1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "indvars"
34 
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
39 STATISTIC(
40     NumSimplifiedSDiv,
41     "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43     NumSimplifiedSRem,
44     "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
46 
47 namespace {
48   /// This is a utility for simplifying induction variables
49   /// based on ScalarEvolution. It is the primary instrument of the
50   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51   /// other loop passes that preserve SCEV.
52   class SimplifyIndvar {
53     Loop             *L;
54     LoopInfo         *LI;
55     ScalarEvolution  *SE;
56     DominatorTree    *DT;
57     const TargetTransformInfo *TTI;
58     SCEVExpander     &Rewriter;
59     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 
61     bool Changed;
62 
63   public:
64     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65                    LoopInfo *LI, const TargetTransformInfo *TTI,
66                    SCEVExpander &Rewriter,
67                    SmallVectorImpl<WeakTrackingVH> &Dead)
68         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69           DeadInsts(Dead), Changed(false) {
70       assert(LI && "IV simplification requires LoopInfo");
71     }
72 
73     bool hasChanged() const { return Changed; }
74 
75     /// Iteratively perform simplification on a worklist of users of the
76     /// specified induction variable. This is the top-level driver that applies
77     /// all simplifications to users of an IV.
78     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
79 
80     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
81 
82     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84 
85     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87     bool eliminateTrunc(TruncInst *TI);
88     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92                              bool IsSigned);
93     void replaceRemWithNumerator(BinaryOperator *Rem);
94     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95     void replaceSRemWithURem(BinaryOperator *Rem);
96     bool eliminateSDiv(BinaryOperator *SDiv);
97     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
99   };
100 }
101 
102 /// Fold an IV operand into its use.  This removes increments of an
103 /// aligned IV when used by a instruction that ignores the low bits.
104 ///
105 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
106 ///
107 /// Return the operand of IVOperand for this induction variable if IVOperand can
108 /// be folded (in case more folding opportunities have been exposed).
109 /// Otherwise return null.
110 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
111   Value *IVSrc = nullptr;
112   const unsigned OperIdx = 0;
113   const SCEV *FoldedExpr = nullptr;
114   bool MustDropExactFlag = false;
115   switch (UseInst->getOpcode()) {
116   default:
117     return nullptr;
118   case Instruction::UDiv:
119   case Instruction::LShr:
120     // We're only interested in the case where we know something about
121     // the numerator and have a constant denominator.
122     if (IVOperand != UseInst->getOperand(OperIdx) ||
123         !isa<ConstantInt>(UseInst->getOperand(1)))
124       return nullptr;
125 
126     // Attempt to fold a binary operator with constant operand.
127     // e.g. ((I + 1) >> 2) => I >> 2
128     if (!isa<BinaryOperator>(IVOperand)
129         || !isa<ConstantInt>(IVOperand->getOperand(1)))
130       return nullptr;
131 
132     IVSrc = IVOperand->getOperand(0);
133     // IVSrc must be the (SCEVable) IV, since the other operand is const.
134     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
135 
136     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
137     if (UseInst->getOpcode() == Instruction::LShr) {
138       // Get a constant for the divisor. See createSCEV.
139       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
140       if (D->getValue().uge(BitWidth))
141         return nullptr;
142 
143       D = ConstantInt::get(UseInst->getContext(),
144                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
145     }
146     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
147     // We might have 'exact' flag set at this point which will no longer be
148     // correct after we make the replacement.
149     if (UseInst->isExact() &&
150         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
151       MustDropExactFlag = true;
152   }
153   // We have something that might fold it's operand. Compare SCEVs.
154   if (!SE->isSCEVable(UseInst->getType()))
155     return nullptr;
156 
157   // Bypass the operand if SCEV can prove it has no effect.
158   if (SE->getSCEV(UseInst) != FoldedExpr)
159     return nullptr;
160 
161   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
162                     << " -> " << *UseInst << '\n');
163 
164   UseInst->setOperand(OperIdx, IVSrc);
165   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
166 
167   if (MustDropExactFlag)
168     UseInst->dropPoisonGeneratingFlags();
169 
170   ++NumElimOperand;
171   Changed = true;
172   if (IVOperand->use_empty())
173     DeadInsts.emplace_back(IVOperand);
174   return IVSrc;
175 }
176 
177 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
178                                                Value *IVOperand) {
179   unsigned IVOperIdx = 0;
180   ICmpInst::Predicate Pred = ICmp->getPredicate();
181   if (IVOperand != ICmp->getOperand(0)) {
182     // Swapped
183     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
184     IVOperIdx = 1;
185     Pred = ICmpInst::getSwappedPredicate(Pred);
186   }
187 
188   // Get the SCEVs for the ICmp operands (in the specific context of the
189   // current loop)
190   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
191   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
192   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
193 
194   auto *PN = dyn_cast<PHINode>(IVOperand);
195   if (!PN)
196     return false;
197   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
198   if (!LIP)
199     return false;
200   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
201   const SCEV *InvariantLHS = LIP->LHS;
202   const SCEV *InvariantRHS = LIP->RHS;
203 
204   // Rewrite the comparison to a loop invariant comparison if it can be done
205   // cheaply, where cheaply means "we don't need to emit any new
206   // instructions".
207 
208   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
209   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
210   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
211 
212   // TODO: Support multiple entry loops?  (We currently bail out of these in
213   // the IndVarSimplify pass)
214   if (auto *BB = L->getLoopPredecessor()) {
215     const int Idx = PN->getBasicBlockIndex(BB);
216     if (Idx >= 0) {
217       Value *Incoming = PN->getIncomingValue(Idx);
218       const SCEV *IncomingS = SE->getSCEV(Incoming);
219       CheapExpansions[IncomingS] = Incoming;
220     }
221   }
222   Value *NewLHS = CheapExpansions[InvariantLHS];
223   Value *NewRHS = CheapExpansions[InvariantRHS];
224 
225   if (!NewLHS)
226     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
227       NewLHS = ConstLHS->getValue();
228   if (!NewRHS)
229     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
230       NewRHS = ConstRHS->getValue();
231 
232   if (!NewLHS || !NewRHS)
233     // We could not find an existing value to replace either LHS or RHS.
234     // Generating new instructions has subtler tradeoffs, so avoid doing that
235     // for now.
236     return false;
237 
238   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
239   ICmp->setPredicate(InvariantPredicate);
240   ICmp->setOperand(0, NewLHS);
241   ICmp->setOperand(1, NewRHS);
242   return true;
243 }
244 
245 /// SimplifyIVUsers helper for eliminating useless
246 /// comparisons against an induction variable.
247 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
248   unsigned IVOperIdx = 0;
249   ICmpInst::Predicate Pred = ICmp->getPredicate();
250   ICmpInst::Predicate OriginalPred = Pred;
251   if (IVOperand != ICmp->getOperand(0)) {
252     // Swapped
253     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
254     IVOperIdx = 1;
255     Pred = ICmpInst::getSwappedPredicate(Pred);
256   }
257 
258   // Get the SCEVs for the ICmp operands (in the specific context of the
259   // current loop)
260   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
261   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
262   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
263 
264   // If the condition is always true or always false, replace it with
265   // a constant value.
266   if (auto Ev = SE->evaluatePredicate(Pred, S, X)) {
267     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
268     DeadInsts.emplace_back(ICmp);
269     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
270   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
271     // fallthrough to end of function
272   } else if (ICmpInst::isSigned(OriginalPred) &&
273              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
274     // If we were unable to make anything above, all we can is to canonicalize
275     // the comparison hoping that it will open the doors for other
276     // optimizations. If we find out that we compare two non-negative values,
277     // we turn the instruction's predicate to its unsigned version. Note that
278     // we cannot rely on Pred here unless we check if we have swapped it.
279     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
280     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
281                       << '\n');
282     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
283   } else
284     return;
285 
286   ++NumElimCmp;
287   Changed = true;
288 }
289 
290 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
291   // Get the SCEVs for the ICmp operands.
