1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
34 #else
35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
36 #endif
37 
38 using namespace llvm;
39 
40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
41     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
42     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
43              "controls the budget that is considered cheap (default = 4)"));
44 
45 using namespace PatternMatch;
46 
47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
49 /// creating a new one.
50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
51                                        Instruction::CastOps Op,
52                                        BasicBlock::iterator IP) {
53   // This function must be called with the builder having a valid insertion
54   // point. It doesn't need to be the actual IP where the uses of the returned
55   // cast will be added, but it must dominate such IP.
56   // We use this precondition to produce a cast that will dominate all its
57   // uses. In particular, this is crucial for the case where the builder's
58   // insertion point *is* the point where we were asked to put the cast.
59   // Since we don't know the builder's insertion point is actually
60   // where the uses will be added (only that it dominates it), we are
61   // not allowed to move it.
62   BasicBlock::iterator BIP = Builder.GetInsertPoint();
63 
64   Value *Ret = nullptr;
65 
66   // Check to see if there is already a cast!
67   for (User *U : V->users()) {
68     if (U->getType() != Ty)
69       continue;
70     CastInst *CI = dyn_cast<CastInst>(U);
71     if (!CI || CI->getOpcode() != Op)
72       continue;
73 
74     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
75     // the cast must also properly dominate the Builder's insertion point.
76     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
77         (&*IP == CI || CI->comesBefore(&*IP))) {
78       Ret = CI;
79       break;
80     }
81   }
82 
83   // Create a new cast.
84   if (!Ret) {
85     SCEVInsertPointGuard Guard(Builder, this);
86     Builder.SetInsertPoint(&*IP);
87     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
88   }
89 
90   // We assert at the end of the function since IP might point to an
91   // instruction with different dominance properties than a cast
92   // (an invoke for example) and not dominate BIP (but the cast does).
93   assert(!isa<Instruction>(Ret) ||
94          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
95 
96   return Ret;
97 }
98 
99 BasicBlock::iterator
100 SCEVExpander::findInsertPointAfter(Instruction *I,
101                                    Instruction *MustDominate) const {
102   BasicBlock::iterator IP = ++I->getIterator();
103   if (auto *II = dyn_cast<InvokeInst>(I))
104     IP = II->getNormalDest()->begin();
105 
106   while (isa<PHINode>(IP))
107     ++IP;
108 
109   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
110     ++IP;
111   } else if (isa<CatchSwitchInst>(IP)) {
112     IP = MustDominate->getParent()->getFirstInsertionPt();
113   } else {
114     assert(!IP->isEHPad() && "unexpected eh pad!");
115   }
116 
117   // Adjust insert point to be after instructions inserted by the expander, so
118   // we can re-use already inserted instructions. Avoid skipping past the
119   // original \p MustDominate, in case it is an inserted instruction.
120   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
121     ++IP;
122 
123   return IP;
124 }
125 
126 BasicBlock::iterator
127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
128   // Cast the argument at the beginning of the entry block, after
129   // any bitcasts of other arguments.
130   if (Argument *A = dyn_cast<Argument>(V)) {
131     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
132     while ((isa<BitCastInst>(IP) &&
133             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
134             cast<BitCastInst>(IP)->getOperand(0) != A) ||
135            isa<DbgInfoIntrinsic>(IP))
136       ++IP;
137     return IP;
138   }
139 
140   // Cast the instruction immediately after the instruction.
141   if (Instruction *I = dyn_cast<Instruction>(V))
142     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
143 
144   // Otherwise, this must be some kind of a constant,
145   // so let's plop this cast into the function's entry block.
146   assert(isa<Constant>(V) &&
147          "Expected the cast argument to be a global/constant");
148   return Builder.GetInsertBlock()
149       ->getParent()
150       ->getEntryBlock()
151       .getFirstInsertionPt();
152 }
153 
154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
155 /// which must be possible with a noop cast, doing what we can to share
156 /// the casts.
157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
158   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
159   assert((Op == Instruction::BitCast ||
160           Op == Instruction::PtrToInt ||
161           Op == Instruction::IntToPtr) &&
162          "InsertNoopCastOfTo cannot perform non-noop casts!");
163   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
164          "InsertNoopCastOfTo cannot change sizes!");
165 
166   // inttoptr only works for integral pointers. For non-integral pointers, we
167   // can create a GEP on i8* null  with the integral value as index. Note that
168   // it is safe to use GEP of null instead of inttoptr here, because only
169   // expressions already based on a GEP of null should be converted to pointers
170   // during expansion.
171   if (Op == Instruction::IntToPtr) {
172     auto *PtrTy = cast<PointerType>(Ty);
173     if (DL.isNonIntegralPointerType(PtrTy)) {
174       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
175       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
176              "alloc size of i8 must by 1 byte for the GEP to be correct");
177       auto *GEP = Builder.CreateGEP(
178           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
179       return Builder.CreateBitCast(GEP, Ty);
180     }
181   }
182   // Short-circuit unnecessary bitcasts.
183   if (Op == Instruction::BitCast) {
184     if (V->getType() == Ty)
185       return V;
186     if (CastInst *CI = dyn_cast<CastInst>(V)) {
187       if (CI->getOperand(0)->getType() == Ty)
188         return CI->getOperand(0);
189     }
190   }
191   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
192   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
193       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
194     if (CastInst *CI = dyn_cast<CastInst>(V))
195       if ((CI->getOpcode() == Instruction::PtrToInt ||
196            CI->getOpcode() == Instruction::IntToPtr) &&
197           SE.getTypeSizeInBits(CI->getType()) ==
198           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
199         return CI->getOperand(0);
200     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
201       if ((CE->getOpcode() == Instruction::PtrToInt ||
202            CE->getOpcode() == Instruction::IntToPtr) &&
203           SE.getTypeSizeInBits(CE->getType()) ==
204           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
205         return CE->getOperand(0);
206   }
207 
208   // Fold a cast of a constant.
209   if (Constant *C = dyn_cast<Constant>(V))
210     return ConstantExpr::getCast(Op, C, Ty);
211 
212   // Try to reuse existing cast, or insert one.
213   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
214 }
215 
216 /// InsertBinop - Insert the specified binary operator, doing a small amount
217 /// of work to avoid inserting an obviously redundant operation, and hoisting
218 /// to an outer loop when the opportunity is there and it is safe.
219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
220                                  Value *LHS, Value *RHS,
221                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
222   // Fold a binop with constant operands.
223   if (Constant *CLHS = dyn_cast<Constant>(LHS))
224     if (Constant *CRHS = dyn_cast<Constant>(RHS))
225       return ConstantExpr::get(Opcode, CLHS, CRHS);
226 
227   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
228   unsigned ScanLimit = 6;
229   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
230   // Scanning starts from the last instruction before the insertion point.
231   BasicBlock::iterator IP = Builder.GetInsertPoint();
232   if (IP != BlockBegin) {
233     --IP;
234     for (; ScanLimit; --IP, --ScanLimit) {
235       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
236       // generated code.
237       if (isa<DbgInfoIntrinsic>(IP))
238         ScanLimit++;
239 
240       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
241         // Ensure that no-wrap flags match.
242         if (isa<OverflowingBinaryOperator>(I)) {
243           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
244             return true;
245           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
246             return true;
247         }
248         // Conservatively, do not use any instruction which has any of exact
249         // flags installed.
250         if (isa<PossiblyExactOperator>(I) && I->isExact())
251           return true;
252         return false;
253       };
254       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
255           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
256         return &*IP;
257       if (IP == BlockBegin) break;
258     }
259   }
260 
261   // Save the original insertion point so we can restore it when we're done.
262   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
263   SCEVInsertPointGuard Guard(Builder, this);
264 
265   if (IsSafeToHoist) {
266     // Move the insertion point out of as many loops as we can.
267     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
268       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
269       BasicBlock *Preheader = L->getLoopPreheader();
270       if (!Preheader) break;
271 
272       // Ok, move up a level.
273       Builder.SetInsertPoint(Preheader->getTerminator());
274     }
275   }
276 
277   // If we haven't found this binop, insert it.
278   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
279   BO->setDebugLoc(Loc);
280   if (Flags & SCEV::FlagNUW)
281     BO->setHasNoUnsignedWrap();
282   if (Flags & SCEV::FlagNSW)
283     BO->setHasNoSignedWrap();
284 
285   return BO;
286 }
287 
288 /// FactorOutConstant - Test if S is divisible by Factor, using signed
289 /// division. If so, update S with Factor divided out and return true.
290 /// S need not be evenly divisible if a reasonable remainder can be
291 /// computed.
292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
293                               const SCEV *Factor, ScalarEvolution &SE,
294                               const DataLayout &DL) {
295   // Everything is divisible by one.
296   if (Factor->isOne())
297     return true;
298 
299   // x/x == 1.
300   if (S == Factor) {
301     S = SE.getConstant(S->getType(), 1);
302     return true;
303   }
304 
305   // For a Constant, check for a multiple of the given factor.
306   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
307     // 0/x == 0.
308     if (C->isZero())
309       return true;
310     // Check for divisibility.
311     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
312       ConstantInt *CI =
313           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
314       // If the quotient is zero and the remainder is non-zero, reject
315       // the value at this scale. It will be considered for subsequent
316       // smaller scales.
317       if (!CI->isZero()) {
318         const SCEV *Div = SE.getConstant(CI);
319         S = Div;
320         Remainder = SE.getAddExpr(
321             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
322         return true;
323       }
324     }
325   }
326 
327   // In a Mul, check if there is a constant operand which is a multiple
328   // of the given factor.
329   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
330     // Size is known, check if there is a constant operand which is a multiple
331     // of the given factor. If so, we can factor it.
332     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
333       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
334         if (!C->getAPInt().srem(FC->getAPInt())) {
335           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
336           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
337           S = SE.getMulExpr(NewMulOps);
338           return true;
339         }
340   }
341 
342   // In an AddRec, check if both start and step are divisible.
343   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
344     const SCEV *Step = A->getStepRecurrence(SE);
345     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
346     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
347       return false;
348     if (!StepRem->isZero())
349       return false;
350     const SCEV *Start = A->getStart();
351     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
352       return false;
353     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
354                          A->getNoWrapFlags(SCEV::FlagNW));
355     return true;
356   }
357 
358   return false;
359 }
360 
361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
362 /// is the number of SCEVAddRecExprs present, which are kept at the end of
363 /// the list.
364 ///
365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
366                                 Type *Ty,
367                                 ScalarEvolution &SE) {
368   unsigned NumAddRecs = 0;
369   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
370     ++NumAddRecs;
371   // Group Ops into non-addrecs and addrecs.
372   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
373   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
374   // Let ScalarEvolution sort and simplify the non-addrecs list.
375   const SCEV *Sum = NoAddRecs.empty() ?
376                     SE.getConstant(Ty, 0) :
377                     SE.getAddExpr(NoAddRecs);
378   // If it returned an add, use the operands. Otherwise it simplified
379   // the sum into a single value, so just use that.
