1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 using namespace llvm;
33 
34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
35     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
36     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
37              "controls the budget that is considered cheap (default = 4)"));
38 
39 using namespace PatternMatch;
40 
41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users()) {
62     if (U->getType() != Ty)
63       continue;
64     CastInst *CI = dyn_cast<CastInst>(U);
65     if (!CI || CI->getOpcode() != Op)
66       continue;
67 
68     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
69     // the cast must also properly dominate the Builder's insertion point.
70     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
71         (&*IP == CI || CI->comesBefore(&*IP))) {
72       Ret = CI;
73       break;
74     }
75   }
76 
77   // Create a new cast.
78   if (!Ret) {
79     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
80     rememberInstruction(Ret);
81   }
82 
83   // We assert at the end of the function since IP might point to an
84   // instruction with different dominance properties than a cast
85   // (an invoke for example) and not dominate BIP (but the cast does).
86   assert(SE.DT.dominates(Ret, &*BIP));
87 
88   return Ret;
89 }
90 
91 BasicBlock::iterator
92 SCEVExpander::findInsertPointAfter(Instruction *I, Instruction *MustDominate) {
93   BasicBlock::iterator IP = ++I->getIterator();
94   if (auto *II = dyn_cast<InvokeInst>(I))
95     IP = II->getNormalDest()->begin();
96 
97   while (isa<PHINode>(IP))
98     ++IP;
99 
100   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
101     ++IP;
102   } else if (isa<CatchSwitchInst>(IP)) {
103     IP = MustDominate->getParent()->getFirstInsertionPt();
104   } else {
105     assert(!IP->isEHPad() && "unexpected eh pad!");
106   }
107 
108   // Adjust insert point to be after instructions inserted by the expander, so
109   // we can re-use already inserted instructions. Avoid skipping past the
110   // original \p MustDominate, in case it is an inserted instruction.
111   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
112     ++IP;
113 
114   return IP;
115 }
116 
117 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
118 /// which must be possible with a noop cast, doing what we can to share
119 /// the casts.
120 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
121   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
122   assert((Op == Instruction::BitCast ||
123           Op == Instruction::PtrToInt ||
124           Op == Instruction::IntToPtr) &&
125          "InsertNoopCastOfTo cannot perform non-noop casts!");
126   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
127          "InsertNoopCastOfTo cannot change sizes!");
128 
129   auto *PtrTy = dyn_cast<PointerType>(Ty);
130   // inttoptr only works for integral pointers. For non-integral pointers, we
131   // can create a GEP on i8* null  with the integral value as index. Note that
132   // it is safe to use GEP of null instead of inttoptr here, because only
133   // expressions already based on a GEP of null should be converted to pointers
134   // during expansion.
135   if (Op == Instruction::IntToPtr && DL.isNonIntegralPointerType(PtrTy)) {
136     auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
137     assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
138            "alloc size of i8 must by 1 byte for the GEP to be correct");
139     auto *GEP = Builder.CreateGEP(
140         Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
141     return Builder.CreateBitCast(GEP, Ty);
142   }
143   // Short-circuit unnecessary bitcasts.
144   if (Op == Instruction::BitCast) {
145     if (V->getType() == Ty)
146       return V;
147     if (CastInst *CI = dyn_cast<CastInst>(V)) {
148       if (CI->getOperand(0)->getType() == Ty)
149         return CI->getOperand(0);
150     }
151   }
152   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
153   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
154       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
155     if (CastInst *CI = dyn_cast<CastInst>(V))
156       if ((CI->getOpcode() == Instruction::PtrToInt ||
157            CI->getOpcode() == Instruction::IntToPtr) &&
158           SE.getTypeSizeInBits(CI->getType()) ==
159           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
160         return CI->getOperand(0);
161     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
162       if ((CE->getOpcode() == Instruction::PtrToInt ||
163            CE->getOpcode() == Instruction::IntToPtr) &&
164           SE.getTypeSizeInBits(CE->getType()) ==
165           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
166         return CE->getOperand(0);
167   }
168 
169   // Fold a cast of a constant.
170   if (Constant *C = dyn_cast<Constant>(V))
171     return ConstantExpr::getCast(Op, C, Ty);
172 
173   // Cast the argument at the beginning of the entry block, after
174   // any bitcasts of other arguments.
175   if (Argument *A = dyn_cast<Argument>(V)) {
176     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
177     while ((isa<BitCastInst>(IP) &&
178             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
179             cast<BitCastInst>(IP)->getOperand(0) != A) ||
180            isa<DbgInfoIntrinsic>(IP))
181       ++IP;
182     return ReuseOrCreateCast(A, Ty, Op, IP);
183   }
184 
185   // Cast the instruction immediately after the instruction.
186   Instruction *I = cast<Instruction>(V);
187   BasicBlock::iterator IP = findInsertPointAfter(I, &*Builder.GetInsertPoint());
188   return ReuseOrCreateCast(I, Ty, Op, IP);
189 }
190 
191 /// InsertBinop - Insert the specified binary operator, doing a small amount
192 /// of work to avoid inserting an obviously redundant operation, and hoisting
193 /// to an outer loop when the opportunity is there and it is safe.
194 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
195                                  Value *LHS, Value *RHS,
196                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
197   // Fold a binop with constant operands.
198   if (Constant *CLHS = dyn_cast<Constant>(LHS))
199     if (Constant *CRHS = dyn_cast<Constant>(RHS))
200       return ConstantExpr::get(Opcode, CLHS, CRHS);
201 
202   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
203   unsigned ScanLimit = 6;
204   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
205   // Scanning starts from the last instruction before the insertion point.
206   BasicBlock::iterator IP = Builder.GetInsertPoint();
207   if (IP != BlockBegin) {
208     --IP;
209     for (; ScanLimit; --IP, --ScanLimit) {
210       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
211       // generated code.
212       if (isa<DbgInfoIntrinsic>(IP))
213         ScanLimit++;
214 
215       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
216         // Ensure that no-wrap flags match.
217         if (isa<OverflowingBinaryOperator>(I)) {
218           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
219             return true;
220           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
221             return true;
222         }
223         // Conservatively, do not use any instruction which has any of exact
224         // flags installed.
225         if (isa<PossiblyExactOperator>(I) && I->isExact())
226           return true;
227         return false;
228       };
229       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
230           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
231         return &*IP;
232       if (IP == BlockBegin) break;
233     }
234   }
235 
236   // Save the original insertion point so we can restore it when we're done.
237   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
238   SCEVInsertPointGuard Guard(Builder, this);
239 
240   if (IsSafeToHoist) {
241     // Move the insertion point out of as many loops as we can.
242     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
243       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
244       BasicBlock *Preheader = L->getLoopPreheader();
245       if (!Preheader) break;
246 
247       // Ok, move up a level.
248       Builder.SetInsertPoint(Preheader->getTerminator());
249     }
250   }
251 
252   // If we haven't found this binop, insert it.
253   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
254   BO->setDebugLoc(Loc);
255   if (Flags & SCEV::FlagNUW)
256     BO->setHasNoUnsignedWrap();
257   if (Flags & SCEV::FlagNSW)
258     BO->setHasNoSignedWrap();
259 
260   return BO;
261 }
262 
263 /// FactorOutConstant - Test if S is divisible by Factor, using signed
264 /// division. If so, update S with Factor divided out and return true.
265 /// S need not be evenly divisible if a reasonable remainder can be
266 /// computed.
267 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
268                               const SCEV *Factor, ScalarEvolution &SE,
269                               const DataLayout &DL) {
270   // Everything is divisible by one.
271   if (Factor->isOne())
272     return true;
273 
274   // x/x == 1.
275   if (S == Factor) {
276     S = SE.getConstant(S->getType(), 1);
277     return true;
278   }
279 
280   // For a Constant, check for a multiple of the given factor.
281   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
282     // 0/x == 0.
283     if (C->isZero())
284       return true;
285     // Check for divisibility.
286     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
287       ConstantInt *CI =
288           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
289       // If the quotient is zero and the remainder is non-zero, reject
290       // the value at this scale. It will be considered for subsequent
291       // smaller scales.
292       if (!CI->isZero()) {
293         const SCEV *Div = SE.getConstant(CI);
294         S = Div;
295         Remainder = SE.getAddExpr(
296             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
297         return true;
298       }
299     }
300   }
301 
302   // In a Mul, check if there is a constant operand which is a multiple
303   // of the given factor.
304   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
305     // Size is known, check if there is a constant operand which is a multiple
306     // of the given factor. If so, we can factor it.
307     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
308       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
309         if (!C->getAPInt().srem(FC->getAPInt())) {
310           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
311           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
312           S = SE.getMulExpr(NewMulOps);
313           return true;
314         }
315   }
316 
317   // In an AddRec, check if both start and step are divisible.
318   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
319     const SCEV *Step = A->getStepRecurrence(SE);
320     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
321     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
322       return false;
323     if (!StepRem->isZero())
324       return false;
325     const SCEV *Start = A->getStart();
326     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
327       return false;
328     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
329                          A->getNoWrapFlags(SCEV::FlagNW));
330     return true;
331   }
332 
333   return false;
334 }
335 
336 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
337 /// is the number of SCEVAddRecExprs present, which are kept at the end of
338 /// the list.
339 ///
340 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
341                                 Type *Ty,
342                                 ScalarEvolution &SE) {
343   unsigned NumAddRecs = 0;
344   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
345     ++NumAddRecs;
346   // Group Ops into non-addrecs and addrecs.
347   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
348   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
349   // Let ScalarEvolution sort and simplify the non-addrecs list.
350   const SCEV *Sum = NoAddRecs.empty() ?
351                     SE.getConstant(Ty, 0) :
352                     SE.getAddExpr(NoAddRecs);
353   // If it returned an add, use the operands. Otherwise it simplified
354   // the sum into a single value, so just use that.
355   Ops.clear();
356   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
357     Ops.append(Add->op_begin(), Add->op_end());
358   else if (!Sum->isZero())
359     Ops.push_back(Sum);
360   // Then append the addrecs.
