1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 34 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 35 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 36 "controls the budget that is considered cheap (default = 4)")); 37 38 using namespace PatternMatch; 39 40 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 41 /// reusing an existing cast if a suitable one exists, moving an existing 42 /// cast if a suitable one exists but isn't in the right place, or 43 /// creating a new one. 44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 45 Instruction::CastOps Op, 46 BasicBlock::iterator IP) { 47 // This function must be called with the builder having a valid insertion 48 // point. It doesn't need to be the actual IP where the uses of the returned 49 // cast will be added, but it must dominate such IP. 50 // We use this precondition to produce a cast that will dominate all its 51 // uses. In particular, this is crucial for the case where the builder's 52 // insertion point *is* the point where we were asked to put the cast. 53 // Since we don't know the builder's insertion point is actually 54 // where the uses will be added (only that it dominates it), we are 55 // not allowed to move it. 56 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 57 58 Instruction *Ret = nullptr; 59 60 // Check to see if there is already a cast! 61 for (User *U : V->users()) 62 if (U->getType() == Ty) 63 if (CastInst *CI = dyn_cast<CastInst>(U)) 64 if (CI->getOpcode() == Op) { 65 // If the cast isn't where we want it, create a new cast at IP. 66 // Likewise, do not reuse a cast at BIP because it must dominate 67 // instructions that might be inserted before BIP. 68 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 69 // Create a new cast, and leave the old cast in place in case 70 // it is being used as an insert point. 71 Ret = CastInst::Create(Op, V, Ty, "", &*IP); 72 Ret->takeName(CI); 73 CI->replaceAllUsesWith(Ret); 74 break; 75 } 76 Ret = CI; 77 break; 78 } 79 80 // Create a new cast. 81 if (!Ret) 82 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 83 84 // We assert at the end of the function since IP might point to an 85 // instruction with different dominance properties than a cast 86 // (an invoke for example) and not dominate BIP (but the cast does). 87 assert(SE.DT.dominates(Ret, &*BIP)); 88 89 rememberInstruction(Ret); 90 return Ret; 91 } 92 93 static BasicBlock::iterator findInsertPointAfter(Instruction *I, 94 BasicBlock *MustDominate) { 95 BasicBlock::iterator IP = ++I->getIterator(); 96 if (auto *II = dyn_cast<InvokeInst>(I)) 97 IP = II->getNormalDest()->begin(); 98 99 while (isa<PHINode>(IP)) 100 ++IP; 101 102 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 103 ++IP; 104 } else if (isa<CatchSwitchInst>(IP)) { 105 IP = MustDominate->getFirstInsertionPt(); 106 } else { 107 assert(!IP->isEHPad() && "unexpected eh pad!"); 108 } 109 110 return IP; 111 } 112 113 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 114 /// which must be possible with a noop cast, doing what we can to share 115 /// the casts. 116 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 117 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 118 assert((Op == Instruction::BitCast || 119 Op == Instruction::PtrToInt || 120 Op == Instruction::IntToPtr) && 121 "InsertNoopCastOfTo cannot perform non-noop casts!"); 122 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 123 "InsertNoopCastOfTo cannot change sizes!"); 124 125 // Short-circuit unnecessary bitcasts. 126 if (Op == Instruction::BitCast) { 127 if (V->getType() == Ty) 128 return V; 129 if (CastInst *CI = dyn_cast<CastInst>(V)) { 130 if (CI->getOperand(0)->getType() == Ty) 131 return CI->getOperand(0); 132 } 133 } 134 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 135 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 136 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 137 if (CastInst *CI = dyn_cast<CastInst>(V)) 138 if ((CI->getOpcode() == Instruction::PtrToInt || 139 CI->getOpcode() == Instruction::IntToPtr) && 140 SE.getTypeSizeInBits(CI->getType()) == 141 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 142 return CI->getOperand(0); 143 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 144 if ((CE->getOpcode() == Instruction::PtrToInt || 145 CE->getOpcode() == Instruction::IntToPtr) && 146 SE.getTypeSizeInBits(CE->getType()) == 147 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 148 return CE->getOperand(0); 149 } 150 151 // Fold a cast of a constant. 152 if (Constant *C = dyn_cast<Constant>(V)) 153 return ConstantExpr::getCast(Op, C, Ty); 154 155 // Cast the argument at the beginning of the entry block, after 156 // any bitcasts of other arguments. 157 if (Argument *A = dyn_cast<Argument>(V)) { 158 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 159 while ((isa<BitCastInst>(IP) && 160 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 161 cast<BitCastInst>(IP)->getOperand(0) != A) || 162 isa<DbgInfoIntrinsic>(IP)) 163 ++IP; 164 return ReuseOrCreateCast(A, Ty, Op, IP); 165 } 166 167 // Cast the instruction immediately after the instruction. 168 Instruction *I = cast<Instruction>(V); 169 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); 170 return ReuseOrCreateCast(I, Ty, Op, IP); 171 } 172 173 /// InsertBinop - Insert the specified binary operator, doing a small amount 174 /// of work to avoid inserting an obviously redundant operation, and hoisting 175 /// to an outer loop when the opportunity is there and it is safe. 176 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 177 Value *LHS, Value *RHS, 178 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 179 // Fold a binop with constant operands. 180 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 181 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 182 return ConstantExpr::get(Opcode, CLHS, CRHS); 183 184 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 185 unsigned ScanLimit = 6; 186 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 187 // Scanning starts from the last instruction before the insertion point. 188 BasicBlock::iterator IP = Builder.GetInsertPoint(); 189 if (IP != BlockBegin) { 190 --IP; 191 for (; ScanLimit; --IP, --ScanLimit) { 192 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 193 // generated code. 194 if (isa<DbgInfoIntrinsic>(IP)) 195 ScanLimit++; 196 197 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 198 // Ensure that no-wrap flags match. 199 if (isa<OverflowingBinaryOperator>(I)) { 200 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 201 return true; 202 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 203 return true; 204 } 205 // Conservatively, do not use any instruction which has any of exact 206 // flags installed. 207 if (isa<PossiblyExactOperator>(I) && I->isExact()) 208 return true; 209 return false; 210 }; 211 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 212 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 213 return &*IP; 214 if (IP == BlockBegin) break; 215 } 216 } 217 218 // Save the original insertion point so we can restore it when we're done. 219 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 220 SCEVInsertPointGuard Guard(Builder, this); 221 222 if (IsSafeToHoist) { 223 // Move the insertion point out of as many loops as we can. 224 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 225 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 226 BasicBlock *Preheader = L->getLoopPreheader(); 227 if (!Preheader) break; 228 229 // Ok, move up a level. 230 Builder.SetInsertPoint(Preheader->getTerminator()); 231 } 232 } 233 234 // If we haven't found this binop, insert it. 235 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 236 BO->setDebugLoc(Loc); 237 if (Flags & SCEV::FlagNUW) 238 BO->setHasNoUnsignedWrap(); 239 if (Flags & SCEV::FlagNSW) 240 BO->setHasNoSignedWrap(); 241 rememberInstruction(BO); 242 243 return BO; 244 } 245 246 /// FactorOutConstant - Test if S is divisible by Factor, using signed 247 /// division. If so, update S with Factor divided out and return true. 248 /// S need not be evenly divisible if a reasonable remainder can be 249 /// computed. 250 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 251 const SCEV *Factor, ScalarEvolution &SE, 252 const DataLayout &DL) { 253 // Everything is divisible by one. 254 if (Factor->isOne()) 255 return true; 256 257 // x/x == 1. 258 if (S == Factor) { 259 S = SE.getConstant(S->getType(), 1); 260 return true; 261 } 262 263 // For a Constant, check for a multiple of the given factor. 264 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 265 // 0/x == 0. 266 if (C->isZero()) 267 return true; 268 // Check for divisibility. 269 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 270 ConstantInt *CI = 271 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 272 // If the quotient is zero and the remainder is non-zero, reject 273 // the value at this scale. It will be considered for subsequent 274 // smaller scales. 275 if (!CI->isZero()) { 276 const SCEV *Div = SE.getConstant(CI); 277 S = Div; 278 Remainder = SE.getAddExpr( 279 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 280 return true; 281 } 282 } 283 } 284 285 // In a Mul, check if there is a constant operand which is a multiple 286 // of the given factor. 287 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 288 // Size is known, check if there is a constant operand which is a multiple 289 // of the given factor. If so, we can factor it. 290 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 291 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 292 if (!C->getAPInt().srem(FC->getAPInt())) { 293 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 294 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 295 S = SE.getMulExpr(NewMulOps); 296 return true; 297 } 298 } 299 300 // In an AddRec, check if both start and step are divisible. 301 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 302 const SCEV *Step = A->getStepRecurrence(SE); 303 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 304 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 305 return false; 306 if (!StepRem->isZero()) 307 return false; 308 const SCEV *Start = A->getStart(); 309 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 310 return false; 311 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 312 A->getNoWrapFlags(SCEV::FlagNW)); 313 return true; 314 } 315 316 return false; 317 } 318 319 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 320 /// is the number of SCEVAddRecExprs present, which are kept at the end of 321 /// the list. 322 /// 323 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 324 Type *Ty, 325 ScalarEvolution &SE) { 326 unsigned NumAddRecs = 0; 327 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 328 ++NumAddRecs; 329 // Group Ops into non-addrecs and addrecs. 330 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 331 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 332 // Let ScalarEvolution sort and simplify the non-addrecs list. 333 const SCEV *Sum = NoAddRecs.empty() ? 334 SE.getConstant(Ty, 0) : 335 SE.getAddExpr(NoAddRecs); 336 // If it returned an add, use the operands. Otherwise it simplified 337 // the sum into a single value, so just use that. 338 Ops.clear(); 339 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 340 Ops.append(Add->op_begin(), Add->op_end()); 341 else if (!Sum->isZero()) 342 Ops.push_back(Sum); 343 // Then append the addrecs. 344 Ops.append(AddRecs.begin(), AddRecs.end()); 345 } 346 347 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 348 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 349 /// This helps expose more opportunities for folding parts of the expressions 350 /// into GEP indices. 351 /// 352 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 353 Type *Ty, 354 ScalarEvolution &SE) { 355 // Find the addrecs. 