1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 34 #else 35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 36 #endif 37 38 using namespace llvm; 39 40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 41 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 42 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 43 "controls the budget that is considered cheap (default = 4)")); 44 45 using namespace PatternMatch; 46 47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 49 /// creating a new one. 50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 51 Instruction::CastOps Op, 52 BasicBlock::iterator IP) { 53 // This function must be called with the builder having a valid insertion 54 // point. It doesn't need to be the actual IP where the uses of the returned 55 // cast will be added, but it must dominate such IP. 56 // We use this precondition to produce a cast that will dominate all its 57 // uses. In particular, this is crucial for the case where the builder's 58 // insertion point *is* the point where we were asked to put the cast. 59 // Since we don't know the builder's insertion point is actually 60 // where the uses will be added (only that it dominates it), we are 61 // not allowed to move it. 62 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 63 64 Value *Ret = nullptr; 65 66 // Check to see if there is already a cast! 67 for (User *U : V->users()) { 68 if (U->getType() != Ty) 69 continue; 70 CastInst *CI = dyn_cast<CastInst>(U); 71 if (!CI || CI->getOpcode() != Op) 72 continue; 73 74 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 75 // the cast must also properly dominate the Builder's insertion point. 76 if (IP->getParent() == CI->getParent() && &*BIP != CI && 77 (&*IP == CI || CI->comesBefore(&*IP))) { 78 Ret = CI; 79 break; 80 } 81 } 82 83 // Create a new cast. 84 if (!Ret) { 85 SCEVInsertPointGuard Guard(Builder, this); 86 Builder.SetInsertPoint(&*IP); 87 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 88 } 89 90 // We assert at the end of the function since IP might point to an 91 // instruction with different dominance properties than a cast 92 // (an invoke for example) and not dominate BIP (but the cast does). 93 assert(!isa<Instruction>(Ret) || 94 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 95 96 return Ret; 97 } 98 99 BasicBlock::iterator 100 SCEVExpander::findInsertPointAfter(Instruction *I, 101 Instruction *MustDominate) const { 102 BasicBlock::iterator IP = ++I->getIterator(); 103 if (auto *II = dyn_cast<InvokeInst>(I)) 104 IP = II->getNormalDest()->begin(); 105 106 while (isa<PHINode>(IP)) 107 ++IP; 108 109 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 110 ++IP; 111 } else if (isa<CatchSwitchInst>(IP)) { 112 IP = MustDominate->getParent()->getFirstInsertionPt(); 113 } else { 114 assert(!IP->isEHPad() && "unexpected eh pad!"); 115 } 116 117 // Adjust insert point to be after instructions inserted by the expander, so 118 // we can re-use already inserted instructions. Avoid skipping past the 119 // original \p MustDominate, in case it is an inserted instruction. 120 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 121 ++IP; 122 123 return IP; 124 } 125 126 BasicBlock::iterator 127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 128 // Cast the argument at the beginning of the entry block, after 129 // any bitcasts of other arguments. 130 if (Argument *A = dyn_cast<Argument>(V)) { 131 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 132 while ((isa<BitCastInst>(IP) && 133 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 134 cast<BitCastInst>(IP)->getOperand(0) != A) || 135 isa<DbgInfoIntrinsic>(IP)) 136 ++IP; 137 return IP; 138 } 139 140 // Cast the instruction immediately after the instruction. 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 143 144 // Otherwise, this must be some kind of a constant, 145 // so let's plop this cast into the function's entry block. 146 assert(isa<Constant>(V) && 147 "Expected the cast argument to be a global/constant"); 148 return Builder.GetInsertBlock() 149 ->getParent() 150 ->getEntryBlock() 151 .getFirstInsertionPt(); 152 } 153 154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 155 /// which must be possible with a noop cast, doing what we can to share 156 /// the casts. 157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 158 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 159 assert((Op == Instruction::BitCast || 160 Op == Instruction::PtrToInt || 161 Op == Instruction::IntToPtr) && 162 "InsertNoopCastOfTo cannot perform non-noop casts!"); 163 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 164 "InsertNoopCastOfTo cannot change sizes!"); 165 166 // inttoptr only works for integral pointers. For non-integral pointers, we 167 // can create a GEP on i8* null with the integral value as index. Note that 168 // it is safe to use GEP of null instead of inttoptr here, because only 169 // expressions already based on a GEP of null should be converted to pointers 170 // during expansion. 171 if (Op == Instruction::IntToPtr) { 172 auto *PtrTy = cast<PointerType>(Ty); 173 if (DL.isNonIntegralPointerType(PtrTy)) { 174 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 175 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && 176 "alloc size of i8 must by 1 byte for the GEP to be correct"); 177 auto *GEP = Builder.CreateGEP( 178 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 179 return Builder.CreateBitCast(GEP, Ty); 180 } 181 } 182 // Short-circuit unnecessary bitcasts. 183 if (Op == Instruction::BitCast) { 184 if (V->getType() == Ty) 185 return V; 186 if (CastInst *CI = dyn_cast<CastInst>(V)) { 187 if (CI->getOperand(0)->getType() == Ty) 188 return CI->getOperand(0); 189 } 190 } 191 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 192 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 193 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 194 if (CastInst *CI = dyn_cast<CastInst>(V)) 195 if ((CI->getOpcode() == Instruction::PtrToInt || 196 CI->getOpcode() == Instruction::IntToPtr) && 197 SE.getTypeSizeInBits(CI->getType()) == 198 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 199 return CI->getOperand(0); 200 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 201 if ((CE->getOpcode() == Instruction::PtrToInt || 202 CE->getOpcode() == Instruction::IntToPtr) && 203 SE.getTypeSizeInBits(CE->getType()) == 204 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 205 return CE->getOperand(0); 206 } 207 208 // Fold a cast of a constant. 209 if (Constant *C = dyn_cast<Constant>(V)) 210 return ConstantExpr::getCast(Op, C, Ty); 211 212 // Try to reuse existing cast, or insert one. 213 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 214 } 215 216 /// InsertBinop - Insert the specified binary operator, doing a small amount 217 /// of work to avoid inserting an obviously redundant operation, and hoisting 218 /// to an outer loop when the opportunity is there and it is safe. 219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 220 Value *LHS, Value *RHS, 221 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 222 // Fold a binop with constant operands. 223 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 224 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 225 return ConstantExpr::get(Opcode, CLHS, CRHS); 226 227 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 228 unsigned ScanLimit = 6; 229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 230 // Scanning starts from the last instruction before the insertion point. 231 BasicBlock::iterator IP = Builder.GetInsertPoint(); 232 if (IP != BlockBegin) { 233 --IP; 234 for (; ScanLimit; --IP, --ScanLimit) { 235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 236 // generated code. 237 if (isa<DbgInfoIntrinsic>(IP)) 238 ScanLimit++; 239 240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 241 // Ensure that no-wrap flags match. 242 if (isa<OverflowingBinaryOperator>(I)) { 243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 244 return true; 245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 246 return true; 247 } 248 // Conservatively, do not use any instruction which has any of exact 249 // flags installed. 250 if (isa<PossiblyExactOperator>(I) && I->isExact()) 251 return true; 252 return false; 253 }; 254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 256 return &*IP; 257 if (IP == BlockBegin) break; 258 } 259 } 260 261 // Save the original insertion point so we can restore it when we're done. 262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 263 SCEVInsertPointGuard Guard(Builder, this); 264 265 if (IsSafeToHoist) { 266 // Move the insertion point out of as many loops as we can. 267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 269 BasicBlock *Preheader = L->getLoopPreheader(); 270 if (!Preheader) break; 271 272 // Ok, move up a level. 273 Builder.SetInsertPoint(Preheader->getTerminator()); 274 } 275 } 276 277 // If we haven't found this binop, insert it. 278 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// FactorOutConstant - Test if S is divisible by Factor, using signed 289 /// division. If so, update S with Factor divided out and return true. 290 /// S need not be evenly divisible if a reasonable remainder can be 291 /// computed. 292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 293 const SCEV *Factor, ScalarEvolution &SE, 294 const DataLayout &DL) { 295 // Everything is divisible by one. 296 if (Factor->isOne()) 297 return true; 298 299 // x/x == 1. 300 if (S == Factor) { 301 S = SE.getConstant(S->getType(), 1); 302 return true; 303 } 304 305 // For a Constant, check for a multiple of the given factor. 306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 307 // 0/x == 0. 308 if (C->isZero()) 309 return true; 310 // Check for divisibility. 311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 312 ConstantInt *CI = 313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 314 // If the quotient is zero and the remainder is non-zero, reject 315 // the value at this scale. It will be considered for subsequent 316 // smaller scales. 317 if (!CI->isZero()) { 318 const SCEV *Div = SE.getConstant(CI); 319 S = Div; 320 Remainder = SE.getAddExpr( 321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 322 return true; 323 } 324 } 325 } 326 327 // In a Mul, check if there is a constant operand which is a multiple 328 // of the given factor. 329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 330 // Size is known, check if there is a constant operand which is a multiple 331 // of the given factor. If so, we can factor it. 332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 334 if (!C->getAPInt().srem(FC->getAPInt())) { 335 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 337 S = SE.getMulExpr(NewMulOps); 338 return true; 339 } 340 } 341 342 // In an AddRec, check if both start and step are divisible. 343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 344 const SCEV *Step = A->getStepRecurrence(SE); 345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 347 return false; 348 if (!StepRem->isZero()) 349 return false; 350 const SCEV *Start = A->getStart(); 351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 352 return false; 353 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 354 A->getNoWrapFlags(SCEV::FlagNW)); 355 return true; 356 } 357 358 return false; 359 } 360 361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 362 /// is the number of SCEVAddRecExprs present, which are kept at the end of 363 /// the list. 364 /// 365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 366 Type *Ty, 367 ScalarEvolution &SE) { 368 unsigned NumAddRecs = 0; 369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 370 ++NumAddRecs; 371 // Group Ops into non-addrecs and addrecs. 372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 374 // Let ScalarEvolution sort and simplify the non-addrecs list. 375 const SCEV *Sum = NoAddRecs.empty() ? 376 SE.getConstant(Ty, 0) : 377 SE.getAddExpr(NoAddRecs); 378 // If it returned an add, use the operands. Otherwise it simplified 379 // the sum into a single value, so just use that. 380 Ops.clear(); 381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 382 Ops.append(Add->op_begin(), Add->op_end()); 383 else if (!Sum->isZero()) 384 Ops.push_back(Sum); 385 // Then append the addrecs. 386 Ops.append(AddRecs.begin(), AddRecs.end()); 387 } 388 389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 391 /// This helps expose more opportunities for folding parts of the expressions 392 /// into GEP indices. 