380   Ops.clear();
381   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
382     Ops.append(Add->op_begin(), Add->op_end());
383   else if (!Sum->isZero())
384     Ops.push_back(Sum);
385   // Then append the addrecs.
386   Ops.append(AddRecs.begin(), AddRecs.end());
387 }
388 
389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
391 /// This helps expose more opportunities for folding parts of the expressions
392 /// into GEP indices.
393 ///
394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
395                          Type *Ty,
396                          ScalarEvolution &SE) {
397   // Find the addrecs.
398   SmallVector<const SCEV *, 8> AddRecs;
399   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
400     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
401       const SCEV *Start = A->getStart();
402       if (Start->isZero()) break;
403       const SCEV *Zero = SE.getConstant(Ty, 0);
404       AddRecs.push_back(SE.getAddRecExpr(Zero,
405                                          A->getStepRecurrence(SE),
406                                          A->getLoop(),
407                                          A->getNoWrapFlags(SCEV::FlagNW)));
408       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
409         Ops[i] = Zero;
410         Ops.append(Add->op_begin(), Add->op_end());
411         e += Add->getNumOperands();
412       } else {
413         Ops[i] = Start;
414       }
415     }
416   if (!AddRecs.empty()) {
417     // Add the addrecs onto the end of the list.
418     Ops.append(AddRecs.begin(), AddRecs.end());
419     // Resort the operand list, moving any constants to the front.
420     SimplifyAddOperands(Ops, Ty, SE);
421   }
422 }
423 
424 /// expandAddToGEP - Expand an addition expression with a pointer type into
425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
426 /// BasicAliasAnalysis and other passes analyze the result. See the rules
427 /// for getelementptr vs. inttoptr in
428 /// http://llvm.org/docs/LangRef.html#pointeraliasing
429 /// for details.
430 ///
431 /// Design note: The correctness of using getelementptr here depends on
432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
433 /// they may introduce pointer arithmetic which may not be safely converted
434 /// into getelementptr.
435 ///
436 /// Design note: It might seem desirable for this function to be more
437 /// loop-aware. If some of the indices are loop-invariant while others
438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
439 /// loop-invariant portions of the overall computation outside the loop.
440 /// However, there are a few reasons this is not done here. Hoisting simple
441 /// arithmetic is a low-level optimization that often isn't very
442 /// important until late in the optimization process. In fact, passes
443 /// like InstructionCombining will combine GEPs, even if it means
444 /// pushing loop-invariant computation down into loops, so even if the
445 /// GEPs were split here, the work would quickly be undone. The
446 /// LoopStrengthReduction pass, which is usually run quite late (and
447 /// after the last InstructionCombining pass), takes care of hoisting
448 /// loop-invariant portions of expressions, after considering what
449 /// can be folded using target addressing modes.
450 ///
451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
452                                     const SCEV *const *op_end,
453                                     PointerType *PTy,
454                                     Type *Ty,
455                                     Value *V) {
456   SmallVector<Value *, 4> GepIndices;
457   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
458   bool AnyNonZeroIndices = false;
459 
460   // Split AddRecs up into parts as either of the parts may be usable
461   // without the other.
462   SplitAddRecs(Ops, Ty, SE);
463 
464   Type *IntIdxTy = DL.getIndexType(PTy);
465 
466   // For opaque pointers, always generate i8 GEP.
467   if (!PTy->isOpaque()) {
468     // Descend down the pointer's type and attempt to convert the other
469     // operands into GEP indices, at each level. The first index in a GEP
470     // indexes into the array implied by the pointer operand; the rest of
471     // the indices index into the element or field type selected by the
472     // preceding index.
473     Type *ElTy = PTy->getElementType();
474     for (;;) {
475       // If the scale size is not 0, attempt to factor out a scale for
476       // array indexing.
477       SmallVector<const SCEV *, 8> ScaledOps;
478       if (ElTy->isSized()) {
479         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
480         if (!ElSize->isZero()) {
481           SmallVector<const SCEV *, 8> NewOps;
482           for (const SCEV *Op : Ops) {
483             const SCEV *Remainder = SE.getConstant(Ty, 0);
484             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
485               // Op now has ElSize factored out.
486               ScaledOps.push_back(Op);
487               if (!Remainder->isZero())
488                 NewOps.push_back(Remainder);
489               AnyNonZeroIndices = true;
490             } else {
491               // The operand was not divisible, so add it to the list of
492               // operands we'll scan next iteration.
493               NewOps.push_back(Op);
494             }
495           }
496           // If we made any changes, update Ops.
497           if (!ScaledOps.empty()) {
498             Ops = NewOps;
499             SimplifyAddOperands(Ops, Ty, SE);
500           }
501         }
502       }
503 
504       // Record the scaled array index for this level of the type. If
505       // we didn't find any operands that could be factored, tentatively
506       // assume that element zero was selected (since the zero offset
507       // would obviously be folded away).
508       Value *Scaled =
509           ScaledOps.empty()
510               ? Constant::getNullValue(Ty)
511               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
512       GepIndices.push_back(Scaled);
513 
514       // Collect struct field index operands.
515       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
516         bool FoundFieldNo = false;
517         // An empty struct has no fields.
518         if (STy->getNumElements() == 0) break;
519         // Field offsets are known. See if a constant offset falls within any of
520         // the struct fields.
521         if (Ops.empty())
522           break;
523         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
524           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
525             const StructLayout &SL = *DL.getStructLayout(STy);
526             uint64_t FullOffset = C->getValue()->getZExtValue();
527             if (FullOffset < SL.getSizeInBytes()) {
528               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
529               GepIndices.push_back(
530                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
531               ElTy = STy->getTypeAtIndex(ElIdx);
532               Ops[0] =
533                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
534               AnyNonZeroIndices = true;
535               FoundFieldNo = true;
536             }
537           }
538         // If no struct field offsets were found, tentatively assume that
539         // field zero was selected (since the zero offset would obviously
540         // be folded away).
541         if (!FoundFieldNo) {
542           ElTy = STy->getTypeAtIndex(0u);
543           GepIndices.push_back(
544             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
545         }
546       }
547 
548       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
549         ElTy = ATy->getElementType();
550       else
551         // FIXME: Handle VectorType.
552         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
553         // constant, therefore can not be factored out. The generated IR is less
554         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
555         break;
556     }
557   }
558 
559   // If none of the operands were convertible to proper GEP indices, cast
560   // the base to i8* and do an ugly getelementptr with that. It's still
561   // better than ptrtoint+arithmetic+inttoptr at least.
562   if (!AnyNonZeroIndices) {
563     // Cast the base to i8*.
564     if (!PTy->isOpaque())
565       V = InsertNoopCastOfTo(V,
566          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
567 
568     assert(!isa<Instruction>(V) ||
569            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
570 
571     // Expand the operands for a plain byte offset.
572     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
573 
574     // Fold a GEP with constant operands.
575     if (Constant *CLHS = dyn_cast<Constant>(V))
576       if (Constant *CRHS = dyn_cast<Constant>(Idx))
577         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
578                                               CLHS, CRHS);
579 
580     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
581     unsigned ScanLimit = 6;
582     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
583     // Scanning starts from the last instruction before the insertion point.
584     BasicBlock::iterator IP = Builder.GetInsertPoint();
585     if (IP != BlockBegin) {
586       --IP;
587       for (; ScanLimit; --IP, --ScanLimit) {
588         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
589         // generated code.
590         if (isa<DbgInfoIntrinsic>(IP))
591           ScanLimit++;
592         if (IP->getOpcode() == Instruction::GetElementPtr &&
593             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
594           return &*IP;
595         if (IP == BlockBegin) break;
596       }
597     }
598 
599     // Save the original insertion point so we can restore it when we're done.
600     SCEVInsertPointGuard Guard(Builder, this);
601 
602     // Move the insertion point out of as many loops as we can.
603     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
604       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
605       BasicBlock *Preheader = L->getLoopPreheader();
606       if (!Preheader) break;
607 
608       // Ok, move up a level.
609       Builder.SetInsertPoint(Preheader->getTerminator());
610     }
611 
612     // Emit a GEP.
613     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
614   }
615 
616   {
617     SCEVInsertPointGuard Guard(Builder, this);
618 
619     // Move the insertion point out of as many loops as we can.
620     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
621       if (!L->isLoopInvariant(V)) break;
622 
623       bool AnyIndexNotLoopInvariant = any_of(
624           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
625 
626       if (AnyIndexNotLoopInvariant)
627         break;
628 
629       BasicBlock *Preheader = L->getLoopPreheader();
630       if (!Preheader) break;
631 
632       // Ok, move up a level.
633       Builder.SetInsertPoint(Preheader->getTerminator());
634     }
635 
636     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
637     // because ScalarEvolution may have changed the address arithmetic to
638     // compute a value which is beyond the end of the allocated object.
639     Value *Casted = V;
640     if (V->getType() != PTy)
641       Casted = InsertNoopCastOfTo(Casted, PTy);
642     Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices,
643                                    "scevgep");
644     Ops.push_back(SE.getUnknown(GEP));
645   }
646 
647   return expand(SE.getAddExpr(Ops));
648 }
649 
650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
651                                     Value *V) {
652   const SCEV *const Ops[1] = {Op};
653   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
654 }
655 
656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
657 /// SCEV expansion. If they are nested, this is the most nested. If they are
658 /// neighboring, pick the later.
659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
660                                         DominatorTree &DT) {
661   if (!A) return B;
662   if (!B) return A;
663   if (A->contains(B)) return B;
664   if (B->contains(A)) return A;
665   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
666   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
667   return A; // Arbitrarily break the tie.
668 }
669 
670 /// getRelevantLoop - Get the most relevant loop associated with the given
671 /// expression, according to PickMostRelevantLoop.
672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
673   // Test whether we've already computed the most relevant loop for this SCEV.
674   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
675   if (!Pair.second)
676     return Pair.first->second;
677 
678   if (isa<SCEVConstant>(S))
679     // A constant has no relevant loops.
680     return nullptr;
681   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
682     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
683       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
684     // A non-instruction has no relevant loops.
685     return nullptr;
686   }
687   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
688     const Loop *L = nullptr;
689     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
690       L = AR->getLoop();
691     for (const SCEV *Op : N->operands())
692       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
693     return RelevantLoops[N] = L;
694   }
695   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
696     const Loop *Result = getRelevantLoop(C->getOperand());
697     return RelevantLoops[C] = Result;
698   }
699   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
700     const Loop *Result = PickMostRelevantLoop(
701         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
702     return RelevantLoops[D] = Result;
703   }
704   llvm_unreachable("Unexpected SCEV type!");
705 }
706 
707 namespace {
708 
709 /// LoopCompare - Compare loops by PickMostRelevantLoop.
710 class LoopCompare {
711   DominatorTree &DT;
712 public:
713   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
714 
715   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
716                   std::pair<const Loop *, const SCEV *> RHS) const {
717     // Keep pointer operands sorted at the end.