356 SmallVector<const SCEV *, 8> AddRecs; 357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 358 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 359 const SCEV *Start = A->getStart(); 360 if (Start->isZero()) break; 361 const SCEV *Zero = SE.getConstant(Ty, 0); 362 AddRecs.push_back(SE.getAddRecExpr(Zero, 363 A->getStepRecurrence(SE), 364 A->getLoop(), 365 A->getNoWrapFlags(SCEV::FlagNW))); 366 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 367 Ops[i] = Zero; 368 Ops.append(Add->op_begin(), Add->op_end()); 369 e += Add->getNumOperands(); 370 } else { 371 Ops[i] = Start; 372 } 373 } 374 if (!AddRecs.empty()) { 375 // Add the addrecs onto the end of the list. 376 Ops.append(AddRecs.begin(), AddRecs.end()); 377 // Resort the operand list, moving any constants to the front. 378 SimplifyAddOperands(Ops, Ty, SE); 379 } 380 } 381 382 /// expandAddToGEP - Expand an addition expression with a pointer type into 383 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 384 /// BasicAliasAnalysis and other passes analyze the result. See the rules 385 /// for getelementptr vs. inttoptr in 386 /// http://llvm.org/docs/LangRef.html#pointeraliasing 387 /// for details. 388 /// 389 /// Design note: The correctness of using getelementptr here depends on 390 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 391 /// they may introduce pointer arithmetic which may not be safely converted 392 /// into getelementptr. 393 /// 394 /// Design note: It might seem desirable for this function to be more 395 /// loop-aware. If some of the indices are loop-invariant while others 396 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 397 /// loop-invariant portions of the overall computation outside the loop. 398 /// However, there are a few reasons this is not done here. Hoisting simple 399 /// arithmetic is a low-level optimization that often isn't very 400 /// important until late in the optimization process. In fact, passes 401 /// like InstructionCombining will combine GEPs, even if it means 402 /// pushing loop-invariant computation down into loops, so even if the 403 /// GEPs were split here, the work would quickly be undone. The 404 /// LoopStrengthReduction pass, which is usually run quite late (and 405 /// after the last InstructionCombining pass), takes care of hoisting 406 /// loop-invariant portions of expressions, after considering what 407 /// can be folded using target addressing modes. 408 /// 409 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 410 const SCEV *const *op_end, 411 PointerType *PTy, 412 Type *Ty, 413 Value *V) { 414 Type *OriginalElTy = PTy->getElementType(); 415 Type *ElTy = OriginalElTy; 416 SmallVector<Value *, 4> GepIndices; 417 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 418 bool AnyNonZeroIndices = false; 419 420 // Split AddRecs up into parts as either of the parts may be usable 421 // without the other. 422 SplitAddRecs(Ops, Ty, SE); 423 424 Type *IntIdxTy = DL.getIndexType(PTy); 425 426 // Descend down the pointer's type and attempt to convert the other 427 // operands into GEP indices, at each level. The first index in a GEP 428 // indexes into the array implied by the pointer operand; the rest of 429 // the indices index into the element or field type selected by the 430 // preceding index. 431 for (;;) { 432 // If the scale size is not 0, attempt to factor out a scale for 433 // array indexing. 434 SmallVector<const SCEV *, 8> ScaledOps; 435 if (ElTy->isSized()) { 436 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 437 if (!ElSize->isZero()) { 438 SmallVector<const SCEV *, 8> NewOps; 439 for (const SCEV *Op : Ops) { 440 const SCEV *Remainder = SE.getConstant(Ty, 0); 441 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 442 // Op now has ElSize factored out. 443 ScaledOps.push_back(Op); 444 if (!Remainder->isZero()) 445 NewOps.push_back(Remainder); 446 AnyNonZeroIndices = true; 447 } else { 448 // The operand was not divisible, so add it to the list of operands 449 // we'll scan next iteration. 450 NewOps.push_back(Op); 451 } 452 } 453 // If we made any changes, update Ops. 454 if (!ScaledOps.empty()) { 455 Ops = NewOps; 456 SimplifyAddOperands(Ops, Ty, SE); 457 } 458 } 459 } 460 461 // Record the scaled array index for this level of the type. If 462 // we didn't find any operands that could be factored, tentatively 463 // assume that element zero was selected (since the zero offset 464 // would obviously be folded away). 465 Value *Scaled = ScaledOps.empty() ? 466 Constant::getNullValue(Ty) : 467 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 468 GepIndices.push_back(Scaled); 469 470 // Collect struct field index operands. 471 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 472 bool FoundFieldNo = false; 473 // An empty struct has no fields. 474 if (STy->getNumElements() == 0) break; 475 // Field offsets are known. See if a constant offset falls within any of 476 // the struct fields. 477 if (Ops.empty()) 478 break; 479 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 480 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 481 const StructLayout &SL = *DL.getStructLayout(STy); 482 uint64_t FullOffset = C->getValue()->getZExtValue(); 483 if (FullOffset < SL.getSizeInBytes()) { 484 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 485 GepIndices.push_back( 486 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 487 ElTy = STy->getTypeAtIndex(ElIdx); 488 Ops[0] = 489 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 490 AnyNonZeroIndices = true; 491 FoundFieldNo = true; 492 } 493 } 494 // If no struct field offsets were found, tentatively assume that 495 // field zero was selected (since the zero offset would obviously 496 // be folded away). 497 if (!FoundFieldNo) { 498 ElTy = STy->getTypeAtIndex(0u); 499 GepIndices.push_back( 500 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 501 } 502 } 503 504 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 505 ElTy = ATy->getElementType(); 506 else 507 break; 508 } 509 510 // If none of the operands were convertible to proper GEP indices, cast 511 // the base to i8* and do an ugly getelementptr with that. It's still 512 // better than ptrtoint+arithmetic+inttoptr at least. 513 if (!AnyNonZeroIndices) { 514 // Cast the base to i8*. 515 V = InsertNoopCastOfTo(V, 516 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 517 518 assert(!isa<Instruction>(V) || 519 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 520 521 // Expand the operands for a plain byte offset. 522 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 523 524 // Fold a GEP with constant operands. 525 if (Constant *CLHS = dyn_cast<Constant>(V)) 526 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 527 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 528 CLHS, CRHS); 529 530 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 531 unsigned ScanLimit = 6; 532 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 533 // Scanning starts from the last instruction before the insertion point. 534 BasicBlock::iterator IP = Builder.GetInsertPoint(); 535 if (IP != BlockBegin) { 536 --IP; 537 for (; ScanLimit; --IP, --ScanLimit) { 538 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 539 // generated code. 540 if (isa<DbgInfoIntrinsic>(IP)) 541 ScanLimit++; 542 if (IP->getOpcode() == Instruction::GetElementPtr && 543 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 544 return &*IP; 545 if (IP == BlockBegin) break; 546 } 547 } 548 549 // Save the original insertion point so we can restore it when we're done. 550 SCEVInsertPointGuard Guard(Builder, this); 551 552 // Move the insertion point out of as many loops as we can. 553 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 554 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 555 BasicBlock *Preheader = L->getLoopPreheader(); 556 if (!Preheader) break; 557 558 // Ok, move up a level. 559 Builder.SetInsertPoint(Preheader->getTerminator()); 560 } 561 562 // Emit a GEP. 563 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 564 rememberInstruction(GEP); 565 566 return GEP; 567 } 568 569 { 570 SCEVInsertPointGuard Guard(Builder, this); 571 572 // Move the insertion point out of as many loops as we can. 573 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 574 if (!L->isLoopInvariant(V)) break; 575 576 bool AnyIndexNotLoopInvariant = any_of( 577 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 578 579 if (AnyIndexNotLoopInvariant) 580 break; 581 582 BasicBlock *Preheader = L->getLoopPreheader(); 583 if (!Preheader) break; 584 585 // Ok, move up a level. 586 Builder.SetInsertPoint(Preheader->getTerminator()); 587 } 588 589 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 590 // because ScalarEvolution may have changed the address arithmetic to 591 // compute a value which is beyond the end of the allocated object. 592 Value *Casted = V; 593 if (V->getType() != PTy) 594 Casted = InsertNoopCastOfTo(Casted, PTy); 595 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 596 Ops.push_back(SE.getUnknown(GEP)); 597 rememberInstruction(GEP); 598 } 599 600 return expand(SE.getAddExpr(Ops)); 601 } 602 603 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 604 Value *V) { 605 const SCEV *const Ops[1] = {Op}; 606 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 607 } 608 609 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 610 /// SCEV expansion. If they are nested, this is the most nested. If they are 611 /// neighboring, pick the later. 612 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 613 DominatorTree &DT) { 614 if (!A) return B; 615 if (!B) return A; 616 if (A->contains(B)) return B; 617 if (B->contains(A)) return A; 618 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 619 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 620 return A; // Arbitrarily break the tie. 621 } 622 623 /// getRelevantLoop - Get the most relevant loop associated with the given 624 /// expression, according to PickMostRelevantLoop. 625 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 626 // Test whether we've already computed the most relevant loop for this SCEV. 627 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 628 if (!Pair.second) 629 return Pair.first->second; 630 631 if (isa<SCEVConstant>(S)) 632 // A constant has no relevant loops. 633 return nullptr; 634 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 635 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 636 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 637 // A non-instruction has no relevant loops. 638 return nullptr; 639 } 640 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 641 const Loop *L = nullptr; 642 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 643 L = AR->getLoop(); 644 for (const SCEV *Op : N->operands()) 645 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 646 return RelevantLoops[N] = L; 647 } 648 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 649 const Loop *Result = getRelevantLoop(C->getOperand()); 650 return RelevantLoops[C] = Result; 651 } 652 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 653 const Loop *Result = PickMostRelevantLoop( 654 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 655 return RelevantLoops[D] = Result; 656 } 657 llvm_unreachable("Unexpected SCEV type!"); 658 } 659 660 namespace { 661 662 /// LoopCompare - Compare loops by PickMostRelevantLoop. 663 class LoopCompare { 664 DominatorTree &DT; 665 public: 666 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 667 668 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 669 std::pair<const Loop *, const SCEV *> RHS) const { 670 // Keep pointer operands sorted at the end. 671 if (LHS.second->getType()->isPointerTy() != 672 RHS.second->getType()->isPointerTy()) 673 return LHS.second->getType()->isPointerTy(); 674 675 // Compare loops with PickMostRelevantLoop. 