393 /// 394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 395 Type *Ty, 396 ScalarEvolution &SE) { 397 // Find the addrecs. 398 SmallVector<const SCEV *, 8> AddRecs; 399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 401 const SCEV *Start = A->getStart(); 402 if (Start->isZero()) break; 403 const SCEV *Zero = SE.getConstant(Ty, 0); 404 AddRecs.push_back(SE.getAddRecExpr(Zero, 405 A->getStepRecurrence(SE), 406 A->getLoop(), 407 A->getNoWrapFlags(SCEV::FlagNW))); 408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 409 Ops[i] = Zero; 410 Ops.append(Add->op_begin(), Add->op_end()); 411 e += Add->getNumOperands(); 412 } else { 413 Ops[i] = Start; 414 } 415 } 416 if (!AddRecs.empty()) { 417 // Add the addrecs onto the end of the list. 418 Ops.append(AddRecs.begin(), AddRecs.end()); 419 // Resort the operand list, moving any constants to the front. 420 SimplifyAddOperands(Ops, Ty, SE); 421 } 422 } 423 424 /// expandAddToGEP - Expand an addition expression with a pointer type into 425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 426 /// BasicAliasAnalysis and other passes analyze the result. See the rules 427 /// for getelementptr vs. inttoptr in 428 /// http://llvm.org/docs/LangRef.html#pointeraliasing 429 /// for details. 430 /// 431 /// Design note: The correctness of using getelementptr here depends on 432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 433 /// they may introduce pointer arithmetic which may not be safely converted 434 /// into getelementptr. 435 /// 436 /// Design note: It might seem desirable for this function to be more 437 /// loop-aware. If some of the indices are loop-invariant while others 438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 439 /// loop-invariant portions of the overall computation outside the loop. 440 /// However, there are a few reasons this is not done here. Hoisting simple 441 /// arithmetic is a low-level optimization that often isn't very 442 /// important until late in the optimization process. In fact, passes 443 /// like InstructionCombining will combine GEPs, even if it means 444 /// pushing loop-invariant computation down into loops, so even if the 445 /// GEPs were split here, the work would quickly be undone. The 446 /// LoopStrengthReduction pass, which is usually run quite late (and 447 /// after the last InstructionCombining pass), takes care of hoisting 448 /// loop-invariant portions of expressions, after considering what 449 /// can be folded using target addressing modes. 450 /// 451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 452 const SCEV *const *op_end, 453 PointerType *PTy, 454 Type *Ty, 455 Value *V) { 456 SmallVector<Value *, 4> GepIndices; 457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 458 bool AnyNonZeroIndices = false; 459 460 // Split AddRecs up into parts as either of the parts may be usable 461 // without the other. 462 SplitAddRecs(Ops, Ty, SE); 463 464 Type *IntIdxTy = DL.getIndexType(PTy); 465 466 // For opaque pointers, always generate i8 GEP. 467 if (!PTy->isOpaque()) { 468 // Descend down the pointer's type and attempt to convert the other 469 // operands into GEP indices, at each level. The first index in a GEP 470 // indexes into the array implied by the pointer operand; the rest of 471 // the indices index into the element or field type selected by the 472 // preceding index. 473 Type *ElTy = PTy->getElementType(); 474 for (;;) { 475 // If the scale size is not 0, attempt to factor out a scale for 476 // array indexing. 477 SmallVector<const SCEV *, 8> ScaledOps; 478 if (ElTy->isSized()) { 479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 480 if (!ElSize->isZero()) { 481 SmallVector<const SCEV *, 8> NewOps; 482 for (const SCEV *Op : Ops) { 483 const SCEV *Remainder = SE.getConstant(Ty, 0); 484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 485 // Op now has ElSize factored out. 486 ScaledOps.push_back(Op); 487 if (!Remainder->isZero()) 488 NewOps.push_back(Remainder); 489 AnyNonZeroIndices = true; 490 } else { 491 // The operand was not divisible, so add it to the list of 492 // operands we'll scan next iteration. 493 NewOps.push_back(Op); 494 } 495 } 496 // If we made any changes, update Ops. 497 if (!ScaledOps.empty()) { 498 Ops = NewOps; 499 SimplifyAddOperands(Ops, Ty, SE); 500 } 501 } 502 } 503 504 // Record the scaled array index for this level of the type. If 505 // we didn't find any operands that could be factored, tentatively 506 // assume that element zero was selected (since the zero offset 507 // would obviously be folded away). 508 Value *Scaled = 509 ScaledOps.empty() 510 ? Constant::getNullValue(Ty) 511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 512 GepIndices.push_back(Scaled); 513 514 // Collect struct field index operands. 515 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 516 bool FoundFieldNo = false; 517 // An empty struct has no fields. 518 if (STy->getNumElements() == 0) break; 519 // Field offsets are known. See if a constant offset falls within any of 520 // the struct fields. 521 if (Ops.empty()) 522 break; 523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 524 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 525 const StructLayout &SL = *DL.getStructLayout(STy); 526 uint64_t FullOffset = C->getValue()->getZExtValue(); 527 if (FullOffset < SL.getSizeInBytes()) { 528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 529 GepIndices.push_back( 530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 531 ElTy = STy->getTypeAtIndex(ElIdx); 532 Ops[0] = 533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 534 AnyNonZeroIndices = true; 535 FoundFieldNo = true; 536 } 537 } 538 // If no struct field offsets were found, tentatively assume that 539 // field zero was selected (since the zero offset would obviously 540 // be folded away). 541 if (!FoundFieldNo) { 542 ElTy = STy->getTypeAtIndex(0u); 543 GepIndices.push_back( 544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 545 } 546 } 547 548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 549 ElTy = ATy->getElementType(); 550 else 551 // FIXME: Handle VectorType. 552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 553 // constant, therefore can not be factored out. The generated IR is less 554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 555 break; 556 } 557 } 558 559 // If none of the operands were convertible to proper GEP indices, cast 560 // the base to i8* and do an ugly getelementptr with that. It's still 561 // better than ptrtoint+arithmetic+inttoptr at least. 562 if (!AnyNonZeroIndices) { 563 // Cast the base to i8*. 564 if (!PTy->isOpaque()) 565 V = InsertNoopCastOfTo(V, 566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 567 568 assert(!isa<Instruction>(V) || 569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 570 571 // Expand the operands for a plain byte offset. 572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 573 574 // Fold a GEP with constant operands. 575 if (Constant *CLHS = dyn_cast<Constant>(V)) 576 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 578 CLHS, CRHS); 579 580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 581 unsigned ScanLimit = 6; 582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 583 // Scanning starts from the last instruction before the insertion point. 584 BasicBlock::iterator IP = Builder.GetInsertPoint(); 585 if (IP != BlockBegin) { 586 --IP; 587 for (; ScanLimit; --IP, --ScanLimit) { 588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 589 // generated code. 590 if (isa<DbgInfoIntrinsic>(IP)) 591 ScanLimit++; 592 if (IP->getOpcode() == Instruction::GetElementPtr && 593 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 594 return &*IP; 595 if (IP == BlockBegin) break; 596 } 597 } 598 599 // Save the original insertion point so we can restore it when we're done. 600 SCEVInsertPointGuard Guard(Builder, this); 601 602 // Move the insertion point out of as many loops as we can. 603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 605 BasicBlock *Preheader = L->getLoopPreheader(); 606 if (!Preheader) break; 607 608 // Ok, move up a level. 609 Builder.SetInsertPoint(Preheader->getTerminator()); 610 } 611 612 // Emit a GEP. 613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 614 } 615 616 { 617 SCEVInsertPointGuard Guard(Builder, this); 618 619 // Move the insertion point out of as many loops as we can. 620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 621 if (!L->isLoopInvariant(V)) break; 622 623 bool AnyIndexNotLoopInvariant = any_of( 624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 625 626 if (AnyIndexNotLoopInvariant) 627 break; 628 629 BasicBlock *Preheader = L->getLoopPreheader(); 630 if (!Preheader) break; 631 632 // Ok, move up a level. 633 Builder.SetInsertPoint(Preheader->getTerminator()); 634 } 635 636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 637 // because ScalarEvolution may have changed the address arithmetic to 638 // compute a value which is beyond the end of the allocated object. 639 Value *Casted = V; 640 if (V->getType() != PTy) 641 Casted = InsertNoopCastOfTo(Casted, PTy); 642 Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices, 643 "scevgep"); 644 Ops.push_back(SE.getUnknown(GEP)); 645 } 646 647 return expand(SE.getAddExpr(Ops)); 648 } 649 650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 651 Value *V) { 652 const SCEV *const Ops[1] = {Op}; 653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 654 } 655 656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 657 /// SCEV expansion. If they are nested, this is the most nested. If they are 658 /// neighboring, pick the later. 659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 660 DominatorTree &DT) { 661 if (!A) return B; 662 if (!B) return A; 663 if (A->contains(B)) return B; 664 if (B->contains(A)) return A; 665 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 666 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 667 return A; // Arbitrarily break the tie. 668 } 669 670 /// getRelevantLoop - Get the most relevant loop associated with the given 671 /// expression, according to PickMostRelevantLoop. 672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 673 // Test whether we've already computed the most relevant loop for this SCEV. 674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 675 if (!Pair.second) 676 return Pair.first->second; 677 678 if (isa<SCEVConstant>(S)) 679 // A constant has no relevant loops. 680 return nullptr; 681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 683 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 684 // A non-instruction has no relevant loops. 685 return nullptr; 686 } 687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 688 const Loop *L = nullptr; 689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 690 L = AR->getLoop(); 691 for (const SCEV *Op : N->operands()) 692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 693 return RelevantLoops[N] = L; 694 } 695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 696 const Loop *Result = getRelevantLoop(C->getOperand()); 697 return RelevantLoops[C] = Result; 698 } 699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 700 const Loop *Result = PickMostRelevantLoop( 701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 702 return RelevantLoops[D] = Result; 703 } 704 llvm_unreachable("Unexpected SCEV type!"); 705 } 706 707 namespace { 708 709 /// LoopCompare - Compare loops by PickMostRelevantLoop. 710 class LoopCompare { 711 DominatorTree &DT; 712 public: 713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 714 715 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 716 std::pair<const Loop *, const SCEV *> RHS) const { 717 // Keep pointer operands sorted at the end. 718 if (LHS.second->getType()->isPointerTy() != 719 RHS.second->getType()->isPointerTy()) 720 return LHS.second->getType()->isPointerTy(); 721 722 // Compare loops with PickMostRelevantLoop. 723 if (LHS.first != RHS.first) 724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 725 726 // If one operand is a non-constant negative and the other is not, 727 // put the non-constant negative on the right so that a sub can 728 // be used instead of a negate and add. 729 if (LHS.second->isNonConstantNegative()) { 730 if (!RHS.second->isNonConstantNegative()) 731 return false; 732 } else if (RHS.second->isNonConstantNegative()) 733 return true; 734 735 // Otherwise they are equivalent according to this comparison. 