361   Ops.append(AddRecs.begin(), AddRecs.end());
362 }
363 
364 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
365 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
366 /// This helps expose more opportunities for folding parts of the expressions
367 /// into GEP indices.
368 ///
369 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
370                          Type *Ty,
371                          ScalarEvolution &SE) {
372   // Find the addrecs.
373   SmallVector<const SCEV *, 8> AddRecs;
374   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
375     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
376       const SCEV *Start = A->getStart();
377       if (Start->isZero()) break;
378       const SCEV *Zero = SE.getConstant(Ty, 0);
379       AddRecs.push_back(SE.getAddRecExpr(Zero,
380                                          A->getStepRecurrence(SE),
381                                          A->getLoop(),
382                                          A->getNoWrapFlags(SCEV::FlagNW)));
383       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
384         Ops[i] = Zero;
385         Ops.append(Add->op_begin(), Add->op_end());
386         e += Add->getNumOperands();
387       } else {
388         Ops[i] = Start;
389       }
390     }
391   if (!AddRecs.empty()) {
392     // Add the addrecs onto the end of the list.
393     Ops.append(AddRecs.begin(), AddRecs.end());
394     // Resort the operand list, moving any constants to the front.
395     SimplifyAddOperands(Ops, Ty, SE);
396   }
397 }
398 
399 /// expandAddToGEP - Expand an addition expression with a pointer type into
400 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
401 /// BasicAliasAnalysis and other passes analyze the result. See the rules
402 /// for getelementptr vs. inttoptr in
403 /// http://llvm.org/docs/LangRef.html#pointeraliasing
404 /// for details.
405 ///
406 /// Design note: The correctness of using getelementptr here depends on
407 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
408 /// they may introduce pointer arithmetic which may not be safely converted
409 /// into getelementptr.
410 ///
411 /// Design note: It might seem desirable for this function to be more
412 /// loop-aware. If some of the indices are loop-invariant while others
413 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
414 /// loop-invariant portions of the overall computation outside the loop.
415 /// However, there are a few reasons this is not done here. Hoisting simple
416 /// arithmetic is a low-level optimization that often isn't very
417 /// important until late in the optimization process. In fact, passes
418 /// like InstructionCombining will combine GEPs, even if it means
419 /// pushing loop-invariant computation down into loops, so even if the
420 /// GEPs were split here, the work would quickly be undone. The
421 /// LoopStrengthReduction pass, which is usually run quite late (and
422 /// after the last InstructionCombining pass), takes care of hoisting
423 /// loop-invariant portions of expressions, after considering what
424 /// can be folded using target addressing modes.
425 ///
426 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
427                                     const SCEV *const *op_end,
428                                     PointerType *PTy,
429                                     Type *Ty,
430                                     Value *V) {
431   Type *OriginalElTy = PTy->getElementType();
432   Type *ElTy = OriginalElTy;
433   SmallVector<Value *, 4> GepIndices;
434   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
435   bool AnyNonZeroIndices = false;
436 
437   // Split AddRecs up into parts as either of the parts may be usable
438   // without the other.
439   SplitAddRecs(Ops, Ty, SE);
440 
441   Type *IntIdxTy = DL.getIndexType(PTy);
442 
443   // Descend down the pointer's type and attempt to convert the other
444   // operands into GEP indices, at each level. The first index in a GEP
445   // indexes into the array implied by the pointer operand; the rest of
446   // the indices index into the element or field type selected by the
447   // preceding index.
448   for (;;) {
449     // If the scale size is not 0, attempt to factor out a scale for
450     // array indexing.
451     SmallVector<const SCEV *, 8> ScaledOps;
452     if (ElTy->isSized()) {
453       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
454       if (!ElSize->isZero()) {
455         SmallVector<const SCEV *, 8> NewOps;
456         for (const SCEV *Op : Ops) {
457           const SCEV *Remainder = SE.getConstant(Ty, 0);
458           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
459             // Op now has ElSize factored out.
460             ScaledOps.push_back(Op);
461             if (!Remainder->isZero())
462               NewOps.push_back(Remainder);
463             AnyNonZeroIndices = true;
464           } else {
465             // The operand was not divisible, so add it to the list of operands
466             // we'll scan next iteration.
467             NewOps.push_back(Op);
468           }
469         }
470         // If we made any changes, update Ops.
471         if (!ScaledOps.empty()) {
472           Ops = NewOps;
473           SimplifyAddOperands(Ops, Ty, SE);
474         }
475       }
476     }
477 
478     // Record the scaled array index for this level of the type. If
479     // we didn't find any operands that could be factored, tentatively
480     // assume that element zero was selected (since the zero offset
481     // would obviously be folded away).
482     Value *Scaled =
483         ScaledOps.empty()
484             ? Constant::getNullValue(Ty)
485             : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
486     GepIndices.push_back(Scaled);
487 
488     // Collect struct field index operands.
489     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
490       bool FoundFieldNo = false;
491       // An empty struct has no fields.
492       if (STy->getNumElements() == 0) break;
493       // Field offsets are known. See if a constant offset falls within any of
494       // the struct fields.
495       if (Ops.empty())
496         break;
497       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
498         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
499           const StructLayout &SL = *DL.getStructLayout(STy);
500           uint64_t FullOffset = C->getValue()->getZExtValue();
501           if (FullOffset < SL.getSizeInBytes()) {
502             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
503             GepIndices.push_back(
504                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
505             ElTy = STy->getTypeAtIndex(ElIdx);
506             Ops[0] =
507                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
508             AnyNonZeroIndices = true;
509             FoundFieldNo = true;
510           }
511         }
512       // If no struct field offsets were found, tentatively assume that
513       // field zero was selected (since the zero offset would obviously
514       // be folded away).
515       if (!FoundFieldNo) {
516         ElTy = STy->getTypeAtIndex(0u);
517         GepIndices.push_back(
518           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
519       }
520     }
521 
522     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
523       ElTy = ATy->getElementType();
524     else
525       // FIXME: Handle VectorType.
526       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
527       // constant, therefore can not be factored out. The generated IR is less
528       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
529       break;
530   }
531 
532   // If none of the operands were convertible to proper GEP indices, cast
533   // the base to i8* and do an ugly getelementptr with that. It's still
534   // better than ptrtoint+arithmetic+inttoptr at least.
535   if (!AnyNonZeroIndices) {
536     // Cast the base to i8*.
537     V = InsertNoopCastOfTo(V,
538        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
539 
540     assert(!isa<Instruction>(V) ||
541            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
542 
543     // Expand the operands for a plain byte offset.
544     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
545 
546     // Fold a GEP with constant operands.
547     if (Constant *CLHS = dyn_cast<Constant>(V))
548       if (Constant *CRHS = dyn_cast<Constant>(Idx))
549         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
550                                               CLHS, CRHS);
551 
552     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
553     unsigned ScanLimit = 6;
554     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
555     // Scanning starts from the last instruction before the insertion point.
556     BasicBlock::iterator IP = Builder.GetInsertPoint();
557     if (IP != BlockBegin) {
558       --IP;
559       for (; ScanLimit; --IP, --ScanLimit) {
560         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
561         // generated code.
562         if (isa<DbgInfoIntrinsic>(IP))
563           ScanLimit++;
564         if (IP->getOpcode() == Instruction::GetElementPtr &&
565             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
566           return &*IP;
567         if (IP == BlockBegin) break;
568       }
569     }
570 
571     // Save the original insertion point so we can restore it when we're done.
572     SCEVInsertPointGuard Guard(Builder, this);
573 
574     // Move the insertion point out of as many loops as we can.
575     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
576       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
577       BasicBlock *Preheader = L->getLoopPreheader();
578       if (!Preheader) break;
579 
580       // Ok, move up a level.
581       Builder.SetInsertPoint(Preheader->getTerminator());
582     }
583 
584     // Emit a GEP.
585     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
586   }
587 
588   {
589     SCEVInsertPointGuard Guard(Builder, this);
590 
591     // Move the insertion point out of as many loops as we can.
592     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
593       if (!L->isLoopInvariant(V)) break;
594 
595       bool AnyIndexNotLoopInvariant = any_of(
596           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
597 
598       if (AnyIndexNotLoopInvariant)
599         break;
600 
601       BasicBlock *Preheader = L->getLoopPreheader();
602       if (!Preheader) break;
603 
604       // Ok, move up a level.
605       Builder.SetInsertPoint(Preheader->getTerminator());
606     }
607 
608     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
609     // because ScalarEvolution may have changed the address arithmetic to
610     // compute a value which is beyond the end of the allocated object.
611     Value *Casted = V;
612     if (V->getType() != PTy)
613       Casted = InsertNoopCastOfTo(Casted, PTy);
614     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
615     Ops.push_back(SE.getUnknown(GEP));
616   }
617 
618   return expand(SE.getAddExpr(Ops));
619 }
620 
621 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
622                                     Value *V) {
623   const SCEV *const Ops[1] = {Op};
624   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
625 }
626 
627 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
628 /// SCEV expansion. If they are nested, this is the most nested. If they are
629 /// neighboring, pick the later.
630 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
631                                         DominatorTree &DT) {
632   if (!A) return B;
633   if (!B) return A;
634   if (A->contains(B)) return B;
635   if (B->contains(A)) return A;
636   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
637   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
638   return A; // Arbitrarily break the tie.
639 }
640 
641 /// getRelevantLoop - Get the most relevant loop associated with the given
642 /// expression, according to PickMostRelevantLoop.
643 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
644   // Test whether we've already computed the most relevant loop for this SCEV.
645   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
646   if (!Pair.second)
647     return Pair.first->second;
648 
649   if (isa<SCEVConstant>(S))
650     // A constant has no relevant loops.
651     return nullptr;
652   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
653     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
654       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
655     // A non-instruction has no relevant loops.
