1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "indvars" 35 36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 43 44 namespace { 45 /// This is a utility for simplifying induction variables 46 /// based on ScalarEvolution. It is the primary instrument of the 47 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 48 /// other loop passes that preserve SCEV. 49 class SimplifyIndvar { 50 Loop *L; 51 LoopInfo *LI; 52 ScalarEvolution *SE; 53 DominatorTree *DT; 54 55 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 56 57 bool Changed; 58 59 public: 60 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 61 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) 62 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { 63 assert(LI && "IV simplification requires LoopInfo"); 64 } 65 66 bool hasChanged() const { return Changed; } 67 68 /// Iteratively perform simplification on a worklist of users of the 69 /// specified induction variable. This is the top-level driver that applies 70 /// all simplifications to users of an IV. 71 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 72 73 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 74 75 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 76 77 bool eliminateOverflowIntrinsic(CallInst *CI); 78 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 79 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 80 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 81 bool IsSigned); 82 bool eliminateSDiv(BinaryOperator *SDiv); 83 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 84 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 85 }; 86 } 87 88 /// Fold an IV operand into its use. This removes increments of an 89 /// aligned IV when used by a instruction that ignores the low bits. 90 /// 91 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 92 /// 93 /// Return the operand of IVOperand for this induction variable if IVOperand can 94 /// be folded (in case more folding opportunities have been exposed). 95 /// Otherwise return null. 96 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 97 Value *IVSrc = nullptr; 98 unsigned OperIdx = 0; 99 const SCEV *FoldedExpr = nullptr; 100 switch (UseInst->getOpcode()) { 101 default: 102 return nullptr; 103 case Instruction::UDiv: 104 case Instruction::LShr: 105 // We're only interested in the case where we know something about 106 // the numerator and have a constant denominator. 107 if (IVOperand != UseInst->getOperand(OperIdx) || 108 !isa<ConstantInt>(UseInst->getOperand(1))) 109 return nullptr; 110 111 // Attempt to fold a binary operator with constant operand. 112 // e.g. ((I + 1) >> 2) => I >> 2 113 if (!isa<BinaryOperator>(IVOperand) 114 || !isa<ConstantInt>(IVOperand->getOperand(1))) 115 return nullptr; 116 117 IVSrc = IVOperand->getOperand(0); 118 // IVSrc must be the (SCEVable) IV, since the other operand is const. 119 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 120 121 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 122 if (UseInst->getOpcode() == Instruction::LShr) { 123 // Get a constant for the divisor. See createSCEV. 124 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 125 if (D->getValue().uge(BitWidth)) 126 return nullptr; 127 128 D = ConstantInt::get(UseInst->getContext(), 129 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 130 } 131 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 132 } 133 // We have something that might fold it's operand. Compare SCEVs. 134 if (!SE->isSCEVable(UseInst->getType())) 135 return nullptr; 136 137 // Bypass the operand if SCEV can prove it has no effect. 138 if (SE->getSCEV(UseInst) != FoldedExpr) 139 return nullptr; 140 141 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 142 << " -> " << *UseInst << '\n'); 143 144 UseInst->setOperand(OperIdx, IVSrc); 145 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 146 147 ++NumElimOperand; 148 Changed = true; 149 if (IVOperand->use_empty()) 150 DeadInsts.emplace_back(IVOperand); 151 return IVSrc; 152 } 153 154 /// SimplifyIVUsers helper for eliminating useless 155 /// comparisons against an induction variable. 156 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 157 unsigned IVOperIdx = 0; 158 ICmpInst::Predicate Pred = ICmp->getPredicate(); 159 ICmpInst::Predicate OriginalPred = Pred; 160 if (IVOperand != ICmp->getOperand(0)) { 161 // Swapped 162 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 163 IVOperIdx = 1; 164 Pred = ICmpInst::getSwappedPredicate(Pred); 165 } 166 167 // Get the SCEVs for the ICmp operands. 