292   auto *N = SE->getSCEV(SDiv->getOperand(0));
293   auto *D = SE->getSCEV(SDiv->getOperand(1));
294 
295   // Simplify unnecessary loops away.
296   const Loop *L = LI->getLoopFor(SDiv->getParent());
297   N = SE->getSCEVAtScope(N, L);
298   D = SE->getSCEVAtScope(D, L);
299 
300   // Replace sdiv by udiv if both of the operands are non-negative
301   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
302     auto *UDiv = BinaryOperator::Create(
303         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
304         SDiv->getName() + ".udiv", SDiv);
305     UDiv->setIsExact(SDiv->isExact());
306     SDiv->replaceAllUsesWith(UDiv);
307     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
308     ++NumSimplifiedSDiv;
309     Changed = true;
310     DeadInsts.push_back(SDiv);
311     return true;
312   }
313 
314   return false;
315 }
316 
317 // i %s n -> i %u n if i >= 0 and n >= 0
318 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
319   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
320   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
321                                       Rem->getName() + ".urem", Rem);
322   Rem->replaceAllUsesWith(URem);
323   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
324   ++NumSimplifiedSRem;
325   Changed = true;
326   DeadInsts.emplace_back(Rem);
327 }
328 
329 // i % n  -->  i  if i is in [0,n).
330 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
331   Rem->replaceAllUsesWith(Rem->getOperand(0));
332   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
333   ++NumElimRem;
334   Changed = true;
335   DeadInsts.emplace_back(Rem);
336 }
337 
338 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
339 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
340   auto *T = Rem->getType();
341   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
343   SelectInst *Sel =
344       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
345   Rem->replaceAllUsesWith(Sel);
346   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
347   ++NumElimRem;
348   Changed = true;
349   DeadInsts.emplace_back(Rem);
350 }
351 
352 /// SimplifyIVUsers helper for eliminating useless remainder operations
353 /// operating on an induction variable or replacing srem by urem.
354 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
355                                          bool IsSigned) {
356   auto *NValue = Rem->getOperand(0);
357   auto *DValue = Rem->getOperand(1);
358   // We're only interested in the case where we know something about
359   // the numerator, unless it is a srem, because we want to replace srem by urem
360   // in general.
361   bool UsedAsNumerator = IVOperand == NValue;
362   if (!UsedAsNumerator && !IsSigned)
363     return;
364 
365   const SCEV *N = SE->getSCEV(NValue);
366 
367   // Simplify unnecessary loops away.
368   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
369   N = SE->getSCEVAtScope(N, ICmpLoop);
370 
371   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
372 
373   // Do not proceed if the Numerator may be negative
374   if (!IsNumeratorNonNegative)
375     return;
376 
377   const SCEV *D = SE->getSCEV(DValue);
378   D = SE->getSCEVAtScope(D, ICmpLoop);
379 
380   if (UsedAsNumerator) {
381     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
382     if (SE->isKnownPredicate(LT, N, D)) {
383       replaceRemWithNumerator(Rem);
384       return;
385     }
386 
387     auto *T = Rem->getType();
388     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
389     if (SE->isKnownPredicate(LT, NLessOne, D)) {
390       replaceRemWithNumeratorOrZero(Rem);
391       return;
392     }
393   }
394 
395   // Try to replace SRem with URem, if both N and D are known non-negative.
396   // Since we had already check N, we only need to check D now
397   if (!IsSigned || !SE->isKnownNonNegative(D))
398     return;
399 
400   replaceSRemWithURem(Rem);
401 }
402 
403 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
404                             bool Signed, const SCEV *LHS, const SCEV *RHS) {
405   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
406                                             SCEV::NoWrapFlags, unsigned);
407   switch (BinOp) {
408   default:
409     llvm_unreachable("Unsupported binary op");
410   case Instruction::Add:
411     Operation = &ScalarEvolution::getAddExpr;
412     break;
413   case Instruction::Sub:
414     Operation = &ScalarEvolution::getMinusSCEV;
415     break;
416   case Instruction::Mul:
417     Operation = &ScalarEvolution::getMulExpr;
418     break;
419   }
420 
421   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
422       Signed ? &ScalarEvolution::getSignExtendExpr
423              : &ScalarEvolution::getZeroExtendExpr;
424 
425   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
426   auto *NarrowTy = cast<IntegerType>(LHS->getType());
427   auto *WideTy =
428     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
429 
430   const SCEV *A =
431       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
432                        WideTy, 0);
433   const SCEV *B =
434       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
435                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
436   return A == B;
437 }
438 
439 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
440   const SCEV *LHS = SE->getSCEV(WO->getLHS());
441   const SCEV *RHS = SE->getSCEV(WO->getRHS());
442   if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
443     return false;
444 
445   // Proved no overflow, nuke the overflow check and, if possible, the overflow
446   // intrinsic as well.
447 
448   BinaryOperator *NewResult = BinaryOperator::Create(
449       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
450 
451   if (WO->isSigned())
452     NewResult->setHasNoSignedWrap(true);
453   else
454     NewResult->setHasNoUnsignedWrap(true);
455 
456   SmallVector<ExtractValueInst *, 4> ToDelete;
457 
458   for (auto *U : WO->users()) {
459     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
460       if (EVI->getIndices()[0] == 1)
461         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
462       else {
463         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
464         EVI->replaceAllUsesWith(NewResult);
465       }
466       ToDelete.push_back(EVI);
467     }
468   }
469 
470   for (auto *EVI : ToDelete)
471     EVI->eraseFromParent();
472 
473   if (WO->use_empty())
474     WO->eraseFromParent();
475 
476   Changed = true;
477   return true;
478 }
479 
480 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
481   const SCEV *LHS = SE->getSCEV(SI->getLHS());
482   const SCEV *RHS = SE->getSCEV(SI->getRHS());
483   if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
484     return false;
485 
486   BinaryOperator *BO = BinaryOperator::Create(
487       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
488   if (SI->isSigned())
489     BO->setHasNoSignedWrap();
490   else
491     BO->setHasNoUnsignedWrap();
492 
493   SI->replaceAllUsesWith(BO);
494   DeadInsts.emplace_back(SI);
495   Changed = true;
496   return true;
497 }
498 
499 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
500   // It is always legal to replace
501   //   icmp <pred> i32 trunc(iv), n
502   // with
503   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
504   // Or with
505   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
506   // Or with either of these if pred is an equality predicate.
507   //
508   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
509   // every comparison which uses trunc, it means that we can replace each of
510   // them with comparison of iv against sext/zext(n). We no longer need trunc
511   // after that.
512   //
513   // TODO: Should we do this if we can widen *some* comparisons, but not all
514   // of them? Sometimes it is enough to enable other optimizations, but the
515   // trunc instruction will stay in the loop.
516   Value *IV = TI->getOperand(0);
517   Type *IVTy = IV->getType();
518   const SCEV *IVSCEV = SE->getSCEV(IV);
519   const SCEV *TISCEV = SE->getSCEV(TI);
520 
521   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
522   // get rid of trunc
523   bool DoesSExtCollapse = false;
524   bool DoesZExtCollapse = false;
525   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
526     DoesSExtCollapse = true;
527   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
528     DoesZExtCollapse = true;
529 
530   // If neither sext nor zext does collapse, it is not profitable to do any
531   // transform. Bail.
532   if (!DoesSExtCollapse && !DoesZExtCollapse)
533     return false;
534 
535   // Collect users of the trunc that look like comparisons against invariants.
536   // Bail if we find something different.
537   SmallVector<ICmpInst *, 4> ICmpUsers;
538   for (auto *U : TI->users()) {
539     // We don't care about users in unreachable blocks.
540     if (isa<Instruction>(U) &&
541         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
542       continue;
543     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
544     if (!ICI) return false;
545     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
546     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
547         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
548       return false;
549     // If we cannot get rid of trunc, bail.
550     if (ICI->isSigned() && !DoesSExtCollapse)
551       return false;
552     if (ICI->isUnsigned() && !DoesZExtCollapse)
553       return false;
554     // For equality, either signed or unsigned works.