736 return false; 737 } 738 }; 739 740 } 741 742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 743 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 744 745 // Collect all the add operands in a loop, along with their associated loops. 746 // Iterate in reverse so that constants are emitted last, all else equal, and 747 // so that pointer operands are inserted first, which the code below relies on 748 // to form more involved GEPs. 749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 750 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 751 E(S->op_begin()); I != E; ++I) 752 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 753 754 // Sort by loop. Use a stable sort so that constants follow non-constants and 755 // pointer operands precede non-pointer operands. 756 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 757 758 // Emit instructions to add all the operands. Hoist as much as possible 759 // out of loops, and form meaningful getelementptrs where possible. 760 Value *Sum = nullptr; 761 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 762 const Loop *CurLoop = I->first; 763 const SCEV *Op = I->second; 764 if (!Sum) { 765 // This is the first operand. Just expand it. 766 Sum = expand(Op); 767 ++I; 768 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 769 // The running sum expression is a pointer. Try to form a getelementptr 770 // at this level with that as the base. 771 SmallVector<const SCEV *, 4> NewOps; 772 for (; I != E && I->first == CurLoop; ++I) { 773 // If the operand is SCEVUnknown and not instructions, peek through 774 // it, to enable more of it to be folded into the GEP. 775 const SCEV *X = I->second; 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 777 if (!isa<Instruction>(U->getValue())) 778 X = SE.getSCEV(U->getValue()); 779 NewOps.push_back(X); 780 } 781 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 782 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 783 // The running sum is an integer, and there's a pointer at this level. 784 // Try to form a getelementptr. If the running sum is instructions, 785 // use a SCEVUnknown to avoid re-analyzing them. 786 SmallVector<const SCEV *, 4> NewOps; 787 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 788 SE.getSCEV(Sum)); 789 for (++I; I != E && I->first == CurLoop; ++I) 790 NewOps.push_back(I->second); 791 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 792 } else if (Op->isNonConstantNegative()) { 793 // Instead of doing a negate and add, just do a subtract. 794 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 795 Sum = InsertNoopCastOfTo(Sum, Ty); 796 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 797 /*IsSafeToHoist*/ true); 798 ++I; 799 } else { 800 // A simple add. 801 Value *W = expandCodeForImpl(Op, Ty, false); 802 Sum = InsertNoopCastOfTo(Sum, Ty); 803 // Canonicalize a constant to the RHS. 804 if (isa<Constant>(Sum)) std::swap(Sum, W); 805 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 806 /*IsSafeToHoist*/ true); 807 ++I; 808 } 809 } 810 811 return Sum; 812 } 813 814 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 815 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 816 817 // Collect all the mul operands in a loop, along with their associated loops. 818 // Iterate in reverse so that constants are emitted last, all else equal. 819 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 820 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 821 E(S->op_begin()); I != E; ++I) 822 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 823 824 // Sort by loop. Use a stable sort so that constants follow non-constants. 825 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 826 827 // Emit instructions to mul all the operands. Hoist as much as possible 828 // out of loops. 829 Value *Prod = nullptr; 830 auto I = OpsAndLoops.begin(); 831 832 // Expand the calculation of X pow N in the following manner: 833 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 834 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 835 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 836 auto E = I; 837 // Calculate how many times the same operand from the same loop is included 838 // into this power. 839 uint64_t Exponent = 0; 840 const uint64_t MaxExponent = UINT64_MAX >> 1; 841 // No one sane will ever try to calculate such huge exponents, but if we 842 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 843 // below when the power of 2 exceeds our Exponent, and we want it to be 844 // 1u << 31 at most to not deal with unsigned overflow. 845 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 846 ++Exponent; 847 ++E; 848 } 849 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 850 851 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 852 // that are needed into the result. 853 Value *P = expandCodeForImpl(I->second, Ty, false); 854 Value *Result = nullptr; 855 if (Exponent & 1) 856 Result = P; 857 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 858 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 859 /*IsSafeToHoist*/ true); 860 if (Exponent & BinExp) 861 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 862 SCEV::FlagAnyWrap, 863 /*IsSafeToHoist*/ true) 864 : P; 865 } 866 867 I = E; 868 assert(Result && "Nothing was expanded?"); 869 return Result; 870 }; 871 872 while (I != OpsAndLoops.end()) { 873 if (!Prod) { 874 // This is the first operand. Just expand it. 875 Prod = ExpandOpBinPowN(); 876 } else if (I->second->isAllOnesValue()) { 877 // Instead of doing a multiply by negative one, just do a negate. 878 Prod = InsertNoopCastOfTo(Prod, Ty); 879 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 880 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 881 ++I; 882 } else { 883 // A simple mul. 884 Value *W = ExpandOpBinPowN(); 885 Prod = InsertNoopCastOfTo(Prod, Ty); 886 // Canonicalize a constant to the RHS. 887 if (isa<Constant>(Prod)) std::swap(Prod, W); 888 const APInt *RHS; 889 if (match(W, m_Power2(RHS))) { 890 // Canonicalize Prod*(1<<C) to Prod<<C. 891 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 892 auto NWFlags = S->getNoWrapFlags(); 893 // clear nsw flag if shl will produce poison value. 894 if (RHS->logBase2() == RHS->getBitWidth() - 1) 895 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 896 Prod = InsertBinop(Instruction::Shl, Prod, 897 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 898 /*IsSafeToHoist*/ true); 899 } else { 900 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 901 /*IsSafeToHoist*/ true); 902 } 903 } 904 } 905 906 return Prod; 907 } 908 909 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 910 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 911 912 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 913 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 914 const APInt &RHS = SC->getAPInt(); 915 if (RHS.isPowerOf2()) 916 return InsertBinop(Instruction::LShr, LHS, 917 ConstantInt::get(Ty, RHS.logBase2()), 918 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 919 } 920 921 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 922 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 923 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 924 } 925 926 /// Move parts of Base into Rest to leave Base with the minimal 927 /// expression that provides a pointer operand suitable for a 928 /// GEP expansion. 929 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 930 ScalarEvolution &SE) { 931 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 932 Base = A->getStart(); 933 Rest = SE.getAddExpr(Rest, 934 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 935 A->getStepRecurrence(SE), 936 A->getLoop(), 937 A->getNoWrapFlags(SCEV::FlagNW))); 938 } 939 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 940 Base = A->getOperand(A->getNumOperands()-1); 941 SmallVector<const SCEV *, 8> NewAddOps(A->operands()); 942 NewAddOps.back() = Rest; 943 Rest = SE.getAddExpr(NewAddOps); 944 ExposePointerBase(Base, Rest, SE); 945 } 946 } 947 948 /// Determine if this is a well-behaved chain of instructions leading back to 949 /// the PHI. If so, it may be reused by expanded expressions. 950 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 951 const Loop *L) { 952 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 953 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 954 return false; 955 // If any of the operands don't dominate the insert position, bail. 956 // Addrec operands are always loop-invariant, so this can only happen 957 // if there are instructions which haven't been hoisted. 958 if (L == IVIncInsertLoop) { 959 for (Use &Op : llvm::drop_begin(IncV->operands())) 960 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 961 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 962 return false; 963 } 964 // Advance to the next instruction. 965 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 966 if (!IncV) 967 return false; 968 969 if (IncV->mayHaveSideEffects()) 970 return false; 971 972 if (IncV == PN) 973 return true; 974 975 return isNormalAddRecExprPHI(PN, IncV, L); 976 } 977 978 /// getIVIncOperand returns an induction variable increment's induction 979 /// variable operand. 980 /// 981 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 982 /// operands dominate InsertPos. 983 /// 984 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 985 /// simple patterns generated by getAddRecExprPHILiterally and 986 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 987 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 988 Instruction *InsertPos, 989 bool allowScale) { 990 if (IncV == InsertPos) 991 return nullptr; 992 993 switch (IncV->getOpcode()) { 994 default: 995 return nullptr; 996 // Check for a simple Add/Sub or GEP of a loop invariant step. 997 case Instruction::Add: 998 case Instruction::Sub: { 999 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 1000 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 1001 return dyn_cast<Instruction>(IncV->getOperand(0)); 1002 return nullptr; 1003 } 1004 case Instruction::BitCast: 1005 return dyn_cast<Instruction>(IncV->getOperand(0)); 1006 case Instruction::GetElementPtr: 1007 for (Use &U : llvm::drop_begin(IncV->operands())) { 1008 if (isa<Constant>(U)) 1009 continue; 1010 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 1011 if (!SE.DT.dominates(OInst, InsertPos)) 1012 return nullptr; 1013 } 1014 if (allowScale) { 1015 // allow any kind of GEP as long as it can be hoisted. 1016 continue; 1017 } 1018 // This must be a pointer addition of constants (pretty), which is already 1019 // handled, or some number of address-size elements (ugly). Ugly geps 1020 // have 2 operands. i1* is used by the expander to represent an 1021 // address-size element. 1022 if (IncV->getNumOperands() != 2) 1023 return nullptr; 1024 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1025 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1026 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1027 return nullptr; 1028 break; 1029 } 1030 return dyn_cast<Instruction>(IncV->getOperand(0)); 1031 } 1032 } 1033 1034 /// If the insert point of the current builder or any of the builders on the 1035 /// stack of saved builders has 'I' as its insert point, update it to point to 1036 /// the instruction after 'I'. This is intended to be used when the instruction 1037 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1038 /// different block, the inconsistent insert point (with a mismatched 1039 /// Instruction and Block) can lead to an instruction being inserted in a block 1040 /// other than its parent. 1041 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1042 BasicBlock::iterator It(*I); 1043 BasicBlock::iterator NewInsertPt = std::next(It); 1044 if (Builder.GetInsertPoint() == It) 1045 Builder.SetInsertPoint(&*NewInsertPt); 1046 for (auto *InsertPtGuard : InsertPointGuards) 1047 if (InsertPtGuard->GetInsertPoint() == It) 1048 InsertPtGuard->SetInsertPoint(NewInsertPt); 1049 } 1050 1051 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1052 /// it available to other uses in this loop. Recursively hoist any operands, 1053 /// until we reach a value that dominates InsertPos. 1054 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1055 if (SE.DT.dominates(IncV, InsertPos)) 1056 return true; 1057 1058 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1059 // its existing users. 1060 if (isa<PHINode>(InsertPos) || 1061 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1062 return false; 1063 1064 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1065 return false; 1066 1067 // Check that the chain of IV operands leading back to Phi can be hoisted. 