656     return nullptr;
657   }
658   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
659     const Loop *L = nullptr;
660     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
661       L = AR->getLoop();
662     for (const SCEV *Op : N->operands())
663       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
664     return RelevantLoops[N] = L;
665   }
666   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
667     const Loop *Result = getRelevantLoop(C->getOperand());
668     return RelevantLoops[C] = Result;
669   }
670   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
671     const Loop *Result = PickMostRelevantLoop(
672         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
673     return RelevantLoops[D] = Result;
674   }
675   llvm_unreachable("Unexpected SCEV type!");
676 }
677 
678 namespace {
679 
680 /// LoopCompare - Compare loops by PickMostRelevantLoop.
681 class LoopCompare {
682   DominatorTree &DT;
683 public:
684   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
685 
686   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
687                   std::pair<const Loop *, const SCEV *> RHS) const {
688     // Keep pointer operands sorted at the end.
689     if (LHS.second->getType()->isPointerTy() !=
690         RHS.second->getType()->isPointerTy())
691       return LHS.second->getType()->isPointerTy();
692 
693     // Compare loops with PickMostRelevantLoop.
694     if (LHS.first != RHS.first)
695       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
696 
697     // If one operand is a non-constant negative and the other is not,
698     // put the non-constant negative on the right so that a sub can
699     // be used instead of a negate and add.
700     if (LHS.second->isNonConstantNegative()) {
701       if (!RHS.second->isNonConstantNegative())
702         return false;
703     } else if (RHS.second->isNonConstantNegative())
704       return true;
705 
706     // Otherwise they are equivalent according to this comparison.
707     return false;
708   }
709 };
710 
711 }
712 
713 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
714   Type *Ty = SE.getEffectiveSCEVType(S->getType());
715 
716   // Collect all the add operands in a loop, along with their associated loops.
717   // Iterate in reverse so that constants are emitted last, all else equal, and
718   // so that pointer operands are inserted first, which the code below relies on
719   // to form more involved GEPs.
720   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
721   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
722        E(S->op_begin()); I != E; ++I)
723     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
724 
725   // Sort by loop. Use a stable sort so that constants follow non-constants and
726   // pointer operands precede non-pointer operands.
727   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
728 
729   // Emit instructions to add all the operands. Hoist as much as possible
730   // out of loops, and form meaningful getelementptrs where possible.
731   Value *Sum = nullptr;
732   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
733     const Loop *CurLoop = I->first;
734     const SCEV *Op = I->second;
735     if (!Sum) {
736       // This is the first operand. Just expand it.
737       Sum = expand(Op);
738       ++I;
739     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
740       // The running sum expression is a pointer. Try to form a getelementptr
741       // at this level with that as the base.
742       SmallVector<const SCEV *, 4> NewOps;
743       for (; I != E && I->first == CurLoop; ++I) {
744         // If the operand is SCEVUnknown and not instructions, peek through
745         // it, to enable more of it to be folded into the GEP.
746         const SCEV *X = I->second;
747         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
748           if (!isa<Instruction>(U->getValue()))
749             X = SE.getSCEV(U->getValue());
750         NewOps.push_back(X);
751       }
752       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
753     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
754       // The running sum is an integer, and there's a pointer at this level.
755       // Try to form a getelementptr. If the running sum is instructions,
756       // use a SCEVUnknown to avoid re-analyzing them.
757       SmallVector<const SCEV *, 4> NewOps;
758       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
759                                                SE.getSCEV(Sum));
760       for (++I; I != E && I->first == CurLoop; ++I)
761         NewOps.push_back(I->second);
762       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
763     } else if (Op->isNonConstantNegative()) {
764       // Instead of doing a negate and add, just do a subtract.
765       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
766       Sum = InsertNoopCastOfTo(Sum, Ty);
767       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
768                         /*IsSafeToHoist*/ true);
769       ++I;
770     } else {
771       // A simple add.
772       Value *W = expandCodeForImpl(Op, Ty, false);
773       Sum = InsertNoopCastOfTo(Sum, Ty);
774       // Canonicalize a constant to the RHS.
775       if (isa<Constant>(Sum)) std::swap(Sum, W);
776       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
777                         /*IsSafeToHoist*/ true);
778       ++I;
779     }
780   }
781 
782   return Sum;
783 }
784 
785 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
786   Type *Ty = SE.getEffectiveSCEVType(S->getType());
787 
788   // Collect all the mul operands in a loop, along with their associated loops.
789   // Iterate in reverse so that constants are emitted last, all else equal.
790   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
791   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
792        E(S->op_begin()); I != E; ++I)
793     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
794 
795   // Sort by loop. Use a stable sort so that constants follow non-constants.
796   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
797 
798   // Emit instructions to mul all the operands. Hoist as much as possible
799   // out of loops.
800   Value *Prod = nullptr;
801   auto I = OpsAndLoops.begin();
802 
803   // Expand the calculation of X pow N in the following manner:
804   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
805   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
806   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
807     auto E = I;
808     // Calculate how many times the same operand from the same loop is included
809     // into this power.
810     uint64_t Exponent = 0;
811     const uint64_t MaxExponent = UINT64_MAX >> 1;
812     // No one sane will ever try to calculate such huge exponents, but if we
813     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
814     // below when the power of 2 exceeds our Exponent, and we want it to be
815     // 1u << 31 at most to not deal with unsigned overflow.
816     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
817       ++Exponent;
818       ++E;
819     }
820     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
821 
822     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
823     // that are needed into the result.
824     Value *P = expandCodeForImpl(I->second, Ty, false);
825     Value *Result = nullptr;
826     if (Exponent & 1)
827       Result = P;
828     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
829       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
830                       /*IsSafeToHoist*/ true);
831       if (Exponent & BinExp)
832         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
833                                       SCEV::FlagAnyWrap,
834                                       /*IsSafeToHoist*/ true)
835                         : P;
836     }
837 
838     I = E;
839     assert(Result && "Nothing was expanded?");
840     return Result;
841   };
842 
843   while (I != OpsAndLoops.end()) {
844     if (!Prod) {
845       // This is the first operand. Just expand it.
846       Prod = ExpandOpBinPowN();
847     } else if (I->second->isAllOnesValue()) {
848       // Instead of doing a multiply by negative one, just do a negate.
849       Prod = InsertNoopCastOfTo(Prod, Ty);
850       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
851                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
852       ++I;
853     } else {
854       // A simple mul.
855       Value *W = ExpandOpBinPowN();
856       Prod = InsertNoopCastOfTo(Prod, Ty);
857       // Canonicalize a constant to the RHS.
858       if (isa<Constant>(Prod)) std::swap(Prod, W);
859       const APInt *RHS;
860       if (match(W, m_Power2(RHS))) {
861         // Canonicalize Prod*(1<<C) to Prod<<C.
862         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
863         auto NWFlags = S->getNoWrapFlags();
864         // clear nsw flag if shl will produce poison value.
865         if (RHS->logBase2() == RHS->getBitWidth() - 1)
866           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
867         Prod = InsertBinop(Instruction::Shl, Prod,
868                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
869                            /*IsSafeToHoist*/ true);
870       } else {
871         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
872                            /*IsSafeToHoist*/ true);
873       }
874     }
875   }
876 
877   return Prod;
878 }
879 
880 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
881   Type *Ty = SE.getEffectiveSCEVType(S->getType());
882 
883   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
884   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
885     const APInt &RHS = SC->getAPInt();
886     if (RHS.isPowerOf2())
887       return InsertBinop(Instruction::LShr, LHS,
888                          ConstantInt::get(Ty, RHS.logBase2()),
889                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
890   }
891 
892   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
893   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
894                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
895 }
896 
897 /// Move parts of Base into Rest to leave Base with the minimal
898 /// expression that provides a pointer operand suitable for a
899 /// GEP expansion.
900 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
901                               ScalarEvolution &SE) {
902   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
903     Base = A->getStart();
904     Rest = SE.getAddExpr(Rest,
905                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
906                                           A->getStepRecurrence(SE),
907                                           A->getLoop(),
908                                           A->getNoWrapFlags(SCEV::FlagNW)));
909   }
910   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
911     Base = A->getOperand(A->getNumOperands()-1);
912     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
913     NewAddOps.back() = Rest;
914     Rest = SE.getAddExpr(NewAddOps);
915     ExposePointerBase(Base, Rest, SE);
916   }
917 }
918 
919 /// Determine if this is a well-behaved chain of instructions leading back to
920 /// the PHI. If so, it may be reused by expanded expressions.
921 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
922                                          const Loop *L) {
923   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
924       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
925     return false;
926   // If any of the operands don't dominate the insert position, bail.
927   // Addrec operands are always loop-invariant, so this can only happen
928   // if there are instructions which haven't been hoisted.
929   if (L == IVIncInsertLoop) {
930     for (User::op_iterator OI = IncV->op_begin()+1,
931            OE = IncV->op_end(); OI != OE; ++OI)
932       if (Instruction *OInst = dyn_cast<Instruction>(OI))
933         if (!SE.DT.dominates(OInst, IVIncInsertPos))
934           return false;
935   }
936   // Advance to the next instruction.
937   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
938   if (!IncV)
939     return false;
940 
941   if (IncV->mayHaveSideEffects())
942     return false;
943 
944   if (IncV == PN)
945     return true;
946 
947   return isNormalAddRecExprPHI(PN, IncV, L);
948 }
949 
950 /// getIVIncOperand returns an induction variable increment's induction
951 /// variable operand.
952 ///
953 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
954 /// operands dominate InsertPos.
955 ///
956 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
957 /// simple patterns generated by getAddRecExprPHILiterally and
958 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
959 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
960                                            Instruction *InsertPos,
961                                            bool allowScale) {
962   if (IncV == InsertPos)
963     return nullptr;
964 
965   switch (IncV->getOpcode()) {
966   default:
967     return nullptr;
968   // Check for a simple Add/Sub or GEP of a loop invariant step.