555     ICmpUsers.push_back(ICI);
556   }
557 
558   auto CanUseZExt = [&](ICmpInst *ICI) {
559     // Unsigned comparison can be widened as unsigned.
560     if (ICI->isUnsigned())
561       return true;
562     // Is it profitable to do zext?
563     if (!DoesZExtCollapse)
564       return false;
565     // For equality, we can safely zext both parts.
566     if (ICI->isEquality())
567       return true;
568     // Otherwise we can only use zext when comparing two non-negative or two
569     // negative values. But in practice, we will never pass DoesZExtCollapse
570     // check for a negative value, because zext(trunc(x)) is non-negative. So
571     // it only make sense to check for non-negativity here.
572     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
573     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
574     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
575   };
576   // Replace all comparisons against trunc with comparisons against IV.
577   for (auto *ICI : ICmpUsers) {
578     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
579     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
580     Instruction *Ext = nullptr;
581     // For signed/unsigned predicate, replace the old comparison with comparison
582     // of immediate IV against sext/zext of the invariant argument. If we can
583     // use either sext or zext (i.e. we are dealing with equality predicate),
584     // then prefer zext as a more canonical form.
585     // TODO: If we see a signed comparison which can be turned into unsigned,
586     // we can do it here for canonicalization purposes.
587     ICmpInst::Predicate Pred = ICI->getPredicate();
588     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
589     if (CanUseZExt(ICI)) {
590       assert(DoesZExtCollapse && "Unprofitable zext?");
591       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
592       Pred = ICmpInst::getUnsignedPredicate(Pred);
593     } else {
594       assert(DoesSExtCollapse && "Unprofitable sext?");
595       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
596       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
597     }
598     bool Changed;
599     L->makeLoopInvariant(Ext, Changed);
600     (void)Changed;
601     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
602     ICI->replaceAllUsesWith(NewICI);
603     DeadInsts.emplace_back(ICI);
604   }
605 
606   // Trunc no longer needed.
607   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
608   DeadInsts.emplace_back(TI);
609   return true;
610 }
611 
612 /// Eliminate an operation that consumes a simple IV and has no observable
613 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
614 /// but UseInst may not be.
615 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
616                                      Instruction *IVOperand) {
617   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
618     eliminateIVComparison(ICmp, IVOperand);
619     return true;
620   }
621   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
622     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
623     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
624       simplifyIVRemainder(Bin, IVOperand, IsSRem);
625       return true;
626     }
627 
628     if (Bin->getOpcode() == Instruction::SDiv)
629       return eliminateSDiv(Bin);
630   }
631 
632   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
633     if (eliminateOverflowIntrinsic(WO))
634       return true;
635 
636   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
637     if (eliminateSaturatingIntrinsic(SI))
638       return true;
639 
640   if (auto *TI = dyn_cast<TruncInst>(UseInst))
641     if (eliminateTrunc(TI))
642       return true;
643 
644   if (eliminateIdentitySCEV(UseInst, IVOperand))
645     return true;
646 
647   return false;
648 }
649 
650 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
651   if (auto *BB = L->getLoopPreheader())
652     return BB->getTerminator();
653 
654   return Hint;
655 }
656 
657 /// Replace the UseInst with a loop invariant expression if it is safe.
658 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
659   if (!SE->isSCEVable(I->getType()))
660     return false;
661 
662   // Get the symbolic expression for this instruction.
663   const SCEV *S = SE->getSCEV(I);
664 
665   if (!SE->isLoopInvariant(S, L))
666     return false;
667 
668   // Do not generate something ridiculous even if S is loop invariant.
669   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
670     return false;
671 
672   auto *IP = GetLoopInvariantInsertPosition(L, I);
673 
674   if (!isSafeToExpandAt(S, IP, *SE)) {
675     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
676                       << " with non-speculable loop invariant: " << *S << '\n');
677     return false;
678   }
679 
680   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
681 
682   I->replaceAllUsesWith(Invariant);
683   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
684                     << " with loop invariant: " << *S << '\n');
685   ++NumFoldedUser;
686   Changed = true;
687   DeadInsts.emplace_back(I);
688   return true;
689 }
690 
691 /// Eliminate any operation that SCEV can prove is an identity function.
692 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
693                                            Instruction *IVOperand) {
694   if (!SE->isSCEVable(UseInst->getType()) ||
695       (UseInst->getType() != IVOperand->getType()) ||
696       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
697     return false;
698 
699   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
700   // dominator tree, even if X is an operand to Y.  For instance, in
701   //
702   //     %iv = phi i32 {0,+,1}
703   //     br %cond, label %left, label %merge
704   //
705   //   left:
706   //     %X = add i32 %iv, 0
707   //     br label %merge
708   //
709   //   merge:
710   //     %M = phi (%X, %iv)
711   //
712   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
713   // %M.replaceAllUsesWith(%X) would be incorrect.
714 
715   if (isa<PHINode>(UseInst))
716     // If UseInst is not a PHI node then we know that IVOperand dominates
717     // UseInst directly from the legality of SSA.
718     if (!DT || !DT->dominates(IVOperand, UseInst))
719       return false;
720 
721   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
722     return false;
723 
724   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
725 
726   UseInst->replaceAllUsesWith(IVOperand);
727   ++NumElimIdentity;
728   Changed = true;
729   DeadInsts.emplace_back(UseInst);
730   return true;
731 }
732 
733 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
734 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
735 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
736                                                     Value *IVOperand) {
737   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
738   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
739     return false;
740 
741   if (BO->getOpcode() != Instruction::Add &&
742       BO->getOpcode() != Instruction::Sub &&
743       BO->getOpcode() != Instruction::Mul)
744     return false;
745 
746   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
747   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
748   bool Changed = false;
749 
750   if (!BO->hasNoUnsignedWrap() &&
751       willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
752     BO->setHasNoUnsignedWrap();
753     SE->forgetValue(BO);
754     Changed = true;
755   }
756 
757   if (!BO->hasNoSignedWrap() &&
758       willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
759     BO->setHasNoSignedWrap();
760     SE->forgetValue(BO);
761     Changed = true;
762   }
763 
764   return Changed;
765 }
766 
767 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
768 /// information from the IV's range. Returns true if anything changed, false
769 /// otherwise.
770 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
771                                           Value *IVOperand) {
772   using namespace llvm::PatternMatch;
773 
774   if (BO->getOpcode() == Instruction::Shl) {
775     bool Changed = false;
776     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
777     for (auto *U : BO->users()) {
778       const APInt *C;
779       if (match(U,
780                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
781           match(U,
782                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
783         BinaryOperator *Shr = cast<BinaryOperator>(U);
784         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
785           Shr->setIsExact(true);
786           Changed = true;
787         }
788       }
789     }
790     return Changed;
791   }
792 
793   return false;
794 }
795 
796 /// Add all uses of Def to the current IV's worklist.
797 static void pushIVUsers(
798   Instruction *Def, Loop *L,
799   SmallPtrSet<Instruction*,16> &Simplified,
800   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
801 
802   for (User *U : Def->users()) {
803     Instruction *UI = cast<Instruction>(U);
804 
805     // Avoid infinite or exponential worklist processing.
806     // Also ensure unique worklist users.
807     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
808     // self edges first.
809     if (UI == Def)
810       continue;
811 
812     // Only change the current Loop, do not change the other parts (e.g. other
813     // Loops).
814     if (!L->contains(UI))
815       continue;
816 
817     // Do not push the same instruction more than once.
818     if (!Simplified.insert(UI).second)
819       continue;
820 
821     SimpleIVUsers.push_back(std::make_pair(UI, Def));
822   }
823 }
824 
825 /// Return true if this instruction generates a simple SCEV
826 /// expression in terms of that IV.
827 ///
828 /// This is similar to IVUsers' isInteresting() but processes each instruction
829 /// non-recursively when the operand is already known to be a simpleIVUser.
830 ///
831 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
832   if (!SE->isSCEVable(I->getType()))
833     return false;
834 
835   // Get the symbolic expression for this instruction.