676 if (LHS.first != RHS.first) 677 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 678 679 // If one operand is a non-constant negative and the other is not, 680 // put the non-constant negative on the right so that a sub can 681 // be used instead of a negate and add. 682 if (LHS.second->isNonConstantNegative()) { 683 if (!RHS.second->isNonConstantNegative()) 684 return false; 685 } else if (RHS.second->isNonConstantNegative()) 686 return true; 687 688 // Otherwise they are equivalent according to this comparison. 689 return false; 690 } 691 }; 692 693 } 694 695 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 696 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 697 698 // Collect all the add operands in a loop, along with their associated loops. 699 // Iterate in reverse so that constants are emitted last, all else equal, and 700 // so that pointer operands are inserted first, which the code below relies on 701 // to form more involved GEPs. 702 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 703 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 704 E(S->op_begin()); I != E; ++I) 705 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 706 707 // Sort by loop. Use a stable sort so that constants follow non-constants and 708 // pointer operands precede non-pointer operands. 709 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 710 711 // Emit instructions to add all the operands. Hoist as much as possible 712 // out of loops, and form meaningful getelementptrs where possible. 713 Value *Sum = nullptr; 714 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 715 const Loop *CurLoop = I->first; 716 const SCEV *Op = I->second; 717 if (!Sum) { 718 // This is the first operand. Just expand it. 719 Sum = expand(Op); 720 ++I; 721 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 722 // The running sum expression is a pointer. Try to form a getelementptr 723 // at this level with that as the base. 724 SmallVector<const SCEV *, 4> NewOps; 725 for (; I != E && I->first == CurLoop; ++I) { 726 // If the operand is SCEVUnknown and not instructions, peek through 727 // it, to enable more of it to be folded into the GEP. 728 const SCEV *X = I->second; 729 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 730 if (!isa<Instruction>(U->getValue())) 731 X = SE.getSCEV(U->getValue()); 732 NewOps.push_back(X); 733 } 734 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 735 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 736 // The running sum is an integer, and there's a pointer at this level. 737 // Try to form a getelementptr. If the running sum is instructions, 738 // use a SCEVUnknown to avoid re-analyzing them. 739 SmallVector<const SCEV *, 4> NewOps; 740 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 741 SE.getSCEV(Sum)); 742 for (++I; I != E && I->first == CurLoop; ++I) 743 NewOps.push_back(I->second); 744 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 745 } else if (Op->isNonConstantNegative()) { 746 // Instead of doing a negate and add, just do a subtract. 747 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 748 Sum = InsertNoopCastOfTo(Sum, Ty); 749 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 750 /*IsSafeToHoist*/ true); 751 ++I; 752 } else { 753 // A simple add. 754 Value *W = expandCodeFor(Op, Ty); 755 Sum = InsertNoopCastOfTo(Sum, Ty); 756 // Canonicalize a constant to the RHS. 757 if (isa<Constant>(Sum)) std::swap(Sum, W); 758 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 759 /*IsSafeToHoist*/ true); 760 ++I; 761 } 762 } 763 764 return Sum; 765 } 766 767 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 768 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 769 770 // Collect all the mul operands in a loop, along with their associated loops. 771 // Iterate in reverse so that constants are emitted last, all else equal. 772 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 773 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 774 E(S->op_begin()); I != E; ++I) 775 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 776 777 // Sort by loop. Use a stable sort so that constants follow non-constants. 778 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 779 780 // Emit instructions to mul all the operands. Hoist as much as possible 781 // out of loops. 782 Value *Prod = nullptr; 783 auto I = OpsAndLoops.begin(); 784 785 // Expand the calculation of X pow N in the following manner: 786 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 787 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 788 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 789 auto E = I; 790 // Calculate how many times the same operand from the same loop is included 791 // into this power. 792 uint64_t Exponent = 0; 793 const uint64_t MaxExponent = UINT64_MAX >> 1; 794 // No one sane will ever try to calculate such huge exponents, but if we 795 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 796 // below when the power of 2 exceeds our Exponent, and we want it to be 797 // 1u << 31 at most to not deal with unsigned overflow. 798 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 799 ++Exponent; 800 ++E; 801 } 802 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 803 804 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 805 // that are needed into the result. 806 Value *P = expandCodeFor(I->second, Ty); 807 Value *Result = nullptr; 808 if (Exponent & 1) 809 Result = P; 810 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 811 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 812 /*IsSafeToHoist*/ true); 813 if (Exponent & BinExp) 814 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 815 SCEV::FlagAnyWrap, 816 /*IsSafeToHoist*/ true) 817 : P; 818 } 819 820 I = E; 821 assert(Result && "Nothing was expanded?"); 822 return Result; 823 }; 824 825 while (I != OpsAndLoops.end()) { 826 if (!Prod) { 827 // This is the first operand. Just expand it. 828 Prod = ExpandOpBinPowN(); 829 } else if (I->second->isAllOnesValue()) { 830 // Instead of doing a multiply by negative one, just do a negate. 831 Prod = InsertNoopCastOfTo(Prod, Ty); 832 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 833 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 834 ++I; 835 } else { 836 // A simple mul. 837 Value *W = ExpandOpBinPowN(); 838 Prod = InsertNoopCastOfTo(Prod, Ty); 839 // Canonicalize a constant to the RHS. 840 if (isa<Constant>(Prod)) std::swap(Prod, W); 841 const APInt *RHS; 842 if (match(W, m_Power2(RHS))) { 843 // Canonicalize Prod*(1<<C) to Prod<<C. 844 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 845 auto NWFlags = S->getNoWrapFlags(); 846 // clear nsw flag if shl will produce poison value. 847 if (RHS->logBase2() == RHS->getBitWidth() - 1) 848 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 849 Prod = InsertBinop(Instruction::Shl, Prod, 850 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 851 /*IsSafeToHoist*/ true); 852 } else { 853 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 854 /*IsSafeToHoist*/ true); 855 } 856 } 857 } 858 859 return Prod; 860 } 861 862 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 863 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 864 865 Value *LHS = expandCodeFor(S->getLHS(), Ty); 866 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 867 const APInt &RHS = SC->getAPInt(); 868 if (RHS.isPowerOf2()) 869 return InsertBinop(Instruction::LShr, LHS, 870 ConstantInt::get(Ty, RHS.logBase2()), 871 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 872 } 873 874 Value *RHS = expandCodeFor(S->getRHS(), Ty); 875 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 876 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 877 } 878 879 /// Move parts of Base into Rest to leave Base with the minimal 880 /// expression that provides a pointer operand suitable for a 881 /// GEP expansion. 882 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 883 ScalarEvolution &SE) { 884 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 885 Base = A->getStart(); 886 Rest = SE.getAddExpr(Rest, 887 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 888 A->getStepRecurrence(SE), 889 A->getLoop(), 890 A->getNoWrapFlags(SCEV::FlagNW))); 891 } 892 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 893 Base = A->getOperand(A->getNumOperands()-1); 894 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 895 NewAddOps.back() = Rest; 896 Rest = SE.getAddExpr(NewAddOps); 897 ExposePointerBase(Base, Rest, SE); 898 } 899 } 900 901 /// Determine if this is a well-behaved chain of instructions leading back to 902 /// the PHI. If so, it may be reused by expanded expressions. 903 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 904 const Loop *L) { 905 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 906 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 907 return false; 908 // If any of the operands don't dominate the insert position, bail. 909 // Addrec operands are always loop-invariant, so this can only happen 910 // if there are instructions which haven't been hoisted. 911 if (L == IVIncInsertLoop) { 912 for (User::op_iterator OI = IncV->op_begin()+1, 913 OE = IncV->op_end(); OI != OE; ++OI) 914 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 915 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 916 return false; 917 } 918 // Advance to the next instruction. 919 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 920 if (!IncV) 921 return false; 922 923 if (IncV->mayHaveSideEffects()) 924 return false; 925 926 if (IncV == PN) 927 return true; 928 929 return isNormalAddRecExprPHI(PN, IncV, L); 930 } 931 932 /// getIVIncOperand returns an induction variable increment's induction 933 /// variable operand. 934 /// 935 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 936 /// operands dominate InsertPos. 937 /// 938 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 939 /// simple patterns generated by getAddRecExprPHILiterally and 940 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 941 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 942 Instruction *InsertPos, 943 bool allowScale) { 944 if (IncV == InsertPos) 945 return nullptr; 946 947 switch (IncV->getOpcode()) { 948 default: 949 return nullptr; 950 // Check for a simple Add/Sub or GEP of a loop invariant step. 951 case Instruction::Add: 952 case Instruction::Sub: { 953 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 954 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 955 return dyn_cast<Instruction>(IncV->getOperand(0)); 956 return nullptr; 957 } 958 case Instruction::BitCast: 959 return dyn_cast<Instruction>(IncV->getOperand(0)); 960 case Instruction::GetElementPtr: 961 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 962 if (isa<Constant>(*I)) 963 continue; 964 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 965 if (!SE.DT.dominates(OInst, InsertPos)) 966 return nullptr; 967 } 968 if (allowScale) { 969 // allow any kind of GEP as long as it can be hoisted. 970 continue; 971 } 972 // This must be a pointer addition of constants (pretty), which is already 973 // handled, or some number of address-size elements (ugly). Ugly geps 974 // have 2 operands. i1* is used by the expander to represent an 975 // address-size element. 976 if (IncV->getNumOperands() != 2) 977 return nullptr; 978 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 979 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 980 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 981 return nullptr; 982 break; 983 } 984 return dyn_cast<Instruction>(IncV->getOperand(0)); 985 } 986 } 987 988 /// If the insert point of the current builder or any of the builders on the 989 /// stack of saved builders has 'I' as its insert point, update it to point to 990 /// the instruction after 'I'. This is intended to be used when the instruction 991 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 992 /// different block, the inconsistent insert point (with a mismatched 993 /// Instruction and Block) can lead to an instruction being inserted in a block 994 /// other than its parent. 