969   case Instruction::Add:
970   case Instruction::Sub: {
971     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
972     if (!OInst || SE.DT.dominates(OInst, InsertPos))
973       return dyn_cast<Instruction>(IncV->getOperand(0));
974     return nullptr;
975   }
976   case Instruction::BitCast:
977     return dyn_cast<Instruction>(IncV->getOperand(0));
978   case Instruction::GetElementPtr:
979     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
980       if (isa<Constant>(*I))
981         continue;
982       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
983         if (!SE.DT.dominates(OInst, InsertPos))
984           return nullptr;
985       }
986       if (allowScale) {
987         // allow any kind of GEP as long as it can be hoisted.
988         continue;
989       }
990       // This must be a pointer addition of constants (pretty), which is already
991       // handled, or some number of address-size elements (ugly). Ugly geps
992       // have 2 operands. i1* is used by the expander to represent an
993       // address-size element.
994       if (IncV->getNumOperands() != 2)
995         return nullptr;
996       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
997       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
998           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
999         return nullptr;
1000       break;
1001     }
1002     return dyn_cast<Instruction>(IncV->getOperand(0));
1003   }
1004 }
1005 
1006 /// If the insert point of the current builder or any of the builders on the
1007 /// stack of saved builders has 'I' as its insert point, update it to point to
1008 /// the instruction after 'I'.  This is intended to be used when the instruction
1009 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1010 /// different block, the inconsistent insert point (with a mismatched
1011 /// Instruction and Block) can lead to an instruction being inserted in a block
1012 /// other than its parent.
1013 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1014   BasicBlock::iterator It(*I);
1015   BasicBlock::iterator NewInsertPt = std::next(It);
1016   if (Builder.GetInsertPoint() == It)
1017     Builder.SetInsertPoint(&*NewInsertPt);
1018   for (auto *InsertPtGuard : InsertPointGuards)
1019     if (InsertPtGuard->GetInsertPoint() == It)
1020       InsertPtGuard->SetInsertPoint(NewInsertPt);
1021 }
1022 
1023 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1024 /// it available to other uses in this loop. Recursively hoist any operands,
1025 /// until we reach a value that dominates InsertPos.
1026 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1027   if (SE.DT.dominates(IncV, InsertPos))
1028       return true;
1029 
1030   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1031   // its existing users.
1032   if (isa<PHINode>(InsertPos) ||
1033       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1034     return false;
1035 
1036   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1037     return false;
1038 
1039   // Check that the chain of IV operands leading back to Phi can be hoisted.
1040   SmallVector<Instruction*, 4> IVIncs;
1041   for(;;) {
1042     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1043     if (!Oper)
1044       return false;
1045     // IncV is safe to hoist.
1046     IVIncs.push_back(IncV);
1047     IncV = Oper;
1048     if (SE.DT.dominates(IncV, InsertPos))
1049       break;
1050   }
1051   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1052     fixupInsertPoints(*I);
1053     (*I)->moveBefore(InsertPos);
1054   }
1055   return true;
1056 }
1057 
1058 /// Determine if this cyclic phi is in a form that would have been generated by
1059 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1060 /// as it is in a low-cost form, for example, no implied multiplication. This
1061 /// should match any patterns generated by getAddRecExprPHILiterally and
1062 /// expandAddtoGEP.
1063 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1064                                            const Loop *L) {
1065   for(Instruction *IVOper = IncV;
1066       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1067                                 /*allowScale=*/false));) {
1068     if (IVOper == PN)
1069       return true;
1070   }
1071   return false;
1072 }
1073 
1074 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1075 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1076 /// need to materialize IV increments elsewhere to handle difficult situations.
1077 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1078                                  Type *ExpandTy, Type *IntTy,
1079                                  bool useSubtract) {
1080   Value *IncV;
1081   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1082   if (ExpandTy->isPointerTy()) {
1083     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1084     // If the step isn't constant, don't use an implicitly scaled GEP, because
1085     // that would require a multiply inside the loop.
1086     if (!isa<ConstantInt>(StepV))
1087       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1088                                   GEPPtrTy->getAddressSpace());
1089     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1090     if (IncV->getType() != PN->getType())
1091       IncV = Builder.CreateBitCast(IncV, PN->getType());
1092   } else {
1093     IncV = useSubtract ?
1094       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1095       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1096   }
1097   return IncV;
1098 }
1099 
1100 /// Hoist the addrec instruction chain rooted in the loop phi above the
1101 /// position. This routine assumes that this is possible (has been checked).
1102 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1103                                   Instruction *Pos, PHINode *LoopPhi) {
1104   do {
1105     if (DT->dominates(InstToHoist, Pos))
1106       break;
1107     // Make sure the increment is where we want it. But don't move it
1108     // down past a potential existing post-inc user.
1109     fixupInsertPoints(InstToHoist);
1110     InstToHoist->moveBefore(Pos);
1111     Pos = InstToHoist;
1112     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1113   } while (InstToHoist != LoopPhi);
1114 }
1115 
1116 /// Check whether we can cheaply express the requested SCEV in terms of
1117 /// the available PHI SCEV by truncation and/or inversion of the step.
1118 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1119                                     const SCEVAddRecExpr *Phi,
1120                                     const SCEVAddRecExpr *Requested,
1121                                     bool &InvertStep) {
1122   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1123   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1124 
1125   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1126     return false;
1127 
1128   // Try truncate it if necessary.
1129   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1130   if (!Phi)
1131     return false;
1132 
1133   // Check whether truncation will help.
1134   if (Phi == Requested) {
1135     InvertStep = false;
1136     return true;
1137   }
1138 
1139   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1140   if (SE.getAddExpr(Requested->getStart(),
1141                     SE.getNegativeSCEV(Requested)) == Phi) {
1142     InvertStep = true;
1143     return true;
1144   }
1145 
1146   return false;
1147 }
1148 
1149 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1150   if (!isa<IntegerType>(AR->getType()))
1151     return false;
1152 
1153   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1154   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1155   const SCEV *Step = AR->getStepRecurrence(SE);
1156   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1157                                             SE.getSignExtendExpr(AR, WideTy));
1158   const SCEV *ExtendAfterOp =
1159     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1160   return ExtendAfterOp == OpAfterExtend;
1161 }
1162 
1163 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1164   if (!isa<IntegerType>(AR->getType()))
1165     return false;
1166 
1167   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1168   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1169   const SCEV *Step = AR->getStepRecurrence(SE);
1170   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1171                                             SE.getZeroExtendExpr(AR, WideTy));
1172   const SCEV *ExtendAfterOp =
1173     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1174   return ExtendAfterOp == OpAfterExtend;
1175 }
1176 
1177 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1178 /// the base addrec, which is the addrec without any non-loop-dominating
1179 /// values, and return the PHI.
1180 PHINode *
1181 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1182                                         const Loop *L,
1183                                         Type *ExpandTy,
1184                                         Type *IntTy,
1185                                         Type *&TruncTy,
1186                                         bool &InvertStep) {
1187   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1188 
1189   // Reuse a previously-inserted PHI, if present.
1190   BasicBlock *LatchBlock = L->getLoopLatch();
1191   if (LatchBlock) {
1192     PHINode *AddRecPhiMatch = nullptr;
1193     Instruction *IncV = nullptr;
1194     TruncTy = nullptr;
1195     InvertStep = false;
1196 
1197     // Only try partially matching scevs that need truncation and/or
1198     // step-inversion if we know this loop is outside the current loop.
1199     bool TryNonMatchingSCEV =
1200         IVIncInsertLoop &&
1201         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1202 
1203     for (PHINode &PN : L->getHeader()->phis()) {
1204       if (!SE.isSCEVable(PN.getType()))
1205         continue;
1206 
1207       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1208       // PHI has no meaning at all.
1209       if (!PN.isComplete()) {
1210         DEBUG_WITH_TYPE(
1211             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1212         continue;
1213       }
1214 
1215       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1216       if (!PhiSCEV)
1217         continue;
1218 
1219       bool IsMatchingSCEV = PhiSCEV == Normalized;
1220       // We only handle truncation and inversion of phi recurrences for the
1221       // expanded expression if the expanded expression's loop dominates the
1222       // loop we insert to. Check now, so we can bail out early.
1223       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1224           continue;
1225 
1226       // TODO: this possibly can be reworked to avoid this cast at all.
1227       Instruction *TempIncV =
1228           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1229       if (!TempIncV)
1230         continue;
1231 
1232       // Check whether we can reuse this PHI node.
1233       if (LSRMode) {
1234         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1235           continue;
1236         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1237           continue;
1238       } else {
1239         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1240           continue;
1241       }
1242 
1243       // Stop if we have found an exact match SCEV.
1244       if (IsMatchingSCEV) {
1245         IncV = TempIncV;
1246         TruncTy = nullptr;
1247         InvertStep = false;
1248         AddRecPhiMatch = &PN;
1249         break;
1250       }
1251 
1252       // Try whether the phi can be translated into the requested form
1253       // (truncated and/or offset by a constant).
1254       if ((!TruncTy || InvertStep) &&
1255           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1256         // Record the phi node. But don't stop we might find an exact match
1257         // later.
1258         AddRecPhiMatch = &PN;
1259         IncV = TempIncV;
1260         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1261       }
1262     }
1263 
1264     if (AddRecPhiMatch) {
1265       // Potentially, move the increment. We have made sure in
1266       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1267       if (L == IVIncInsertLoop)
1268         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1269 
1270       // Ok, the add recurrence looks usable.
1271       // Remember this PHI, even in post-inc mode.
1272       InsertedValues.insert(AddRecPhiMatch);
1273       // Remember the increment.
1274       rememberInstruction(IncV);
1275       // Those values were not actually inserted but re-used.
1276       ReusedValues.insert(AddRecPhiMatch);
1277       ReusedValues.insert(IncV);
1278       return AddRecPhiMatch;
1279     }
1280   }
1281 
1282   // Save the original insertion point so we can restore it when we're done.