718     if (LHS.second->getType()->isPointerTy() !=
719         RHS.second->getType()->isPointerTy())
720       return LHS.second->getType()->isPointerTy();
721 
722     // Compare loops with PickMostRelevantLoop.
723     if (LHS.first != RHS.first)
724       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
725 
726     // If one operand is a non-constant negative and the other is not,
727     // put the non-constant negative on the right so that a sub can
728     // be used instead of a negate and add.
729     if (LHS.second->isNonConstantNegative()) {
730       if (!RHS.second->isNonConstantNegative())
731         return false;
732     } else if (RHS.second->isNonConstantNegative())
733       return true;
734 
735     // Otherwise they are equivalent according to this comparison.
736     return false;
737   }
738 };
739 
740 }
741 
742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
743   Type *Ty = SE.getEffectiveSCEVType(S->getType());
744 
745   // Collect all the add operands in a loop, along with their associated loops.
746   // Iterate in reverse so that constants are emitted last, all else equal, and
747   // so that pointer operands are inserted first, which the code below relies on
748   // to form more involved GEPs.
749   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
750   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
751        E(S->op_begin()); I != E; ++I)
752     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
753 
754   // Sort by loop. Use a stable sort so that constants follow non-constants and
755   // pointer operands precede non-pointer operands.
756   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
757 
758   // Emit instructions to add all the operands. Hoist as much as possible
759   // out of loops, and form meaningful getelementptrs where possible.
760   Value *Sum = nullptr;
761   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
762     const Loop *CurLoop = I->first;
763     const SCEV *Op = I->second;
764     if (!Sum) {
765       // This is the first operand. Just expand it.
766       Sum = expand(Op);
767       ++I;
768     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
769       // The running sum expression is a pointer. Try to form a getelementptr
770       // at this level with that as the base.
771       SmallVector<const SCEV *, 4> NewOps;
772       for (; I != E && I->first == CurLoop; ++I) {
773         // If the operand is SCEVUnknown and not instructions, peek through
774         // it, to enable more of it to be folded into the GEP.
775         const SCEV *X = I->second;
776         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
777           if (!isa<Instruction>(U->getValue()))
778             X = SE.getSCEV(U->getValue());
779         NewOps.push_back(X);
780       }
781       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
782     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
783       // The running sum is an integer, and there's a pointer at this level.
784       // Try to form a getelementptr. If the running sum is instructions,
785       // use a SCEVUnknown to avoid re-analyzing them.
786       SmallVector<const SCEV *, 4> NewOps;
787       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
788                                                SE.getSCEV(Sum));
789       for (++I; I != E && I->first == CurLoop; ++I)
790         NewOps.push_back(I->second);
791       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
792     } else if (Op->isNonConstantNegative()) {
793       // Instead of doing a negate and add, just do a subtract.
794       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
795       Sum = InsertNoopCastOfTo(Sum, Ty);
796       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
797                         /*IsSafeToHoist*/ true);
798       ++I;
799     } else {
800       // A simple add.
801       Value *W = expandCodeForImpl(Op, Ty, false);
802       Sum = InsertNoopCastOfTo(Sum, Ty);
803       // Canonicalize a constant to the RHS.
804       if (isa<Constant>(Sum)) std::swap(Sum, W);
805       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
806                         /*IsSafeToHoist*/ true);
807       ++I;
808     }
809   }
810 
811   return Sum;
812 }
813 
814 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
815   Type *Ty = SE.getEffectiveSCEVType(S->getType());
816 
817   // Collect all the mul operands in a loop, along with their associated loops.
818   // Iterate in reverse so that constants are emitted last, all else equal.
819   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
820   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
821        E(S->op_begin()); I != E; ++I)
822     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
823 
824   // Sort by loop. Use a stable sort so that constants follow non-constants.
825   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
826 
827   // Emit instructions to mul all the operands. Hoist as much as possible
828   // out of loops.
829   Value *Prod = nullptr;
830   auto I = OpsAndLoops.begin();
831 
832   // Expand the calculation of X pow N in the following manner:
833   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
834   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
835   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
836     auto E = I;
837     // Calculate how many times the same operand from the same loop is included
838     // into this power.
839     uint64_t Exponent = 0;
840     const uint64_t MaxExponent = UINT64_MAX >> 1;
841     // No one sane will ever try to calculate such huge exponents, but if we
842     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
843     // below when the power of 2 exceeds our Exponent, and we want it to be
844     // 1u << 31 at most to not deal with unsigned overflow.
845     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
846       ++Exponent;
847       ++E;
848     }
849     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
850 
851     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
852     // that are needed into the result.
853     Value *P = expandCodeForImpl(I->second, Ty, false);
854     Value *Result = nullptr;
855     if (Exponent & 1)
856       Result = P;
857     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
858       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
859                       /*IsSafeToHoist*/ true);
860       if (Exponent & BinExp)
861         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
862                                       SCEV::FlagAnyWrap,
863                                       /*IsSafeToHoist*/ true)
864                         : P;
865     }
866 
867     I = E;
868     assert(Result && "Nothing was expanded?");
869     return Result;
870   };
871 
872   while (I != OpsAndLoops.end()) {
873     if (!Prod) {
874       // This is the first operand. Just expand it.
875       Prod = ExpandOpBinPowN();
876     } else if (I->second->isAllOnesValue()) {
877       // Instead of doing a multiply by negative one, just do a negate.
878       Prod = InsertNoopCastOfTo(Prod, Ty);
879       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
880                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
881       ++I;
882     } else {
883       // A simple mul.
884       Value *W = ExpandOpBinPowN();
885       Prod = InsertNoopCastOfTo(Prod, Ty);
886       // Canonicalize a constant to the RHS.
887       if (isa<Constant>(Prod)) std::swap(Prod, W);
888       const APInt *RHS;
889       if (match(W, m_Power2(RHS))) {
890         // Canonicalize Prod*(1<<C) to Prod<<C.
891         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
892         auto NWFlags = S->getNoWrapFlags();
893         // clear nsw flag if shl will produce poison value.
894         if (RHS->logBase2() == RHS->getBitWidth() - 1)
895           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
896         Prod = InsertBinop(Instruction::Shl, Prod,
897                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
898                            /*IsSafeToHoist*/ true);
899       } else {
900         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
901                            /*IsSafeToHoist*/ true);
902       }
903     }
904   }
905 
906   return Prod;
907 }
908 
909 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
910   Type *Ty = SE.getEffectiveSCEVType(S->getType());
911 
912   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
913   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
914     const APInt &RHS = SC->getAPInt();
915     if (RHS.isPowerOf2())
916       return InsertBinop(Instruction::LShr, LHS,
917                          ConstantInt::get(Ty, RHS.logBase2()),
918                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
919   }
920 
921   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
922   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
923                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
924 }
925 
926 /// Move parts of Base into Rest to leave Base with the minimal
927 /// expression that provides a pointer operand suitable for a
928 /// GEP expansion.
929 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
930                               ScalarEvolution &SE) {
931   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
932     Base = A->getStart();
933     Rest = SE.getAddExpr(Rest,
934                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
935                                           A->getStepRecurrence(SE),
936                                           A->getLoop(),
937                                           A->getNoWrapFlags(SCEV::FlagNW)));
938   }
939   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
940     Base = A->getOperand(A->getNumOperands()-1);
941     SmallVector<const SCEV *, 8> NewAddOps(A->operands());
942     NewAddOps.back() = Rest;
943     Rest = SE.getAddExpr(NewAddOps);
944     ExposePointerBase(Base, Rest, SE);
945   }
946 }
947 
948 /// Determine if this is a well-behaved chain of instructions leading back to
949 /// the PHI. If so, it may be reused by expanded expressions.
950 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
951                                          const Loop *L) {
952   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
953       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
954     return false;
955   // If any of the operands don't dominate the insert position, bail.
956   // Addrec operands are always loop-invariant, so this can only happen
957   // if there are instructions which haven't been hoisted.
958   if (L == IVIncInsertLoop) {
959     for (Use &Op : llvm::drop_begin(IncV->operands()))
960       if (Instruction *OInst = dyn_cast<Instruction>(Op))
961         if (!SE.DT.dominates(OInst, IVIncInsertPos))
962           return false;
963   }
964   // Advance to the next instruction.
965   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
966   if (!IncV)
967     return false;
968 
969   if (IncV->mayHaveSideEffects())
970     return false;
971 
972   if (IncV == PN)
973     return true;
974 
975   return isNormalAddRecExprPHI(PN, IncV, L);
976 }
977 
978 /// getIVIncOperand returns an induction variable increment's induction
979 /// variable operand.
980 ///
981 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
982 /// operands dominate InsertPos.
983 ///
984 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
985 /// simple patterns generated by getAddRecExprPHILiterally and
986 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
987 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
988                                            Instruction *InsertPos,
989                                            bool allowScale) {
990   if (IncV == InsertPos)
991     return nullptr;
992 
993   switch (IncV->getOpcode()) {
994   default:
995     return nullptr;
996   // Check for a simple Add/Sub or GEP of a loop invariant step.
997   case Instruction::Add:
998   case Instruction::Sub: {
999     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
1000     if (!OInst || SE.DT.dominates(OInst, InsertPos))
1001       return dyn_cast<Instruction>(IncV->getOperand(0));
1002     return nullptr;
1003   }
1004   case Instruction::BitCast:
1005     return dyn_cast<Instruction>(IncV->getOperand(0));
1006   case Instruction::GetElementPtr:
1007     for (Use &U : llvm::drop_begin(IncV->operands())) {
1008       if (isa<Constant>(U))
1009         continue;
1010       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
1011         if (!SE.DT.dominates(OInst, InsertPos))
1012           return nullptr;
1013       }
1014       if (allowScale) {
1015         // allow any kind of GEP as long as it can be hoisted.
1016         continue;
1017       }
1018       // This must be a pointer addition of constants (pretty), which is already
1019       // handled, or some number of address-size elements (ugly). Ugly geps
1020       // have 2 operands. i1* is used by the expander to represent an
1021       // address-size element.
1022       if (IncV->getNumOperands() != 2)
1023         return nullptr;
1024       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1025       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1026           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1027         return nullptr;
1028       break;
1029     }
1030     return dyn_cast<Instruction>(IncV->getOperand(0));
1031   }
1032 }
1033 
1034 /// If the insert point of the current builder or any of the builders on the
1035 /// stack of saved builders has 'I' as its insert point, update it to point to
1036 /// the instruction after 'I'.  This is intended to be used when the instruction
1037 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1038 /// different block, the inconsistent insert point (with a mismatched
1039 /// Instruction and Block) can lead to an instruction being inserted in a block
1040 /// other than its parent.