995 void SCEVExpander::fixupInsertPoints(Instruction *I) { 996 BasicBlock::iterator It(*I); 997 BasicBlock::iterator NewInsertPt = std::next(It); 998 if (Builder.GetInsertPoint() == It) 999 Builder.SetInsertPoint(&*NewInsertPt); 1000 for (auto *InsertPtGuard : InsertPointGuards) 1001 if (InsertPtGuard->GetInsertPoint() == It) 1002 InsertPtGuard->SetInsertPoint(NewInsertPt); 1003 } 1004 1005 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1006 /// it available to other uses in this loop. Recursively hoist any operands, 1007 /// until we reach a value that dominates InsertPos. 1008 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1009 if (SE.DT.dominates(IncV, InsertPos)) 1010 return true; 1011 1012 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1013 // its existing users. 1014 if (isa<PHINode>(InsertPos) || 1015 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1016 return false; 1017 1018 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1019 return false; 1020 1021 // Check that the chain of IV operands leading back to Phi can be hoisted. 1022 SmallVector<Instruction*, 4> IVIncs; 1023 for(;;) { 1024 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1025 if (!Oper) 1026 return false; 1027 // IncV is safe to hoist. 1028 IVIncs.push_back(IncV); 1029 IncV = Oper; 1030 if (SE.DT.dominates(IncV, InsertPos)) 1031 break; 1032 } 1033 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1034 fixupInsertPoints(*I); 1035 (*I)->moveBefore(InsertPos); 1036 } 1037 return true; 1038 } 1039 1040 /// Determine if this cyclic phi is in a form that would have been generated by 1041 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1042 /// as it is in a low-cost form, for example, no implied multiplication. This 1043 /// should match any patterns generated by getAddRecExprPHILiterally and 1044 /// expandAddtoGEP. 1045 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1046 const Loop *L) { 1047 for(Instruction *IVOper = IncV; 1048 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1049 /*allowScale=*/false));) { 1050 if (IVOper == PN) 1051 return true; 1052 } 1053 return false; 1054 } 1055 1056 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1057 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1058 /// need to materialize IV increments elsewhere to handle difficult situations. 1059 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1060 Type *ExpandTy, Type *IntTy, 1061 bool useSubtract) { 1062 Value *IncV; 1063 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1064 if (ExpandTy->isPointerTy()) { 1065 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1066 // If the step isn't constant, don't use an implicitly scaled GEP, because 1067 // that would require a multiply inside the loop. 1068 if (!isa<ConstantInt>(StepV)) 1069 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1070 GEPPtrTy->getAddressSpace()); 1071 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1072 if (IncV->getType() != PN->getType()) { 1073 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1074 rememberInstruction(IncV); 1075 } 1076 } else { 1077 IncV = useSubtract ? 1078 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1079 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1080 rememberInstruction(IncV); 1081 } 1082 return IncV; 1083 } 1084 1085 /// Hoist the addrec instruction chain rooted in the loop phi above the 1086 /// position. This routine assumes that this is possible (has been checked). 1087 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1088 Instruction *Pos, PHINode *LoopPhi) { 1089 do { 1090 if (DT->dominates(InstToHoist, Pos)) 1091 break; 1092 // Make sure the increment is where we want it. But don't move it 1093 // down past a potential existing post-inc user. 1094 fixupInsertPoints(InstToHoist); 1095 InstToHoist->moveBefore(Pos); 1096 Pos = InstToHoist; 1097 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1098 } while (InstToHoist != LoopPhi); 1099 } 1100 1101 /// Check whether we can cheaply express the requested SCEV in terms of 1102 /// the available PHI SCEV by truncation and/or inversion of the step. 1103 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1104 const SCEVAddRecExpr *Phi, 1105 const SCEVAddRecExpr *Requested, 1106 bool &InvertStep) { 1107 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1108 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1109 1110 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1111 return false; 1112 1113 // Try truncate it if necessary. 1114 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1115 if (!Phi) 1116 return false; 1117 1118 // Check whether truncation will help. 1119 if (Phi == Requested) { 1120 InvertStep = false; 1121 return true; 1122 } 1123 1124 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1125 if (SE.getAddExpr(Requested->getStart(), 1126 SE.getNegativeSCEV(Requested)) == Phi) { 1127 InvertStep = true; 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1135 if (!isa<IntegerType>(AR->getType())) 1136 return false; 1137 1138 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1139 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1140 const SCEV *Step = AR->getStepRecurrence(SE); 1141 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1142 SE.getSignExtendExpr(AR, WideTy)); 1143 const SCEV *ExtendAfterOp = 1144 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1145 return ExtendAfterOp == OpAfterExtend; 1146 } 1147 1148 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1149 if (!isa<IntegerType>(AR->getType())) 1150 return false; 1151 1152 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1153 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1154 const SCEV *Step = AR->getStepRecurrence(SE); 1155 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1156 SE.getZeroExtendExpr(AR, WideTy)); 1157 const SCEV *ExtendAfterOp = 1158 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1159 return ExtendAfterOp == OpAfterExtend; 1160 } 1161 1162 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1163 /// the base addrec, which is the addrec without any non-loop-dominating 1164 /// values, and return the PHI. 1165 PHINode * 1166 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1167 const Loop *L, 1168 Type *ExpandTy, 1169 Type *IntTy, 1170 Type *&TruncTy, 1171 bool &InvertStep) { 1172 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1173 1174 // Reuse a previously-inserted PHI, if present. 1175 BasicBlock *LatchBlock = L->getLoopLatch(); 1176 if (LatchBlock) { 1177 PHINode *AddRecPhiMatch = nullptr; 1178 Instruction *IncV = nullptr; 1179 TruncTy = nullptr; 1180 InvertStep = false; 1181 1182 // Only try partially matching scevs that need truncation and/or 1183 // step-inversion if we know this loop is outside the current loop. 1184 bool TryNonMatchingSCEV = 1185 IVIncInsertLoop && 1186 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1187 1188 for (PHINode &PN : L->getHeader()->phis()) { 1189 if (!SE.isSCEVable(PN.getType())) 1190 continue; 1191 1192 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1193 if (!PhiSCEV) 1194 continue; 1195 1196 bool IsMatchingSCEV = PhiSCEV == Normalized; 1197 // We only handle truncation and inversion of phi recurrences for the 1198 // expanded expression if the expanded expression's loop dominates the 1199 // loop we insert to. Check now, so we can bail out early. 1200 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1201 continue; 1202 1203 // TODO: this possibly can be reworked to avoid this cast at all. 1204 Instruction *TempIncV = 1205 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1206 if (!TempIncV) 1207 continue; 1208 1209 // Check whether we can reuse this PHI node. 1210 if (LSRMode) { 1211 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1212 continue; 1213 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1214 continue; 1215 } else { 1216 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1217 continue; 1218 } 1219 1220 // Stop if we have found an exact match SCEV. 1221 if (IsMatchingSCEV) { 1222 IncV = TempIncV; 1223 TruncTy = nullptr; 1224 InvertStep = false; 1225 AddRecPhiMatch = &PN; 1226 break; 1227 } 1228 1229 // Try whether the phi can be translated into the requested form 1230 // (truncated and/or offset by a constant). 1231 if ((!TruncTy || InvertStep) && 1232 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1233 // Record the phi node. But don't stop we might find an exact match 1234 // later. 1235 AddRecPhiMatch = &PN; 1236 IncV = TempIncV; 1237 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1238 } 1239 } 1240 1241 if (AddRecPhiMatch) { 1242 // Potentially, move the increment. We have made sure in 1243 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1244 if (L == IVIncInsertLoop) 1245 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1246 1247 // Ok, the add recurrence looks usable. 1248 // Remember this PHI, even in post-inc mode. 1249 InsertedValues.insert(AddRecPhiMatch); 1250 // Remember the increment. 1251 rememberInstruction(IncV); 1252 return AddRecPhiMatch; 1253 } 1254 } 1255 1256 // Save the original insertion point so we can restore it when we're done. 1257 SCEVInsertPointGuard Guard(Builder, this); 1258 1259 // Another AddRec may need to be recursively expanded below. For example, if 1260 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1261 // loop. Remove this loop from the PostIncLoops set before expanding such 1262 // AddRecs. Otherwise, we cannot find a valid position for the step 1263 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1264 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1265 // so it's not worth implementing SmallPtrSet::swap. 1266 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1267 PostIncLoops.clear(); 1268 1269 // Expand code for the start value into the loop preheader. 1270 assert(L->getLoopPreheader() && 1271 "Can't expand add recurrences without a loop preheader!"); 1272 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 1273 L->getLoopPreheader()->getTerminator()); 1274 1275 // StartV must have been be inserted into L's preheader to dominate the new 1276 // phi. 1277 assert(!isa<Instruction>(StartV) || 1278 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1279 L->getHeader())); 1280 1281 // Expand code for the step value. Do this before creating the PHI so that PHI 1282 // reuse code doesn't see an incomplete PHI. 1283 const SCEV *Step = Normalized->getStepRecurrence(SE); 1284 // If the stride is negative, insert a sub instead of an add for the increment 1285 // (unless it's a constant, because subtracts of constants are canonicalized 1286 // to adds). 1287 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1288 if (useSubtract) 1289 Step = SE.getNegativeSCEV(Step); 1290 // Expand the step somewhere that dominates the loop header. 1291 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1292 1293 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1294 // we actually do emit an addition. It does not apply if we emit a 1295 // subtraction. 1296 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1297 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1298 1299 // Create the PHI. 1300 BasicBlock *Header = L->getHeader(); 1301 Builder.SetInsertPoint(Header, Header->begin()); 1302 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1303 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1304 Twine(IVName) + ".iv"); 1305 rememberInstruction(PN); 1306 1307 // Create the step instructions and populate the PHI. 1308 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1309 BasicBlock *Pred = *HPI; 1310 1311 // Add a start value. 1312 if (!L->contains(Pred)) { 1313 PN->addIncoming(StartV, Pred); 1314 continue; 1315 } 1316 1317 // Create a step value and add it to the PHI. 1318 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1319 // instructions at IVIncInsertPos. 1320 Instruction *InsertPos = L == IVIncInsertLoop ? 