836   const SCEV *S = SE->getSCEV(I);
837 
838   // Only consider affine recurrences.
839   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
840   if (AR && AR->getLoop() == L)
841     return true;
842 
843   return false;
844 }
845 
846 /// Iteratively perform simplification on a worklist of users
847 /// of the specified induction variable. Each successive simplification may push
848 /// more users which may themselves be candidates for simplification.
849 ///
850 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
851 /// instructions in-place during analysis. Rather than rewriting induction
852 /// variables bottom-up from their users, it transforms a chain of IVUsers
853 /// top-down, updating the IR only when it encounters a clear optimization
854 /// opportunity.
855 ///
856 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
857 ///
858 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
859   if (!SE->isSCEVable(CurrIV->getType()))
860     return;
861 
862   // Instructions processed by SimplifyIndvar for CurrIV.
863   SmallPtrSet<Instruction*,16> Simplified;
864 
865   // Use-def pairs if IV users waiting to be processed for CurrIV.
866   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
867 
868   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
869   // called multiple times for the same LoopPhi. This is the proper thing to
870   // do for loop header phis that use each other.
871   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
872 
873   while (!SimpleIVUsers.empty()) {
874     std::pair<Instruction*, Instruction*> UseOper =
875       SimpleIVUsers.pop_back_val();
876     Instruction *UseInst = UseOper.first;
877 
878     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
879     // rather than try to do some complex analysis or transformation (such as
880     // widening) basing on it.
881     // TODO: Propagate TLI and pass it here to handle more cases.
882     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
883       DeadInsts.emplace_back(UseInst);
884       continue;
885     }
886 
887     // Bypass back edges to avoid extra work.
888     if (UseInst == CurrIV) continue;
889 
890     // Try to replace UseInst with a loop invariant before any other
891     // simplifications.
892     if (replaceIVUserWithLoopInvariant(UseInst))
893       continue;
894 
895     Instruction *IVOperand = UseOper.second;
896     for (unsigned N = 0; IVOperand; ++N) {
897       assert(N <= Simplified.size() && "runaway iteration");
898 
899       Value *NewOper = foldIVUser(UseInst, IVOperand);
900       if (!NewOper)
901         break; // done folding
902       IVOperand = dyn_cast<Instruction>(NewOper);
903     }
904     if (!IVOperand)
905       continue;
906 
907     if (eliminateIVUser(UseInst, IVOperand)) {
908       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
909       continue;
910     }
911 
912     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
913       if ((isa<OverflowingBinaryOperator>(BO) &&
914            strengthenOverflowingOperation(BO, IVOperand)) ||
915           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
916         // re-queue uses of the now modified binary operator and fall
917         // through to the checks that remain.
918         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
919       }
920     }
921 
922     CastInst *Cast = dyn_cast<CastInst>(UseInst);
923     if (V && Cast) {
924       V->visitCast(Cast);
925       continue;
926     }
927     if (isSimpleIVUser(UseInst, L, SE)) {
928       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
929     }
930   }
931 }
932 
933 namespace llvm {
934 
935 void IVVisitor::anchor() { }
936 
937 /// Simplify instructions that use this induction variable
938 /// by using ScalarEvolution to analyze the IV's recurrence.
939 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
940                        LoopInfo *LI, const TargetTransformInfo *TTI,
941                        SmallVectorImpl<WeakTrackingVH> &Dead,
942                        SCEVExpander &Rewriter, IVVisitor *V) {
943   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
944                      Rewriter, Dead);
945   SIV.simplifyUsers(CurrIV, V);
946   return SIV.hasChanged();
947 }
948 
949 /// Simplify users of induction variables within this
950 /// loop. This does not actually change or add IVs.
951 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
952                      LoopInfo *LI, const TargetTransformInfo *TTI,
953                      SmallVectorImpl<WeakTrackingVH> &Dead) {
954   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
955 #ifndef NDEBUG
956   Rewriter.setDebugType(DEBUG_TYPE);
957 #endif
958   bool Changed = false;
959   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
960     Changed |=
961         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
962   }
963   return Changed;
964 }
965 
966 } // namespace llvm
967 
968 //===----------------------------------------------------------------------===//
969 // Widen Induction Variables - Extend the width of an IV to cover its
970 // widest uses.
971 //===----------------------------------------------------------------------===//
972 
973 class WidenIV {
974   // Parameters
975   PHINode *OrigPhi;
976   Type *WideType;
977 
978   // Context
979   LoopInfo        *LI;
980   Loop            *L;
981   ScalarEvolution *SE;
982   DominatorTree   *DT;
983 
984   // Does the module have any calls to the llvm.experimental.guard intrinsic
985   // at all? If not we can avoid scanning instructions looking for guards.
986   bool HasGuards;
987 
988   bool UsePostIncrementRanges;
989 
990   // Statistics
991   unsigned NumElimExt = 0;
992   unsigned NumWidened = 0;
993 
994   // Result
995   PHINode *WidePhi = nullptr;
996   Instruction *WideInc = nullptr;
997   const SCEV *WideIncExpr = nullptr;
998   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
999 
1000   SmallPtrSet<Instruction *,16> Widened;
1001 
1002   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
1003 
1004   // A map tracking the kind of extension used to widen each narrow IV
1005   // and narrow IV user.
1006   // Key: pointer to a narrow IV or IV user.
1007   // Value: the kind of extension used to widen this Instruction.
1008   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1009 
1010   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1011 
1012   // A map with control-dependent ranges for post increment IV uses. The key is
1013   // a pair of IV def and a use of this def denoting the context. The value is
1014   // a ConstantRange representing possible values of the def at the given
1015   // context.
1016   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1017 
1018   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1019                                               Instruction *UseI) {
1020     DefUserPair Key(Def, UseI);
1021     auto It = PostIncRangeInfos.find(Key);
1022     return It == PostIncRangeInfos.end()
1023                ? Optional<ConstantRange>(None)
1024                : Optional<ConstantRange>(It->second);
1025   }
1026 
1027   void calculatePostIncRanges(PHINode *OrigPhi);
1028   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1029 
1030   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1031     DefUserPair Key(Def, UseI);
1032     auto It = PostIncRangeInfos.find(Key);
1033     if (It == PostIncRangeInfos.end())
1034       PostIncRangeInfos.insert({Key, R});
1035     else
1036       It->second = R.intersectWith(It->second);
1037   }
1038 
1039 public:
1040   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1041   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1042   /// pointers.
1043   struct NarrowIVDefUse {
1044     Instruction *NarrowDef = nullptr;
1045     Instruction *NarrowUse = nullptr;
1046     Instruction *WideDef = nullptr;
1047 
1048     // True if the narrow def is never negative.  Tracking this information lets
1049     // us use a sign extension instead of a zero extension or vice versa, when
1050     // profitable and legal.
1051     bool NeverNegative = false;
1052 
1053     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1054                    bool NeverNegative)
1055         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1056           NeverNegative(NeverNegative) {}
1057   };
1058 
1059   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1060           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1061           bool HasGuards, bool UsePostIncrementRanges = true);
1062 
1063   PHINode *createWideIV(SCEVExpander &Rewriter);
1064 
1065   unsigned getNumElimExt() { return NumElimExt; };
1066   unsigned getNumWidened() { return NumWidened; };
1067 
1068 protected:
1069   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1070                           Instruction *Use);
1071 
1072   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1073   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1074                                      const SCEVAddRecExpr *WideAR);
1075   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1076 
1077   ExtendKind getExtendKind(Instruction *I);
1078 
1079   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1080 
1081   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1082 
1083   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1084 
1085   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1086                               unsigned OpCode) const;
1087 
1088   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1089 
1090   bool widenLoopCompare(NarrowIVDefUse DU);
1091   bool widenWithVariantUse(NarrowIVDefUse DU);
1092 
1093   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1094 
1095 private:
1096   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1097 };
1098 
1099 
1100 /// Determine the insertion point for this user. By default, insert immediately
1101 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1102 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1103 /// common dominator for the incoming blocks. A nullptr can be returned if no
1104 /// viable location is found: it may happen if User is a PHI and Def only comes
1105 /// to this PHI from unreachable blocks.