1068 SmallVector<Instruction*, 4> IVIncs; 1069 for(;;) { 1070 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1071 if (!Oper) 1072 return false; 1073 // IncV is safe to hoist. 1074 IVIncs.push_back(IncV); 1075 IncV = Oper; 1076 if (SE.DT.dominates(IncV, InsertPos)) 1077 break; 1078 } 1079 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1080 fixupInsertPoints(*I); 1081 (*I)->moveBefore(InsertPos); 1082 } 1083 return true; 1084 } 1085 1086 /// Determine if this cyclic phi is in a form that would have been generated by 1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1088 /// as it is in a low-cost form, for example, no implied multiplication. This 1089 /// should match any patterns generated by getAddRecExprPHILiterally and 1090 /// expandAddtoGEP. 1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1092 const Loop *L) { 1093 for(Instruction *IVOper = IncV; 1094 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1095 /*allowScale=*/false));) { 1096 if (IVOper == PN) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1104 /// need to materialize IV increments elsewhere to handle difficult situations. 1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1106 Type *ExpandTy, Type *IntTy, 1107 bool useSubtract) { 1108 Value *IncV; 1109 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1110 if (ExpandTy->isPointerTy()) { 1111 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1112 // If the step isn't constant, don't use an implicitly scaled GEP, because 1113 // that would require a multiply inside the loop. 1114 if (!isa<ConstantInt>(StepV)) 1115 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1116 GEPPtrTy->getAddressSpace()); 1117 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1118 if (IncV->getType() != PN->getType()) 1119 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1120 } else { 1121 IncV = useSubtract ? 1122 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1123 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1124 } 1125 return IncV; 1126 } 1127 1128 /// Check whether we can cheaply express the requested SCEV in terms of 1129 /// the available PHI SCEV by truncation and/or inversion of the step. 1130 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1131 const SCEVAddRecExpr *Phi, 1132 const SCEVAddRecExpr *Requested, 1133 bool &InvertStep) { 1134 // We can't transform to match a pointer PHI. 1135 if (Phi->getType()->isPointerTy()) 1136 return false; 1137 1138 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1139 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1140 1141 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1142 return false; 1143 1144 // Try truncate it if necessary. 1145 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1146 if (!Phi) 1147 return false; 1148 1149 // Check whether truncation will help. 1150 if (Phi == Requested) { 1151 InvertStep = false; 1152 return true; 1153 } 1154 1155 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1156 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1157 InvertStep = true; 1158 return true; 1159 } 1160 1161 return false; 1162 } 1163 1164 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1165 if (!isa<IntegerType>(AR->getType())) 1166 return false; 1167 1168 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1169 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1170 const SCEV *Step = AR->getStepRecurrence(SE); 1171 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1172 SE.getSignExtendExpr(AR, WideTy)); 1173 const SCEV *ExtendAfterOp = 1174 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1175 return ExtendAfterOp == OpAfterExtend; 1176 } 1177 1178 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1179 if (!isa<IntegerType>(AR->getType())) 1180 return false; 1181 1182 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1183 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1184 const SCEV *Step = AR->getStepRecurrence(SE); 1185 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1186 SE.getZeroExtendExpr(AR, WideTy)); 1187 const SCEV *ExtendAfterOp = 1188 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1189 return ExtendAfterOp == OpAfterExtend; 1190 } 1191 1192 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1193 /// the base addrec, which is the addrec without any non-loop-dominating 1194 /// values, and return the PHI. 1195 PHINode * 1196 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1197 const Loop *L, 1198 Type *ExpandTy, 1199 Type *IntTy, 1200 Type *&TruncTy, 1201 bool &InvertStep) { 1202 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1203 1204 // Reuse a previously-inserted PHI, if present. 1205 BasicBlock *LatchBlock = L->getLoopLatch(); 1206 if (LatchBlock) { 1207 PHINode *AddRecPhiMatch = nullptr; 1208 Instruction *IncV = nullptr; 1209 TruncTy = nullptr; 1210 InvertStep = false; 1211 1212 // Only try partially matching scevs that need truncation and/or 1213 // step-inversion if we know this loop is outside the current loop. 1214 bool TryNonMatchingSCEV = 1215 IVIncInsertLoop && 1216 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1217 1218 for (PHINode &PN : L->getHeader()->phis()) { 1219 if (!SE.isSCEVable(PN.getType())) 1220 continue; 1221 1222 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1223 // PHI has no meaning at all. 1224 if (!PN.isComplete()) { 1225 SCEV_DEBUG_WITH_TYPE( 1226 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1227 continue; 1228 } 1229 1230 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1231 if (!PhiSCEV) 1232 continue; 1233 1234 bool IsMatchingSCEV = PhiSCEV == Normalized; 1235 // We only handle truncation and inversion of phi recurrences for the 1236 // expanded expression if the expanded expression's loop dominates the 1237 // loop we insert to. Check now, so we can bail out early. 1238 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1239 continue; 1240 1241 // TODO: this possibly can be reworked to avoid this cast at all. 1242 Instruction *TempIncV = 1243 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1244 if (!TempIncV) 1245 continue; 1246 1247 // Check whether we can reuse this PHI node. 1248 if (LSRMode) { 1249 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1250 continue; 1251 } else { 1252 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1253 continue; 1254 } 1255 1256 // Stop if we have found an exact match SCEV. 1257 if (IsMatchingSCEV) { 1258 IncV = TempIncV; 1259 TruncTy = nullptr; 1260 InvertStep = false; 1261 AddRecPhiMatch = &PN; 1262 break; 1263 } 1264 1265 // Try whether the phi can be translated into the requested form 1266 // (truncated and/or offset by a constant). 1267 if ((!TruncTy || InvertStep) && 1268 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1269 // Record the phi node. But don't stop we might find an exact match 1270 // later. 1271 AddRecPhiMatch = &PN; 1272 IncV = TempIncV; 1273 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1274 } 1275 } 1276 1277 if (AddRecPhiMatch) { 1278 // Ok, the add recurrence looks usable. 1279 // Remember this PHI, even in post-inc mode. 1280 InsertedValues.insert(AddRecPhiMatch); 1281 // Remember the increment. 1282 rememberInstruction(IncV); 1283 // Those values were not actually inserted but re-used. 1284 ReusedValues.insert(AddRecPhiMatch); 1285 ReusedValues.insert(IncV); 1286 return AddRecPhiMatch; 1287 } 1288 } 1289 1290 // Save the original insertion point so we can restore it when we're done. 1291 SCEVInsertPointGuard Guard(Builder, this); 1292 1293 // Another AddRec may need to be recursively expanded below. For example, if 1294 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1295 // loop. Remove this loop from the PostIncLoops set before expanding such 1296 // AddRecs. Otherwise, we cannot find a valid position for the step 1297 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1298 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1299 // so it's not worth implementing SmallPtrSet::swap. 1300 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1301 PostIncLoops.clear(); 1302 1303 // Expand code for the start value into the loop preheader. 1304 assert(L->getLoopPreheader() && 1305 "Can't expand add recurrences without a loop preheader!"); 1306 Value *StartV = 1307 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1308 L->getLoopPreheader()->getTerminator(), false); 1309 1310 // StartV must have been be inserted into L's preheader to dominate the new 1311 // phi. 1312 assert(!isa<Instruction>(StartV) || 1313 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1314 L->getHeader())); 1315 1316 // Expand code for the step value. Do this before creating the PHI so that PHI 1317 // reuse code doesn't see an incomplete PHI. 1318 const SCEV *Step = Normalized->getStepRecurrence(SE); 1319 // If the stride is negative, insert a sub instead of an add for the increment 1320 // (unless it's a constant, because subtracts of constants are canonicalized 1321 // to adds). 1322 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1323 if (useSubtract) 1324 Step = SE.getNegativeSCEV(Step); 1325 // Expand the step somewhere that dominates the loop header. 1326 Value *StepV = expandCodeForImpl( 1327 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1328 1329 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1330 // we actually do emit an addition. It does not apply if we emit a 1331 // subtraction. 1332 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1333 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1334 1335 // Create the PHI. 1336 BasicBlock *Header = L->getHeader(); 1337 Builder.SetInsertPoint(Header, Header->begin()); 1338 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1339 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1340 Twine(IVName) + ".iv"); 1341 1342 // Create the step instructions and populate the PHI. 1343 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1344 BasicBlock *Pred = *HPI; 1345 1346 // Add a start value. 1347 if (!L->contains(Pred)) { 1348 PN->addIncoming(StartV, Pred); 1349 continue; 1350 } 1351 1352 // Create a step value and add it to the PHI. 1353 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1354 // instructions at IVIncInsertPos. 1355 Instruction *InsertPos = L == IVIncInsertLoop ? 1356 IVIncInsertPos : Pred->getTerminator(); 1357 Builder.SetInsertPoint(InsertPos); 1358 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1359 1360 if (isa<OverflowingBinaryOperator>(IncV)) { 1361 if (IncrementIsNUW) 1362 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1363 if (IncrementIsNSW) 1364 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1365 } 1366 PN->addIncoming(IncV, Pred); 1367 } 1368 1369 // After expanding subexpressions, restore the PostIncLoops set so the caller 1370 // can ensure that IVIncrement dominates the current uses. 1371 PostIncLoops = SavedPostIncLoops; 1372 1373 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1374 // effective when we are able to use an IV inserted here, so record it. 1375 InsertedValues.insert(PN); 1376 InsertedIVs.push_back(PN); 1377 return PN; 1378 } 1379 1380 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1381 Type *STy = S->getType(); 1382 Type *IntTy = SE.getEffectiveSCEVType(STy); 1383 const Loop *L = S->getLoop(); 1384 1385 // Determine a normalized form of this expression, which is the expression 1386 // before any post-inc adjustment is made. 1387 const SCEVAddRecExpr *Normalized = S; 1388 if (PostIncLoops.count(L)) { 1389 PostIncLoopSet Loops; 1390 Loops.insert(L); 1391 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1392 } 1393 1394 // Strip off any non-loop-dominating component from the addrec start. 1395 const SCEV *Start = Normalized->getStart(); 1396 const SCEV *PostLoopOffset = nullptr; 1397 if (!SE.properlyDominates(Start, L->getHeader())) { 1398 PostLoopOffset = Start; 1399 Start = SE.getConstant(Normalized->getType(), 0); 1400 Normalized = cast<SCEVAddRecExpr>( 1401 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1402 Normalized->getLoop(), 1403 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1404 } 1405 1406 // Strip off any non-loop-dominating component from the addrec step. 1407 const SCEV *Step = Normalized->getStepRecurrence(SE); 1408 const SCEV *PostLoopScale = nullptr; 1409 if (!SE.dominates(Step, L->getHeader())) { 1410 PostLoopScale = Step; 1411 Step = SE.getConstant(Normalized->getType(), 1); 1412 if (!Start->isZero()) { 1413 // The normalization below assumes that Start is constant zero, so if 1414 // it isn't re-associate Start to PostLoopOffset. 