1321 IVIncInsertPos : Pred->getTerminator(); 1322 Builder.SetInsertPoint(InsertPos); 1323 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1324 1325 if (isa<OverflowingBinaryOperator>(IncV)) { 1326 if (IncrementIsNUW) 1327 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1328 if (IncrementIsNSW) 1329 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1330 } 1331 PN->addIncoming(IncV, Pred); 1332 } 1333 1334 // After expanding subexpressions, restore the PostIncLoops set so the caller 1335 // can ensure that IVIncrement dominates the current uses. 1336 PostIncLoops = SavedPostIncLoops; 1337 1338 // Remember this PHI, even in post-inc mode. 1339 InsertedValues.insert(PN); 1340 1341 return PN; 1342 } 1343 1344 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1345 Type *STy = S->getType(); 1346 Type *IntTy = SE.getEffectiveSCEVType(STy); 1347 const Loop *L = S->getLoop(); 1348 1349 // Determine a normalized form of this expression, which is the expression 1350 // before any post-inc adjustment is made. 1351 const SCEVAddRecExpr *Normalized = S; 1352 if (PostIncLoops.count(L)) { 1353 PostIncLoopSet Loops; 1354 Loops.insert(L); 1355 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1356 } 1357 1358 // Strip off any non-loop-dominating component from the addrec start. 1359 const SCEV *Start = Normalized->getStart(); 1360 const SCEV *PostLoopOffset = nullptr; 1361 if (!SE.properlyDominates(Start, L->getHeader())) { 1362 PostLoopOffset = Start; 1363 Start = SE.getConstant(Normalized->getType(), 0); 1364 Normalized = cast<SCEVAddRecExpr>( 1365 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1366 Normalized->getLoop(), 1367 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1368 } 1369 1370 // Strip off any non-loop-dominating component from the addrec step. 1371 const SCEV *Step = Normalized->getStepRecurrence(SE); 1372 const SCEV *PostLoopScale = nullptr; 1373 if (!SE.dominates(Step, L->getHeader())) { 1374 PostLoopScale = Step; 1375 Step = SE.getConstant(Normalized->getType(), 1); 1376 if (!Start->isZero()) { 1377 // The normalization below assumes that Start is constant zero, so if 1378 // it isn't re-associate Start to PostLoopOffset. 1379 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1380 PostLoopOffset = Start; 1381 Start = SE.getConstant(Normalized->getType(), 0); 1382 } 1383 Normalized = 1384 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1385 Start, Step, Normalized->getLoop(), 1386 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1387 } 1388 1389 // Expand the core addrec. If we need post-loop scaling, force it to 1390 // expand to an integer type to avoid the need for additional casting. 1391 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1392 // We can't use a pointer type for the addrec if the pointer type is 1393 // non-integral. 1394 Type *AddRecPHIExpandTy = 1395 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1396 1397 // In some cases, we decide to reuse an existing phi node but need to truncate 1398 // it and/or invert the step. 1399 Type *TruncTy = nullptr; 1400 bool InvertStep = false; 1401 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1402 IntTy, TruncTy, InvertStep); 1403 1404 // Accommodate post-inc mode, if necessary. 1405 Value *Result; 1406 if (!PostIncLoops.count(L)) 1407 Result = PN; 1408 else { 1409 // In PostInc mode, use the post-incremented value. 1410 BasicBlock *LatchBlock = L->getLoopLatch(); 1411 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1412 Result = PN->getIncomingValueForBlock(LatchBlock); 1413 1414 // For an expansion to use the postinc form, the client must call 1415 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1416 // or dominated by IVIncInsertPos. 1417 if (isa<Instruction>(Result) && 1418 !SE.DT.dominates(cast<Instruction>(Result), 1419 &*Builder.GetInsertPoint())) { 1420 // The induction variable's postinc expansion does not dominate this use. 1421 // IVUsers tries to prevent this case, so it is rare. However, it can 1422 // happen when an IVUser outside the loop is not dominated by the latch 1423 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1424 // all cases. Consider a phi outside whose operand is replaced during 1425 // expansion with the value of the postinc user. Without fundamentally 1426 // changing the way postinc users are tracked, the only remedy is 1427 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1428 // but hopefully expandCodeFor handles that. 1429 bool useSubtract = 1430 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1431 if (useSubtract) 1432 Step = SE.getNegativeSCEV(Step); 1433 Value *StepV; 1434 { 1435 // Expand the step somewhere that dominates the loop header. 1436 SCEVInsertPointGuard Guard(Builder, this); 1437 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1438 } 1439 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1440 } 1441 } 1442 1443 // We have decided to reuse an induction variable of a dominating loop. Apply 1444 // truncation and/or inversion of the step. 1445 if (TruncTy) { 1446 Type *ResTy = Result->getType(); 1447 // Normalize the result type. 1448 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1449 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1450 // Truncate the result. 1451 if (TruncTy != Result->getType()) { 1452 Result = Builder.CreateTrunc(Result, TruncTy); 1453 rememberInstruction(Result); 1454 } 1455 // Invert the result. 1456 if (InvertStep) { 1457 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1458 Result); 1459 rememberInstruction(Result); 1460 } 1461 } 1462 1463 // Re-apply any non-loop-dominating scale. 1464 if (PostLoopScale) { 1465 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1466 Result = InsertNoopCastOfTo(Result, IntTy); 1467 Result = Builder.CreateMul(Result, 1468 expandCodeFor(PostLoopScale, IntTy)); 1469 rememberInstruction(Result); 1470 } 1471 1472 // Re-apply any non-loop-dominating offset. 1473 if (PostLoopOffset) { 1474 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1475 if (Result->getType()->isIntegerTy()) { 1476 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); 1477 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1478 } else { 1479 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1480 } 1481 } else { 1482 Result = InsertNoopCastOfTo(Result, IntTy); 1483 Result = Builder.CreateAdd(Result, 1484 expandCodeFor(PostLoopOffset, IntTy)); 1485 rememberInstruction(Result); 1486 } 1487 } 1488 1489 return Result; 1490 } 1491 1492 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1493 // In canonical mode we compute the addrec as an expression of a canonical IV 1494 // using evaluateAtIteration and expand the resulting SCEV expression. This 1495 // way we avoid introducing new IVs to carry on the comutation of the addrec 1496 // throughout the loop. 1497 // 1498 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1499 // type wider than the addrec itself. Emitting a canonical IV of the 1500 // proper type might produce non-legal types, for example expanding an i64 1501 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1502 // back to non-canonical mode for nested addrecs. 1503 if (!CanonicalMode || (S->getNumOperands() > 2)) 1504 return expandAddRecExprLiterally(S); 1505 1506 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1507 const Loop *L = S->getLoop(); 1508 1509 // First check for an existing canonical IV in a suitable type. 1510 PHINode *CanonicalIV = nullptr; 1511 if (PHINode *PN = L->getCanonicalInductionVariable()) 1512 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1513 CanonicalIV = PN; 1514 1515 // Rewrite an AddRec in terms of the canonical induction variable, if 1516 // its type is more narrow. 1517 if (CanonicalIV && 1518 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1519 SE.getTypeSizeInBits(Ty)) { 1520 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1521 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1522 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1523 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1524 S->getNoWrapFlags(SCEV::FlagNW))); 1525 BasicBlock::iterator NewInsertPt = 1526 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); 1527 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1528 &*NewInsertPt); 1529 return V; 1530 } 1531 1532 // {X,+,F} --> X + {0,+,F} 1533 if (!S->getStart()->isZero()) { 1534 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1535 NewOps[0] = SE.getConstant(Ty, 0); 1536 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1537 S->getNoWrapFlags(SCEV::FlagNW)); 1538 1539 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1540 // comments on expandAddToGEP for details. 1541 const SCEV *Base = S->getStart(); 1542 // Dig into the expression to find the pointer base for a GEP. 1543 const SCEV *ExposedRest = Rest; 1544 ExposePointerBase(Base, ExposedRest, SE); 1545 // If we found a pointer, expand the AddRec with a GEP. 1546 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1547 // Make sure the Base isn't something exotic, such as a multiplied 1548 // or divided pointer value. In those cases, the result type isn't 1549 // actually a pointer type. 1550 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1551 Value *StartV = expand(Base); 1552 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1553 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1554 } 1555 } 1556 1557 // Just do a normal add. Pre-expand the operands to suppress folding. 1558 // 1559 // The LHS and RHS values are factored out of the expand call to make the 1560 // output independent of the argument evaluation order. 1561 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1562 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1563 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1564 } 1565 1566 // If we don't yet have a canonical IV, create one. 1567 if (!CanonicalIV) { 1568 // Create and insert the PHI node for the induction variable in the 1569 // specified loop. 1570 BasicBlock *Header = L->getHeader(); 1571 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1572 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1573 &Header->front()); 1574 rememberInstruction(CanonicalIV); 1575 1576 SmallSet<BasicBlock *, 4> PredSeen; 1577 Constant *One = ConstantInt::get(Ty, 1); 1578 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1579 BasicBlock *HP = *HPI; 1580 if (!PredSeen.insert(HP).second) { 1581 // There must be an incoming value for each predecessor, even the 1582 // duplicates! 1583 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1584 continue; 1585 } 1586 1587 if (L->contains(HP)) { 1588 // Insert a unit add instruction right before the terminator 1589 // corresponding to the back-edge. 1590 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1591 "indvar.next", 1592 HP->getTerminator()); 1593 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1594 rememberInstruction(Add); 1595 CanonicalIV->addIncoming(Add, HP); 1596 } else { 1597 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1598 } 1599 } 1600 } 1601 1602 // {0,+,1} --> Insert a canonical induction variable into the loop! 1603 if (S->isAffine() && S->getOperand(1)->isOne()) { 1604 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1605 "IVs with types different from the canonical IV should " 1606 "already have been handled!"); 1607 return CanonicalIV; 1608 } 1609 1610 // {0,+,F} --> {0,+,1} * F 1611 1612 // If this is a simple linear addrec, emit it now as a special case. 1613 if (S->isAffine()) // {0,+,F} --> i*F 1614 return 1615 expand(SE.getTruncateOrNoop( 1616 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1617 SE.getNoopOrAnyExtend(S->getOperand(1), 1618 CanonicalIV->getType())), 1619 Ty)); 1620 1621 // If this is a chain of recurrences, turn it into a closed form, using the 1622 // folders, then expandCodeFor the closed form. This allows the folders to 1623 // simplify the expression without having to build a bunch of special code 1624 // into this folder. 