1041 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1042   BasicBlock::iterator It(*I);
1043   BasicBlock::iterator NewInsertPt = std::next(It);
1044   if (Builder.GetInsertPoint() == It)
1045     Builder.SetInsertPoint(&*NewInsertPt);
1046   for (auto *InsertPtGuard : InsertPointGuards)
1047     if (InsertPtGuard->GetInsertPoint() == It)
1048       InsertPtGuard->SetInsertPoint(NewInsertPt);
1049 }
1050 
1051 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1052 /// it available to other uses in this loop. Recursively hoist any operands,
1053 /// until we reach a value that dominates InsertPos.
1054 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1055   if (SE.DT.dominates(IncV, InsertPos))
1056       return true;
1057 
1058   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1059   // its existing users.
1060   if (isa<PHINode>(InsertPos) ||
1061       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1062     return false;
1063 
1064   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1065     return false;
1066 
1067   // Check that the chain of IV operands leading back to Phi can be hoisted.
1068   SmallVector<Instruction*, 4> IVIncs;
1069   for(;;) {
1070     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1071     if (!Oper)
1072       return false;
1073     // IncV is safe to hoist.
1074     IVIncs.push_back(IncV);
1075     IncV = Oper;
1076     if (SE.DT.dominates(IncV, InsertPos))
1077       break;
1078   }
1079   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1080     fixupInsertPoints(*I);
1081     (*I)->moveBefore(InsertPos);
1082   }
1083   return true;
1084 }
1085 
1086 /// Determine if this cyclic phi is in a form that would have been generated by
1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1088 /// as it is in a low-cost form, for example, no implied multiplication. This
1089 /// should match any patterns generated by getAddRecExprPHILiterally and
1090 /// expandAddtoGEP.
1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1092                                            const Loop *L) {
1093   for(Instruction *IVOper = IncV;
1094       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1095                                 /*allowScale=*/false));) {
1096     if (IVOper == PN)
1097       return true;
1098   }
1099   return false;
1100 }
1101 
1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1104 /// need to materialize IV increments elsewhere to handle difficult situations.
1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1106                                  Type *ExpandTy, Type *IntTy,
1107                                  bool useSubtract) {
1108   Value *IncV;
1109   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1110   if (ExpandTy->isPointerTy()) {
1111     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1112     // If the step isn't constant, don't use an implicitly scaled GEP, because
1113     // that would require a multiply inside the loop.
1114     if (!isa<ConstantInt>(StepV))
1115       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1116                                   GEPPtrTy->getAddressSpace());
1117     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1118     if (IncV->getType() != PN->getType())
1119       IncV = Builder.CreateBitCast(IncV, PN->getType());
1120   } else {
1121     IncV = useSubtract ?
1122       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1123       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1124   }
1125   return IncV;
1126 }
1127 
1128 /// Check whether we can cheaply express the requested SCEV in terms of
1129 /// the available PHI SCEV by truncation and/or inversion of the step.
1130 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1131                                     const SCEVAddRecExpr *Phi,
1132                                     const SCEVAddRecExpr *Requested,
1133                                     bool &InvertStep) {
1134   // We can't transform to match a pointer PHI.
1135   if (Phi->getType()->isPointerTy())
1136     return false;
1137 
1138   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1139   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1140 
1141   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1142     return false;
1143 
1144   // Try truncate it if necessary.
1145   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1146   if (!Phi)
1147     return false;
1148 
1149   // Check whether truncation will help.
1150   if (Phi == Requested) {
1151     InvertStep = false;
1152     return true;
1153   }
1154 
1155   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1156   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1157     InvertStep = true;
1158     return true;
1159   }
1160 
1161   return false;
1162 }
1163 
1164 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1165   if (!isa<IntegerType>(AR->getType()))
1166     return false;
1167 
1168   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1169   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1170   const SCEV *Step = AR->getStepRecurrence(SE);
1171   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1172                                             SE.getSignExtendExpr(AR, WideTy));
1173   const SCEV *ExtendAfterOp =
1174     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1175   return ExtendAfterOp == OpAfterExtend;
1176 }
1177 
1178 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1179   if (!isa<IntegerType>(AR->getType()))
1180     return false;
1181 
1182   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1183   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1184   const SCEV *Step = AR->getStepRecurrence(SE);
1185   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1186                                             SE.getZeroExtendExpr(AR, WideTy));
1187   const SCEV *ExtendAfterOp =
1188     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1189   return ExtendAfterOp == OpAfterExtend;
1190 }
1191 
1192 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1193 /// the base addrec, which is the addrec without any non-loop-dominating
1194 /// values, and return the PHI.
1195 PHINode *
1196 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1197                                         const Loop *L,
1198                                         Type *ExpandTy,
1199                                         Type *IntTy,
1200                                         Type *&TruncTy,
1201                                         bool &InvertStep) {
1202   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1203 
1204   // Reuse a previously-inserted PHI, if present.
1205   BasicBlock *LatchBlock = L->getLoopLatch();
1206   if (LatchBlock) {
1207     PHINode *AddRecPhiMatch = nullptr;
1208     Instruction *IncV = nullptr;
1209     TruncTy = nullptr;
1210     InvertStep = false;
1211 
1212     // Only try partially matching scevs that need truncation and/or
1213     // step-inversion if we know this loop is outside the current loop.
1214     bool TryNonMatchingSCEV =
1215         IVIncInsertLoop &&
1216         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1217 
1218     for (PHINode &PN : L->getHeader()->phis()) {
1219       if (!SE.isSCEVable(PN.getType()))
1220         continue;
1221 
1222       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1223       // PHI has no meaning at all.
1224       if (!PN.isComplete()) {
1225         SCEV_DEBUG_WITH_TYPE(
1226             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1227         continue;
1228       }
1229 
1230       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1231       if (!PhiSCEV)
1232         continue;
1233 
1234       bool IsMatchingSCEV = PhiSCEV == Normalized;
1235       // We only handle truncation and inversion of phi recurrences for the
1236       // expanded expression if the expanded expression's loop dominates the
1237       // loop we insert to. Check now, so we can bail out early.
1238       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1239           continue;
1240 
1241       // TODO: this possibly can be reworked to avoid this cast at all.
1242       Instruction *TempIncV =
1243           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1244       if (!TempIncV)
1245         continue;
1246 
1247       // Check whether we can reuse this PHI node.
1248       if (LSRMode) {
1249         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1250           continue;
1251       } else {
1252         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1253           continue;
1254       }
1255 
1256       // Stop if we have found an exact match SCEV.
1257       if (IsMatchingSCEV) {
1258         IncV = TempIncV;
1259         TruncTy = nullptr;
1260         InvertStep = false;
1261         AddRecPhiMatch = &PN;
1262         break;
1263       }
1264 
1265       // Try whether the phi can be translated into the requested form
1266       // (truncated and/or offset by a constant).
1267       if ((!TruncTy || InvertStep) &&
1268           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1269         // Record the phi node. But don't stop we might find an exact match
1270         // later.
1271         AddRecPhiMatch = &PN;
1272         IncV = TempIncV;
1273         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1274       }
1275     }
1276 
1277     if (AddRecPhiMatch) {
1278       // Ok, the add recurrence looks usable.
1279       // Remember this PHI, even in post-inc mode.
1280       InsertedValues.insert(AddRecPhiMatch);
1281       // Remember the increment.
1282       rememberInstruction(IncV);
1283       // Those values were not actually inserted but re-used.
1284       ReusedValues.insert(AddRecPhiMatch);
1285       ReusedValues.insert(IncV);
1286       return AddRecPhiMatch;
1287     }
1288   }
1289 
1290   // Save the original insertion point so we can restore it when we're done.
1291   SCEVInsertPointGuard Guard(Builder, this);
1292 
1293   // Another AddRec may need to be recursively expanded below. For example, if
1294   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1295   // loop. Remove this loop from the PostIncLoops set before expanding such
1296   // AddRecs. Otherwise, we cannot find a valid position for the step
1297   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1298   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1299   // so it's not worth implementing SmallPtrSet::swap.
1300   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1301   PostIncLoops.clear();
1302 
1303   // Expand code for the start value into the loop preheader.
1304   assert(L->getLoopPreheader() &&
1305          "Can't expand add recurrences without a loop preheader!");
1306   Value *StartV =
1307       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1308                         L->getLoopPreheader()->getTerminator(), false);
1309 
1310   // StartV must have been be inserted into L's preheader to dominate the new
1311   // phi.
1312   assert(!isa<Instruction>(StartV) ||
1313          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1314                                  L->getHeader()));
1315 
1316   // Expand code for the step value. Do this before creating the PHI so that PHI
1317   // reuse code doesn't see an incomplete PHI.
1318   const SCEV *Step = Normalized->getStepRecurrence(SE);
1319   // If the stride is negative, insert a sub instead of an add for the increment
1320   // (unless it's a constant, because subtracts of constants are canonicalized
1321   // to adds).
1322   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1323   if (useSubtract)
1324     Step = SE.getNegativeSCEV(Step);
1325   // Expand the step somewhere that dominates the loop header.
1326   Value *StepV = expandCodeForImpl(
1327       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1328 
1329   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1330   // we actually do emit an addition.  It does not apply if we emit a
1331   // subtraction.
1332   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1333   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1334 
1335   // Create the PHI.
1336   BasicBlock *Header = L->getHeader();
1337   Builder.SetInsertPoint(Header, Header->begin());
1338   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1339   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1340                                   Twine(IVName) + ".iv");
1341 
1342   // Create the step instructions and populate the PHI.
1343   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1344     BasicBlock *Pred = *HPI;
1345 
1346     // Add a start value.
1347     if (!L->contains(Pred)) {
1348       PN->addIncoming(StartV, Pred);
1349       continue;
1350     }
1351 
1352     // Create a step value and add it to the PHI.
1353     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1354     // instructions at IVIncInsertPos.
1355     Instruction *InsertPos = L == IVIncInsertLoop ?
1356       IVIncInsertPos : Pred->getTerminator();
1357     Builder.SetInsertPoint(InsertPos);
1358     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1359 
1360     if (isa<OverflowingBinaryOperator>(IncV)) {
1361       if (IncrementIsNUW)
1362         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1363       if (IncrementIsNSW)
1364         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1365     }
1366     PN->addIncoming(IncV, Pred);
1367   }
1368 
1369   // After expanding subexpressions, restore the PostIncLoops set so the caller
1370   // can ensure that IVIncrement dominates the current uses.
1371   PostIncLoops = SavedPostIncLoops;
1372 
1373   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1374   // effective when we are able to use an IV inserted here, so record it.
1375   InsertedValues.insert(PN);
1376   InsertedIVs.push_back(PN);
1377   return PN;
1378 }
1379 
1380 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1381   Type *STy = S->getType();
1382   Type *IntTy = SE.getEffectiveSCEVType(STy);
1383   const Loop *L = S->getLoop();
1384 
1385   // Determine a normalized form of this expression, which is the expression
1386   // before any post-inc adjustment is made.
1387   const SCEVAddRecExpr *Normalized = S;
1388   if (PostIncLoops.count(L)) {
1389     PostIncLoopSet Loops;
1390     Loops.insert(L);
1391     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1392   }
1393 
1394   // Strip off any non-loop-dominating component from the addrec start.