1106 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1107                                           DominatorTree *DT, LoopInfo *LI) {
1108   PHINode *PHI = dyn_cast<PHINode>(User);
1109   if (!PHI)
1110     return User;
1111 
1112   Instruction *InsertPt = nullptr;
1113   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1114     if (PHI->getIncomingValue(i) != Def)
1115       continue;
1116 
1117     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1118 
1119     if (!DT->isReachableFromEntry(InsertBB))
1120       continue;
1121 
1122     if (!InsertPt) {
1123       InsertPt = InsertBB->getTerminator();
1124       continue;
1125     }
1126     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1127     InsertPt = InsertBB->getTerminator();
1128   }
1129 
1130   // If we have skipped all inputs, it means that Def only comes to Phi from
1131   // unreachable blocks.
1132   if (!InsertPt)
1133     return nullptr;
1134 
1135   auto *DefI = dyn_cast<Instruction>(Def);
1136   if (!DefI)
1137     return InsertPt;
1138 
1139   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1140 
1141   auto *L = LI->getLoopFor(DefI->getParent());
1142   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1143 
1144   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1145     if (LI->getLoopFor(DTN->getBlock()) == L)
1146       return DTN->getBlock()->getTerminator();
1147 
1148   llvm_unreachable("DefI dominates InsertPt!");
1149 }
1150 
1151 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1152           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1153           bool HasGuards, bool UsePostIncrementRanges)
1154       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1155         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1156         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1157         DeadInsts(DI) {
1158     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1159     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1160 }
1161 
1162 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1163                                  bool IsSigned, Instruction *Use) {
1164   // Set the debug location and conservative insertion point.
1165   IRBuilder<> Builder(Use);
1166   // Hoist the insertion point into loop preheaders as far as possible.
1167   for (const Loop *L = LI->getLoopFor(Use->getParent());
1168        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1169        L = L->getParentLoop())
1170     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1171 
1172   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1173                     Builder.CreateZExt(NarrowOper, WideType);
1174 }
1175 
1176 /// Instantiate a wide operation to replace a narrow operation. This only needs
1177 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1178 /// 0 for any operation we decide not to clone.
1179 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1180                                   const SCEVAddRecExpr *WideAR) {
1181   unsigned Opcode = DU.NarrowUse->getOpcode();
1182   switch (Opcode) {
1183   default:
1184     return nullptr;
1185   case Instruction::Add:
1186   case Instruction::Mul:
1187   case Instruction::UDiv:
1188   case Instruction::Sub:
1189     return cloneArithmeticIVUser(DU, WideAR);
1190 
1191   case Instruction::And:
1192   case Instruction::Or:
1193   case Instruction::Xor:
1194   case Instruction::Shl:
1195   case Instruction::LShr:
1196   case Instruction::AShr:
1197     return cloneBitwiseIVUser(DU);
1198   }
1199 }
1200 
1201 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1202   Instruction *NarrowUse = DU.NarrowUse;
1203   Instruction *NarrowDef = DU.NarrowDef;
1204   Instruction *WideDef = DU.WideDef;
1205 
1206   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1207 
1208   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1209   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1210   // invariant and will be folded or hoisted. If it actually comes from a
1211   // widened IV, it should be removed during a future call to widenIVUse.
1212   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1213   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1214                    ? WideDef
1215                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1216                                       IsSigned, NarrowUse);
1217   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1218                    ? WideDef
1219                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1220                                       IsSigned, NarrowUse);
1221 
1222   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1223   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1224                                         NarrowBO->getName());
1225   IRBuilder<> Builder(NarrowUse);
1226   Builder.Insert(WideBO);
1227   WideBO->copyIRFlags(NarrowBO);
1228   return WideBO;
1229 }
1230 
1231 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1232                                             const SCEVAddRecExpr *WideAR) {
1233   Instruction *NarrowUse = DU.NarrowUse;
1234   Instruction *NarrowDef = DU.NarrowDef;
1235   Instruction *WideDef = DU.WideDef;
1236 
1237   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1238 
1239   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1240 
1241   // We're trying to find X such that
1242   //
1243   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1244   //
1245   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1246   // and check using SCEV if any of them are correct.
1247 
1248   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1249   // correct solution to X.
1250   auto GuessNonIVOperand = [&](bool SignExt) {
1251     const SCEV *WideLHS;
1252     const SCEV *WideRHS;
1253 
1254     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1255       if (SignExt)
1256         return SE->getSignExtendExpr(S, Ty);
1257       return SE->getZeroExtendExpr(S, Ty);
1258     };
1259 
1260     if (IVOpIdx == 0) {
1261       WideLHS = SE->getSCEV(WideDef);
1262       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1263       WideRHS = GetExtend(NarrowRHS, WideType);
1264     } else {
1265       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1266       WideLHS = GetExtend(NarrowLHS, WideType);
1267       WideRHS = SE->getSCEV(WideDef);
1268     }
1269 
1270     // WideUse is "WideDef `op.wide` X" as described in the comment.
1271     const SCEV *WideUse =
1272       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1273 
1274     return WideUse == WideAR;
1275   };
1276 
1277   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1278   if (!GuessNonIVOperand(SignExtend)) {
1279     SignExtend = !SignExtend;
1280     if (!GuessNonIVOperand(SignExtend))
1281       return nullptr;
1282   }
1283 
1284   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1285                    ? WideDef
1286                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1287                                       SignExtend, NarrowUse);
1288   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1289                    ? WideDef
1290                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1291                                       SignExtend, NarrowUse);
1292 
1293   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1294   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1295                                         NarrowBO->getName());
1296 
1297   IRBuilder<> Builder(NarrowUse);
1298   Builder.Insert(WideBO);
1299   WideBO->copyIRFlags(NarrowBO);
1300   return WideBO;
1301 }
1302 
1303 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1304   auto It = ExtendKindMap.find(I);
1305   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1306   return It->second;
1307 }
1308 
1309 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1310                                      unsigned OpCode) const {
1311   switch (OpCode) {
1312   case Instruction::Add:
1313     return SE->getAddExpr(LHS, RHS);
1314   case Instruction::Sub:
1315     return SE->getMinusSCEV(LHS, RHS);
1316   case Instruction::Mul:
1317     return SE->getMulExpr(LHS, RHS);
1318   case Instruction::UDiv:
1319     return SE->getUDivExpr(LHS, RHS);
1320   default:
1321     llvm_unreachable("Unsupported opcode.");
1322   };
1323 }
1324 
1325 /// No-wrap operations can transfer sign extension of their result to their
1326 /// operands. Generate the SCEV value for the widened operation without
1327 /// actually modifying the IR yet. If the expression after extending the
1328 /// operands is an AddRec for this loop, return the AddRec and the kind of
1329 /// extension used.
1330 WidenIV::WidenedRecTy
1331 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1332   // Handle the common case of add<nsw/nuw>
1333   const unsigned OpCode = DU.NarrowUse->getOpcode();
1334   // Only Add/Sub/Mul instructions supported yet.
1335   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1336       OpCode != Instruction::Mul)
1337     return {nullptr, Unknown};
1338 
1339   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1340   // if extending the other will lead to a recurrence.
1341   const unsigned ExtendOperIdx =
1342       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1343   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1344 
1345   const SCEV *ExtendOperExpr = nullptr;
1346   const OverflowingBinaryOperator *OBO =
1347     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1348   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1349   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1350     ExtendOperExpr = SE->getSignExtendExpr(
1351       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1352   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1353     ExtendOperExpr = SE->getZeroExtendExpr(
1354       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1355   else
1356     return {nullptr, Unknown};
1357 
1358   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1359   // flags. This instruction may be guarded by control flow that the no-wrap
1360   // behavior depends on. Non-control-equivalent instructions can be mapped to
1361   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1362   // semantics to those operations.
