conditions inside of the loop (e.g. a range check inside of the 1909 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1910 // 1911 // Control-dependent range information is later used to prove that a narrow 1912 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1913 // this on demand because when pushNarrowIVUsers needs this information some 1914 // of the dominating conditions might be already widened. 1915 if (UsePostIncrementRanges) 1916 calculatePostIncRanges(OrigPhi); 1917 1918 // The rewriter provides a value for the desired IV expression. This may 1919 // either find an existing phi or materialize a new one. Either way, we 1920 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1921 // of the phi-SCC dominates the loop entry. 1922 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1923 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1924 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1925 // inttoptr, ptrtoint, just skip for now. 1926 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1927 // if the cast node is an inserted instruction without any user, we should 1928 // remove it to make sure the pass don't touch the function as we can not 1929 // wide the phi. 1930 if (ExpandInst->hasNUses(0) && 1931 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1932 DeadInsts.emplace_back(ExpandInst); 1933 return nullptr; 1934 } 1935 1936 // Remembering the WideIV increment generated by SCEVExpander allows 1937 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1938 // employ a general reuse mechanism because the call above is the only call to 1939 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1940 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1941 WideInc = 1942 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1943 WideIncExpr = SE->getSCEV(WideInc); 1944 // Propagate the debug location associated with the original loop increment 1945 // to the new (widened) increment. 1946 auto *OrigInc = 1947 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1948 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1949 } 1950 1951 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1952 ++NumWidened; 1953 1954 // Traverse the def-use chain using a worklist starting at the original IV. 1955 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1956 1957 Widened.insert(OrigPhi); 1958 pushNarrowIVUsers(OrigPhi, WidePhi); 1959 1960 while (!NarrowIVUsers.empty()) { 1961 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1962 1963 // Process a def-use edge. This may replace the use, so don't hold a 1964 // use_iterator across it. 1965 Instruction *WideUse = widenIVUse(DU, Rewriter); 1966 1967 // Follow all def-use edges from the previous narrow use. 1968 if (WideUse) 1969 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1970 1971 // widenIVUse may have removed the def-use edge. 1972 if (DU.NarrowDef->use_empty()) 1973 DeadInsts.emplace_back(DU.NarrowDef); 1974 } 1975 1976 // Attach any debug information to the new PHI. 1977 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1978 1979 return WidePhi; 1980 } 1981 1982 /// Calculates control-dependent range for the given def at the given context 1983 /// by looking at dominating conditions inside of the loop 1984 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1985 Instruction *NarrowUser) { 1986 using namespace llvm::PatternMatch; 1987 1988 Value *NarrowDefLHS; 1989 const APInt *NarrowDefRHS; 1990 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1991 m_APInt(NarrowDefRHS))) || 1992 !NarrowDefRHS->isNonNegative()) 1993 return; 1994 1995 auto UpdateRangeFromCondition = [&] (Value *Condition, 1996 bool TrueDest) { 1997 CmpInst::Predicate Pred; 1998 Value *CmpRHS; 1999 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 2000 m_Value(CmpRHS)))) 2001 return; 2002 2003 CmpInst::Predicate P = 2004 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2005 2006 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2007 auto CmpConstrainedLHSRange = 2008 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2009 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2010 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2011 2012 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2013 }; 2014 2015 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2016 if (!HasGuards) 2017 return; 2018 2019 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2020 Ctx->getParent()->rend())) { 2021 Value *C = nullptr; 2022 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2023 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2024 } 2025 }; 2026 2027 UpdateRangeFromGuards(NarrowUser); 2028 2029 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2030 // If NarrowUserBB is statically unreachable asking dominator queries may 2031 // yield surprising results. (e.g. the block may not have a dom tree node) 2032 if (!DT->isReachableFromEntry(NarrowUserBB)) 2033 return; 2034 2035 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2036 L->contains(DTB->getBlock()); 2037 DTB = DTB->getIDom()) { 2038 auto *BB = DTB->getBlock(); 2039 auto *TI = BB->getTerminator(); 2040 UpdateRangeFromGuards(TI); 2041 2042 auto *BI = dyn_cast<BranchInst>(TI); 2043 if (!BI || !BI->isConditional()) 2044 continue; 2045 2046 auto *TrueSuccessor = BI->getSuccessor(0); 2047 auto *FalseSuccessor = BI->getSuccessor(1); 2048 2049 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2050 return BBE.isSingleEdge() && 2051 DT->dominates(BBE, NarrowUser->getParent()); 2052 }; 2053 2054 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2055 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2056 2057 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2058 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2059 } 2060 } 2061 2062 /// Calculates PostIncRangeInfos map for the given IV 2063 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2064 SmallPtrSet<Instruction *, 16> Visited; 2065 SmallVector<Instruction *, 6> Worklist; 2066 Worklist.push_back(OrigPhi); 2067 Visited.insert(OrigPhi); 2068 2069 while (!Worklist.empty()) { 2070 Instruction *NarrowDef = Worklist.pop_back_val(); 2071 2072 for (Use &U : NarrowDef->uses()) { 2073 auto *NarrowUser = cast<Instruction>(U.getUser()); 2074 2075 // Don't go looking outside the current loop. 2076 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2077 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2078 continue; 2079 2080 if (!Visited.insert(NarrowUser).second) 2081 continue; 2082 2083 Worklist.push_back(NarrowUser); 2084 2085 calculatePostIncRange(NarrowDef, NarrowUser); 2086 } 2087 } 2088 } 2089 2090 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2091 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2092 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2093 unsigned &NumElimExt, unsigned &NumWidened, 2094 bool HasGuards, bool UsePostIncrementRanges) { 2095 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2096 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2097 NumElimExt = Widener.getNumElimExt(); 2098 NumWidened = Widener.getNumWidened(); 2099 return WidePHI; 2100 } 2101