1415 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1416 PostLoopOffset = Start; 1417 Start = SE.getConstant(Normalized->getType(), 0); 1418 } 1419 Normalized = 1420 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1421 Start, Step, Normalized->getLoop(), 1422 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1423 } 1424 1425 // Expand the core addrec. If we need post-loop scaling, force it to 1426 // expand to an integer type to avoid the need for additional casting. 1427 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1428 // We can't use a pointer type for the addrec if the pointer type is 1429 // non-integral. 1430 Type *AddRecPHIExpandTy = 1431 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1432 1433 // In some cases, we decide to reuse an existing phi node but need to truncate 1434 // it and/or invert the step. 1435 Type *TruncTy = nullptr; 1436 bool InvertStep = false; 1437 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1438 IntTy, TruncTy, InvertStep); 1439 1440 // Accommodate post-inc mode, if necessary. 1441 Value *Result; 1442 if (!PostIncLoops.count(L)) 1443 Result = PN; 1444 else { 1445 // In PostInc mode, use the post-incremented value. 1446 BasicBlock *LatchBlock = L->getLoopLatch(); 1447 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1448 Result = PN->getIncomingValueForBlock(LatchBlock); 1449 1450 // We might be introducing a new use of the post-inc IV that is not poison 1451 // safe, in which case we should drop poison generating flags. Only keep 1452 // those flags for which SCEV has proven that they always hold. 1453 if (isa<OverflowingBinaryOperator>(Result)) { 1454 auto *I = cast<Instruction>(Result); 1455 if (!S->hasNoUnsignedWrap()) 1456 I->setHasNoUnsignedWrap(false); 1457 if (!S->hasNoSignedWrap()) 1458 I->setHasNoSignedWrap(false); 1459 } 1460 1461 // For an expansion to use the postinc form, the client must call 1462 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1463 // or dominated by IVIncInsertPos. 1464 if (isa<Instruction>(Result) && 1465 !SE.DT.dominates(cast<Instruction>(Result), 1466 &*Builder.GetInsertPoint())) { 1467 // The induction variable's postinc expansion does not dominate this use. 1468 // IVUsers tries to prevent this case, so it is rare. However, it can 1469 // happen when an IVUser outside the loop is not dominated by the latch 1470 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1471 // all cases. Consider a phi outside whose operand is replaced during 1472 // expansion with the value of the postinc user. Without fundamentally 1473 // changing the way postinc users are tracked, the only remedy is 1474 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1475 // but hopefully expandCodeFor handles that. 1476 bool useSubtract = 1477 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1478 if (useSubtract) 1479 Step = SE.getNegativeSCEV(Step); 1480 Value *StepV; 1481 { 1482 // Expand the step somewhere that dominates the loop header. 1483 SCEVInsertPointGuard Guard(Builder, this); 1484 StepV = expandCodeForImpl( 1485 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1486 } 1487 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1488 } 1489 } 1490 1491 // We have decided to reuse an induction variable of a dominating loop. Apply 1492 // truncation and/or inversion of the step. 1493 if (TruncTy) { 1494 Type *ResTy = Result->getType(); 1495 // Normalize the result type. 1496 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1497 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1498 // Truncate the result. 1499 if (TruncTy != Result->getType()) 1500 Result = Builder.CreateTrunc(Result, TruncTy); 1501 1502 // Invert the result. 1503 if (InvertStep) 1504 Result = Builder.CreateSub( 1505 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1506 } 1507 1508 // Re-apply any non-loop-dominating scale. 1509 if (PostLoopScale) { 1510 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1511 Result = InsertNoopCastOfTo(Result, IntTy); 1512 Result = Builder.CreateMul(Result, 1513 expandCodeForImpl(PostLoopScale, IntTy, false)); 1514 } 1515 1516 // Re-apply any non-loop-dominating offset. 1517 if (PostLoopOffset) { 1518 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1519 if (Result->getType()->isIntegerTy()) { 1520 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1521 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1522 } else { 1523 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1524 } 1525 } else { 1526 Result = InsertNoopCastOfTo(Result, IntTy); 1527 Result = Builder.CreateAdd( 1528 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1529 } 1530 } 1531 1532 return Result; 1533 } 1534 1535 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1536 // In canonical mode we compute the addrec as an expression of a canonical IV 1537 // using evaluateAtIteration and expand the resulting SCEV expression. This 1538 // way we avoid introducing new IVs to carry on the comutation of the addrec 1539 // throughout the loop. 1540 // 1541 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1542 // type wider than the addrec itself. Emitting a canonical IV of the 1543 // proper type might produce non-legal types, for example expanding an i64 1544 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1545 // back to non-canonical mode for nested addrecs. 1546 if (!CanonicalMode || (S->getNumOperands() > 2)) 1547 return expandAddRecExprLiterally(S); 1548 1549 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1550 const Loop *L = S->getLoop(); 1551 1552 // First check for an existing canonical IV in a suitable type. 1553 PHINode *CanonicalIV = nullptr; 1554 if (PHINode *PN = L->getCanonicalInductionVariable()) 1555 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1556 CanonicalIV = PN; 1557 1558 // Rewrite an AddRec in terms of the canonical induction variable, if 1559 // its type is more narrow. 1560 if (CanonicalIV && 1561 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1562 !S->getType()->isPointerTy()) { 1563 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1564 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1565 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1566 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1567 S->getNoWrapFlags(SCEV::FlagNW))); 1568 BasicBlock::iterator NewInsertPt = 1569 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1570 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1571 &*NewInsertPt, false); 1572 return V; 1573 } 1574 1575 // {X,+,F} --> X + {0,+,F} 1576 if (!S->getStart()->isZero()) { 1577 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1578 NewOps[0] = SE.getConstant(Ty, 0); 1579 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1580 S->getNoWrapFlags(SCEV::FlagNW)); 1581 1582 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1583 // comments on expandAddToGEP for details. 1584 const SCEV *Base = S->getStart(); 1585 // Dig into the expression to find the pointer base for a GEP. 1586 const SCEV *ExposedRest = Rest; 1587 ExposePointerBase(Base, ExposedRest, SE); 1588 // If we found a pointer, expand the AddRec with a GEP. 1589 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1590 // Make sure the Base isn't something exotic, such as a multiplied 1591 // or divided pointer value. In those cases, the result type isn't 1592 // actually a pointer type. 1593 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1594 Value *StartV = expand(Base); 1595 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1596 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1597 } 1598 } 1599 1600 // Just do a normal add. Pre-expand the operands to suppress folding. 1601 // 1602 // The LHS and RHS values are factored out of the expand call to make the 1603 // output independent of the argument evaluation order. 1604 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1605 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1606 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1607 } 1608 1609 // If we don't yet have a canonical IV, create one. 1610 if (!CanonicalIV) { 1611 // Create and insert the PHI node for the induction variable in the 1612 // specified loop. 1613 BasicBlock *Header = L->getHeader(); 1614 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1615 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1616 &Header->front()); 1617 rememberInstruction(CanonicalIV); 1618 1619 SmallSet<BasicBlock *, 4> PredSeen; 1620 Constant *One = ConstantInt::get(Ty, 1); 1621 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1622 BasicBlock *HP = *HPI; 1623 if (!PredSeen.insert(HP).second) { 1624 // There must be an incoming value for each predecessor, even the 1625 // duplicates! 1626 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1627 continue; 1628 } 1629 1630 if (L->contains(HP)) { 1631 // Insert a unit add instruction right before the terminator 1632 // corresponding to the back-edge. 1633 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1634 "indvar.next", 1635 HP->getTerminator()); 1636 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1637 rememberInstruction(Add); 1638 CanonicalIV->addIncoming(Add, HP); 1639 } else { 1640 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1641 } 1642 } 1643 } 1644 1645 // {0,+,1} --> Insert a canonical induction variable into the loop! 1646 if (S->isAffine() && S->getOperand(1)->isOne()) { 1647 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1648 "IVs with types different from the canonical IV should " 1649 "already have been handled!"); 1650 return CanonicalIV; 1651 } 1652 1653 // {0,+,F} --> {0,+,1} * F 1654 1655 // If this is a simple linear addrec, emit it now as a special case. 1656 if (S->isAffine()) // {0,+,F} --> i*F 1657 return 1658 expand(SE.getTruncateOrNoop( 1659 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1660 SE.getNoopOrAnyExtend(S->getOperand(1), 1661 CanonicalIV->getType())), 1662 Ty)); 1663 1664 // If this is a chain of recurrences, turn it into a closed form, using the 1665 // folders, then expandCodeFor the closed form. This allows the folders to 1666 // simplify the expression without having to build a bunch of special code 1667 // into this folder. 1668 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1669 1670 // Promote S up to the canonical IV type, if the cast is foldable. 1671 const SCEV *NewS = S; 1672 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1673 if (isa<SCEVAddRecExpr>(Ext)) 1674 NewS = Ext; 1675 1676 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1677 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1678 1679 // Truncate the result down to the original type, if needed. 1680 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1681 return expand(T); 1682 } 1683 1684 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1685 Value *V = 1686 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1687 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1688 GetOptimalInsertionPointForCastOf(V)); 1689 } 1690 1691 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1692 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1693 Value *V = expandCodeForImpl( 1694 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1695 false); 1696 return Builder.CreateTrunc(V, Ty); 1697 } 1698 1699 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1700 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1701 Value *V = expandCodeForImpl( 1702 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1703 false); 1704 return Builder.CreateZExt(V, Ty); 1705 } 1706 1707 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1708 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1709 Value *V = expandCodeForImpl( 1710 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1711 false); 1712 return Builder.CreateSExt(V, Ty); 1713 } 1714 1715 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1716 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1717 Type *Ty = LHS->getType(); 1718 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1719 // In the case of mixed integer and pointer types, do the 1720 // rest of the comparisons as integer. 