1363   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1364   const SCEV *rhs = ExtendOperExpr;
1365 
1366   // Let's swap operands to the initial order for the case of non-commutative
1367   // operations, like SUB. See PR21014.
1368   if (ExtendOperIdx == 0)
1369     std::swap(lhs, rhs);
1370   const SCEVAddRecExpr *AddRec =
1371       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1372 
1373   if (!AddRec || AddRec->getLoop() != L)
1374     return {nullptr, Unknown};
1375 
1376   return {AddRec, ExtKind};
1377 }
1378 
1379 /// Is this instruction potentially interesting for further simplification after
1380 /// widening it's type? In other words, can the extend be safely hoisted out of
1381 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1382 /// so, return the extended recurrence and the kind of extension used. Otherwise
1383 /// return {nullptr, Unknown}.
1384 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1385   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1386     return {nullptr, Unknown};
1387 
1388   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1389   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1390       SE->getTypeSizeInBits(WideType)) {
1391     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1392     // index. So don't follow this use.
1393     return {nullptr, Unknown};
1394   }
1395 
1396   const SCEV *WideExpr;
1397   ExtendKind ExtKind;
1398   if (DU.NeverNegative) {
1399     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1400     if (isa<SCEVAddRecExpr>(WideExpr))
1401       ExtKind = SignExtended;
1402     else {
1403       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1404       ExtKind = ZeroExtended;
1405     }
1406   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1407     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1408     ExtKind = SignExtended;
1409   } else {
1410     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1411     ExtKind = ZeroExtended;
1412   }
1413   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1414   if (!AddRec || AddRec->getLoop() != L)
1415     return {nullptr, Unknown};
1416   return {AddRec, ExtKind};
1417 }
1418 
1419 /// This IV user cannot be widened. Replace this use of the original narrow IV
1420 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1421 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1422                           LoopInfo *LI) {
1423   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1424   if (!InsertPt)
1425     return;
1426   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1427                     << *DU.NarrowUse << "\n");
1428   IRBuilder<> Builder(InsertPt);
1429   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1430   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1431 }
1432 
1433 /// If the narrow use is a compare instruction, then widen the compare
1434 //  (and possibly the other operand).  The extend operation is hoisted into the
1435 // loop preheader as far as possible.
1436 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1437   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1438   if (!Cmp)
1439     return false;
1440 
1441   // We can legally widen the comparison in the following two cases:
1442   //
1443   //  - The signedness of the IV extension and comparison match
1444   //
1445   //  - The narrow IV is always positive (and thus its sign extension is equal
1446   //    to its zero extension).  For instance, let's say we're zero extending
1447   //    %narrow for the following use
1448   //
1449   //      icmp slt i32 %narrow, %val   ... (A)
1450   //
1451   //    and %narrow is always positive.  Then
1452   //
1453   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1454   //          == icmp slt i32 zext(%narrow), sext(%val)
1455   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1456   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1457     return false;
1458 
1459   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1460   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1461   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1462   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1463 
1464   // Widen the compare instruction.
1465   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1466   if (!InsertPt)
1467     return false;
1468   IRBuilder<> Builder(InsertPt);
1469   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1470 
1471   // Widen the other operand of the compare, if necessary.
1472   if (CastWidth < IVWidth) {
1473     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1474     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1475   }
1476   return true;
1477 }
1478 
1479 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1480 // will not work when:
1481 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1482 // expand, eg. add %indvar, (load %addr)
1483 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1484 // While SCEV fails to avoid trunc, we can still try to use instruction
1485 // combining approach to prove trunc is not required. This can be further
1486 // extended with other instruction combining checks, but for now we handle the
1487 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1488 //
1489 // Src:
1490 //   %c = sub nsw %b, %indvar
1491 //   %d = sext %c to i64
1492 // Dst:
1493 //   %indvar.ext1 = sext %indvar to i64
1494 //   %m = sext %b to i64
1495 //   %d = sub nsw i64 %m, %indvar.ext1
1496 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1497 // trunc is required regardless of how %b is generated. This pattern is common
1498 // when calculating address in 64 bit architecture
1499 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1500   Instruction *NarrowUse = DU.NarrowUse;
1501   Instruction *NarrowDef = DU.NarrowDef;
1502   Instruction *WideDef = DU.WideDef;
1503 
1504   // Handle the common case of add<nsw/nuw>
1505   const unsigned OpCode = NarrowUse->getOpcode();
1506   // Only Add/Sub/Mul instructions are supported.
1507   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1508       OpCode != Instruction::Mul)
1509     return false;
1510 
1511   // The operand that is not defined by NarrowDef of DU. Let's call it the
1512   // other operand.
1513   assert((NarrowUse->getOperand(0) == NarrowDef ||
1514           NarrowUse->getOperand(1) == NarrowDef) &&
1515          "bad DU");
1516 
1517   const OverflowingBinaryOperator *OBO =
1518     cast<OverflowingBinaryOperator>(NarrowUse);
1519   ExtendKind ExtKind = getExtendKind(NarrowDef);
1520   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1521   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1522   auto AnotherOpExtKind = ExtKind;
1523 
1524   // Check that all uses are either:
1525   // - narrow def (in case of we are widening the IV increment);
1526   // - single-input LCSSA Phis;
1527   // - comparison of the chosen type;
1528   // - extend of the chosen type (raison d'etre).
1529   SmallVector<Instruction *, 4> ExtUsers;
1530   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1531   SmallVector<ICmpInst *, 4> ICmpUsers;
1532   for (Use &U : NarrowUse->uses()) {
1533     Instruction *User = cast<Instruction>(U.getUser());
1534     if (User == NarrowDef)
1535       continue;
1536     if (!L->contains(User)) {
1537       auto *LCSSAPhi = cast<PHINode>(User);
1538       // Make sure there is only 1 input, so that we don't have to split
1539       // critical edges.
1540       if (LCSSAPhi->getNumOperands() != 1)
1541         return false;
1542       LCSSAPhiUsers.push_back(LCSSAPhi);
1543       continue;
1544     }
1545     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1546       auto Pred = ICmp->getPredicate();
1547       // We have 3 types of predicates: signed, unsigned and equality
1548       // predicates. For equality, it's legal to widen icmp for either sign and
1549       // zero extend. For sign extend, we can also do so for signed predicates,
1550       // likeweise for zero extend we can widen icmp for unsigned predicates.
1551       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1552         return false;
1553       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1554         return false;
1555       ICmpUsers.push_back(ICmp);
1556       continue;
1557     }
1558     if (ExtKind == SignExtended)
1559       User = dyn_cast<SExtInst>(User);
1560     else
1561       User = dyn_cast<ZExtInst>(User);
1562     if (!User || User->getType() != WideType)
1563       return false;
1564     ExtUsers.push_back(User);
1565   }
1566   if (ExtUsers.empty()) {
1567     DeadInsts.emplace_back(NarrowUse);
1568     return true;
1569   }
1570 
1571   // We'll prove some facts that should be true in the context of ext users. If
1572   // there is no users, we are done now. If there are some, pick their common
1573   // dominator as context.
1574   Instruction *Context = nullptr;
1575   for (auto *Ext : ExtUsers) {
1576     if (!Context || DT->dominates(Ext, Context))
1577       Context = Ext;
1578     else if (!DT->dominates(Context, Ext))
1579       // For users that don't have dominance relation, use common dominator.
1580       Context =
1581           DT->findNearestCommonDominator(Context->getParent(), Ext->getParent())
1582               ->getTerminator();
1583   }
1584   assert(Context && "Context not found?");
1585 
1586   if (!CanSignExtend && !CanZeroExtend) {
1587     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1588     // will most likely not see it. Let's try to prove it.
1589     if (OpCode != Instruction::Add)
1590       return false;
1591     if (ExtKind != ZeroExtended)
1592       return false;
1593     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1594     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1595     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1596     if (NarrowUse->getOperand(0) != NarrowDef)
1597       return false;
1598     if (!SE->isKnownNegative(RHS))
1599       return false;
1600     bool ProvedSubNUW = SE->isKnownPredicateAt(
1601         ICmpInst::ICMP_UGE, LHS, SE->getNegativeSCEV(RHS), Context);
1602     if (!ProvedSubNUW)
1603       return false;
1604     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1605     // neg(zext(neg(op))), which is basically sext(op).