168 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 169 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 170 171 // Simplify unnecessary loops away. 172 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 173 S = SE->getSCEVAtScope(S, ICmpLoop); 174 X = SE->getSCEVAtScope(X, ICmpLoop); 175 176 ICmpInst::Predicate InvariantPredicate; 177 const SCEV *InvariantLHS, *InvariantRHS; 178 179 // If the condition is always true or always false, replace it with 180 // a constant value. 181 if (SE->isKnownPredicate(Pred, S, X)) { 182 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 183 DeadInsts.emplace_back(ICmp); 184 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 185 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 186 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 187 DeadInsts.emplace_back(ICmp); 188 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 189 } else if (isa<PHINode>(IVOperand) && 190 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 191 InvariantLHS, InvariantRHS)) { 192 193 // Rewrite the comparison to a loop invariant comparison if it can be done 194 // cheaply, where cheaply means "we don't need to emit any new 195 // instructions". 196 197 Value *NewLHS = nullptr, *NewRHS = nullptr; 198 199 if (S == InvariantLHS || X == InvariantLHS) 200 NewLHS = 201 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); 202 203 if (S == InvariantRHS || X == InvariantRHS) 204 NewRHS = 205 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); 206 207 auto *PN = cast<PHINode>(IVOperand); 208 for (unsigned i = 0, e = PN->getNumIncomingValues(); 209 i != e && (!NewLHS || !NewRHS); 210 ++i) { 211 212 // If this is a value incoming from the backedge, then it cannot be a loop 213 // invariant value (since we know that IVOperand is an induction variable). 214 if (L->contains(PN->getIncomingBlock(i))) 215 continue; 216 217 // NB! This following assert does not fundamentally have to be true, but 218 // it is true today given how SCEV analyzes induction variables. 219 // Specifically, today SCEV will *not* recognize %iv as an induction 220 // variable in the following case: 221 // 222 // define void @f(i32 %k) { 223 // entry: 224 // br i1 undef, label %r, label %l 225 // 226 // l: 227 // %k.inc.l = add i32 %k, 1 228 // br label %loop 229 // 230 // r: 231 // %k.inc.r = add i32 %k, 1 232 // br label %loop 233 // 234 // loop: 235 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] 236 // %iv.inc = add i32 %iv, 1 237 // br label %loop 238 // } 239 // 240 // but if it starts to, at some point, then the assertion below will have 241 // to be changed to a runtime check. 242 243 Value *Incoming = PN->getIncomingValue(i); 244 245 #ifndef NDEBUG 246 if (auto *I = dyn_cast<Instruction>(Incoming)) 247 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); 248 #endif 249 250 const SCEV *IncomingS = SE->getSCEV(Incoming); 251 252 if (!NewLHS && IncomingS == InvariantLHS) 253 NewLHS = Incoming; 254 if (!NewRHS && IncomingS == InvariantRHS) 255 NewRHS = Incoming; 256 } 257 258 if (!NewLHS || !NewRHS) 259 // We could not find an existing value to replace either LHS or RHS. 260 // Generating new instructions has subtler tradeoffs, so avoid doing that 261 // for now. 262 return; 263 264 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 265 ICmp->setPredicate(InvariantPredicate); 266 ICmp->setOperand(0, NewLHS); 267 ICmp->setOperand(1, NewRHS); 268 } else if (ICmpInst::isSigned(OriginalPred) && 269 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 270 // If we were unable to make anything above, all we can is to canonicalize 271 // the comparison hoping that it will open the doors for other 272 // optimizations. If we find out that we compare two non-negative values, 273 // we turn the instruction's predicate to its unsigned version. Note that 274 // we cannot rely on Pred here unless we check if we have swapped it. 275 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 276 DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n'); 277 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 278 } else 279 return; 280 281 ++NumElimCmp; 282 Changed = true; 283 } 284 285 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 286 // Get the SCEVs for the ICmp operands. 287 auto *N = SE->getSCEV(SDiv->getOperand(0)); 288 auto *D = SE->getSCEV(SDiv->getOperand(1)); 289 290 // Simplify unnecessary loops away. 291 const Loop *L = LI->getLoopFor(SDiv->getParent()); 292 N = SE->getSCEVAtScope(N, L); 293 D = SE->getSCEVAtScope(D, L); 294 295 // Replace sdiv by udiv if both of the operands are non-negative 296 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 297 auto *UDiv = BinaryOperator::Create( 298 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 299 SDiv->getName() + ".udiv", SDiv); 300 UDiv->setIsExact(SDiv->isExact()); 301 SDiv->replaceAllUsesWith(UDiv); 302 DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 303 ++NumSimplifiedSDiv; 304 Changed = true; 305 DeadInsts.push_back(SDiv); 306 return true; 307 } 308 309 return false; 310 } 311 312 /// SimplifyIVUsers helper for eliminating useless 313 /// remainder operations operating on an induction variable. 