1625 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1626 1627 // Promote S up to the canonical IV type, if the cast is foldable. 1628 const SCEV *NewS = S; 1629 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1630 if (isa<SCEVAddRecExpr>(Ext)) 1631 NewS = Ext; 1632 1633 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1634 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1635 1636 // Truncate the result down to the original type, if needed. 1637 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1638 return expand(T); 1639 } 1640 1641 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1642 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1643 Value *V = expandCodeFor(S->getOperand(), 1644 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1645 Value *I = Builder.CreateTrunc(V, Ty); 1646 rememberInstruction(I); 1647 return I; 1648 } 1649 1650 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1651 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1652 Value *V = expandCodeFor(S->getOperand(), 1653 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1654 Value *I = Builder.CreateZExt(V, Ty); 1655 rememberInstruction(I); 1656 return I; 1657 } 1658 1659 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1660 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1661 Value *V = expandCodeFor(S->getOperand(), 1662 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1663 Value *I = Builder.CreateSExt(V, Ty); 1664 rememberInstruction(I); 1665 return I; 1666 } 1667 1668 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1669 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1670 Type *Ty = LHS->getType(); 1671 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1672 // In the case of mixed integer and pointer types, do the 1673 // rest of the comparisons as integer. 1674 Type *OpTy = S->getOperand(i)->getType(); 1675 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1676 Ty = SE.getEffectiveSCEVType(Ty); 1677 LHS = InsertNoopCastOfTo(LHS, Ty); 1678 } 1679 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1680 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1681 rememberInstruction(ICmp); 1682 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1683 rememberInstruction(Sel); 1684 LHS = Sel; 1685 } 1686 // In the case of mixed integer and pointer types, cast the 1687 // final result back to the pointer type. 1688 if (LHS->getType() != S->getType()) 1689 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1690 return LHS; 1691 } 1692 1693 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1694 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1695 Type *Ty = LHS->getType(); 1696 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1697 // In the case of mixed integer and pointer types, do the 1698 // rest of the comparisons as integer. 1699 Type *OpTy = S->getOperand(i)->getType(); 1700 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1701 Ty = SE.getEffectiveSCEVType(Ty); 1702 LHS = InsertNoopCastOfTo(LHS, Ty); 1703 } 1704 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1705 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1706 rememberInstruction(ICmp); 1707 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1708 rememberInstruction(Sel); 1709 LHS = Sel; 1710 } 1711 // In the case of mixed integer and pointer types, cast the 1712 // final result back to the pointer type. 1713 if (LHS->getType() != S->getType()) 1714 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1715 return LHS; 1716 } 1717 1718 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1719 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1720 Type *Ty = LHS->getType(); 1721 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1722 // In the case of mixed integer and pointer types, do the 1723 // rest of the comparisons as integer. 1724 Type *OpTy = S->getOperand(i)->getType(); 1725 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1726 Ty = SE.getEffectiveSCEVType(Ty); 1727 LHS = InsertNoopCastOfTo(LHS, Ty); 1728 } 1729 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1730 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1731 rememberInstruction(ICmp); 1732 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1733 rememberInstruction(Sel); 1734 LHS = Sel; 1735 } 1736 // In the case of mixed integer and pointer types, cast the 1737 // final result back to the pointer type. 1738 if (LHS->getType() != S->getType()) 1739 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1740 return LHS; 1741 } 1742 1743 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1744 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1745 Type *Ty = LHS->getType(); 1746 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1747 // In the case of mixed integer and pointer types, do the 1748 // rest of the comparisons as integer. 1749 Type *OpTy = S->getOperand(i)->getType(); 1750 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1751 Ty = SE.getEffectiveSCEVType(Ty); 1752 LHS = InsertNoopCastOfTo(LHS, Ty); 1753 } 1754 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1755 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1756 rememberInstruction(ICmp); 1757 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1758 rememberInstruction(Sel); 1759 LHS = Sel; 1760 } 1761 // In the case of mixed integer and pointer types, cast the 1762 // final result back to the pointer type. 1763 if (LHS->getType() != S->getType()) 1764 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1765 return LHS; 1766 } 1767 1768 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1769 Instruction *IP) { 1770 setInsertPoint(IP); 1771 return expandCodeFor(SH, Ty); 1772 } 1773 1774 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1775 // Expand the code for this SCEV. 1776 Value *V = expand(SH); 1777 if (Ty) { 1778 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1779 "non-trivial casts should be done with the SCEVs directly!"); 1780 V = InsertNoopCastOfTo(V, Ty); 1781 } 1782 return V; 1783 } 1784 1785 ScalarEvolution::ValueOffsetPair 1786 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1787 const Instruction *InsertPt) { 1788 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); 1789 // If the expansion is not in CanonicalMode, and the SCEV contains any 1790 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1791 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1792 // If S is scConstant, it may be worse to reuse an existing Value. 1793 if (S->getSCEVType() != scConstant && Set) { 1794 // Choose a Value from the set which dominates the insertPt. 1795 // insertPt should be inside the Value's parent loop so as not to break 1796 // the LCSSA form. 1797 for (auto const &VOPair : *Set) { 1798 Value *V = VOPair.first; 1799 ConstantInt *Offset = VOPair.second; 1800 Instruction *EntInst = nullptr; 1801 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1802 S->getType() == V->getType() && 1803 EntInst->getFunction() == InsertPt->getFunction() && 1804 SE.DT.dominates(EntInst, InsertPt) && 1805 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1806 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1807 return {V, Offset}; 1808 } 1809 } 1810 } 1811 return {nullptr, nullptr}; 1812 } 1813 1814 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1815 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1816 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1817 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1818 // the expansion will try to reuse Value from ExprValueMap, and only when it 1819 // fails, expand the SCEV literally. 1820 Value *SCEVExpander::expand(const SCEV *S) { 1821 // Compute an insertion point for this SCEV object. Hoist the instructions 1822 // as far out in the loop nest as possible. 1823 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1824 1825 // We can move insertion point only if there is no div or rem operations 1826 // otherwise we are risky to move it over the check for zero denominator. 1827 auto SafeToHoist = [](const SCEV *S) { 1828 return !SCEVExprContains(S, [](const SCEV *S) { 1829 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1830 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1831 // Division by non-zero constants can be hoisted. 1832 return SC->getValue()->isZero(); 1833 // All other divisions should not be moved as they may be 1834 // divisions by zero and should be kept within the 1835 // conditions of the surrounding loops that guard their 1836 // execution (see PR35406). 1837 return true; 1838 } 1839 return false; 1840 }); 1841 }; 1842 if (SafeToHoist(S)) { 1843 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1844 L = L->getParentLoop()) { 1845 if (SE.isLoopInvariant(S, L)) { 1846 if (!L) break; 1847 if (BasicBlock *Preheader = L->getLoopPreheader()) 1848 InsertPt = Preheader->getTerminator(); 1849 else 1850 // LSR sets the insertion point for AddRec start/step values to the 1851 // block start to simplify value reuse, even though it's an invalid 1852 // position. SCEVExpander must correct for this in all cases. 1853 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1854 } else { 1855 // If the SCEV is computable at this level, insert it into the header 1856 // after the PHIs (and after any other instructions that we've inserted 1857 // there) so that it is guaranteed to dominate any user inside the loop. 1858 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1859 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1860 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1861 (isInsertedInstruction(InsertPt) || 1862 isa<DbgInfoIntrinsic>(InsertPt))) 1863 InsertPt = &*std::next(InsertPt->getIterator()); 1864 break; 1865 } 1866 } 1867 } 1868 1869 // IndVarSimplify sometimes sets the insertion point at the block start, even 1870 // when there are PHIs at that point. We must correct for this. 1871 if (isa<PHINode>(*InsertPt)) 1872 InsertPt = &*InsertPt->getParent()->getFirstInsertionPt(); 1873 1874 // Check to see if we already expanded this here. 1875 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1876 if (I != InsertedExpressions.end()) 1877 return I->second; 1878 1879 SCEVInsertPointGuard Guard(Builder, this); 1880 Builder.SetInsertPoint(InsertPt); 1881 1882 // Expand the expression into instructions. 1883 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1884 Value *V = VO.first; 1885 1886 if (!V) 1887 V = visit(S); 1888 else if (VO.second) { 1889 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1890 Type *Ety = Vty->getPointerElementType(); 1891 int64_t Offset = VO.second->getSExtValue(); 1892 int64_t ESize = SE.getTypeSizeInBits(Ety); 1893 if ((Offset * 8) % ESize == 0) { 1894 ConstantInt *Idx = 1895 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1896 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1897 } else { 1898 ConstantInt *Idx = 1899 ConstantInt::getSigned(VO.second->getType(), -Offset); 1900 unsigned AS = Vty->getAddressSpace(); 1901 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1902 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1903 "uglygep"); 1904 V = Builder.CreateBitCast(V, Vty); 1905 } 1906 } else { 1907 V = Builder.CreateSub(V, VO.second); 1908 } 1909 } 1910 // Remember the expanded value for this SCEV at this location. 1911 // 1912 // This is independent of PostIncLoops. The mapped value simply materializes 1913 // the expression at this insertion point. If the mapped value happened to be 1914 // a postinc expansion, it could be reused by a non-postinc user, but only if 1915 // its insertion point was already at the head of the loop. 1916 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1917 return V; 1918 } 1919 1920 void SCEVExpander::rememberInstruction(Value *I) { 1921 if (!PostIncLoops.empty()) 1922 InsertedPostIncValues.insert(I); 1923 else 1924 InsertedValues.insert(I); 1925 } 1926 1927 /// getOrInsertCanonicalInductionVariable - This method returns the 1928 /// canonical induction variable of the specified type for the specified 1929 /// loop (inserting one if there is none). A canonical induction variable 1930 /// starts at zero and steps by one on each iteration. 