1606     AnotherOpExtKind = SignExtended;
1607   }
1608 
1609   // Verifying that Defining operand is an AddRec
1610   const SCEV *Op1 = SE->getSCEV(WideDef);
1611   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1612   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1613     return false;
1614 
1615   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1616 
1617   // Generating a widening use instruction.
1618   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1619                    ? WideDef
1620                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1621                                       AnotherOpExtKind, NarrowUse);
1622   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1623                    ? WideDef
1624                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1625                                       AnotherOpExtKind, NarrowUse);
1626 
1627   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1628   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1629                                         NarrowBO->getName());
1630   IRBuilder<> Builder(NarrowUse);
1631   Builder.Insert(WideBO);
1632   WideBO->copyIRFlags(NarrowBO);
1633   ExtendKindMap[NarrowUse] = ExtKind;
1634 
1635   for (Instruction *User : ExtUsers) {
1636     assert(User->getType() == WideType && "Checked before!");
1637     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1638                       << *WideBO << "\n");
1639     ++NumElimExt;
1640     User->replaceAllUsesWith(WideBO);
1641     DeadInsts.emplace_back(User);
1642   }
1643 
1644   for (PHINode *User : LCSSAPhiUsers) {
1645     assert(User->getNumOperands() == 1 && "Checked before!");
1646     Builder.SetInsertPoint(User);
1647     auto *WidePN =
1648         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1649     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1650     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1651            "Not a LCSSA Phi?");
1652     WidePN->addIncoming(WideBO, LoopExitingBlock);
1653     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1654     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1655     User->replaceAllUsesWith(TruncPN);
1656     DeadInsts.emplace_back(User);
1657   }
1658 
1659   for (ICmpInst *User : ICmpUsers) {
1660     Builder.SetInsertPoint(User);
1661     auto ExtendedOp = [&](Value * V)->Value * {
1662       if (V == NarrowUse)
1663         return WideBO;
1664       if (ExtKind == ZeroExtended)
1665         return Builder.CreateZExt(V, WideBO->getType());
1666       else
1667         return Builder.CreateSExt(V, WideBO->getType());
1668     };
1669     auto Pred = User->getPredicate();
1670     auto *LHS = ExtendedOp(User->getOperand(0));
1671     auto *RHS = ExtendedOp(User->getOperand(1));
1672     auto *WideCmp =
1673         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1674     User->replaceAllUsesWith(WideCmp);
1675     DeadInsts.emplace_back(User);
1676   }
1677 
1678   return true;
1679 }
1680 
1681 /// Determine whether an individual user of the narrow IV can be widened. If so,
1682 /// return the wide clone of the user.
1683 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1684   assert(ExtendKindMap.count(DU.NarrowDef) &&
1685          "Should already know the kind of extension used to widen NarrowDef");
1686 
1687   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1688   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1689     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1690       // For LCSSA phis, sink the truncate outside the loop.
1691       // After SimplifyCFG most loop exit targets have a single predecessor.
1692       // Otherwise fall back to a truncate within the loop.
1693       if (UsePhi->getNumOperands() != 1)
1694         truncateIVUse(DU, DT, LI);
1695       else {
1696         // Widening the PHI requires us to insert a trunc.  The logical place
1697         // for this trunc is in the same BB as the PHI.  This is not possible if
1698         // the BB is terminated by a catchswitch.
1699         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1700           return nullptr;
1701 
1702         PHINode *WidePhi =
1703           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1704                           UsePhi);
1705         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1706         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1707         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1708         UsePhi->replaceAllUsesWith(Trunc);
1709         DeadInsts.emplace_back(UsePhi);
1710         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1711                           << *WidePhi << "\n");
1712       }
1713       return nullptr;
1714     }
1715   }
1716 
1717   // This narrow use can be widened by a sext if it's non-negative or its narrow
1718   // def was widended by a sext. Same for zext.
1719   auto canWidenBySExt = [&]() {
1720     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1721   };
1722   auto canWidenByZExt = [&]() {
1723     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1724   };
1725 
1726   // Our raison d'etre! Eliminate sign and zero extension.
1727   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1728       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1729     Value *NewDef = DU.WideDef;
1730     if (DU.NarrowUse->getType() != WideType) {
1731       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1732       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1733       if (CastWidth < IVWidth) {
1734         // The cast isn't as wide as the IV, so insert a Trunc.
1735         IRBuilder<> Builder(DU.NarrowUse);
1736         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1737       }
1738       else {
1739         // A wider extend was hidden behind a narrower one. This may induce
1740         // another round of IV widening in which the intermediate IV becomes
1741         // dead. It should be very rare.
1742         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1743                           << " not wide enough to subsume " << *DU.NarrowUse
1744                           << "\n");
1745         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1746         NewDef = DU.NarrowUse;
1747       }
1748     }
1749     if (NewDef != DU.NarrowUse) {
1750       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1751                         << " replaced by " << *DU.WideDef << "\n");
1752       ++NumElimExt;
1753       DU.NarrowUse->replaceAllUsesWith(NewDef);
1754       DeadInsts.emplace_back(DU.NarrowUse);
1755     }
1756     // Now that the extend is gone, we want to expose it's uses for potential
1757     // further simplification. We don't need to directly inform SimplifyIVUsers
1758     // of the new users, because their parent IV will be processed later as a
1759     // new loop phi. If we preserved IVUsers analysis, we would also want to
1760     // push the uses of WideDef here.
1761 
1762     // No further widening is needed. The deceased [sz]ext had done it for us.
1763     return nullptr;
1764   }
1765 
1766   // Does this user itself evaluate to a recurrence after widening?
1767   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1768   if (!WideAddRec.first)
1769     WideAddRec = getWideRecurrence(DU);
1770 
1771   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1772   if (!WideAddRec.first) {
1773     // If use is a loop condition, try to promote the condition instead of
1774     // truncating the IV first.
1775     if (widenLoopCompare(DU))
1776       return nullptr;
1777 
1778     // We are here about to generate a truncate instruction that may hurt
1779     // performance because the scalar evolution expression computed earlier
1780     // in WideAddRec.first does not indicate a polynomial induction expression.
1781     // In that case, look at the operands of the use instruction to determine
1782     // if we can still widen the use instead of truncating its operand.
1783     if (widenWithVariantUse(DU))
1784       return nullptr;
1785 
1786     // This user does not evaluate to a recurrence after widening, so don't
1787     // follow it. Instead insert a Trunc to kill off the original use,
1788     // eventually isolating the original narrow IV so it can be removed.
1789     truncateIVUse(DU, DT, LI);
1790     return nullptr;
1791   }
1792   // Assume block terminators cannot evaluate to a recurrence. We can't to
1793   // insert a Trunc after a terminator if there happens to be a critical edge.
1794   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1795          "SCEV is not expected to evaluate a block terminator");
1796 
1797   // Reuse the IV increment that SCEVExpander created as long as it dominates
1798   // NarrowUse.
1799   Instruction *WideUse = nullptr;
1800   if (WideAddRec.first == WideIncExpr &&
1801       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1802     WideUse = WideInc;
1803   else {
1804     WideUse = cloneIVUser(DU, WideAddRec.first);
1805     if (!WideUse)
1806       return nullptr;
1807   }
1808   // Evaluation of WideAddRec ensured that the narrow expression could be
1809   // extended outside the loop without overflow. This suggests that the wide use
1810   // evaluates to the same expression as the extended narrow use, but doesn't
1811   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1812   // where it fails, we simply throw away the newly created wide use.
1813   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1814     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1815                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1816                       << "\n");
1817     DeadInsts.emplace_back(WideUse);
1818     return nullptr;
1819   }
1820 
1821   // if we reached this point then we are going to replace
1822   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1823   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1824 
1825   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1826   // Returning WideUse pushes it on the worklist.