1283   SCEVInsertPointGuard Guard(Builder, this);
1284 
1285   // Another AddRec may need to be recursively expanded below. For example, if
1286   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1287   // loop. Remove this loop from the PostIncLoops set before expanding such
1288   // AddRecs. Otherwise, we cannot find a valid position for the step
1289   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1290   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1291   // so it's not worth implementing SmallPtrSet::swap.
1292   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1293   PostIncLoops.clear();
1294 
1295   // Expand code for the start value into the loop preheader.
1296   assert(L->getLoopPreheader() &&
1297          "Can't expand add recurrences without a loop preheader!");
1298   Value *StartV =
1299       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1300                         L->getLoopPreheader()->getTerminator(), false);
1301 
1302   // StartV must have been be inserted into L's preheader to dominate the new
1303   // phi.
1304   assert(!isa<Instruction>(StartV) ||
1305          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1306                                  L->getHeader()));
1307 
1308   // Expand code for the step value. Do this before creating the PHI so that PHI
1309   // reuse code doesn't see an incomplete PHI.
1310   const SCEV *Step = Normalized->getStepRecurrence(SE);
1311   // If the stride is negative, insert a sub instead of an add for the increment
1312   // (unless it's a constant, because subtracts of constants are canonicalized
1313   // to adds).
1314   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1315   if (useSubtract)
1316     Step = SE.getNegativeSCEV(Step);
1317   // Expand the step somewhere that dominates the loop header.
1318   Value *StepV = expandCodeForImpl(
1319       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1320 
1321   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1322   // we actually do emit an addition.  It does not apply if we emit a
1323   // subtraction.
1324   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1325   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1326 
1327   // Create the PHI.
1328   BasicBlock *Header = L->getHeader();
1329   Builder.SetInsertPoint(Header, Header->begin());
1330   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1331   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1332                                   Twine(IVName) + ".iv");
1333 
1334   // Create the step instructions and populate the PHI.
1335   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1336     BasicBlock *Pred = *HPI;
1337 
1338     // Add a start value.
1339     if (!L->contains(Pred)) {
1340       PN->addIncoming(StartV, Pred);
1341       continue;
1342     }
1343 
1344     // Create a step value and add it to the PHI.
1345     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1346     // instructions at IVIncInsertPos.
1347     Instruction *InsertPos = L == IVIncInsertLoop ?
1348       IVIncInsertPos : Pred->getTerminator();
1349     Builder.SetInsertPoint(InsertPos);
1350     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1351 
1352     if (isa<OverflowingBinaryOperator>(IncV)) {
1353       if (IncrementIsNUW)
1354         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1355       if (IncrementIsNSW)
1356         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1357     }
1358     PN->addIncoming(IncV, Pred);
1359   }
1360 
1361   // After expanding subexpressions, restore the PostIncLoops set so the caller
1362   // can ensure that IVIncrement dominates the current uses.
1363   PostIncLoops = SavedPostIncLoops;
1364 
1365   // Remember this PHI, even in post-inc mode.
1366   InsertedValues.insert(PN);
1367 
1368   return PN;
1369 }
1370 
1371 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1372   Type *STy = S->getType();
1373   Type *IntTy = SE.getEffectiveSCEVType(STy);
1374   const Loop *L = S->getLoop();
1375 
1376   // Determine a normalized form of this expression, which is the expression
1377   // before any post-inc adjustment is made.
1378   const SCEVAddRecExpr *Normalized = S;
1379   if (PostIncLoops.count(L)) {
1380     PostIncLoopSet Loops;
1381     Loops.insert(L);
1382     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1383   }
1384 
1385   // Strip off any non-loop-dominating component from the addrec start.
1386   const SCEV *Start = Normalized->getStart();
1387   const SCEV *PostLoopOffset = nullptr;
1388   if (!SE.properlyDominates(Start, L->getHeader())) {
1389     PostLoopOffset = Start;
1390     Start = SE.getConstant(Normalized->getType(), 0);
1391     Normalized = cast<SCEVAddRecExpr>(
1392       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1393                        Normalized->getLoop(),
1394                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1395   }
1396 
1397   // Strip off any non-loop-dominating component from the addrec step.
1398   const SCEV *Step = Normalized->getStepRecurrence(SE);
1399   const SCEV *PostLoopScale = nullptr;
1400   if (!SE.dominates(Step, L->getHeader())) {
1401     PostLoopScale = Step;
1402     Step = SE.getConstant(Normalized->getType(), 1);
1403     if (!Start->isZero()) {
1404         // The normalization below assumes that Start is constant zero, so if
1405         // it isn't re-associate Start to PostLoopOffset.
1406         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1407         PostLoopOffset = Start;
1408         Start = SE.getConstant(Normalized->getType(), 0);
1409     }
1410     Normalized =
1411       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1412                              Start, Step, Normalized->getLoop(),
1413                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1414   }
1415 
1416   // Expand the core addrec. If we need post-loop scaling, force it to
1417   // expand to an integer type to avoid the need for additional casting.
1418   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1419   // We can't use a pointer type for the addrec if the pointer type is
1420   // non-integral.
1421   Type *AddRecPHIExpandTy =
1422       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1423 
1424   // In some cases, we decide to reuse an existing phi node but need to truncate
1425   // it and/or invert the step.
1426   Type *TruncTy = nullptr;
1427   bool InvertStep = false;
1428   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1429                                           IntTy, TruncTy, InvertStep);
1430 
1431   // Accommodate post-inc mode, if necessary.
1432   Value *Result;
1433   if (!PostIncLoops.count(L))
1434     Result = PN;
1435   else {
1436     // In PostInc mode, use the post-incremented value.
1437     BasicBlock *LatchBlock = L->getLoopLatch();
1438     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1439     Result = PN->getIncomingValueForBlock(LatchBlock);
1440 
1441     // For an expansion to use the postinc form, the client must call
1442     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1443     // or dominated by IVIncInsertPos.
1444     if (isa<Instruction>(Result) &&
1445         !SE.DT.dominates(cast<Instruction>(Result),
1446                          &*Builder.GetInsertPoint())) {
1447       // The induction variable's postinc expansion does not dominate this use.
1448       // IVUsers tries to prevent this case, so it is rare. However, it can
1449       // happen when an IVUser outside the loop is not dominated by the latch
1450       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1451       // all cases. Consider a phi outside whose operand is replaced during
1452       // expansion with the value of the postinc user. Without fundamentally
1453       // changing the way postinc users are tracked, the only remedy is
1454       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1455       // but hopefully expandCodeFor handles that.
1456       bool useSubtract =
1457         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1458       if (useSubtract)
1459         Step = SE.getNegativeSCEV(Step);
1460       Value *StepV;
1461       {
1462         // Expand the step somewhere that dominates the loop header.
1463         SCEVInsertPointGuard Guard(Builder, this);
1464         StepV = expandCodeForImpl(
1465             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1466       }
1467       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1468     }
1469   }
1470 
1471   // We have decided to reuse an induction variable of a dominating loop. Apply
1472   // truncation and/or inversion of the step.
1473   if (TruncTy) {
1474     Type *ResTy = Result->getType();
1475     // Normalize the result type.
1476     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1477       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1478     // Truncate the result.
1479     if (TruncTy != Result->getType())
1480       Result = Builder.CreateTrunc(Result, TruncTy);
1481 
1482     // Invert the result.
1483     if (InvertStep)
1484       Result = Builder.CreateSub(
1485           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1486   }
1487 
1488   // Re-apply any non-loop-dominating scale.
1489   if (PostLoopScale) {
1490     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1491     Result = InsertNoopCastOfTo(Result, IntTy);
1492     Result = Builder.CreateMul(Result,
1493                                expandCodeForImpl(PostLoopScale, IntTy, false));
1494   }
1495 
1496   // Re-apply any non-loop-dominating offset.
1497   if (PostLoopOffset) {
1498     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1499       if (Result->getType()->isIntegerTy()) {
1500         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1501         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1502       } else {
1503         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1504       }
1505     } else {
1506       Result = InsertNoopCastOfTo(Result, IntTy);
1507       Result = Builder.CreateAdd(
1508           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1509     }
1510   }
1511 
1512   return Result;
1513 }
1514 
1515 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1516   // In canonical mode we compute the addrec as an expression of a canonical IV
1517   // using evaluateAtIteration and expand the resulting SCEV expression. This
1518   // way we avoid introducing new IVs to carry on the comutation of the addrec
1519   // throughout the loop.
1520   //
1521   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1522   // type wider than the addrec itself. Emitting a canonical IV of the
1523   // proper type might produce non-legal types, for example expanding an i64
1524   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1525   // back to non-canonical mode for nested addrecs.
1526   if (!CanonicalMode || (S->getNumOperands() > 2))
1527     return expandAddRecExprLiterally(S);
1528 
1529   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1530   const Loop *L = S->getLoop();
1531 
1532   // First check for an existing canonical IV in a suitable type.
1533   PHINode *CanonicalIV = nullptr;
1534   if (PHINode *PN = L->getCanonicalInductionVariable())
1535     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1536       CanonicalIV = PN;
1537 
1538   // Rewrite an AddRec in terms of the canonical induction variable, if
1539   // its type is more narrow.
1540   if (CanonicalIV &&
1541       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1542       SE.getTypeSizeInBits(Ty)) {
1543     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1544     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1545       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1546     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1547                                        S->getNoWrapFlags(SCEV::FlagNW)));
1548     BasicBlock::iterator NewInsertPt =
1549         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1550     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1551                           &*NewInsertPt, false);
1552     return V;
1553   }
1554 
1555   // {X,+,F} --> X + {0,+,F}
1556   if (!S->getStart()->isZero()) {
1557     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1558     NewOps[0] = SE.getConstant(Ty, 0);
1559     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1560                                         S->getNoWrapFlags(SCEV::FlagNW));
1561 
1562     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1563     // comments on expandAddToGEP for details.
1564     const SCEV *Base = S->getStart();
1565     // Dig into the expression to find the pointer base for a GEP.