1721 Type *OpTy = S->getOperand(i)->getType(); 1722 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1723 Ty = SE.getEffectiveSCEVType(Ty); 1724 LHS = InsertNoopCastOfTo(LHS, Ty); 1725 } 1726 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1727 Value *Sel; 1728 if (Ty->isIntegerTy()) 1729 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS}, 1730 /*FMFSource=*/nullptr, "smax"); 1731 else { 1732 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1733 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1734 } 1735 LHS = Sel; 1736 } 1737 // In the case of mixed integer and pointer types, cast the 1738 // final result back to the pointer type. 1739 if (LHS->getType() != S->getType()) 1740 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1741 return LHS; 1742 } 1743 1744 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1745 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1746 Type *Ty = LHS->getType(); 1747 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1748 // In the case of mixed integer and pointer types, do the 1749 // rest of the comparisons as integer. 1750 Type *OpTy = S->getOperand(i)->getType(); 1751 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1752 Ty = SE.getEffectiveSCEVType(Ty); 1753 LHS = InsertNoopCastOfTo(LHS, Ty); 1754 } 1755 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1756 Value *Sel; 1757 if (Ty->isIntegerTy()) 1758 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS}, 1759 /*FMFSource=*/nullptr, "umax"); 1760 else { 1761 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1762 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1763 } 1764 LHS = Sel; 1765 } 1766 // In the case of mixed integer and pointer types, cast the 1767 // final result back to the pointer type. 1768 if (LHS->getType() != S->getType()) 1769 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1770 return LHS; 1771 } 1772 1773 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1774 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1775 Type *Ty = LHS->getType(); 1776 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1777 // In the case of mixed integer and pointer types, do the 1778 // rest of the comparisons as integer. 1779 Type *OpTy = S->getOperand(i)->getType(); 1780 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1781 Ty = SE.getEffectiveSCEVType(Ty); 1782 LHS = InsertNoopCastOfTo(LHS, Ty); 1783 } 1784 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1785 Value *Sel; 1786 if (Ty->isIntegerTy()) 1787 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS}, 1788 /*FMFSource=*/nullptr, "smin"); 1789 else { 1790 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1791 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1792 } 1793 LHS = Sel; 1794 } 1795 // In the case of mixed integer and pointer types, cast the 1796 // final result back to the pointer type. 1797 if (LHS->getType() != S->getType()) 1798 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1799 return LHS; 1800 } 1801 1802 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1803 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1804 Type *Ty = LHS->getType(); 1805 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1806 // In the case of mixed integer and pointer types, do the 1807 // rest of the comparisons as integer. 1808 Type *OpTy = S->getOperand(i)->getType(); 1809 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1810 Ty = SE.getEffectiveSCEVType(Ty); 1811 LHS = InsertNoopCastOfTo(LHS, Ty); 1812 } 1813 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1814 Value *Sel; 1815 if (Ty->isIntegerTy()) 1816 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS}, 1817 /*FMFSource=*/nullptr, "umin"); 1818 else { 1819 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1820 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1821 } 1822 LHS = Sel; 1823 } 1824 // In the case of mixed integer and pointer types, cast the 1825 // final result back to the pointer type. 1826 if (LHS->getType() != S->getType()) 1827 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1828 return LHS; 1829 } 1830 1831 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1832 Instruction *IP, bool Root) { 1833 setInsertPoint(IP); 1834 Value *V = expandCodeForImpl(SH, Ty, Root); 1835 return V; 1836 } 1837 1838 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1839 // Expand the code for this SCEV. 1840 Value *V = expand(SH); 1841 1842 if (PreserveLCSSA) { 1843 if (auto *Inst = dyn_cast<Instruction>(V)) { 1844 // Create a temporary instruction to at the current insertion point, so we 1845 // can hand it off to the helper to create LCSSA PHIs if required for the 1846 // new use. 1847 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1848 // would accept a insertion point and return an LCSSA phi for that 1849 // insertion point, so there is no need to insert & remove the temporary 1850 // instruction. 1851 Instruction *Tmp; 1852 if (Inst->getType()->isIntegerTy()) 1853 Tmp = 1854 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1855 else { 1856 assert(Inst->getType()->isPointerTy()); 1857 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1858 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1859 } 1860 V = fixupLCSSAFormFor(Tmp, 0); 1861 1862 // Clean up temporary instruction. 1863 InsertedValues.erase(Tmp); 1864 InsertedPostIncValues.erase(Tmp); 1865 Tmp->eraseFromParent(); 1866 } 1867 } 1868 1869 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1870 if (Ty) { 1871 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1872 "non-trivial casts should be done with the SCEVs directly!"); 1873 V = InsertNoopCastOfTo(V, Ty); 1874 } 1875 return V; 1876 } 1877 1878 ScalarEvolution::ValueOffsetPair 1879 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1880 const Instruction *InsertPt) { 1881 auto *Set = SE.getSCEVValues(S); 1882 // If the expansion is not in CanonicalMode, and the SCEV contains any 1883 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1884 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1885 // If S is scConstant, it may be worse to reuse an existing Value. 1886 if (S->getSCEVType() != scConstant && Set) { 1887 // Choose a Value from the set which dominates the insertPt. 1888 // insertPt should be inside the Value's parent loop so as not to break 1889 // the LCSSA form. 1890 for (auto const &VOPair : *Set) { 1891 Value *V = VOPair.first; 1892 ConstantInt *Offset = VOPair.second; 1893 Instruction *EntInst = nullptr; 1894 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1895 S->getType() == V->getType() && 1896 EntInst->getFunction() == InsertPt->getFunction() && 1897 SE.DT.dominates(EntInst, InsertPt) && 1898 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1899 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1900 return {V, Offset}; 1901 } 1902 } 1903 } 1904 return {nullptr, nullptr}; 1905 } 1906 1907 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1908 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1909 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1910 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1911 // the expansion will try to reuse Value from ExprValueMap, and only when it 1912 // fails, expand the SCEV literally. 1913 Value *SCEVExpander::expand(const SCEV *S) { 1914 // Compute an insertion point for this SCEV object. Hoist the instructions 1915 // as far out in the loop nest as possible. 1916 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1917 1918 // We can move insertion point only if there is no div or rem operations 1919 // otherwise we are risky to move it over the check for zero denominator. 1920 auto SafeToHoist = [](const SCEV *S) { 1921 return !SCEVExprContains(S, [](const SCEV *S) { 1922 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1923 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1924 // Division by non-zero constants can be hoisted. 1925 return SC->getValue()->isZero(); 1926 // All other divisions should not be moved as they may be 1927 // divisions by zero and should be kept within the 1928 // conditions of the surrounding loops that guard their 1929 // execution (see PR35406). 1930 return true; 1931 } 1932 return false; 1933 }); 1934 }; 1935 if (SafeToHoist(S)) { 1936 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1937 L = L->getParentLoop()) { 1938 if (SE.isLoopInvariant(S, L)) { 1939 if (!L) break; 1940 if (BasicBlock *Preheader = L->getLoopPreheader()) 1941 InsertPt = Preheader->getTerminator(); 1942 else 1943 // LSR sets the insertion point for AddRec start/step values to the 1944 // block start to simplify value reuse, even though it's an invalid 1945 // position. SCEVExpander must correct for this in all cases. 1946 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1947 } else { 1948 // If the SCEV is computable at this level, insert it into the header 1949 // after the PHIs (and after any other instructions that we've inserted 1950 // there) so that it is guaranteed to dominate any user inside the loop. 1951 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1952 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1953 1954 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1955 (isInsertedInstruction(InsertPt) || 1956 isa<DbgInfoIntrinsic>(InsertPt))) { 1957 InsertPt = &*std::next(InsertPt->getIterator()); 1958 } 1959 break; 1960 } 1961 } 1962 } 1963 1964 // Check to see if we already expanded this here. 1965 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1966 if (I != InsertedExpressions.end()) 1967 return I->second; 1968 1969 SCEVInsertPointGuard Guard(Builder, this); 1970 Builder.SetInsertPoint(InsertPt); 1971 1972 // Expand the expression into instructions. 1973 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1974 Value *V = VO.first; 1975 1976 if (!V) 1977 V = visit(S); 1978 else if (VO.second) { 1979 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1980 Type *Ety = Vty->getPointerElementType(); 1981 int64_t Offset = VO.second->getSExtValue(); 1982 int64_t ESize = SE.getTypeSizeInBits(Ety); 1983 if ((Offset * 8) % ESize == 0) { 1984 ConstantInt *Idx = 1985 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1986 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1987 } else { 1988 ConstantInt *Idx = 1989 ConstantInt::getSigned(VO.second->getType(), -Offset); 1990 unsigned AS = Vty->getAddressSpace(); 1991 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1992 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1993 "uglygep"); 1994 V = Builder.CreateBitCast(V, Vty); 1995 } 1996 } else { 1997 V = Builder.CreateSub(V, VO.second); 1998 } 1999 } 2000 // Remember the expanded value for this SCEV at this location. 2001 // 2002 // This is independent of PostIncLoops. The mapped value simply materializes 2003 // the expression at this insertion point. If the mapped value happened to be 2004 // a postinc expansion, it could be reused by a non-postinc user, but only if 2005 // its insertion point was already at the head of the loop. 2006 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 2007 return V; 2008 } 2009 2010 void SCEVExpander::rememberInstruction(Value *I) { 2011 auto DoInsert = [this](Value *V) { 2012 if (!PostIncLoops.empty()) 2013 InsertedPostIncValues.insert(V); 2014 else 2015 InsertedValues.insert(V); 2016 }; 2017 DoInsert(I); 2018 2019 if (!PreserveLCSSA) 2020 return; 2021 2022 if (auto *Inst = dyn_cast<Instruction>(I)) { 2023 // A new instruction has been added, which might introduce new uses outside 2024 // a defining loop. Fix LCSSA from for each operand of the new instruction, 2025 // if required. 2026 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 2027 OpIdx++) 2028 fixupLCSSAFormFor(Inst, OpIdx); 2029 } 2030 } 2031 2032 /// replaceCongruentIVs - Check for congruent phis in this loop header and 2033 /// replace them with their most canonical representative. Return the number of 2034 /// phis eliminated. 2035 /// 2036 /// This does not depend on any SCEVExpander state but should be used in 2037 /// the same context that SCEVExpander is used. 2038 unsigned 2039 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 2040 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2041 const TargetTransformInfo *TTI) { 2042 // Find integer phis in order of increasing width. 2043 SmallVector<PHINode*, 8> Phis; 2044 for (PHINode &PN : L->getHeader()->phis()) 2045 Phis.push_back(&PN); 2046 2047 if (TTI) 2048 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2049 // Put pointers at the back and make sure pointer < pointer = false. 