1827   return WideUse;
1828 }
1829 
1830 /// Add eligible users of NarrowDef to NarrowIVUsers.
1831 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1832   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1833   bool NonNegativeDef =
1834       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1835                            SE->getZero(NarrowSCEV->getType()));
1836   for (User *U : NarrowDef->users()) {
1837     Instruction *NarrowUser = cast<Instruction>(U);
1838 
1839     // Handle data flow merges and bizarre phi cycles.
1840     if (!Widened.insert(NarrowUser).second)
1841       continue;
1842 
1843     bool NonNegativeUse = false;
1844     if (!NonNegativeDef) {
1845       // We might have a control-dependent range information for this context.
1846       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1847         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1848     }
1849 
1850     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1851                                NonNegativeDef || NonNegativeUse);
1852   }
1853 }
1854 
1855 /// Process a single induction variable. First use the SCEVExpander to create a
1856 /// wide induction variable that evaluates to the same recurrence as the
1857 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1858 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1859 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1860 ///
1861 /// It would be simpler to delete uses as they are processed, but we must avoid
1862 /// invalidating SCEV expressions.
1863 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1864   // Is this phi an induction variable?
1865   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1866   if (!AddRec)
1867     return nullptr;
1868 
1869   // Widen the induction variable expression.
1870   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1871                                ? SE->getSignExtendExpr(AddRec, WideType)
1872                                : SE->getZeroExtendExpr(AddRec, WideType);
1873 
1874   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1875          "Expect the new IV expression to preserve its type");
1876 
1877   // Can the IV be extended outside the loop without overflow?
1878   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1879   if (!AddRec || AddRec->getLoop() != L)
1880     return nullptr;
1881 
1882   // An AddRec must have loop-invariant operands. Since this AddRec is
1883   // materialized by a loop header phi, the expression cannot have any post-loop
1884   // operands, so they must dominate the loop header.
1885   assert(
1886       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1887       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1888       "Loop header phi recurrence inputs do not dominate the loop");
1889 
1890   // Iterate over IV uses (including transitive ones) looking for IV increments
1891   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1892   // the increment calculate control-dependent range information basing on
1893   // dominating conditions inside of the loop (e.g. a range check inside of the
1894   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1895   //
1896   // Control-dependent range information is later used to prove that a narrow
1897   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1898   // this on demand because when pushNarrowIVUsers needs this information some
1899   // of the dominating conditions might be already widened.
1900   if (UsePostIncrementRanges)
1901     calculatePostIncRanges(OrigPhi);
1902 
1903   // The rewriter provides a value for the desired IV expression. This may
1904   // either find an existing phi or materialize a new one. Either way, we
1905   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1906   // of the phi-SCC dominates the loop entry.
1907   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1908   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1909   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1910   // inttoptr, ptrtoint, just skip for now.
1911   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1912     // if the cast node is an inserted instruction without any user, we should
1913     // remove it to make sure the pass don't touch the function as we can not
1914     // wide the phi.
1915     if (ExpandInst->hasNUses(0) &&
1916         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1917       DeadInsts.emplace_back(ExpandInst);
1918     return nullptr;
1919   }
1920 
1921   // Remembering the WideIV increment generated by SCEVExpander allows
1922   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1923   // employ a general reuse mechanism because the call above is the only call to
1924   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1925   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1926     WideInc =
1927       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1928     WideIncExpr = SE->getSCEV(WideInc);
1929     // Propagate the debug location associated with the original loop increment
1930     // to the new (widened) increment.
1931     auto *OrigInc =
1932       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1933     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1934   }
1935 
1936   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1937   ++NumWidened;
1938 
1939   // Traverse the def-use chain using a worklist starting at the original IV.
1940   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1941 
1942   Widened.insert(OrigPhi);
1943   pushNarrowIVUsers(OrigPhi, WidePhi);
1944 
1945   while (!NarrowIVUsers.empty()) {
1946     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1947 
1948     // Process a def-use edge. This may replace the use, so don't hold a
1949     // use_iterator across it.
1950     Instruction *WideUse = widenIVUse(DU, Rewriter);
1951 
1952     // Follow all def-use edges from the previous narrow use.
1953     if (WideUse)
1954       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1955 
1956     // widenIVUse may have removed the def-use edge.
1957     if (DU.NarrowDef->use_empty())
1958       DeadInsts.emplace_back(DU.NarrowDef);
1959   }
1960 
1961   // Attach any debug information to the new PHI.
1962   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1963 
1964   return WidePhi;
1965 }
1966 
1967 /// Calculates control-dependent range for the given def at the given context
1968 /// by looking at dominating conditions inside of the loop
1969 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1970                                     Instruction *NarrowUser) {
1971   using namespace llvm::PatternMatch;
1972 
1973   Value *NarrowDefLHS;
1974   const APInt *NarrowDefRHS;
1975   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1976                                  m_APInt(NarrowDefRHS))) ||
1977       !NarrowDefRHS->isNonNegative())
1978     return;
1979 
1980   auto UpdateRangeFromCondition = [&] (Value *Condition,
1981                                        bool TrueDest) {
1982     CmpInst::Predicate Pred;
1983     Value *CmpRHS;
1984     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1985                                  m_Value(CmpRHS))))
1986       return;
1987 
1988     CmpInst::Predicate P =
1989             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1990 
1991     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1992     auto CmpConstrainedLHSRange =
1993             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1994     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1995         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1996 
1997     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1998   };
1999 
2000   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2001     if (!HasGuards)
2002       return;
2003 
2004     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2005                                      Ctx->getParent()->rend())) {
2006       Value *C = nullptr;
2007       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2008         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2009     }
2010   };
2011 
2012   UpdateRangeFromGuards(NarrowUser);
2013 
2014   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2015   // If NarrowUserBB is statically unreachable asking dominator queries may
2016   // yield surprising results. (e.g. the block may not have a dom tree node)
2017   if (!DT->isReachableFromEntry(NarrowUserBB))
2018     return;
2019 
2020   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2021        L->contains(DTB->getBlock());
2022        DTB = DTB->getIDom()) {
2023     auto *BB = DTB->getBlock();
2024     auto *TI = BB->getTerminator();
2025     UpdateRangeFromGuards(TI);
2026 
2027     auto *BI = dyn_cast<BranchInst>(TI);
2028     if (!BI || !BI->isConditional())
2029       continue;
2030 
2031     auto *TrueSuccessor = BI->getSuccessor(0);
2032     auto *FalseSuccessor = BI->getSuccessor(1);
2033 
2034     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2035       return BBE.isSingleEdge() &&
2036              DT->dominates(BBE, NarrowUser->getParent());
2037     };
2038 
2039     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2040       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2041 
2042     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2043       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2044   }
2045 }
2046 
2047 /// Calculates PostIncRangeInfos map for the given IV
2048 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2049   SmallPtrSet<Instruction *, 16> Visited;
2050   SmallVector<Instruction *, 6> Worklist;
2051   Worklist.push_back(OrigPhi);
2052   Visited.insert(OrigPhi);
2053 
2054   while (!Worklist.empty()) {
2055     Instruction *NarrowDef = Worklist.pop_back_val();
2056 
2057     for (Use &U : NarrowDef->uses()) {
2058       auto *NarrowUser = cast<Instruction>(U.getUser());
2059 
2060       // Don't go looking outside the current loop.
2061       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2062       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2063         continue;
2064 
2065       if (!Visited.insert(NarrowUser).second)
2066         continue;
2067 
2068       Worklist.push_back(NarrowUser);
2069 
2070       calculatePostIncRange(NarrowDef, NarrowUser);
2071     }
2072   }
2073 }
2074 
2075 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2076     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2077     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2078     unsigned &NumElimExt, unsigned &NumWidened,
2079     bool HasGuards, bool UsePostIncrementRanges) {
2080   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2081   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2082   NumElimExt = Widener.getNumElimExt();
2083   NumWidened = Widener.getNumWidened();
2084   return WidePHI;
2085 }
2086