1395   const SCEV *Start = Normalized->getStart();
1396   const SCEV *PostLoopOffset = nullptr;
1397   if (!SE.properlyDominates(Start, L->getHeader())) {
1398     PostLoopOffset = Start;
1399     Start = SE.getConstant(Normalized->getType(), 0);
1400     Normalized = cast<SCEVAddRecExpr>(
1401       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1402                        Normalized->getLoop(),
1403                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1404   }
1405 
1406   // Strip off any non-loop-dominating component from the addrec step.
1407   const SCEV *Step = Normalized->getStepRecurrence(SE);
1408   const SCEV *PostLoopScale = nullptr;
1409   if (!SE.dominates(Step, L->getHeader())) {
1410     PostLoopScale = Step;
1411     Step = SE.getConstant(Normalized->getType(), 1);
1412     if (!Start->isZero()) {
1413         // The normalization below assumes that Start is constant zero, so if
1414         // it isn't re-associate Start to PostLoopOffset.
1415         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1416         PostLoopOffset = Start;
1417         Start = SE.getConstant(Normalized->getType(), 0);
1418     }
1419     Normalized =
1420       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1421                              Start, Step, Normalized->getLoop(),
1422                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1423   }
1424 
1425   // Expand the core addrec. If we need post-loop scaling, force it to
1426   // expand to an integer type to avoid the need for additional casting.
1427   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1428   // We can't use a pointer type for the addrec if the pointer type is
1429   // non-integral.
1430   Type *AddRecPHIExpandTy =
1431       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1432 
1433   // In some cases, we decide to reuse an existing phi node but need to truncate
1434   // it and/or invert the step.
1435   Type *TruncTy = nullptr;
1436   bool InvertStep = false;
1437   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1438                                           IntTy, TruncTy, InvertStep);
1439 
1440   // Accommodate post-inc mode, if necessary.
1441   Value *Result;
1442   if (!PostIncLoops.count(L))
1443     Result = PN;
1444   else {
1445     // In PostInc mode, use the post-incremented value.
1446     BasicBlock *LatchBlock = L->getLoopLatch();
1447     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1448     Result = PN->getIncomingValueForBlock(LatchBlock);
1449 
1450     // We might be introducing a new use of the post-inc IV that is not poison
1451     // safe, in which case we should drop poison generating flags. Only keep
1452     // those flags for which SCEV has proven that they always hold.
1453     if (isa<OverflowingBinaryOperator>(Result)) {
1454       auto *I = cast<Instruction>(Result);
1455       if (!S->hasNoUnsignedWrap())
1456         I->setHasNoUnsignedWrap(false);
1457       if (!S->hasNoSignedWrap())
1458         I->setHasNoSignedWrap(false);
1459     }
1460 
1461     // For an expansion to use the postinc form, the client must call
1462     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1463     // or dominated by IVIncInsertPos.
1464     if (isa<Instruction>(Result) &&
1465         !SE.DT.dominates(cast<Instruction>(Result),
1466                          &*Builder.GetInsertPoint())) {
1467       // The induction variable's postinc expansion does not dominate this use.
1468       // IVUsers tries to prevent this case, so it is rare. However, it can
1469       // happen when an IVUser outside the loop is not dominated by the latch
1470       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1471       // all cases. Consider a phi outside whose operand is replaced during
1472       // expansion with the value of the postinc user. Without fundamentally
1473       // changing the way postinc users are tracked, the only remedy is
1474       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1475       // but hopefully expandCodeFor handles that.
1476       bool useSubtract =
1477         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1478       if (useSubtract)
1479         Step = SE.getNegativeSCEV(Step);
1480       Value *StepV;
1481       {
1482         // Expand the step somewhere that dominates the loop header.
1483         SCEVInsertPointGuard Guard(Builder, this);
1484         StepV = expandCodeForImpl(
1485             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1486       }
1487       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1488     }
1489   }
1490 
1491   // We have decided to reuse an induction variable of a dominating loop. Apply
1492   // truncation and/or inversion of the step.
1493   if (TruncTy) {
1494     Type *ResTy = Result->getType();
1495     // Normalize the result type.
1496     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1497       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1498     // Truncate the result.
1499     if (TruncTy != Result->getType())
1500       Result = Builder.CreateTrunc(Result, TruncTy);
1501 
1502     // Invert the result.
1503     if (InvertStep)
1504       Result = Builder.CreateSub(
1505           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1506   }
1507 
1508   // Re-apply any non-loop-dominating scale.
1509   if (PostLoopScale) {
1510     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1511     Result = InsertNoopCastOfTo(Result, IntTy);
1512     Result = Builder.CreateMul(Result,
1513                                expandCodeForImpl(PostLoopScale, IntTy, false));
1514   }
1515 
1516   // Re-apply any non-loop-dominating offset.
1517   if (PostLoopOffset) {
1518     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1519       if (Result->getType()->isIntegerTy()) {
1520         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1521         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1522       } else {
1523         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1524       }
1525     } else {
1526       Result = InsertNoopCastOfTo(Result, IntTy);
1527       Result = Builder.CreateAdd(
1528           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1529     }
1530   }
1531 
1532   return Result;
1533 }
1534 
1535 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1536   // In canonical mode we compute the addrec as an expression of a canonical IV
1537   // using evaluateAtIteration and expand the resulting SCEV expression. This
1538   // way we avoid introducing new IVs to carry on the comutation of the addrec
1539   // throughout the loop.
1540   //
1541   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1542   // type wider than the addrec itself. Emitting a canonical IV of the
1543   // proper type might produce non-legal types, for example expanding an i64
1544   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1545   // back to non-canonical mode for nested addrecs.
1546   if (!CanonicalMode || (S->getNumOperands() > 2))
1547     return expandAddRecExprLiterally(S);
1548 
1549   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1550   const Loop *L = S->getLoop();
1551 
1552   // First check for an existing canonical IV in a suitable type.
1553   PHINode *CanonicalIV = nullptr;
1554   if (PHINode *PN = L->getCanonicalInductionVariable())
1555     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1556       CanonicalIV = PN;
1557 
1558   // Rewrite an AddRec in terms of the canonical induction variable, if
1559   // its type is more narrow.
1560   if (CanonicalIV &&
1561       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1562       !S->getType()->isPointerTy()) {
1563     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1564     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1565       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1566     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1567                                        S->getNoWrapFlags(SCEV::FlagNW)));
1568     BasicBlock::iterator NewInsertPt =
1569         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1570     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1571                           &*NewInsertPt, false);
1572     return V;
1573   }
1574 
1575   // {X,+,F} --> X + {0,+,F}
1576   if (!S->getStart()->isZero()) {
1577     SmallVector<const SCEV *, 4> NewOps(S->operands());
1578     NewOps[0] = SE.getConstant(Ty, 0);
1579     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1580                                         S->getNoWrapFlags(SCEV::FlagNW));
1581 
1582     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1583     // comments on expandAddToGEP for details.
1584     const SCEV *Base = S->getStart();
1585     // Dig into the expression to find the pointer base for a GEP.
1586     const SCEV *ExposedRest = Rest;
1587     ExposePointerBase(Base, ExposedRest, SE);
1588     // If we found a pointer, expand the AddRec with a GEP.
1589     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1590       // Make sure the Base isn't something exotic, such as a multiplied
1591       // or divided pointer value. In those cases, the result type isn't
1592       // actually a pointer type.
1593       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1594         Value *StartV = expand(Base);
1595         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1596         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1597       }
1598     }
1599 
1600     // Just do a normal add. Pre-expand the operands to suppress folding.
1601     //
1602     // The LHS and RHS values are factored out of the expand call to make the
1603     // output independent of the argument evaluation order.
1604     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1605     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1606     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1607   }
1608 
1609   // If we don't yet have a canonical IV, create one.
1610   if (!CanonicalIV) {
1611     // Create and insert the PHI node for the induction variable in the
1612     // specified loop.
1613     BasicBlock *Header = L->getHeader();
1614     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1615     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1616                                   &Header->front());
1617     rememberInstruction(CanonicalIV);
1618 
1619     SmallSet<BasicBlock *, 4> PredSeen;
1620     Constant *One = ConstantInt::get(Ty, 1);
1621     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1622       BasicBlock *HP = *HPI;
1623       if (!PredSeen.insert(HP).second) {
1624         // There must be an incoming value for each predecessor, even the
1625         // duplicates!
1626         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1627         continue;
1628       }
1629 
1630       if (L->contains(HP)) {
1631         // Insert a unit add instruction right before the terminator
1632         // corresponding to the back-edge.
1633         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1634                                                      "indvar.next",
1635                                                      HP->getTerminator());
1636         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1637         rememberInstruction(Add);
1638         CanonicalIV->addIncoming(Add, HP);
1639       } else {
1640         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1641       }
1642     }
1643   }
1644 
1645   // {0,+,1} --> Insert a canonical induction variable into the loop!
1646   if (S->isAffine() && S->getOperand(1)->isOne()) {
1647     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1648            "IVs with types different from the canonical IV should "
1649            "already have been handled!");
1650     return CanonicalIV;
1651   }
1652 
1653   // {0,+,F} --> {0,+,1} * F
1654 
1655   // If this is a simple linear addrec, emit it now as a special case.
1656   if (S->isAffine())    // {0,+,F} --> i*F
1657     return
1658       expand(SE.getTruncateOrNoop(
1659         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1660                       SE.getNoopOrAnyExtend(S->getOperand(1),
1661                                             CanonicalIV->getType())),
1662         Ty));
1663 
1664   // If this is a chain of recurrences, turn it into a closed form, using the
1665   // folders, then expandCodeFor the closed form.  This allows the folders to
1666   // simplify the expression without having to build a bunch of special code
1667   // into this folder.
1668   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1669 
1670   // Promote S up to the canonical IV type, if the cast is foldable.
1671   const SCEV *NewS = S;
1672   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1673   if (isa<SCEVAddRecExpr>(Ext))
1674     NewS = Ext;
1675 
1676   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1677   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1678 
1679   // Truncate the result down to the original type, if needed.
1680   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1681   return expand(T);
1682 }
1683 
1684 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1685   Value *V =
1686       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1687   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1688                            GetOptimalInsertionPointForCastOf(V));
1689 }
1690 
1691 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1692   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1693   Value *V = expandCodeForImpl(
1694       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1695       false);
1696   return Builder.CreateTrunc(V, Ty);
1697 }
1698 
1699 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1700   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1701   Value *V = expandCodeForImpl(
1702       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1703       false);
1704   return Builder.CreateZExt(V, Ty);
1705 }
1706 
1707 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1708   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1709   Value *V = expandCodeForImpl(
1710       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1711       false);
1712   return Builder.CreateSExt(V, Ty);
1713 }
1714 
1715 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1716   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1717   Type *Ty = LHS->getType();
1718   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1719     // In the case of mixed integer and pointer types, do the
1720     // rest of the comparisons as integer.