2050 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2051 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2052 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 2053 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 2054 }); 2055 2056 unsigned NumElim = 0; 2057 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2058 // Process phis from wide to narrow. Map wide phis to their truncation 2059 // so narrow phis can reuse them. 2060 for (PHINode *Phi : Phis) { 2061 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2062 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2063 return V; 2064 if (!SE.isSCEVable(PN->getType())) 2065 return nullptr; 2066 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2067 if (!Const) 2068 return nullptr; 2069 return Const->getValue(); 2070 }; 2071 2072 // Fold constant phis. They may be congruent to other constant phis and 2073 // would confuse the logic below that expects proper IVs. 2074 if (Value *V = SimplifyPHINode(Phi)) { 2075 if (V->getType() != Phi->getType()) 2076 continue; 2077 Phi->replaceAllUsesWith(V); 2078 DeadInsts.emplace_back(Phi); 2079 ++NumElim; 2080 SCEV_DEBUG_WITH_TYPE(DebugType, 2081 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 2082 << '\n'); 2083 continue; 2084 } 2085 2086 if (!SE.isSCEVable(Phi->getType())) 2087 continue; 2088 2089 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2090 if (!OrigPhiRef) { 2091 OrigPhiRef = Phi; 2092 if (Phi->getType()->isIntegerTy() && TTI && 2093 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2094 // This phi can be freely truncated to the narrowest phi type. Map the 2095 // truncated expression to it so it will be reused for narrow types. 2096 const SCEV *TruncExpr = 2097 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2098 ExprToIVMap[TruncExpr] = Phi; 2099 } 2100 continue; 2101 } 2102 2103 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2104 // sense. 2105 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2106 continue; 2107 2108 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2109 Instruction *OrigInc = dyn_cast<Instruction>( 2110 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2111 Instruction *IsomorphicInc = 2112 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2113 2114 if (OrigInc && IsomorphicInc) { 2115 // If this phi has the same width but is more canonical, replace the 2116 // original with it. As part of the "more canonical" determination, 2117 // respect a prior decision to use an IV chain. 2118 if (OrigPhiRef->getType() == Phi->getType() && 2119 !(ChainedPhis.count(Phi) || 2120 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2121 (ChainedPhis.count(Phi) || 2122 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2123 std::swap(OrigPhiRef, Phi); 2124 std::swap(OrigInc, IsomorphicInc); 2125 } 2126 // Replacing the congruent phi is sufficient because acyclic 2127 // redundancy elimination, CSE/GVN, should handle the 2128 // rest. However, once SCEV proves that a phi is congruent, 2129 // it's often the head of an IV user cycle that is isomorphic 2130 // with the original phi. It's worth eagerly cleaning up the 2131 // common case of a single IV increment so that DeleteDeadPHIs 2132 // can remove cycles that had postinc uses. 2133 const SCEV *TruncExpr = 2134 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2135 if (OrigInc != IsomorphicInc && 2136 TruncExpr == SE.getSCEV(IsomorphicInc) && 2137 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2138 hoistIVInc(OrigInc, IsomorphicInc)) { 2139 SCEV_DEBUG_WITH_TYPE( 2140 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2141 << *IsomorphicInc << '\n'); 2142 Value *NewInc = OrigInc; 2143 if (OrigInc->getType() != IsomorphicInc->getType()) { 2144 Instruction *IP = nullptr; 2145 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2146 IP = &*PN->getParent()->getFirstInsertionPt(); 2147 else 2148 IP = OrigInc->getNextNode(); 2149 2150 IRBuilder<> Builder(IP); 2151 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2152 NewInc = Builder.CreateTruncOrBitCast( 2153 OrigInc, IsomorphicInc->getType(), IVName); 2154 } 2155 IsomorphicInc->replaceAllUsesWith(NewInc); 2156 DeadInsts.emplace_back(IsomorphicInc); 2157 } 2158 } 2159 } 2160 SCEV_DEBUG_WITH_TYPE(DebugType, 2161 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2162 << '\n'); 2163 SCEV_DEBUG_WITH_TYPE( 2164 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2165 ++NumElim; 2166 Value *NewIV = OrigPhiRef; 2167 if (OrigPhiRef->getType() != Phi->getType()) { 2168 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2169 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2170 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2171 } 2172 Phi->replaceAllUsesWith(NewIV); 2173 DeadInsts.emplace_back(Phi); 2174 } 2175 return NumElim; 2176 } 2177 2178 Optional<ScalarEvolution::ValueOffsetPair> 2179 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2180 Loop *L) { 2181 using namespace llvm::PatternMatch; 2182 2183 SmallVector<BasicBlock *, 4> ExitingBlocks; 2184 L->getExitingBlocks(ExitingBlocks); 2185 2186 // Look for suitable value in simple conditions at the loop exits. 2187 for (BasicBlock *BB : ExitingBlocks) { 2188 ICmpInst::Predicate Pred; 2189 Instruction *LHS, *RHS; 2190 2191 if (!match(BB->getTerminator(), 2192 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2193 m_BasicBlock(), m_BasicBlock()))) 2194 continue; 2195 2196 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2197 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2198 2199 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2200 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2201 } 2202 2203 // Use expand's logic which is used for reusing a previous Value in 2204 // ExprValueMap. 2205 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2206 if (VO.first) 2207 return VO; 2208 2209 // There is potential to make this significantly smarter, but this simple 2210 // heuristic already gets some interesting cases. 2211 2212 // Can not find suitable value. 2213 return None; 2214 } 2215 2216 template<typename T> static InstructionCost costAndCollectOperands( 2217 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2218 TargetTransformInfo::TargetCostKind CostKind, 2219 SmallVectorImpl<SCEVOperand> &Worklist) { 2220 2221 const T *S = cast<T>(WorkItem.S); 2222 InstructionCost Cost = 0; 2223 // Object to help map SCEV operands to expanded IR instructions. 2224 struct OperationIndices { 2225 OperationIndices(unsigned Opc, size_t min, size_t max) : 2226 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2227 unsigned Opcode; 2228 size_t MinIdx; 2229 size_t MaxIdx; 2230 }; 2231 2232 // Collect the operations of all the instructions that will be needed to 2233 // expand the SCEVExpr. This is so that when we come to cost the operands, 2234 // we know what the generated user(s) will be. 2235 SmallVector<OperationIndices, 2> Operations; 2236 2237 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2238 Operations.emplace_back(Opcode, 0, 0); 2239 return TTI.getCastInstrCost(Opcode, S->getType(), 2240 S->getOperand(0)->getType(), 2241 TTI::CastContextHint::None, CostKind); 2242 }; 2243 2244 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2245 unsigned MinIdx = 0, 2246 unsigned MaxIdx = 1) -> InstructionCost { 2247 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2248 return NumRequired * 2249 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2250 }; 2251 2252 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2253 unsigned MaxIdx) -> InstructionCost { 2254 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2255 Type *OpType = S->getOperand(0)->getType(); 2256 return NumRequired * TTI.getCmpSelInstrCost( 2257 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2258 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2259 }; 2260 2261 switch (S->getSCEVType()) { 2262 case scCouldNotCompute: 2263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2264 case scUnknown: 2265 case scConstant: 2266 return 0; 2267 case scPtrToInt: 2268 Cost = CastCost(Instruction::PtrToInt); 2269 break; 2270 case scTruncate: 2271 Cost = CastCost(Instruction::Trunc); 2272 break; 2273 case scZeroExtend: 2274 Cost = CastCost(Instruction::ZExt); 2275 break; 2276 case scSignExtend: 2277 Cost = CastCost(Instruction::SExt); 2278 break; 2279 case scUDivExpr: { 2280 unsigned Opcode = Instruction::UDiv; 2281 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2282 if (SC->getAPInt().isPowerOf2()) 2283 Opcode = Instruction::LShr; 2284 Cost = ArithCost(Opcode, 1); 2285 break; 2286 } 2287 case scAddExpr: 2288 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2289 break; 2290 case scMulExpr: 2291 // TODO: this is a very pessimistic cost modelling for Mul, 2292 // because of Bin Pow algorithm actually used by the expander, 2293 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2294 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2295 break; 2296 case scSMaxExpr: 2297 case scUMaxExpr: 2298 case scSMinExpr: 2299 case scUMinExpr: { 2300 // FIXME: should this ask the cost for Intrinsic's? 2301 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2302 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2303 break; 2304 } 2305 case scAddRecExpr: { 2306 // In this polynominal, we may have some zero operands, and we shouldn't 2307 // really charge for those. So how many non-zero coeffients are there? 2308 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2309 return !Op->isZero(); 2310 }); 2311 2312 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2313 assert(!(*std::prev(S->operands().end()))->isZero() && 2314 "Last operand should not be zero"); 2315 2316 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2317 int NumNonZeroDegreeNonOneTerms = 2318 llvm::count_if(S->operands(), [](const SCEV *Op) { 2319 auto *SConst = dyn_cast<SCEVConstant>(Op); 2320 return !SConst || SConst->getAPInt().ugt(1); 2321 }); 2322 2323 // Much like with normal add expr, the polynominal will require 2324 // one less addition than the number of it's terms. 2325 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2326 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2327 // Here, *each* one of those will require a multiplication. 2328 InstructionCost MulCost = 2329 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2330 Cost = AddCost + MulCost; 2331 2332 // What is the degree of this polynominal? 2333 int PolyDegree = S->getNumOperands() - 1; 2334 assert(PolyDegree >= 1 && "Should be at least affine."); 2335 2336 // The final term will be: 2337 // Op_{PolyDegree} * x ^ {PolyDegree} 2338 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2339 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2340 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2341 // FIXME: this is conservatively correct, but might be overly pessimistic. 2342 Cost += MulCost * (PolyDegree - 1); 2343 break; 2344 } 2345 } 2346 2347 for (auto &CostOp : Operations) { 2348 for (auto SCEVOp : enumerate(S->operands())) { 2349 // Clamp the index to account for multiple IR operations being chained. 2350 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2351 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2352 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2353 } 2354 } 2355 return Cost; 2356 } 2357 2358 bool SCEVExpander::isHighCostExpansionHelper( 2359 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2360 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2361 SmallPtrSetImpl<const SCEV *> &Processed, 2362 SmallVectorImpl<SCEVOperand> &Worklist) { 2363 if (Cost > Budget) 2364 return true; // Already run out of budget, give up. 2365 2366 const SCEV *S = WorkItem.S; 2367 // Was the cost of expansion of this expression already accounted for? 2368 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2369 return false; // We have already accounted for this expression. 2370 2371 // If we can find an existing value for this scev available at the point "At" 2372 // then consider the expression cheap. 2373 if (getRelatedExistingExpansion(S, &At, L)) 2374 return false; // Consider the expression to be free. 2375 2376 TargetTransformInfo::TargetCostKind CostKind = 2377 L->getHeader()->getParent()->hasMinSize() 2378 ? TargetTransformInfo::TCK_CodeSize 2379 : TargetTransformInfo::TCK_RecipThroughput; 2380 2381 switch (S->getSCEVType()) { 2382 case scCouldNotCompute: 2383 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2384 case scUnknown: 2385 // Assume to be zero-cost. 2386 return false; 2387 case scConstant: { 2388 // Only evalulate the costs of constants when optimizing for size. 2389 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2390 return 0; 2391 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2392 Type *Ty = S->getType(); 2393 Cost += TTI.getIntImmCostInst( 2394 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2395 return Cost > Budget; 2396 } 2397 case scTruncate: 2398 case scPtrToInt: 2399 case scZeroExtend: 2400 case scSignExtend: { 2401 Cost += 2402 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2403 return false; // Will answer upon next entry into this function. 