314 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 315 Value *IVOperand, 316 bool IsSigned) { 317 // We're only interested in the case where we know something about 318 // the numerator. 319 if (IVOperand != Rem->getOperand(0)) 320 return; 321 322 // Get the SCEVs for the ICmp operands. 323 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 324 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 325 326 // Simplify unnecessary loops away. 327 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 328 S = SE->getSCEVAtScope(S, ICmpLoop); 329 X = SE->getSCEVAtScope(X, ICmpLoop); 330 331 // i % n --> i if i is in [0,n). 332 if ((!IsSigned || SE->isKnownNonNegative(S)) && 333 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 334 S, X)) 335 Rem->replaceAllUsesWith(Rem->getOperand(0)); 336 else { 337 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 338 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); 339 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 340 return; 341 342 if (!SE->isKnownPredicate(IsSigned ? 343 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 344 LessOne, X)) 345 return; 346 347 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 348 Rem->getOperand(0), Rem->getOperand(1)); 349 SelectInst *Sel = 350 SelectInst::Create(ICmp, 351 ConstantInt::get(Rem->getType(), 0), 352 Rem->getOperand(0), "tmp", Rem); 353 Rem->replaceAllUsesWith(Sel); 354 } 355 356 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 357 ++NumElimRem; 358 Changed = true; 359 DeadInsts.emplace_back(Rem); 360 } 361 362 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { 363 auto *F = CI->getCalledFunction(); 364 if (!F) 365 return false; 366 367 typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( 368 const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); 369 typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( 370 const SCEV *, Type *, unsigned); 371 372 OperationFunctionTy Operation; 373 ExtensionFunctionTy Extension; 374 375 Instruction::BinaryOps RawOp; 376 377 // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we 378 // have nuw. 379 bool NoSignedOverflow; 380 381 switch (F->getIntrinsicID()) { 382 default: 383 return false; 384 385 case Intrinsic::sadd_with_overflow: 386 Operation = &ScalarEvolution::getAddExpr; 387 Extension = &ScalarEvolution::getSignExtendExpr; 388 RawOp = Instruction::Add; 389 NoSignedOverflow = true; 390 break; 391 392 case Intrinsic::uadd_with_overflow: 393 Operation = &ScalarEvolution::getAddExpr; 394 Extension = &ScalarEvolution::getZeroExtendExpr; 395 RawOp = Instruction::Add; 396 NoSignedOverflow = false; 397 break; 398 399 case Intrinsic::ssub_with_overflow: 400 Operation = &ScalarEvolution::getMinusSCEV; 401 Extension = &ScalarEvolution::getSignExtendExpr; 402 RawOp = Instruction::Sub; 403 NoSignedOverflow = true; 404 break; 405 406 case Intrinsic::usub_with_overflow: 407 Operation = &ScalarEvolution::getMinusSCEV; 408 Extension = &ScalarEvolution::getZeroExtendExpr; 409 RawOp = Instruction::Sub; 410 NoSignedOverflow = false; 411 break; 412 } 413 414 const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); 415 const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); 416 417 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 418 auto *WideTy = 419 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 420 421 const SCEV *A = 422 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 423 WideTy, 0); 424 const SCEV *B = 425 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 426 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 427 428 if (A != B) 429 return false; 430 431 // Proved no overflow, nuke the overflow check and, if possible, the overflow 432 // intrinsic as well. 433 434 BinaryOperator *NewResult = BinaryOperator::Create( 435 RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); 436 437 if (NoSignedOverflow) 438 NewResult->setHasNoSignedWrap(true); 439 else 440 NewResult->setHasNoUnsignedWrap(true); 441 442 SmallVector<ExtractValueInst *, 4> ToDelete; 443 444 for (auto *U : CI->users()) { 445 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 446 if (EVI->getIndices()[0] == 1) 447 EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); 448 else { 449 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 450 EVI->replaceAllUsesWith(NewResult); 451 } 452 ToDelete.push_back(EVI); 453 } 454 } 455 456 for (auto *EVI : ToDelete) 457 EVI->eraseFromParent(); 458 459 if (CI->use_empty()) 460 CI->eraseFromParent(); 461 462 return true; 463 } 464 465 /// Eliminate an operation that consumes a simple IV and has no observable 466 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 467 /// but UseInst may not be. 468 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 469 Instruction *IVOperand) { 470 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 471 eliminateIVComparison(ICmp, IVOperand); 472 return true; 473 } 474 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 475 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 476 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 477 eliminateIVRemainder(Bin, IVOperand, IsSRem); 478 return true; 479 } 480 481 if (Bin->getOpcode() == Instruction::SDiv) 482 return eliminateSDiv(Bin); 483 } 484 485 if (auto *CI = dyn_cast<CallInst>(UseInst)) 486 if (eliminateOverflowIntrinsic(CI)) 487 return true; 488 489 if (eliminateIdentitySCEV(UseInst, IVOperand)) 490 return true; 491 492 return false; 493 } 494 495 /// Eliminate any operation that SCEV can prove is an identity function. 496 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 497 Instruction *IVOperand) { 498 if (!SE->isSCEVable(UseInst->getType()) || 499 (UseInst->getType() != IVOperand->getType()) || 500 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 501 return false; 502 503 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 504 // dominator tree, even if X is an operand to Y. For instance, in 505 // 506 // %iv = phi i32 {0,+,1} 507 // br %cond, label %left, label %merge 508 // 509 // left: 510 // %X = add i32 %iv, 0 511 // br label %merge 512 // 513 // merge: 514 // %M = phi (%X, %iv) 515 // 516 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 517 // %M.replaceAllUsesWith(%X) would be incorrect. 518 519 if (isa<PHINode>(UseInst)) 520 // If UseInst is not a PHI node then we know that IVOperand dominates 521 // UseInst directly from the legality of SSA. 522 if (!DT || !DT->dominates(IVOperand, UseInst)) 523 return false; 524 525 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 526 return false; 527 528 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 529 530 UseInst->replaceAllUsesWith(IVOperand); 531 ++NumElimIdentity; 532 Changed = true; 533 DeadInsts.emplace_back(UseInst); 534 return true; 535 } 536 537 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 538 /// unsigned-overflow. Returns true if anything changed, false otherwise. 539 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 540 Value *IVOperand) { 541 542 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 543 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 544 return false; 545 546 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, 547 SCEV::NoWrapFlags, unsigned); 548 switch (BO->getOpcode()) { 549 default: 550 return false; 551 552 case Instruction::Add: 553 GetExprForBO = &ScalarEvolution::getAddExpr; 554 break; 555 556 case Instruction::Sub: 557 GetExprForBO = &ScalarEvolution::getMinusSCEV; 558 break; 559 560 case Instruction::Mul: 561 GetExprForBO = &ScalarEvolution::getMulExpr; 562 break; 563 } 564 565 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); 566 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); 567 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 568 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 569 570 bool Changed = false; 571 572 if (!BO->hasNoUnsignedWrap()) { 573 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); 574 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 575 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), 576 SCEV::FlagAnyWrap, 0u); 577 if (ExtendAfterOp == OpAfterExtend) { 578 BO->setHasNoUnsignedWrap(); 579 SE->forgetValue(BO); 580 Changed = true; 581 } 582 } 583 584 if (!BO->hasNoSignedWrap()) { 585 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); 586 const SCEV *OpAfterExtend = (SE->*GetExprForBO)( 587 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), 588 SCEV::FlagAnyWrap, 0u); 589 if (ExtendAfterOp == OpAfterExtend) { 590 BO->setHasNoSignedWrap(); 591 SE->forgetValue(BO); 592 Changed = true; 593 } 594 } 595 596 return Changed; 597 } 598 599 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 600 /// information from the IV's range. Returns true if anything changed, false 601 /// otherwise. 602 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 603 Value *IVOperand) { 604 using namespace llvm::PatternMatch; 605 606 if (BO->getOpcode() == Instruction::Shl) { 607 bool Changed = false; 608 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 609 for (auto *U : BO->users()) { 610 const APInt *C; 611 if (match(U, 612 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 613 match(U, 614 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 615 BinaryOperator *Shr = cast<BinaryOperator>(U); 616 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 617 Shr->setIsExact(true); 618 Changed = true; 619 } 620 } 621 } 622 return Changed; 623 } 624 625 return false; 626 } 627 628 /// Add all uses of Def to the current IV's worklist. 