1721     Type *OpTy = S->getOperand(i)->getType();
1722     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1723       Ty = SE.getEffectiveSCEVType(Ty);
1724       LHS = InsertNoopCastOfTo(LHS, Ty);
1725     }
1726     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1727     Value *Sel;
1728     if (Ty->isIntegerTy())
1729       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1730                                     /*FMFSource=*/nullptr, "smax");
1731     else {
1732       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1733       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1734     }
1735     LHS = Sel;
1736   }
1737   // In the case of mixed integer and pointer types, cast the
1738   // final result back to the pointer type.
1739   if (LHS->getType() != S->getType())
1740     LHS = InsertNoopCastOfTo(LHS, S->getType());
1741   return LHS;
1742 }
1743 
1744 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1745   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1746   Type *Ty = LHS->getType();
1747   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1748     // In the case of mixed integer and pointer types, do the
1749     // rest of the comparisons as integer.
1750     Type *OpTy = S->getOperand(i)->getType();
1751     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1752       Ty = SE.getEffectiveSCEVType(Ty);
1753       LHS = InsertNoopCastOfTo(LHS, Ty);
1754     }
1755     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1756     Value *Sel;
1757     if (Ty->isIntegerTy())
1758       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1759                                     /*FMFSource=*/nullptr, "umax");
1760     else {
1761       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1762       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1763     }
1764     LHS = Sel;
1765   }
1766   // In the case of mixed integer and pointer types, cast the
1767   // final result back to the pointer type.
1768   if (LHS->getType() != S->getType())
1769     LHS = InsertNoopCastOfTo(LHS, S->getType());
1770   return LHS;
1771 }
1772 
1773 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1774   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1775   Type *Ty = LHS->getType();
1776   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1777     // In the case of mixed integer and pointer types, do the
1778     // rest of the comparisons as integer.
1779     Type *OpTy = S->getOperand(i)->getType();
1780     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1781       Ty = SE.getEffectiveSCEVType(Ty);
1782       LHS = InsertNoopCastOfTo(LHS, Ty);
1783     }
1784     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1785     Value *Sel;
1786     if (Ty->isIntegerTy())
1787       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1788                                     /*FMFSource=*/nullptr, "smin");
1789     else {
1790       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1791       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1792     }
1793     LHS = Sel;
1794   }
1795   // In the case of mixed integer and pointer types, cast the
1796   // final result back to the pointer type.
1797   if (LHS->getType() != S->getType())
1798     LHS = InsertNoopCastOfTo(LHS, S->getType());
1799   return LHS;
1800 }
1801 
1802 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1803   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1804   Type *Ty = LHS->getType();
1805   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1806     // In the case of mixed integer and pointer types, do the
1807     // rest of the comparisons as integer.
1808     Type *OpTy = S->getOperand(i)->getType();
1809     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1810       Ty = SE.getEffectiveSCEVType(Ty);
1811       LHS = InsertNoopCastOfTo(LHS, Ty);
1812     }
1813     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1814     Value *Sel;
1815     if (Ty->isIntegerTy())
1816       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1817                                     /*FMFSource=*/nullptr, "umin");
1818     else {
1819       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1820       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1821     }
1822     LHS = Sel;
1823   }
1824   // In the case of mixed integer and pointer types, cast the
1825   // final result back to the pointer type.
1826   if (LHS->getType() != S->getType())
1827     LHS = InsertNoopCastOfTo(LHS, S->getType());
1828   return LHS;
1829 }
1830 
1831 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1832                                        Instruction *IP, bool Root) {
1833   setInsertPoint(IP);
1834   Value *V = expandCodeForImpl(SH, Ty, Root);
1835   return V;
1836 }
1837 
1838 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1839   // Expand the code for this SCEV.
1840   Value *V = expand(SH);
1841 
1842   if (PreserveLCSSA) {
1843     if (auto *Inst = dyn_cast<Instruction>(V)) {
1844       // Create a temporary instruction to at the current insertion point, so we
1845       // can hand it off to the helper to create LCSSA PHIs if required for the
1846       // new use.
1847       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1848       // would accept a insertion point and return an LCSSA phi for that
1849       // insertion point, so there is no need to insert & remove the temporary
1850       // instruction.
1851       Instruction *Tmp;
1852       if (Inst->getType()->isIntegerTy())
1853         Tmp =
1854             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1855       else {
1856         assert(Inst->getType()->isPointerTy());
1857         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1858             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1859       }
1860       V = fixupLCSSAFormFor(Tmp, 0);
1861 
1862       // Clean up temporary instruction.
1863       InsertedValues.erase(Tmp);
1864       InsertedPostIncValues.erase(Tmp);
1865       Tmp->eraseFromParent();
1866     }
1867   }
1868 
1869   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1870   if (Ty) {
1871     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1872            "non-trivial casts should be done with the SCEVs directly!");
1873     V = InsertNoopCastOfTo(V, Ty);
1874   }
1875   return V;
1876 }
1877 
1878 ScalarEvolution::ValueOffsetPair
1879 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1880                                       const Instruction *InsertPt) {
1881   auto *Set = SE.getSCEVValues(S);
1882   // If the expansion is not in CanonicalMode, and the SCEV contains any
1883   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1884   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1885     // If S is scConstant, it may be worse to reuse an existing Value.
1886     if (S->getSCEVType() != scConstant && Set) {
1887       // Choose a Value from the set which dominates the insertPt.
1888       // insertPt should be inside the Value's parent loop so as not to break
1889       // the LCSSA form.
1890       for (auto const &VOPair : *Set) {
1891         Value *V = VOPair.first;
1892         ConstantInt *Offset = VOPair.second;
1893         Instruction *EntInst = nullptr;
1894         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1895             S->getType() == V->getType() &&
1896             EntInst->getFunction() == InsertPt->getFunction() &&
1897             SE.DT.dominates(EntInst, InsertPt) &&
1898             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1899              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1900           return {V, Offset};
1901       }
1902     }
1903   }
1904   return {nullptr, nullptr};
1905 }
1906 
1907 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1908 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1909 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1910 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1911 // the expansion will try to reuse Value from ExprValueMap, and only when it
1912 // fails, expand the SCEV literally.
1913 Value *SCEVExpander::expand(const SCEV *S) {
1914   // Compute an insertion point for this SCEV object. Hoist the instructions
1915   // as far out in the loop nest as possible.
1916   Instruction *InsertPt = &*Builder.GetInsertPoint();
1917 
1918   // We can move insertion point only if there is no div or rem operations
1919   // otherwise we are risky to move it over the check for zero denominator.
1920   auto SafeToHoist = [](const SCEV *S) {
1921     return !SCEVExprContains(S, [](const SCEV *S) {
1922               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1923                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1924                   // Division by non-zero constants can be hoisted.
1925                   return SC->getValue()->isZero();
1926                 // All other divisions should not be moved as they may be
1927                 // divisions by zero and should be kept within the
1928                 // conditions of the surrounding loops that guard their
1929                 // execution (see PR35406).
1930                 return true;
1931               }
1932               return false;
1933             });
1934   };
1935   if (SafeToHoist(S)) {
1936     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1937          L = L->getParentLoop()) {
1938       if (SE.isLoopInvariant(S, L)) {
1939         if (!L) break;
1940         if (BasicBlock *Preheader = L->getLoopPreheader())
1941           InsertPt = Preheader->getTerminator();
1942         else
1943           // LSR sets the insertion point for AddRec start/step values to the
1944           // block start to simplify value reuse, even though it's an invalid
1945           // position. SCEVExpander must correct for this in all cases.
1946           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1947       } else {
1948         // If the SCEV is computable at this level, insert it into the header
1949         // after the PHIs (and after any other instructions that we've inserted
1950         // there) so that it is guaranteed to dominate any user inside the loop.
1951         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1952           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1953 
1954         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1955                (isInsertedInstruction(InsertPt) ||
1956                 isa<DbgInfoIntrinsic>(InsertPt))) {
1957           InsertPt = &*std::next(InsertPt->getIterator());
1958         }
1959         break;
1960       }
1961     }
1962   }
1963 
1964   // Check to see if we already expanded this here.
1965   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1966   if (I != InsertedExpressions.end())
1967     return I->second;
1968 
1969   SCEVInsertPointGuard Guard(Builder, this);
1970   Builder.SetInsertPoint(InsertPt);
1971 
1972   // Expand the expression into instructions.
1973   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1974   Value *V = VO.first;
1975 
1976   if (!V)
1977     V = visit(S);
1978   else if (VO.second) {
1979     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1980       Type *Ety = Vty->getPointerElementType();
1981       int64_t Offset = VO.second->getSExtValue();
1982       int64_t ESize = SE.getTypeSizeInBits(Ety);
1983       if ((Offset * 8) % ESize == 0) {
1984         ConstantInt *Idx =
1985             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1986         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1987       } else {
1988         ConstantInt *Idx =
1989             ConstantInt::getSigned(VO.second->getType(), -Offset);
1990         unsigned AS = Vty->getAddressSpace();
1991         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1992         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1993                               "uglygep");
1994         V = Builder.CreateBitCast(V, Vty);
1995       }
1996     } else {
1997       V = Builder.CreateSub(V, VO.second);
1998     }
1999   }
2000   // Remember the expanded value for this SCEV at this location.
2001   //
2002   // This is independent of PostIncLoops. The mapped value simply materializes
2003   // the expression at this insertion point. If the mapped value happened to be
2004   // a postinc expansion, it could be reused by a non-postinc user, but only if
2005   // its insertion point was already at the head of the loop.
2006   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2007   return V;
2008 }
2009 
2010 void SCEVExpander::rememberInstruction(Value *I) {
2011   auto DoInsert = [this](Value *V) {
2012     if (!PostIncLoops.empty())
2013       InsertedPostIncValues.insert(V);
2014     else
2015       InsertedValues.insert(V);
2016   };
2017   DoInsert(I);
2018 
2019   if (!PreserveLCSSA)
2020     return;
2021 
2022   if (auto *Inst = dyn_cast<Instruction>(I)) {
2023     // A new instruction has been added, which might introduce new uses outside
2024     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2025     // if required.
2026     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2027          OpIdx++)
2028       fixupLCSSAFormFor(Inst, OpIdx);
2029   }
2030 }
2031 
2032 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2033 /// replace them with their most canonical representative. Return the number of
2034 /// phis eliminated.
2035 ///
2036 /// This does not depend on any SCEVExpander state but should be used in
2037 /// the same context that SCEVExpander is used.
2038 unsigned
2039 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2040                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2041                                   const TargetTransformInfo *TTI) {
2042   // Find integer phis in order of increasing width.
2043   SmallVector<PHINode*, 8> Phis;
2044   for (PHINode &PN : L->getHeader()->phis())
2045     Phis.push_back(&PN);
2046 
2047   if (TTI)
2048     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2049       // Put pointers at the back and make sure pointer < pointer = false.
2050       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2051         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2052       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2053              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2054     });
2055 
2056   unsigned NumElim = 0;
2057   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2058   // Process phis from wide to narrow. Map wide phis to their truncation
2059   // so narrow phis can reuse them.