1931 PHINode * 1932 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1933 Type *Ty) { 1934 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1935 1936 // Build a SCEV for {0,+,1}<L>. 1937 // Conservatively use FlagAnyWrap for now. 1938 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1939 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1940 1941 // Emit code for it. 1942 SCEVInsertPointGuard Guard(Builder, this); 1943 PHINode *V = 1944 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); 1945 1946 return V; 1947 } 1948 1949 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1950 /// replace them with their most canonical representative. Return the number of 1951 /// phis eliminated. 1952 /// 1953 /// This does not depend on any SCEVExpander state but should be used in 1954 /// the same context that SCEVExpander is used. 1955 unsigned 1956 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1957 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1958 const TargetTransformInfo *TTI) { 1959 // Find integer phis in order of increasing width. 1960 SmallVector<PHINode*, 8> Phis; 1961 for (PHINode &PN : L->getHeader()->phis()) 1962 Phis.push_back(&PN); 1963 1964 if (TTI) 1965 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 1966 // Put pointers at the back and make sure pointer < pointer = false. 1967 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1968 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1969 return RHS->getType()->getPrimitiveSizeInBits() < 1970 LHS->getType()->getPrimitiveSizeInBits(); 1971 }); 1972 1973 unsigned NumElim = 0; 1974 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1975 // Process phis from wide to narrow. Map wide phis to their truncation 1976 // so narrow phis can reuse them. 1977 for (PHINode *Phi : Phis) { 1978 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1979 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1980 return V; 1981 if (!SE.isSCEVable(PN->getType())) 1982 return nullptr; 1983 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1984 if (!Const) 1985 return nullptr; 1986 return Const->getValue(); 1987 }; 1988 1989 // Fold constant phis. They may be congruent to other constant phis and 1990 // would confuse the logic below that expects proper IVs. 1991 if (Value *V = SimplifyPHINode(Phi)) { 1992 if (V->getType() != Phi->getType()) 1993 continue; 1994 Phi->replaceAllUsesWith(V); 1995 DeadInsts.emplace_back(Phi); 1996 ++NumElim; 1997 DEBUG_WITH_TYPE(DebugType, dbgs() 1998 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 1999 continue; 2000 } 2001 2002 if (!SE.isSCEVable(Phi->getType())) 2003 continue; 2004 2005 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2006 if (!OrigPhiRef) { 2007 OrigPhiRef = Phi; 2008 if (Phi->getType()->isIntegerTy() && TTI && 2009 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2010 // This phi can be freely truncated to the narrowest phi type. Map the 2011 // truncated expression to it so it will be reused for narrow types. 2012 const SCEV *TruncExpr = 2013 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2014 ExprToIVMap[TruncExpr] = Phi; 2015 } 2016 continue; 2017 } 2018 2019 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2020 // sense. 2021 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2022 continue; 2023 2024 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2025 Instruction *OrigInc = dyn_cast<Instruction>( 2026 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2027 Instruction *IsomorphicInc = 2028 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2029 2030 if (OrigInc && IsomorphicInc) { 2031 // If this phi has the same width but is more canonical, replace the 2032 // original with it. As part of the "more canonical" determination, 2033 // respect a prior decision to use an IV chain. 2034 if (OrigPhiRef->getType() == Phi->getType() && 2035 !(ChainedPhis.count(Phi) || 2036 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2037 (ChainedPhis.count(Phi) || 2038 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2039 std::swap(OrigPhiRef, Phi); 2040 std::swap(OrigInc, IsomorphicInc); 2041 } 2042 // Replacing the congruent phi is sufficient because acyclic 2043 // redundancy elimination, CSE/GVN, should handle the 2044 // rest. However, once SCEV proves that a phi is congruent, 2045 // it's often the head of an IV user cycle that is isomorphic 2046 // with the original phi. It's worth eagerly cleaning up the 2047 // common case of a single IV increment so that DeleteDeadPHIs 2048 // can remove cycles that had postinc uses. 2049 const SCEV *TruncExpr = 2050 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2051 if (OrigInc != IsomorphicInc && 2052 TruncExpr == SE.getSCEV(IsomorphicInc) && 2053 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2054 hoistIVInc(OrigInc, IsomorphicInc)) { 2055 DEBUG_WITH_TYPE(DebugType, 2056 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2057 << *IsomorphicInc << '\n'); 2058 Value *NewInc = OrigInc; 2059 if (OrigInc->getType() != IsomorphicInc->getType()) { 2060 Instruction *IP = nullptr; 2061 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2062 IP = &*PN->getParent()->getFirstInsertionPt(); 2063 else 2064 IP = OrigInc->getNextNode(); 2065 2066 IRBuilder<> Builder(IP); 2067 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2068 NewInc = Builder.CreateTruncOrBitCast( 2069 OrigInc, IsomorphicInc->getType(), IVName); 2070 } 2071 IsomorphicInc->replaceAllUsesWith(NewInc); 2072 DeadInsts.emplace_back(IsomorphicInc); 2073 } 2074 } 2075 } 2076 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 2077 << *Phi << '\n'); 2078 ++NumElim; 2079 Value *NewIV = OrigPhiRef; 2080 if (OrigPhiRef->getType() != Phi->getType()) { 2081 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2082 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2083 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2084 } 2085 Phi->replaceAllUsesWith(NewIV); 2086 DeadInsts.emplace_back(Phi); 2087 } 2088 return NumElim; 2089 } 2090 2091 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, 2092 const Instruction *At, Loop *L) { 2093 Optional<ScalarEvolution::ValueOffsetPair> VO = 2094 getRelatedExistingExpansion(S, At, L); 2095 if (VO && VO.getValue().second == nullptr) 2096 return VO.getValue().first; 2097 return nullptr; 2098 } 2099 2100 Optional<ScalarEvolution::ValueOffsetPair> 2101 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2102 Loop *L) { 2103 using namespace llvm::PatternMatch; 2104 2105 SmallVector<BasicBlock *, 4> ExitingBlocks; 2106 L->getExitingBlocks(ExitingBlocks); 2107 2108 // Look for suitable value in simple conditions at the loop exits. 2109 for (BasicBlock *BB : ExitingBlocks) { 2110 ICmpInst::Predicate Pred; 2111 Instruction *LHS, *RHS; 2112 2113 if (!match(BB->getTerminator(), 2114 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2115 m_BasicBlock(), m_BasicBlock()))) 2116 continue; 2117 2118 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2119 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2120 2121 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2122 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2123 } 2124 2125 // Use expand's logic which is used for reusing a previous Value in 2126 // ExprValueMap. 2127 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2128 if (VO.first) 2129 return VO; 2130 2131 // There is potential to make this significantly smarter, but this simple 2132 // heuristic already gets some interesting cases. 2133 2134 // Can not find suitable value. 2135 return None; 2136 } 2137 2138 bool SCEVExpander::isHighCostExpansionHelper( 2139 const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining, 2140 const TargetTransformInfo &TTI, SmallPtrSetImpl<const SCEV *> &Processed, 2141 SmallVectorImpl<const SCEV *> &Worklist) { 2142 if (BudgetRemaining < 0) 2143 return true; // Already run out of budget, give up. 2144 2145 // Was the cost of expansion of this expression already accounted for? 2146 if (!Processed.insert(S).second) 2147 return false; // We have already accounted for this expression. 2148 2149 // If we can find an existing value for this scev available at the point "At" 2150 // then consider the expression cheap. 2151 if (getRelatedExistingExpansion(S, &At, L)) 2152 return false; // Consider the expression to be free. 2153 2154 switch (S->getSCEVType()) { 2155 case scUnknown: 2156 case scConstant: 2157 return false; // Assume to be zero-cost. 2158 } 2159 2160 TargetTransformInfo::TargetCostKind CostKind = 2161 TargetTransformInfo::TCK_RecipThroughput; 2162 2163 if (auto *CastExpr = dyn_cast<SCEVCastExpr>(S)) { 2164 unsigned Opcode; 2165 switch (S->getSCEVType()) { 2166 case scTruncate: 2167 Opcode = Instruction::Trunc; 2168 break; 2169 case scZeroExtend: 2170 Opcode = Instruction::ZExt; 2171 break; 2172 case scSignExtend: 2173 Opcode = Instruction::SExt; 2174 break; 2175 default: 2176 llvm_unreachable("There are no other cast types."); 2177 } 2178 const SCEV *Op = CastExpr->getOperand(); 2179 BudgetRemaining -= TTI.getCastInstrCost(Opcode, /*Dst=*/S->getType(), 2180 /*Src=*/Op->getType(), CostKind); 2181 Worklist.emplace_back(Op); 2182 return false; // Will answer upon next entry into this function. 2183 } 2184 2185 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 2186 // If the divisor is a power of two count this as a logical right-shift. 2187 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) { 2188 if (SC->getAPInt().isPowerOf2()) { 2189 BudgetRemaining -= 2190 TTI.getArithmeticInstrCost(Instruction::LShr, S->getType(), 2191 CostKind); 2192 // Note that we don't count the cost of RHS, because it is a constant, 2193 // and we consider those to be free. But if that changes, we would need 2194 // to log2() it first before calling isHighCostExpansionHelper(). 2195 Worklist.emplace_back(UDivExpr->getLHS()); 2196 return false; // Will answer upon next entry into this function. 2197 } 2198 } 2199 2200 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2201 // HowManyLessThans produced to compute a precise expression, rather than a 2202 // UDiv from the user's code. If we can't find a UDiv in the code with some 2203 // simple searching, we need to account for it's cost. 2204 2205 // At the beginning of this function we already tried to find existing 2206 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2207 // pattern involving division. This is just a simple search heuristic. 2208 if (getRelatedExistingExpansion( 2209 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2210 return false; // Consider it to be free. 2211 2212 // Need to count the cost of this UDiv. 2213 BudgetRemaining -= 2214 TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(), 2215 CostKind); 2216 Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()}); 2217 return false; // Will answer upon next entry into this function. 2218 } 2219 2220 if (const auto *NAry = dyn_cast<SCEVAddRecExpr>(S)) { 2221 Type *OpType = NAry->getType(); 2222 2223 assert(NAry->getNumOperands() >= 2 && 2224 "Polynomial should be at least linear"); 2225 2226 int AddCost = 2227 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2228 int MulCost = 2229 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2230 2231 // In this polynominal, we may have some zero operands, and we shouldn't 2232 // really charge for those. So how many non-zero coeffients are there? 2233 int NumTerms = llvm::count_if(NAry->operands(), 2234 [](const SCEV *S) { return !S->isZero(); }); 2235 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2236 assert(!(*std::prev(NAry->operands().end()))->isZero() && 2237 "Last operand should not be zero"); 2238 2239 // Much like with normal add expr, the polynominal will require 2240 // one less addition than the number of it's terms. 