629 static void pushIVUsers( 630 Instruction *Def, 631 SmallPtrSet<Instruction*,16> &Simplified, 632 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 633 634 for (User *U : Def->users()) { 635 Instruction *UI = cast<Instruction>(U); 636 637 // Avoid infinite or exponential worklist processing. 638 // Also ensure unique worklist users. 639 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 640 // self edges first. 641 if (UI != Def && Simplified.insert(UI).second) 642 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 643 } 644 } 645 646 /// Return true if this instruction generates a simple SCEV 647 /// expression in terms of that IV. 648 /// 649 /// This is similar to IVUsers' isInteresting() but processes each instruction 650 /// non-recursively when the operand is already known to be a simpleIVUser. 651 /// 652 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 653 if (!SE->isSCEVable(I->getType())) 654 return false; 655 656 // Get the symbolic expression for this instruction. 657 const SCEV *S = SE->getSCEV(I); 658 659 // Only consider affine recurrences. 660 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 661 if (AR && AR->getLoop() == L) 662 return true; 663 664 return false; 665 } 666 667 /// Iteratively perform simplification on a worklist of users 668 /// of the specified induction variable. Each successive simplification may push 669 /// more users which may themselves be candidates for simplification. 670 /// 671 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 672 /// instructions in-place during analysis. Rather than rewriting induction 673 /// variables bottom-up from their users, it transforms a chain of IVUsers 674 /// top-down, updating the IR only when it encounters a clear optimization 675 /// opportunity. 676 /// 677 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 678 /// 679 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 680 if (!SE->isSCEVable(CurrIV->getType())) 681 return; 682 683 // Instructions processed by SimplifyIndvar for CurrIV. 684 SmallPtrSet<Instruction*,16> Simplified; 685 686 // Use-def pairs if IV users waiting to be processed for CurrIV. 687 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 688 689 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 690 // called multiple times for the same LoopPhi. This is the proper thing to 691 // do for loop header phis that use each other. 692 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 693 694 while (!SimpleIVUsers.empty()) { 695 std::pair<Instruction*, Instruction*> UseOper = 696 SimpleIVUsers.pop_back_val(); 697 Instruction *UseInst = UseOper.first; 698 699 // Bypass back edges to avoid extra work. 700 if (UseInst == CurrIV) continue; 701 702 Instruction *IVOperand = UseOper.second; 703 for (unsigned N = 0; IVOperand; ++N) { 704 assert(N <= Simplified.size() && "runaway iteration"); 705 706 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 707 if (!NewOper) 708 break; // done folding 709 IVOperand = dyn_cast<Instruction>(NewOper); 710 } 711 if (!IVOperand) 712 continue; 713 714 if (eliminateIVUser(UseOper.first, IVOperand)) { 715 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 716 continue; 717 } 718 719 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { 720 if ((isa<OverflowingBinaryOperator>(BO) && 721 strengthenOverflowingOperation(BO, IVOperand)) || 722 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 723 // re-queue uses of the now modified binary operator and fall 724 // through to the checks that remain. 725 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 726 } 727 } 728 729 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 730 if (V && Cast) { 731 V->visitCast(Cast); 732 continue; 733 } 734 if (isSimpleIVUser(UseOper.first, L, SE)) { 735 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 736 } 737 } 738 } 739 740 namespace llvm { 741 742 void IVVisitor::anchor() { } 743 744 /// Simplify instructions that use this induction variable 745 /// by using ScalarEvolution to analyze the IV's recurrence. 746 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 747 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, 748 IVVisitor *V) { 749 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); 750 SIV.simplifyUsers(CurrIV, V); 751 return SIV.hasChanged(); 752 } 753 754 /// Simplify users of induction variables within this 755 /// loop. This does not actually change or add IVs. 756 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 757 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { 758 bool Changed = false; 759 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 760 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); 761 } 762 return Changed; 763 } 764 765 } // namespace llvm 766