2060   for (PHINode *Phi : Phis) {
2061     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2062       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2063         return V;
2064       if (!SE.isSCEVable(PN->getType()))
2065         return nullptr;
2066       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2067       if (!Const)
2068         return nullptr;
2069       return Const->getValue();
2070     };
2071 
2072     // Fold constant phis. They may be congruent to other constant phis and
2073     // would confuse the logic below that expects proper IVs.
2074     if (Value *V = SimplifyPHINode(Phi)) {
2075       if (V->getType() != Phi->getType())
2076         continue;
2077       Phi->replaceAllUsesWith(V);
2078       DeadInsts.emplace_back(Phi);
2079       ++NumElim;
2080       SCEV_DEBUG_WITH_TYPE(DebugType,
2081                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2082                                   << '\n');
2083       continue;
2084     }
2085 
2086     if (!SE.isSCEVable(Phi->getType()))
2087       continue;
2088 
2089     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2090     if (!OrigPhiRef) {
2091       OrigPhiRef = Phi;
2092       if (Phi->getType()->isIntegerTy() && TTI &&
2093           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2094         // This phi can be freely truncated to the narrowest phi type. Map the
2095         // truncated expression to it so it will be reused for narrow types.
2096         const SCEV *TruncExpr =
2097           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2098         ExprToIVMap[TruncExpr] = Phi;
2099       }
2100       continue;
2101     }
2102 
2103     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2104     // sense.
2105     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2106       continue;
2107 
2108     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2109       Instruction *OrigInc = dyn_cast<Instruction>(
2110           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2111       Instruction *IsomorphicInc =
2112           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2113 
2114       if (OrigInc && IsomorphicInc) {
2115         // If this phi has the same width but is more canonical, replace the
2116         // original with it. As part of the "more canonical" determination,
2117         // respect a prior decision to use an IV chain.
2118         if (OrigPhiRef->getType() == Phi->getType() &&
2119             !(ChainedPhis.count(Phi) ||
2120               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2121             (ChainedPhis.count(Phi) ||
2122              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2123           std::swap(OrigPhiRef, Phi);
2124           std::swap(OrigInc, IsomorphicInc);
2125         }
2126         // Replacing the congruent phi is sufficient because acyclic
2127         // redundancy elimination, CSE/GVN, should handle the
2128         // rest. However, once SCEV proves that a phi is congruent,
2129         // it's often the head of an IV user cycle that is isomorphic
2130         // with the original phi. It's worth eagerly cleaning up the
2131         // common case of a single IV increment so that DeleteDeadPHIs
2132         // can remove cycles that had postinc uses.
2133         const SCEV *TruncExpr =
2134             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2135         if (OrigInc != IsomorphicInc &&
2136             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2137             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2138             hoistIVInc(OrigInc, IsomorphicInc)) {
2139           SCEV_DEBUG_WITH_TYPE(
2140               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2141                                 << *IsomorphicInc << '\n');
2142           Value *NewInc = OrigInc;
2143           if (OrigInc->getType() != IsomorphicInc->getType()) {
2144             Instruction *IP = nullptr;
2145             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2146               IP = &*PN->getParent()->getFirstInsertionPt();
2147             else
2148               IP = OrigInc->getNextNode();
2149 
2150             IRBuilder<> Builder(IP);
2151             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2152             NewInc = Builder.CreateTruncOrBitCast(
2153                 OrigInc, IsomorphicInc->getType(), IVName);
2154           }
2155           IsomorphicInc->replaceAllUsesWith(NewInc);
2156           DeadInsts.emplace_back(IsomorphicInc);
2157         }
2158       }
2159     }
2160     SCEV_DEBUG_WITH_TYPE(DebugType,
2161                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2162                                 << '\n');
2163     SCEV_DEBUG_WITH_TYPE(
2164         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2165     ++NumElim;
2166     Value *NewIV = OrigPhiRef;
2167     if (OrigPhiRef->getType() != Phi->getType()) {
2168       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2169       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2170       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2171     }
2172     Phi->replaceAllUsesWith(NewIV);
2173     DeadInsts.emplace_back(Phi);
2174   }
2175   return NumElim;
2176 }
2177 
2178 Optional<ScalarEvolution::ValueOffsetPair>
2179 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2180                                           Loop *L) {
2181   using namespace llvm::PatternMatch;
2182 
2183   SmallVector<BasicBlock *, 4> ExitingBlocks;
2184   L->getExitingBlocks(ExitingBlocks);
2185 
2186   // Look for suitable value in simple conditions at the loop exits.
2187   for (BasicBlock *BB : ExitingBlocks) {
2188     ICmpInst::Predicate Pred;
2189     Instruction *LHS, *RHS;
2190 
2191     if (!match(BB->getTerminator(),
2192                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2193                     m_BasicBlock(), m_BasicBlock())))
2194       continue;
2195 
2196     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2197       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2198 
2199     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2200       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2201   }
2202 
2203   // Use expand's logic which is used for reusing a previous Value in
2204   // ExprValueMap.
2205   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2206   if (VO.first)
2207     return VO;
2208 
2209   // There is potential to make this significantly smarter, but this simple
2210   // heuristic already gets some interesting cases.
2211 
2212   // Can not find suitable value.
2213   return None;
2214 }
2215 
2216 template<typename T> static InstructionCost costAndCollectOperands(
2217   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2218   TargetTransformInfo::TargetCostKind CostKind,
2219   SmallVectorImpl<SCEVOperand> &Worklist) {
2220 
2221   const T *S = cast<T>(WorkItem.S);
2222   InstructionCost Cost = 0;
2223   // Object to help map SCEV operands to expanded IR instructions.
2224   struct OperationIndices {
2225     OperationIndices(unsigned Opc, size_t min, size_t max) :
2226       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2227     unsigned Opcode;
2228     size_t MinIdx;
2229     size_t MaxIdx;
2230   };
2231 
2232   // Collect the operations of all the instructions that will be needed to
2233   // expand the SCEVExpr. This is so that when we come to cost the operands,
2234   // we know what the generated user(s) will be.
2235   SmallVector<OperationIndices, 2> Operations;
2236 
2237   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2238     Operations.emplace_back(Opcode, 0, 0);
2239     return TTI.getCastInstrCost(Opcode, S->getType(),
2240                                 S->getOperand(0)->getType(),
2241                                 TTI::CastContextHint::None, CostKind);
2242   };
2243 
2244   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2245                        unsigned MinIdx = 0,
2246                        unsigned MaxIdx = 1) -> InstructionCost {
2247     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2248     return NumRequired *
2249       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2250   };
2251 
2252   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2253                         unsigned MaxIdx) -> InstructionCost {
2254     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2255     Type *OpType = S->getOperand(0)->getType();
2256     return NumRequired * TTI.getCmpSelInstrCost(
2257                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2258                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2259   };
2260 
2261   switch (S->getSCEVType()) {
2262   case scCouldNotCompute:
2263     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2264   case scUnknown:
2265   case scConstant:
2266     return 0;
2267   case scPtrToInt:
2268     Cost = CastCost(Instruction::PtrToInt);
2269     break;
2270   case scTruncate:
2271     Cost = CastCost(Instruction::Trunc);
2272     break;
2273   case scZeroExtend:
2274     Cost = CastCost(Instruction::ZExt);
2275     break;
2276   case scSignExtend:
2277     Cost = CastCost(Instruction::SExt);
2278     break;
2279   case scUDivExpr: {
2280     unsigned Opcode = Instruction::UDiv;
2281     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2282       if (SC->getAPInt().isPowerOf2())
2283         Opcode = Instruction::LShr;
2284     Cost = ArithCost(Opcode, 1);
2285     break;
2286   }
2287   case scAddExpr:
2288     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2289     break;
2290   case scMulExpr:
2291     // TODO: this is a very pessimistic cost modelling for Mul,
2292     // because of Bin Pow algorithm actually used by the expander,
2293     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2294     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2295     break;
2296   case scSMaxExpr:
2297   case scUMaxExpr:
2298   case scSMinExpr:
2299   case scUMinExpr: {
2300     // FIXME: should this ask the cost for Intrinsic's?
2301     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2302     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2303     break;
2304   }
2305   case scAddRecExpr: {
2306     // In this polynominal, we may have some zero operands, and we shouldn't
2307     // really charge for those. So how many non-zero coeffients are there?
2308     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2309                                     return !Op->isZero();
2310                                   });
2311 
2312     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2313     assert(!(*std::prev(S->operands().end()))->isZero() &&
2314            "Last operand should not be zero");
2315 
2316     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2317     int NumNonZeroDegreeNonOneTerms =
2318       llvm::count_if(S->operands(), [](const SCEV *Op) {
2319                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2320                       return !SConst || SConst->getAPInt().ugt(1);
2321                     });
2322 
2323     // Much like with normal add expr, the polynominal will require
2324     // one less addition than the number of it's terms.
2325     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2326                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2327     // Here, *each* one of those will require a multiplication.
2328     InstructionCost MulCost =
2329         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2330     Cost = AddCost + MulCost;
2331 
2332     // What is the degree of this polynominal?
2333     int PolyDegree = S->getNumOperands() - 1;
2334     assert(PolyDegree >= 1 && "Should be at least affine.");
2335 
2336     // The final term will be:
2337     //   Op_{PolyDegree} * x ^ {PolyDegree}
2338     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2339     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2340     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2341     // FIXME: this is conservatively correct, but might be overly pessimistic.
2342     Cost += MulCost * (PolyDegree - 1);
2343     break;
2344   }
2345   }
2346 
2347   for (auto &CostOp : Operations) {
2348     for (auto SCEVOp : enumerate(S->operands())) {
2349       // Clamp the index to account for multiple IR operations being chained.
2350       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2351       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2352       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2353     }
2354   }
2355   return Cost;
2356 }
2357 
2358 bool SCEVExpander::isHighCostExpansionHelper(
2359     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2360     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2361     SmallPtrSetImpl<const SCEV *> &Processed,
2362     SmallVectorImpl<SCEVOperand> &Worklist) {
2363   if (Cost > Budget)
2364     return true; // Already run out of budget, give up.
2365 
2366   const SCEV *S = WorkItem.S;
2367   // Was the cost of expansion of this expression already accounted for?
2368   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2369     return false; // We have already accounted for this expression.
2370 
2371   // If we can find an existing value for this scev available at the point "At"
2372   // then consider the expression cheap.
2373   if (getRelatedExistingExpansion(S, &At, L))
2374     return false; // Consider the expression to be free.
2375 
2376   TargetTransformInfo::TargetCostKind CostKind =
2377       L->getHeader()->getParent()->hasMinSize()
2378           ? TargetTransformInfo::TCK_CodeSize
2379           : TargetTransformInfo::TCK_RecipThroughput;
2380 
2381   switch (S->getSCEVType()) {
2382   case scCouldNotCompute:
2383     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2384   case scUnknown:
2385     // Assume to be zero-cost.