1566     const SCEV *ExposedRest = Rest;
1567     ExposePointerBase(Base, ExposedRest, SE);
1568     // If we found a pointer, expand the AddRec with a GEP.
1569     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1570       // Make sure the Base isn't something exotic, such as a multiplied
1571       // or divided pointer value. In those cases, the result type isn't
1572       // actually a pointer type.
1573       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1574         Value *StartV = expand(Base);
1575         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1576         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1577       }
1578     }
1579 
1580     // Just do a normal add. Pre-expand the operands to suppress folding.
1581     //
1582     // The LHS and RHS values are factored out of the expand call to make the
1583     // output independent of the argument evaluation order.
1584     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1585     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1586     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1587   }
1588 
1589   // If we don't yet have a canonical IV, create one.
1590   if (!CanonicalIV) {
1591     // Create and insert the PHI node for the induction variable in the
1592     // specified loop.
1593     BasicBlock *Header = L->getHeader();
1594     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1595     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1596                                   &Header->front());
1597     rememberInstruction(CanonicalIV);
1598 
1599     SmallSet<BasicBlock *, 4> PredSeen;
1600     Constant *One = ConstantInt::get(Ty, 1);
1601     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1602       BasicBlock *HP = *HPI;
1603       if (!PredSeen.insert(HP).second) {
1604         // There must be an incoming value for each predecessor, even the
1605         // duplicates!
1606         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1607         continue;
1608       }
1609 
1610       if (L->contains(HP)) {
1611         // Insert a unit add instruction right before the terminator
1612         // corresponding to the back-edge.
1613         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1614                                                      "indvar.next",
1615                                                      HP->getTerminator());
1616         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1617         rememberInstruction(Add);
1618         CanonicalIV->addIncoming(Add, HP);
1619       } else {
1620         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1621       }
1622     }
1623   }
1624 
1625   // {0,+,1} --> Insert a canonical induction variable into the loop!
1626   if (S->isAffine() && S->getOperand(1)->isOne()) {
1627     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1628            "IVs with types different from the canonical IV should "
1629            "already have been handled!");
1630     return CanonicalIV;
1631   }
1632 
1633   // {0,+,F} --> {0,+,1} * F
1634 
1635   // If this is a simple linear addrec, emit it now as a special case.
1636   if (S->isAffine())    // {0,+,F} --> i*F
1637     return
1638       expand(SE.getTruncateOrNoop(
1639         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1640                       SE.getNoopOrAnyExtend(S->getOperand(1),
1641                                             CanonicalIV->getType())),
1642         Ty));
1643 
1644   // If this is a chain of recurrences, turn it into a closed form, using the
1645   // folders, then expandCodeFor the closed form.  This allows the folders to
1646   // simplify the expression without having to build a bunch of special code
1647   // into this folder.
1648   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1649 
1650   // Promote S up to the canonical IV type, if the cast is foldable.
1651   const SCEV *NewS = S;
1652   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1653   if (isa<SCEVAddRecExpr>(Ext))
1654     NewS = Ext;
1655 
1656   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1657   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1658 
1659   // Truncate the result down to the original type, if needed.
1660   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1661   return expand(T);
1662 }
1663 
1664 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1665   Value *V =
1666       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1667   return Builder.CreatePtrToInt(V, S->getType());
1668 }
1669 
1670 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1671   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1672   Value *V = expandCodeForImpl(
1673       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1674       false);
1675   return Builder.CreateTrunc(V, Ty);
1676 }
1677 
1678 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1679   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1680   Value *V = expandCodeForImpl(
1681       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1682       false);
1683   return Builder.CreateZExt(V, Ty);
1684 }
1685 
1686 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1687   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1688   Value *V = expandCodeForImpl(
1689       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1690       false);
1691   return Builder.CreateSExt(V, Ty);
1692 }
1693 
1694 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1695   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1696   Type *Ty = LHS->getType();
1697   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1698     // In the case of mixed integer and pointer types, do the
1699     // rest of the comparisons as integer.
1700     Type *OpTy = S->getOperand(i)->getType();
1701     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1702       Ty = SE.getEffectiveSCEVType(Ty);
1703       LHS = InsertNoopCastOfTo(LHS, Ty);
1704     }
1705     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1706     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1707     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1708     LHS = Sel;
1709   }
1710   // In the case of mixed integer and pointer types, cast the
1711   // final result back to the pointer type.
1712   if (LHS->getType() != S->getType())
1713     LHS = InsertNoopCastOfTo(LHS, S->getType());
1714   return LHS;
1715 }
1716 
1717 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1718   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1719   Type *Ty = LHS->getType();
1720   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1721     // In the case of mixed integer and pointer types, do the
1722     // rest of the comparisons as integer.
1723     Type *OpTy = S->getOperand(i)->getType();
1724     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1725       Ty = SE.getEffectiveSCEVType(Ty);
1726       LHS = InsertNoopCastOfTo(LHS, Ty);
1727     }
1728     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1729     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1730     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1731     LHS = Sel;
1732   }
1733   // In the case of mixed integer and pointer types, cast the
1734   // final result back to the pointer type.
1735   if (LHS->getType() != S->getType())
1736     LHS = InsertNoopCastOfTo(LHS, S->getType());
1737   return LHS;
1738 }
1739 
1740 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1741   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1742   Type *Ty = LHS->getType();
1743   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1744     // In the case of mixed integer and pointer types, do the
1745     // rest of the comparisons as integer.
1746     Type *OpTy = S->getOperand(i)->getType();
1747     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1748       Ty = SE.getEffectiveSCEVType(Ty);
1749       LHS = InsertNoopCastOfTo(LHS, Ty);
1750     }
1751     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1752     Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1753     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1754     LHS = Sel;
1755   }
1756   // In the case of mixed integer and pointer types, cast the
1757   // final result back to the pointer type.
1758   if (LHS->getType() != S->getType())
1759     LHS = InsertNoopCastOfTo(LHS, S->getType());
1760   return LHS;
1761 }
1762 
1763 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1764   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1765   Type *Ty = LHS->getType();
1766   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1767     // In the case of mixed integer and pointer types, do the
1768     // rest of the comparisons as integer.
1769     Type *OpTy = S->getOperand(i)->getType();
1770     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1771       Ty = SE.getEffectiveSCEVType(Ty);
1772       LHS = InsertNoopCastOfTo(LHS, Ty);
1773     }
1774     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1775     Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1776     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1777     LHS = Sel;
1778   }
1779   // In the case of mixed integer and pointer types, cast the
1780   // final result back to the pointer type.
1781   if (LHS->getType() != S->getType())
1782     LHS = InsertNoopCastOfTo(LHS, S->getType());
1783   return LHS;
1784 }
1785 
1786 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1787                                        Instruction *IP, bool Root) {
1788   setInsertPoint(IP);
1789   Value *V = expandCodeForImpl(SH, Ty, Root);
1790   return V;
1791 }
1792 
1793 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1794   // Expand the code for this SCEV.
1795   Value *V = expand(SH);
1796 
1797   if (PreserveLCSSA) {
1798     if (auto *Inst = dyn_cast<Instruction>(V)) {
1799       // Create a temporary instruction to at the current insertion point, so we
1800       // can hand it off to the helper to create LCSSA PHIs if required for the
1801       // new use.
1802       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1803       // would accept a insertion point and return an LCSSA phi for that
1804       // insertion point, so there is no need to insert & remove the temporary
1805       // instruction.
1806       Instruction *Tmp;
1807       if (Inst->getType()->isIntegerTy())
1808         Tmp =
1809             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1810       else {
1811         assert(Inst->getType()->isPointerTy());
1812         Tmp = cast<Instruction>(
1813             Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user"));
1814       }
1815       V = fixupLCSSAFormFor(Tmp, 0);
1816 
1817       // Clean up temporary instruction.
1818       InsertedValues.erase(Tmp);
1819       InsertedPostIncValues.erase(Tmp);
1820       Tmp->eraseFromParent();
1821     }
1822   }
1823 
1824   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1825   if (Ty) {
1826     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1827            "non-trivial casts should be done with the SCEVs directly!");
1828     V = InsertNoopCastOfTo(V, Ty);
1829   }
1830   return V;
1831 }
1832 
1833 ScalarEvolution::ValueOffsetPair
1834 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1835                                       const Instruction *InsertPt) {
1836   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1837   // If the expansion is not in CanonicalMode, and the SCEV contains any
1838   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1839   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1840     // If S is scConstant, it may be worse to reuse an existing Value.
1841     if (S->getSCEVType() != scConstant && Set) {
1842       // Choose a Value from the set which dominates the insertPt.
1843       // insertPt should be inside the Value's parent loop so as not to break
1844       // the LCSSA form.
1845       for (auto const &VOPair : *Set) {
1846         Value *V = VOPair.first;
1847         ConstantInt *Offset = VOPair.second;
1848         Instruction *EntInst = nullptr;
1849         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1850             S->getType() == V->getType() &&
1851             EntInst->getFunction() == InsertPt->getFunction() &&
1852             SE.DT.dominates(EntInst, InsertPt) &&
1853             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1854              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1855           return {V, Offset};
1856       }
1857     }
1858   }
1859   return {nullptr, nullptr};
1860 }
1861 
1862 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1863 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1864 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1865 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1866 // the expansion will try to reuse Value from ExprValueMap, and only when it
1867 // fails, expand the SCEV literally.
1868 Value *SCEVExpander::expand(const SCEV *S) {
1869   // Compute an insertion point for this SCEV object. Hoist the instructions
1870   // as far out in the loop nest as possible.
1871   Instruction *InsertPt = &*Builder.GetInsertPoint();
1872 
1873   // We can move insertion point only if there is no div or rem operations
1874   // otherwise we are risky to move it over the check for zero denominator.
1875   auto SafeToHoist = [](const SCEV *S) {
1876     return !SCEVExprContains(S, [](const SCEV *S) {
1877               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1878                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1879                   // Division by non-zero constants can be hoisted.