2241 BudgetRemaining -= AddCost * (NumTerms - 1); 2242 if (BudgetRemaining < 0) 2243 return true; 2244 2245 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2246 int NumNonZeroDegreeNonOneTerms = 2247 llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()), 2248 [](const SCEV *S) { 2249 auto *SConst = dyn_cast<SCEVConstant>(S); 2250 return !SConst || SConst->getAPInt().ugt(1); 2251 }); 2252 // Here, *each* one of those will require a multiplication. 2253 BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms; 2254 if (BudgetRemaining < 0) 2255 return true; 2256 2257 // What is the degree of this polynominal? 2258 int PolyDegree = NAry->getNumOperands() - 1; 2259 assert(PolyDegree >= 1 && "Should be at least affine."); 2260 2261 // The final term will be: 2262 // Op_{PolyDegree} * x ^ {PolyDegree} 2263 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2264 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2265 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2266 // FIXME: this is conservatively correct, but might be overly pessimistic. 2267 BudgetRemaining -= MulCost * (PolyDegree - 1); 2268 if (BudgetRemaining < 0) 2269 return true; 2270 2271 // And finally, the operands themselves should fit within the budget. 2272 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2273 NAry->operands().end()); 2274 return false; // So far so good, though ops may be too costly? 2275 } 2276 2277 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 2278 Type *OpType = NAry->getType(); 2279 2280 int PairCost; 2281 switch (S->getSCEVType()) { 2282 case scAddExpr: 2283 PairCost = 2284 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2285 break; 2286 case scMulExpr: 2287 // TODO: this is a very pessimistic cost modelling for Mul, 2288 // because of Bin Pow algorithm actually used by the expander, 2289 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2290 PairCost = 2291 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2292 break; 2293 case scSMaxExpr: 2294 case scUMaxExpr: 2295 case scSMinExpr: 2296 case scUMinExpr: 2297 PairCost = TTI.getCmpSelInstrCost(Instruction::ICmp, OpType, 2298 CmpInst::makeCmpResultType(OpType), 2299 CostKind) + 2300 TTI.getCmpSelInstrCost(Instruction::Select, OpType, 2301 CmpInst::makeCmpResultType(OpType), 2302 CostKind); 2303 break; 2304 default: 2305 llvm_unreachable("There are no other variants here."); 2306 } 2307 2308 assert(NAry->getNumOperands() > 1 && 2309 "Nary expr should have more than 1 operand."); 2310 // The simple nary expr will require one less op (or pair of ops) 2311 // than the number of it's terms. 2312 BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1); 2313 if (BudgetRemaining < 0) 2314 return true; 2315 2316 // And finally, the operands themselves should fit within the budget. 2317 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2318 NAry->operands().end()); 2319 return false; // So far so good, though ops may be too costly? 2320 } 2321 2322 llvm_unreachable("No other scev expressions possible."); 2323 } 2324 2325 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2326 Instruction *IP) { 2327 assert(IP); 2328 switch (Pred->getKind()) { 2329 case SCEVPredicate::P_Union: 2330 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2331 case SCEVPredicate::P_Equal: 2332 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2333 case SCEVPredicate::P_Wrap: { 2334 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2335 return expandWrapPredicate(AddRecPred, IP); 2336 } 2337 } 2338 llvm_unreachable("Unknown SCEV predicate type"); 2339 } 2340 2341 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2342 Instruction *IP) { 2343 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2344 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2345 2346 Builder.SetInsertPoint(IP); 2347 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2348 return I; 2349 } 2350 2351 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2352 Instruction *Loc, bool Signed) { 2353 assert(AR->isAffine() && "Cannot generate RT check for " 2354 "non-affine expression"); 2355 2356 SCEVUnionPredicate Pred; 2357 const SCEV *ExitCount = 2358 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2359 2360 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); 2361 2362 const SCEV *Step = AR->getStepRecurrence(SE); 2363 const SCEV *Start = AR->getStart(); 2364 2365 Type *ARTy = AR->getType(); 2366 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2367 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2368 2369 // The expression {Start,+,Step} has nusw/nssw if 2370 // Step < 0, Start - |Step| * Backedge <= Start 2371 // Step >= 0, Start + |Step| * Backedge > Start 2372 // and |Step| * Backedge doesn't unsigned overflow. 2373 2374 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2375 Builder.SetInsertPoint(Loc); 2376 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2377 2378 IntegerType *Ty = 2379 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2380 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2381 2382 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2383 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2384 Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); 2385 2386 ConstantInt *Zero = 2387 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2388 2389 Builder.SetInsertPoint(Loc); 2390 // Compute |Step| 2391 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2392 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2393 2394 // Get the backedge taken count and truncate or extended to the AR type. 2395 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2396 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2397 Intrinsic::umul_with_overflow, Ty); 2398 2399 // Compute |Step| * Backedge 2400 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2401 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2402 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2403 2404 // Compute: 2405 // Start + |Step| * Backedge < Start 2406 // Start - |Step| * Backedge > Start 2407 Value *Add = nullptr, *Sub = nullptr; 2408 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2409 const SCEV *MulS = SE.getSCEV(MulV); 2410 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2411 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2412 ARPtrTy); 2413 Sub = Builder.CreateBitCast( 2414 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2415 } else { 2416 Add = Builder.CreateAdd(StartValue, MulV); 2417 Sub = Builder.CreateSub(StartValue, MulV); 2418 } 2419 2420 Value *EndCompareGT = Builder.CreateICmp( 2421 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2422 2423 Value *EndCompareLT = Builder.CreateICmp( 2424 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2425 2426 // Select the answer based on the sign of Step. 2427 Value *EndCheck = 2428 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2429 2430 // If the backedge taken count type is larger than the AR type, 2431 // check that we don't drop any bits by truncating it. If we are 2432 // dropping bits, then we have overflow (unless the step is zero). 2433 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2434 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2435 auto *BackedgeCheck = 2436 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2437 ConstantInt::get(Loc->getContext(), MaxVal)); 2438 BackedgeCheck = Builder.CreateAnd( 2439 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2440 2441 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2442 } 2443 2444 EndCheck = Builder.CreateOr(EndCheck, OfMul); 2445 return EndCheck; 2446 } 2447 2448 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2449 Instruction *IP) { 2450 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2451 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2452 2453 // Add a check for NUSW 2454 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2455 NUSWCheck = generateOverflowCheck(A, IP, false); 2456 2457 // Add a check for NSSW 2458 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2459 NSSWCheck = generateOverflowCheck(A, IP, true); 2460 2461 if (NUSWCheck && NSSWCheck) 2462 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2463 2464 if (NUSWCheck) 2465 return NUSWCheck; 2466 2467 if (NSSWCheck) 2468 return NSSWCheck; 2469 2470 return ConstantInt::getFalse(IP->getContext()); 2471 } 2472 2473 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2474 Instruction *IP) { 2475 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2476 Value *Check = ConstantInt::getNullValue(BoolType); 2477 2478 // Loop over all checks in this set. 2479 for (auto Pred : Union->getPredicates()) { 2480 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2481 Builder.SetInsertPoint(IP); 2482 Check = Builder.CreateOr(Check, NextCheck); 2483 } 2484 2485 return Check; 2486 } 2487 2488 namespace { 2489 // Search for a SCEV subexpression that is not safe to expand. Any expression 2490 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2491 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2492 // instruction, but the important thing is that we prove the denominator is 2493 // nonzero before expansion. 2494 // 2495 // IVUsers already checks that IV-derived expressions are safe. So this check is 2496 // only needed when the expression includes some subexpression that is not IV 2497 // derived. 2498 // 2499 // Currently, we only allow division by a nonzero constant here. If this is 2500 // inadequate, we could easily allow division by SCEVUnknown by using 2501 // ValueTracking to check isKnownNonZero(). 2502 // 2503 // We cannot generally expand recurrences unless the step dominates the loop 2504 // header. The expander handles the special case of affine recurrences by 2505 // scaling the recurrence outside the loop, but this technique isn't generally 2506 // applicable. Expanding a nested recurrence outside a loop requires computing 2507 // binomial coefficients. This could be done, but the recurrence has to be in a 2508 // perfectly reduced form, which can't be guaranteed. 2509 struct SCEVFindUnsafe { 2510 ScalarEvolution &SE; 2511 bool IsUnsafe; 2512 2513 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2514 2515 bool follow(const SCEV *S) { 2516 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2517 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2518 if (!SC || SC->getValue()->isZero()) { 2519 IsUnsafe = true; 2520 return false; 2521 } 2522 } 2523 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2524 const SCEV *Step = AR->getStepRecurrence(SE); 2525 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2526 IsUnsafe = true; 2527 return false; 2528 } 2529 } 2530 return true; 2531 } 2532 bool isDone() const { return IsUnsafe; } 2533 }; 2534 } 2535 2536 namespace llvm { 2537 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2538 SCEVFindUnsafe Search(SE); 2539 visitAll(S, Search); 2540 return !Search.IsUnsafe; 2541 } 2542 2543 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2544 ScalarEvolution &SE) { 2545 if (!isSafeToExpand(S, SE)) 2546 return false; 2547 // We have to prove that the expanded site of S dominates InsertionPoint. 2548 // This is easy when not in the same block, but hard when S is an instruction 2549 // to be expanded somewhere inside the same block as our insertion point. 2550 // What we really need here is something analogous to an OrderedBasicBlock, 2551 // but for the moment, we paper over the problem by handling two common and 2552 // cheap to check cases. 2553 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2554 return true; 2555 if (SE.dominates(S, InsertionPoint->getParent())) { 2556 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2557 return true; 2558 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2559 for (const Value *V : InsertionPoint->operand_values()) 2560 if (V == U->getValue()) 2561 return true; 2562 } 2563 return false; 2564 } 2565 } 2566