2386     return false;
2387   case scConstant: {
2388     // Only evalulate the costs of constants when optimizing for size.
2389     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2390       return 0;
2391     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2392     Type *Ty = S->getType();
2393     Cost += TTI.getIntImmCostInst(
2394         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2395     return Cost > Budget;
2396   }
2397   case scTruncate:
2398   case scPtrToInt:
2399   case scZeroExtend:
2400   case scSignExtend: {
2401     Cost +=
2402         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2403     return false; // Will answer upon next entry into this function.
2404   }
2405   case scUDivExpr: {
2406     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2407     // HowManyLessThans produced to compute a precise expression, rather than a
2408     // UDiv from the user's code. If we can't find a UDiv in the code with some
2409     // simple searching, we need to account for it's cost.
2410 
2411     // At the beginning of this function we already tried to find existing
2412     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2413     // pattern involving division. This is just a simple search heuristic.
2414     if (getRelatedExistingExpansion(
2415             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2416       return false; // Consider it to be free.
2417 
2418     Cost +=
2419         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2420     return false; // Will answer upon next entry into this function.
2421   }
2422   case scAddExpr:
2423   case scMulExpr:
2424   case scUMaxExpr:
2425   case scSMaxExpr:
2426   case scUMinExpr:
2427   case scSMinExpr: {
2428     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2429            "Nary expr should have more than 1 operand.");
2430     // The simple nary expr will require one less op (or pair of ops)
2431     // than the number of it's terms.
2432     Cost +=
2433         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2434     return Cost > Budget;
2435   }
2436   case scAddRecExpr: {
2437     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2438            "Polynomial should be at least linear");
2439     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2440         WorkItem, TTI, CostKind, Worklist);
2441     return Cost > Budget;
2442   }
2443   }
2444   llvm_unreachable("Unknown SCEV kind!");
2445 }
2446 
2447 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2448                                             Instruction *IP) {
2449   assert(IP);
2450   switch (Pred->getKind()) {
2451   case SCEVPredicate::P_Union:
2452     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2453   case SCEVPredicate::P_Equal:
2454     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2455   case SCEVPredicate::P_Wrap: {
2456     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2457     return expandWrapPredicate(AddRecPred, IP);
2458   }
2459   }
2460   llvm_unreachable("Unknown SCEV predicate type");
2461 }
2462 
2463 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2464                                           Instruction *IP) {
2465   Value *Expr0 =
2466       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2467   Value *Expr1 =
2468       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2469 
2470   Builder.SetInsertPoint(IP);
2471   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2472   return I;
2473 }
2474 
2475 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2476                                            Instruction *Loc, bool Signed) {
2477   assert(AR->isAffine() && "Cannot generate RT check for "
2478                            "non-affine expression");
2479 
2480   SCEVUnionPredicate Pred;
2481   const SCEV *ExitCount =
2482       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2483 
2484   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2485 
2486   const SCEV *Step = AR->getStepRecurrence(SE);
2487   const SCEV *Start = AR->getStart();
2488 
2489   Type *ARTy = AR->getType();
2490   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2491   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2492 
2493   // The expression {Start,+,Step} has nusw/nssw if
2494   //   Step < 0, Start - |Step| * Backedge <= Start
2495   //   Step >= 0, Start + |Step| * Backedge > Start
2496   // and |Step| * Backedge doesn't unsigned overflow.
2497 
2498   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2499   Builder.SetInsertPoint(Loc);
2500   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2501 
2502   IntegerType *Ty =
2503       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2504   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2505 
2506   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2507   Value *NegStepValue =
2508       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2509   Value *StartValue = expandCodeForImpl(
2510       isa<PointerType>(ARExpandTy) ? Start
2511                                    : SE.getPtrToIntExpr(Start, ARExpandTy),
2512       ARExpandTy, Loc, false);
2513 
2514   ConstantInt *Zero =
2515       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2516 
2517   Builder.SetInsertPoint(Loc);
2518   // Compute |Step|
2519   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2520   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2521 
2522   // Get the backedge taken count and truncate or extended to the AR type.
2523   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2524   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2525                                          Intrinsic::umul_with_overflow, Ty);
2526 
2527   // Compute |Step| * Backedge
2528   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2529   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2530   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2531 
2532   // Compute:
2533   //   Start + |Step| * Backedge < Start
2534   //   Start - |Step| * Backedge > Start
2535   Value *Add = nullptr, *Sub = nullptr;
2536   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2537     const SCEV *MulS = SE.getSCEV(MulV);
2538     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2539     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2540                                 ARPtrTy);
2541     Sub = Builder.CreateBitCast(
2542         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2543   } else {
2544     Add = Builder.CreateAdd(StartValue, MulV);
2545     Sub = Builder.CreateSub(StartValue, MulV);
2546   }
2547 
2548   Value *EndCompareGT = Builder.CreateICmp(
2549       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2550 
2551   Value *EndCompareLT = Builder.CreateICmp(
2552       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2553 
2554   // Select the answer based on the sign of Step.
2555   Value *EndCheck =
2556       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2557 
2558   // If the backedge taken count type is larger than the AR type,
2559   // check that we don't drop any bits by truncating it. If we are
2560   // dropping bits, then we have overflow (unless the step is zero).
2561   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2562     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2563     auto *BackedgeCheck =
2564         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2565                            ConstantInt::get(Loc->getContext(), MaxVal));
2566     BackedgeCheck = Builder.CreateAnd(
2567         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2568 
2569     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2570   }
2571 
2572   return Builder.CreateOr(EndCheck, OfMul);
2573 }
2574 
2575 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2576                                          Instruction *IP) {
2577   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2578   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2579 
2580   // Add a check for NUSW
2581   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2582     NUSWCheck = generateOverflowCheck(A, IP, false);
2583 
2584   // Add a check for NSSW
2585   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2586     NSSWCheck = generateOverflowCheck(A, IP, true);
2587 
2588   if (NUSWCheck && NSSWCheck)
2589     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2590 
2591   if (NUSWCheck)
2592     return NUSWCheck;
2593 
2594   if (NSSWCheck)
2595     return NSSWCheck;
2596 
2597   return ConstantInt::getFalse(IP->getContext());
2598 }
2599 
2600 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2601                                           Instruction *IP) {
2602   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2603   Value *Check = ConstantInt::getNullValue(BoolType);
2604 
2605   // Loop over all checks in this set.
2606   for (auto Pred : Union->getPredicates()) {
2607     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2608     Builder.SetInsertPoint(IP);
2609     Check = Builder.CreateOr(Check, NextCheck);
2610   }
2611 
2612   return Check;
2613 }
2614 
2615 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2616   assert(PreserveLCSSA);
2617   SmallVector<Instruction *, 1> ToUpdate;
2618 
2619   auto *OpV = User->getOperand(OpIdx);
2620   auto *OpI = dyn_cast<Instruction>(OpV);
2621   if (!OpI)
2622     return OpV;
2623 
2624   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2625   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2626   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2627     return OpV;
2628 
2629   ToUpdate.push_back(OpI);
2630   SmallVector<PHINode *, 16> PHIsToRemove;
2631   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2632   for (PHINode *PN : PHIsToRemove) {
2633     if (!PN->use_empty())
2634       continue;
2635     InsertedValues.erase(PN);
2636     InsertedPostIncValues.erase(PN);
2637     PN->eraseFromParent();
2638   }
2639 
2640   return User->getOperand(OpIdx);
2641 }
2642 
2643 namespace {
2644 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2645 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2646 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2647 // instruction, but the important thing is that we prove the denominator is
2648 // nonzero before expansion.
2649 //
2650 // IVUsers already checks that IV-derived expressions are safe. So this check is
2651 // only needed when the expression includes some subexpression that is not IV
2652 // derived.
2653 //
2654 // Currently, we only allow division by a nonzero constant here. If this is
2655 // inadequate, we could easily allow division by SCEVUnknown by using
2656 // ValueTracking to check isKnownNonZero().
2657 //
2658 // We cannot generally expand recurrences unless the step dominates the loop
2659 // header. The expander handles the special case of affine recurrences by
2660 // scaling the recurrence outside the loop, but this technique isn't generally
2661 // applicable. Expanding a nested recurrence outside a loop requires computing
2662 // binomial coefficients. This could be done, but the recurrence has to be in a
2663 // perfectly reduced form, which can't be guaranteed.
2664 struct SCEVFindUnsafe {
2665   ScalarEvolution &SE;
2666   bool IsUnsafe;
2667 
2668   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2669 
2670   bool follow(const SCEV *S) {
2671     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2672       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2673       if (!SC || SC->getValue()->isZero()) {
2674         IsUnsafe = true;
2675         return false;
2676       }
2677     }
2678     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2679       const SCEV *Step = AR->getStepRecurrence(SE);
2680       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2681         IsUnsafe = true;
2682         return false;
2683       }
2684     }
2685     return true;
2686   }
2687   bool isDone() const { return IsUnsafe; }
2688 };
2689 }
2690 
2691 namespace llvm {
2692 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2693   SCEVFindUnsafe Search(SE);
2694   visitAll(S, Search);
2695   return !Search.IsUnsafe;
2696 }
2697 
2698 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2699                       ScalarEvolution &SE) {
2700   if (!isSafeToExpand(S, SE))
2701     return false;
2702   // We have to prove that the expanded site of S dominates InsertionPoint.
2703   // This is easy when not in the same block, but hard when S is an instruction
2704   // to be expanded somewhere inside the same block as our insertion point.
2705   // What we really need here is something analogous to an OrderedBasicBlock,
2706   // but for the moment, we paper over the problem by handling two common and
2707   // cheap to check cases.
2708   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2709     return true;
2710   if (SE.dominates(S, InsertionPoint->getParent())) {
2711     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2712       return true;
2713     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2714       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2715         return true;
2716   }
2717   return false;
2718 }
2719 
2720 void SCEVExpanderCleaner::cleanup() {
2721   // Result is used, nothing to remove.
2722   if (ResultUsed)
2723     return;
2724 
2725   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2726 #ifndef NDEBUG
2727   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2728                                             InsertedInstructions.end());
2729   (void)InsertedSet;
2730 #endif
2731   // Remove sets with value handles.
2732   Expander.clear();
2733 
2734   // Sort so that earlier instructions do not dominate later instructions.
2735   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2736     return DT.dominates(B, A);
2737   });
2738   // Remove all inserted instructions.
2739   for (Instruction *I : InsertedInstructions) {
2740 
2741 #ifndef NDEBUG
2742     assert(all_of(I->users(),
2743                   [&InsertedSet](Value *U) {
2744                     return InsertedSet.contains(cast<Instruction>(U));
2745                   }) &&
2746            "removed instruction should only be used by instructions inserted "
2747            "during expansion");
2748 #endif
2749     assert(!I->getType()->isVoidTy() &&
2750            "inserted instruction should have non-void types");
2751     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2752     I->eraseFromParent();
2753   }
2754 }
2755 }
2756