2404 } 2405 case scUDivExpr: { 2406 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2407 // HowManyLessThans produced to compute a precise expression, rather than a 2408 // UDiv from the user's code. If we can't find a UDiv in the code with some 2409 // simple searching, we need to account for it's cost. 2410 2411 // At the beginning of this function we already tried to find existing 2412 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2413 // pattern involving division. This is just a simple search heuristic. 2414 if (getRelatedExistingExpansion( 2415 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2416 return false; // Consider it to be free. 2417 2418 Cost += 2419 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2420 return false; // Will answer upon next entry into this function. 2421 } 2422 case scAddExpr: 2423 case scMulExpr: 2424 case scUMaxExpr: 2425 case scSMaxExpr: 2426 case scUMinExpr: 2427 case scSMinExpr: { 2428 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2429 "Nary expr should have more than 1 operand."); 2430 // The simple nary expr will require one less op (or pair of ops) 2431 // than the number of it's terms. 2432 Cost += 2433 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2434 return Cost > Budget; 2435 } 2436 case scAddRecExpr: { 2437 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2438 "Polynomial should be at least linear"); 2439 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2440 WorkItem, TTI, CostKind, Worklist); 2441 return Cost > Budget; 2442 } 2443 } 2444 llvm_unreachable("Unknown SCEV kind!"); 2445 } 2446 2447 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2448 Instruction *IP) { 2449 assert(IP); 2450 switch (Pred->getKind()) { 2451 case SCEVPredicate::P_Union: 2452 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2453 case SCEVPredicate::P_Equal: 2454 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2455 case SCEVPredicate::P_Wrap: { 2456 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2457 return expandWrapPredicate(AddRecPred, IP); 2458 } 2459 } 2460 llvm_unreachable("Unknown SCEV predicate type"); 2461 } 2462 2463 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2464 Instruction *IP) { 2465 Value *Expr0 = 2466 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2467 Value *Expr1 = 2468 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2469 2470 Builder.SetInsertPoint(IP); 2471 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2472 return I; 2473 } 2474 2475 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2476 Instruction *Loc, bool Signed) { 2477 assert(AR->isAffine() && "Cannot generate RT check for " 2478 "non-affine expression"); 2479 2480 SCEVUnionPredicate Pred; 2481 const SCEV *ExitCount = 2482 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2483 2484 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2485 2486 const SCEV *Step = AR->getStepRecurrence(SE); 2487 const SCEV *Start = AR->getStart(); 2488 2489 Type *ARTy = AR->getType(); 2490 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2491 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2492 2493 // The expression {Start,+,Step} has nusw/nssw if 2494 // Step < 0, Start - |Step| * Backedge <= Start 2495 // Step >= 0, Start + |Step| * Backedge > Start 2496 // and |Step| * Backedge doesn't unsigned overflow. 2497 2498 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2499 Builder.SetInsertPoint(Loc); 2500 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2501 2502 IntegerType *Ty = 2503 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2504 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2505 2506 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2507 Value *NegStepValue = 2508 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2509 Value *StartValue = expandCodeForImpl( 2510 isa<PointerType>(ARExpandTy) ? Start 2511 : SE.getPtrToIntExpr(Start, ARExpandTy), 2512 ARExpandTy, Loc, false); 2513 2514 ConstantInt *Zero = 2515 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2516 2517 Builder.SetInsertPoint(Loc); 2518 // Compute |Step| 2519 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2520 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2521 2522 // Get the backedge taken count and truncate or extended to the AR type. 2523 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2524 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2525 Intrinsic::umul_with_overflow, Ty); 2526 2527 // Compute |Step| * Backedge 2528 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2529 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2530 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2531 2532 // Compute: 2533 // Start + |Step| * Backedge < Start 2534 // Start - |Step| * Backedge > Start 2535 Value *Add = nullptr, *Sub = nullptr; 2536 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2537 const SCEV *MulS = SE.getSCEV(MulV); 2538 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2539 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2540 ARPtrTy); 2541 Sub = Builder.CreateBitCast( 2542 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2543 } else { 2544 Add = Builder.CreateAdd(StartValue, MulV); 2545 Sub = Builder.CreateSub(StartValue, MulV); 2546 } 2547 2548 Value *EndCompareGT = Builder.CreateICmp( 2549 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2550 2551 Value *EndCompareLT = Builder.CreateICmp( 2552 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2553 2554 // Select the answer based on the sign of Step. 2555 Value *EndCheck = 2556 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2557 2558 // If the backedge taken count type is larger than the AR type, 2559 // check that we don't drop any bits by truncating it. If we are 2560 // dropping bits, then we have overflow (unless the step is zero). 2561 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2562 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2563 auto *BackedgeCheck = 2564 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2565 ConstantInt::get(Loc->getContext(), MaxVal)); 2566 BackedgeCheck = Builder.CreateAnd( 2567 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2568 2569 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2570 } 2571 2572 return Builder.CreateOr(EndCheck, OfMul); 2573 } 2574 2575 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2576 Instruction *IP) { 2577 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2578 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2579 2580 // Add a check for NUSW 2581 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2582 NUSWCheck = generateOverflowCheck(A, IP, false); 2583 2584 // Add a check for NSSW 2585 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2586 NSSWCheck = generateOverflowCheck(A, IP, true); 2587 2588 if (NUSWCheck && NSSWCheck) 2589 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2590 2591 if (NUSWCheck) 2592 return NUSWCheck; 2593 2594 if (NSSWCheck) 2595 return NSSWCheck; 2596 2597 return ConstantInt::getFalse(IP->getContext()); 2598 } 2599 2600 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2601 Instruction *IP) { 2602 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2603 Value *Check = ConstantInt::getNullValue(BoolType); 2604 2605 // Loop over all checks in this set. 2606 for (auto Pred : Union->getPredicates()) { 2607 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2608 Builder.SetInsertPoint(IP); 2609 Check = Builder.CreateOr(Check, NextCheck); 2610 } 2611 2612 return Check; 2613 } 2614 2615 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2616 assert(PreserveLCSSA); 2617 SmallVector<Instruction *, 1> ToUpdate; 2618 2619 auto *OpV = User->getOperand(OpIdx); 2620 auto *OpI = dyn_cast<Instruction>(OpV); 2621 if (!OpI) 2622 return OpV; 2623 2624 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2625 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2626 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2627 return OpV; 2628 2629 ToUpdate.push_back(OpI); 2630 SmallVector<PHINode *, 16> PHIsToRemove; 2631 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2632 for (PHINode *PN : PHIsToRemove) { 2633 if (!PN->use_empty()) 2634 continue; 2635 InsertedValues.erase(PN); 2636 InsertedPostIncValues.erase(PN); 2637 PN->eraseFromParent(); 2638 } 2639 2640 return User->getOperand(OpIdx); 2641 } 2642 2643 namespace { 2644 // Search for a SCEV subexpression that is not safe to expand. Any expression 2645 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2646 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2647 // instruction, but the important thing is that we prove the denominator is 2648 // nonzero before expansion. 2649 // 2650 // IVUsers already checks that IV-derived expressions are safe. So this check is 2651 // only needed when the expression includes some subexpression that is not IV 2652 // derived. 2653 // 2654 // Currently, we only allow division by a nonzero constant here. If this is 2655 // inadequate, we could easily allow division by SCEVUnknown by using 2656 // ValueTracking to check isKnownNonZero(). 2657 // 2658 // We cannot generally expand recurrences unless the step dominates the loop 2659 // header. The expander handles the special case of affine recurrences by 2660 // scaling the recurrence outside the loop, but this technique isn't generally 2661 // applicable. Expanding a nested recurrence outside a loop requires computing 2662 // binomial coefficients. This could be done, but the recurrence has to be in a 2663 // perfectly reduced form, which can't be guaranteed. 2664 struct SCEVFindUnsafe { 2665 ScalarEvolution &SE; 2666 bool IsUnsafe; 2667 2668 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2669 2670 bool follow(const SCEV *S) { 2671 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2672 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2673 if (!SC || SC->getValue()->isZero()) { 2674 IsUnsafe = true; 2675 return false; 2676 } 2677 } 2678 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2679 const SCEV *Step = AR->getStepRecurrence(SE); 2680 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2681 IsUnsafe = true; 2682 return false; 2683 } 2684 } 2685 return true; 2686 } 2687 bool isDone() const { return IsUnsafe; } 2688 }; 2689 } 2690 2691 namespace llvm { 2692 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2693 SCEVFindUnsafe Search(SE); 2694 visitAll(S, Search); 2695 return !Search.IsUnsafe; 2696 } 2697 2698 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2699 ScalarEvolution &SE) { 2700 if (!isSafeToExpand(S, SE)) 2701 return false; 2702 // We have to prove that the expanded site of S dominates InsertionPoint. 2703 // This is easy when not in the same block, but hard when S is an instruction 2704 // to be expanded somewhere inside the same block as our insertion point. 2705 // What we really need here is something analogous to an OrderedBasicBlock, 2706 // but for the moment, we paper over the problem by handling two common and 2707 // cheap to check cases. 2708 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2709 return true; 2710 if (SE.dominates(S, InsertionPoint->getParent())) { 2711 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2712 return true; 2713 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2714 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2715 return true; 2716 } 2717 return false; 2718 } 2719 2720 void SCEVExpanderCleaner::cleanup() { 2721 // Result is used, nothing to remove. 2722 if (ResultUsed) 2723 return; 2724 2725 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2726 #ifndef NDEBUG 2727 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2728 InsertedInstructions.end()); 2729 (void)InsertedSet; 2730 #endif 2731 // Remove sets with value handles. 2732 Expander.clear(); 2733 2734 // Sort so that earlier instructions do not dominate later instructions. 2735 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2736 return DT.dominates(B, A); 2737 }); 2738 // Remove all inserted instructions. 2739 for (Instruction *I : InsertedInstructions) { 2740 2741 #ifndef NDEBUG 2742 assert(all_of(I->users(), 2743 [&InsertedSet](Value *U) { 2744 return InsertedSet.contains(cast<Instruction>(U)); 2745 }) && 2746 "removed instruction should only be used by instructions inserted " 2747 "during expansion"); 2748 #endif 2749 assert(!I->getType()->isVoidTy() && 2750 "inserted instruction should have non-void types"); 2751 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2752 I->eraseFromParent(); 2753 } 2754 } 2755 } 2756