1880                   return SC->getValue()->isZero();
1881                 // All other divisions should not be moved as they may be
1882                 // divisions by zero and should be kept within the
1883                 // conditions of the surrounding loops that guard their
1884                 // execution (see PR35406).
1885                 return true;
1886               }
1887               return false;
1888             });
1889   };
1890   if (SafeToHoist(S)) {
1891     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1892          L = L->getParentLoop()) {
1893       if (SE.isLoopInvariant(S, L)) {
1894         if (!L) break;
1895         if (BasicBlock *Preheader = L->getLoopPreheader())
1896           InsertPt = Preheader->getTerminator();
1897         else
1898           // LSR sets the insertion point for AddRec start/step values to the
1899           // block start to simplify value reuse, even though it's an invalid
1900           // position. SCEVExpander must correct for this in all cases.
1901           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1902       } else {
1903         // If the SCEV is computable at this level, insert it into the header
1904         // after the PHIs (and after any other instructions that we've inserted
1905         // there) so that it is guaranteed to dominate any user inside the loop.
1906         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1907           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1908 
1909         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1910                (isInsertedInstruction(InsertPt) ||
1911                 isa<DbgInfoIntrinsic>(InsertPt))) {
1912           InsertPt = &*std::next(InsertPt->getIterator());
1913         }
1914         break;
1915       }
1916     }
1917   }
1918 
1919   // Check to see if we already expanded this here.
1920   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1921   if (I != InsertedExpressions.end())
1922     return I->second;
1923 
1924   SCEVInsertPointGuard Guard(Builder, this);
1925   Builder.SetInsertPoint(InsertPt);
1926 
1927   // Expand the expression into instructions.
1928   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1929   Value *V = VO.first;
1930 
1931   if (!V)
1932     V = visit(S);
1933   else if (VO.second) {
1934     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1935       Type *Ety = Vty->getPointerElementType();
1936       int64_t Offset = VO.second->getSExtValue();
1937       int64_t ESize = SE.getTypeSizeInBits(Ety);
1938       if ((Offset * 8) % ESize == 0) {
1939         ConstantInt *Idx =
1940             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1941         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1942       } else {
1943         ConstantInt *Idx =
1944             ConstantInt::getSigned(VO.second->getType(), -Offset);
1945         unsigned AS = Vty->getAddressSpace();
1946         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1947         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1948                               "uglygep");
1949         V = Builder.CreateBitCast(V, Vty);
1950       }
1951     } else {
1952       V = Builder.CreateSub(V, VO.second);
1953     }
1954   }
1955   // Remember the expanded value for this SCEV at this location.
1956   //
1957   // This is independent of PostIncLoops. The mapped value simply materializes
1958   // the expression at this insertion point. If the mapped value happened to be
1959   // a postinc expansion, it could be reused by a non-postinc user, but only if
1960   // its insertion point was already at the head of the loop.
1961   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1962   return V;
1963 }
1964 
1965 void SCEVExpander::rememberInstruction(Value *I) {
1966   auto DoInsert = [this](Value *V) {
1967     if (!PostIncLoops.empty())
1968       InsertedPostIncValues.insert(V);
1969     else
1970       InsertedValues.insert(V);
1971   };
1972   DoInsert(I);
1973 
1974   if (!PreserveLCSSA)
1975     return;
1976 
1977   if (auto *Inst = dyn_cast<Instruction>(I)) {
1978     // A new instruction has been added, which might introduce new uses outside
1979     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1980     // if required.
1981     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1982          OpIdx++)
1983       fixupLCSSAFormFor(Inst, OpIdx);
1984   }
1985 }
1986 
1987 /// getOrInsertCanonicalInductionVariable - This method returns the
1988 /// canonical induction variable of the specified type for the specified
1989 /// loop (inserting one if there is none).  A canonical induction variable
1990 /// starts at zero and steps by one on each iteration.
1991 PHINode *
1992 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1993                                                     Type *Ty) {
1994   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1995 
1996   // Build a SCEV for {0,+,1}<L>.
1997   // Conservatively use FlagAnyWrap for now.
1998   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1999                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
2000 
2001   // Emit code for it.
2002   SCEVInsertPointGuard Guard(Builder, this);
2003   PHINode *V = cast<PHINode>(expandCodeForImpl(
2004       H, nullptr, &*L->getHeader()->getFirstInsertionPt(), false));
2005 
2006   return V;
2007 }
2008 
2009 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2010 /// replace them with their most canonical representative. Return the number of
2011 /// phis eliminated.
2012 ///
2013 /// This does not depend on any SCEVExpander state but should be used in
2014 /// the same context that SCEVExpander is used.
2015 unsigned
2016 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2017                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2018                                   const TargetTransformInfo *TTI) {
2019   // Find integer phis in order of increasing width.
2020   SmallVector<PHINode*, 8> Phis;
2021   for (PHINode &PN : L->getHeader()->phis())
2022     Phis.push_back(&PN);
2023 
2024   if (TTI)
2025     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2026       // Put pointers at the back and make sure pointer < pointer = false.
2027       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2028         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2029       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2030              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2031     });
2032 
2033   unsigned NumElim = 0;
2034   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2035   // Process phis from wide to narrow. Map wide phis to their truncation
2036   // so narrow phis can reuse them.
2037   for (PHINode *Phi : Phis) {
2038     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2039       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2040         return V;
2041       if (!SE.isSCEVable(PN->getType()))
2042         return nullptr;
2043       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2044       if (!Const)
2045         return nullptr;
2046       return Const->getValue();
2047     };
2048 
2049     // Fold constant phis. They may be congruent to other constant phis and
2050     // would confuse the logic below that expects proper IVs.
2051     if (Value *V = SimplifyPHINode(Phi)) {
2052       if (V->getType() != Phi->getType())
2053         continue;
2054       Phi->replaceAllUsesWith(V);
2055       DeadInsts.emplace_back(Phi);
2056       ++NumElim;
2057       DEBUG_WITH_TYPE(DebugType, dbgs()
2058                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
2059       continue;
2060     }
2061 
2062     if (!SE.isSCEVable(Phi->getType()))
2063       continue;
2064 
2065     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2066     if (!OrigPhiRef) {
2067       OrigPhiRef = Phi;
2068       if (Phi->getType()->isIntegerTy() && TTI &&
2069           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2070         // This phi can be freely truncated to the narrowest phi type. Map the
2071         // truncated expression to it so it will be reused for narrow types.
2072         const SCEV *TruncExpr =
2073           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2074         ExprToIVMap[TruncExpr] = Phi;
2075       }
2076       continue;
2077     }
2078 
2079     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2080     // sense.
2081     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2082       continue;
2083 
2084     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2085       Instruction *OrigInc = dyn_cast<Instruction>(
2086           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2087       Instruction *IsomorphicInc =
2088           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2089 
2090       if (OrigInc && IsomorphicInc) {
2091         // If this phi has the same width but is more canonical, replace the
2092         // original with it. As part of the "more canonical" determination,
2093         // respect a prior decision to use an IV chain.
2094         if (OrigPhiRef->getType() == Phi->getType() &&
2095             !(ChainedPhis.count(Phi) ||
2096               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2097             (ChainedPhis.count(Phi) ||
2098              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2099           std::swap(OrigPhiRef, Phi);
2100           std::swap(OrigInc, IsomorphicInc);
2101         }
2102         // Replacing the congruent phi is sufficient because acyclic
2103         // redundancy elimination, CSE/GVN, should handle the
2104         // rest. However, once SCEV proves that a phi is congruent,
2105         // it's often the head of an IV user cycle that is isomorphic
2106         // with the original phi. It's worth eagerly cleaning up the
2107         // common case of a single IV increment so that DeleteDeadPHIs
2108         // can remove cycles that had postinc uses.
2109         const SCEV *TruncExpr =
2110             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2111         if (OrigInc != IsomorphicInc &&
2112             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2113             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2114             hoistIVInc(OrigInc, IsomorphicInc)) {
2115           DEBUG_WITH_TYPE(DebugType,
2116                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2117                                  << *IsomorphicInc << '\n');
2118           Value *NewInc = OrigInc;
2119           if (OrigInc->getType() != IsomorphicInc->getType()) {
2120             Instruction *IP = nullptr;
2121             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2122               IP = &*PN->getParent()->getFirstInsertionPt();
2123             else
2124               IP = OrigInc->getNextNode();
2125 
2126             IRBuilder<> Builder(IP);
2127             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2128             NewInc = Builder.CreateTruncOrBitCast(
2129                 OrigInc, IsomorphicInc->getType(), IVName);
2130           }
2131           IsomorphicInc->replaceAllUsesWith(NewInc);
2132           DeadInsts.emplace_back(IsomorphicInc);
2133         }
2134       }
2135     }
2136     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2137                                       << *Phi << '\n');
2138     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: "
2139                                       << *OrigPhiRef << '\n');
2140     ++NumElim;
2141     Value *NewIV = OrigPhiRef;
2142     if (OrigPhiRef->getType() != Phi->getType()) {
2143       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2144       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2145       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2146     }
2147     Phi->replaceAllUsesWith(NewIV);
2148     DeadInsts.emplace_back(Phi);
2149   }
2150   return NumElim;
2151 }
2152 
2153 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2154                                                const Instruction *At, Loop *L) {
2155   Optional<ScalarEvolution::ValueOffsetPair> VO =
2156       getRelatedExistingExpansion(S, At, L);
2157   if (VO && VO.getValue().second == nullptr)
2158     return VO.getValue().first;
2159   return nullptr;
2160 }
2161 
2162 Optional<ScalarEvolution::ValueOffsetPair>
2163 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2164                                           Loop *L) {
2165   using namespace llvm::PatternMatch;
2166 
2167   SmallVector<BasicBlock *, 4> ExitingBlocks;
2168   L->getExitingBlocks(ExitingBlocks);
2169 
2170   // Look for suitable value in simple conditions at the loop exits.
2171   for (BasicBlock *BB : ExitingBlocks) {
2172     ICmpInst::Predicate Pred;
2173     Instruction *LHS, *RHS;
2174 
2175     if (!match(BB->getTerminator(),
2176                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2177                     m_BasicBlock(), m_BasicBlock())))
2178       continue;
2179 
2180     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2181       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2182 
2183     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2184       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2185   }
2186 
2187   // Use expand's logic which is used for reusing a previous Value in
2188   // ExprValueMap.
2189   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2190   if (VO.first)
2191     return VO;
2192 
2193   // There is potential to make this significantly smarter, but this simple
2194   // heuristic already gets some interesting cases.
2195 
2196   // Can not find suitable value.
2197   return None;
2198 }
2199 
2200 template<typename T> static int costAndCollectOperands(
2201   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2202   TargetTransformInfo::TargetCostKind CostKind,
2203   SmallVectorImpl<SCEVOperand> &Worklist) {
2204 
2205   const T *S = cast<T>(WorkItem.S);
2206   int Cost = 0;
2207   // Object to help map SCEV operands to expanded IR instructions.
2208   struct OperationIndices {
2209     OperationIndices(unsigned Opc, size_t min, size_t max) :
2210       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2211     unsigned Opcode;
2212     size_t MinIdx;
2213     size_t MaxIdx;
2214   };
2215 
2216   // Collect the operations of all the instructions that will be needed to
2217   // expand the SCEVExpr. This is so that when we come to cost the operands,
2218   // we know what the generated user(s) will be.
2219   SmallVector<OperationIndices, 2> Operations;
2220 
2221   auto CastCost = [&](unsigned Opcode) {
2222     Operations.emplace_back(Opcode, 0, 0);
2223     return TTI.getCastInstrCost(Opcode, S->getType(),
2224                                 S->getOperand(0)->getType(),
2225                                 TTI::CastContextHint::None, CostKind);
2226   };
2227 
2228   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2229                        unsigned MinIdx = 0, unsigned MaxIdx = 1) {
2230     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2231     return NumRequired *
2232       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2233   };
2234 
2235   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired,
2236                         unsigned MinIdx, unsigned MaxIdx) {
2237     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2238     Type *OpType = S->getOperand(0)->getType();
2239     return NumRequired *
2240       TTI.getCmpSelInstrCost(Opcode, OpType,
2241                              CmpInst::makeCmpResultType(OpType), CostKind);
2242   };
2243 
2244   switch (S->getSCEVType()) {
2245   case scCouldNotCompute:
2246     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2247   case scUnknown:
2248   case scConstant:
2249     return 0;
2250   case scPtrToInt:
2251     Cost = CastCost(Instruction::PtrToInt);
2252     break;
2253   case scTruncate:
2254     Cost = CastCost(Instruction::Trunc);
2255     break;
2256   case scZeroExtend:
2257     Cost = CastCost(Instruction::ZExt);
2258     break;
2259   case scSignExtend:
2260     Cost = CastCost(Instruction::SExt);
2261     break;
2262   case scUDivExpr: {
2263     unsigned Opcode = Instruction::UDiv;
2264     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2265       if (SC->getAPInt().isPowerOf2())
2266         Opcode = Instruction::LShr;
2267     Cost = ArithCost(Opcode, 1);
2268     break;
2269   }
2270   case scAddExpr:
2271     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2272     break;
2273   case scMulExpr:
2274     // TODO: this is a very pessimistic cost modelling for Mul,
2275     // because of Bin Pow algorithm actually used by the expander,
2276     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2277     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2278     break;
2279   case scSMaxExpr:
2280   case scUMaxExpr:
2281   case scSMinExpr:
2282   case scUMinExpr: {
2283     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2284     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2285     break;
2286   }
2287   case scAddRecExpr: {
2288     // In this polynominal, we may have some zero operands, and we shouldn't
2289     // really charge for those. So how many non-zero coeffients are there?
2290     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2291                                     return !Op->isZero();
2292                                   });
2293 
2294     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2295     assert(!(*std::prev(S->operands().end()))->isZero() &&
2296            "Last operand should not be zero");
2297 
2298     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2299     int NumNonZeroDegreeNonOneTerms =
2300       llvm::count_if(S->operands(), [](const SCEV *Op) {
2301                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2302                       return !SConst || SConst->getAPInt().ugt(1);
2303                     });
2304 
2305     // Much like with normal add expr, the polynominal will require
2306     // one less addition than the number of it's terms.
2307     int AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2308                             /*MinIdx*/1, /*MaxIdx*/1);
2309     // Here, *each* one of those will require a multiplication.
2310     int MulCost = ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2311     Cost = AddCost + MulCost;
2312 
2313     // What is the degree of this polynominal?
2314     int PolyDegree = S->getNumOperands() - 1;
2315     assert(PolyDegree >= 1 && "Should be at least affine.");
2316 
2317     // The final term will be:
2318     //   Op_{PolyDegree} * x ^ {PolyDegree}
2319     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2320     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2321     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2322     // FIXME: this is conservatively correct, but might be overly pessimistic.
2323     Cost += MulCost * (PolyDegree - 1);
2324     break;
2325   }
2326   }
2327 
2328   for (auto &CostOp : Operations) {
2329     for (auto SCEVOp : enumerate(S->operands())) {
2330       // Clamp the index to account for multiple IR operations being chained.
2331       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2332       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2333       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2334     }
2335   }
2336   return Cost;
2337 }
2338 
2339 bool SCEVExpander::isHighCostExpansionHelper(
2340     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2341     int &BudgetRemaining, const TargetTransformInfo &TTI,
2342     SmallPtrSetImpl<const SCEV *> &Processed,
2343     SmallVectorImpl<SCEVOperand> &Worklist) {
2344   if (BudgetRemaining < 0)
2345     return true; // Already run out of budget, give up.
2346 
2347   const SCEV *S = WorkItem.S;
2348   // Was the cost of expansion of this expression already accounted for?
2349   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2350     return false; // We have already accounted for this expression.
2351 
2352   // If we can find an existing value for this scev available at the point "At"
2353   // then consider the expression cheap.
2354   if (getRelatedExistingExpansion(S, &At, L))
2355     return false; // Consider the expression to be free.
2356 
2357   TargetTransformInfo::TargetCostKind CostKind =
2358       L->getHeader()->getParent()->hasMinSize()
2359           ? TargetTransformInfo::TCK_CodeSize
2360           : TargetTransformInfo::TCK_RecipThroughput;
2361 
2362   switch (S->getSCEVType()) {
2363   case scCouldNotCompute:
2364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2365   case scUnknown:
2366     // Assume to be zero-cost.
2367     return false;
2368   case scConstant: {
2369     auto *Constant = dyn_cast<SCEVConstant>(S);
2370     // Only evalulate the costs of constants when optimizing for size.
2371     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2372       return 0;
2373     const APInt &Imm = Constant->getAPInt();
2374     Type *Ty = S->getType();
2375     BudgetRemaining -= TTI.getIntImmCostInst(
2376         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2377     return BudgetRemaining < 0;
2378   }
2379   case scTruncate:
2380   case scPtrToInt:
2381   case scZeroExtend:
2382   case scSignExtend: {
2383     int Cost =
2384         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2385     BudgetRemaining -= Cost;
2386     return false; // Will answer upon next entry into this function.
2387   }
2388   case scUDivExpr: {
2389     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2390     // HowManyLessThans produced to compute a precise expression, rather than a
2391     // UDiv from the user's code. If we can't find a UDiv in the code with some
2392     // simple searching, we need to account for it's cost.
2393 
2394     // At the beginning of this function we already tried to find existing
2395     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2396     // pattern involving division. This is just a simple search heuristic.
2397     if (getRelatedExistingExpansion(
2398             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2399       return false; // Consider it to be free.
2400 
2401     int Cost =
2402         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2403     // Need to count the cost of this UDiv.
2404     BudgetRemaining -= Cost;
2405     return false; // Will answer upon next entry into this function.
2406   }
2407   case scAddExpr:
2408   case scMulExpr:
2409   case scUMaxExpr:
2410   case scSMaxExpr:
2411   case scUMinExpr:
2412   case scSMinExpr: {
2413     assert(dyn_cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2414            "Nary expr should have more than 1 operand.");
2415     // The simple nary expr will require one less op (or pair of ops)
2416     // than the number of it's terms.
2417     int Cost =
2418         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2419     BudgetRemaining -= Cost;
2420     return BudgetRemaining < 0;
2421   }
2422   case scAddRecExpr: {
2423     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2424            "Polynomial should be at least linear");
2425     BudgetRemaining -= costAndCollectOperands<SCEVAddRecExpr>(
2426         WorkItem, TTI, CostKind, Worklist);
2427     return BudgetRemaining < 0;
2428   }
2429   }
2430   llvm_unreachable("Unknown SCEV kind!");
2431 }
2432 
2433 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2434                                             Instruction *IP) {
2435   assert(IP);
2436   switch (Pred->getKind()) {
2437   case SCEVPredicate::P_Union:
2438     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2439   case SCEVPredicate::P_Equal:
2440     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2441   case SCEVPredicate::P_Wrap: {
2442     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2443     return expandWrapPredicate(AddRecPred, IP);
2444   }
2445   }
2446   llvm_unreachable("Unknown SCEV predicate type");
2447 }
2448 
2449 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2450                                           Instruction *IP) {
2451   Value *Expr0 =
2452       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2453   Value *Expr1 =
2454       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2455 
2456   Builder.SetInsertPoint(IP);
2457   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2458   return I;
2459 }
2460 
2461 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2462                                            Instruction *Loc, bool Signed) {
2463   assert(AR->isAffine() && "Cannot generate RT check for "
2464                            "non-affine expression");
2465 
2466   SCEVUnionPredicate Pred;
2467   const SCEV *ExitCount =
2468       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2469 
2470   assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2471 
2472   const SCEV *Step = AR->getStepRecurrence(SE);
2473   const SCEV *Start = AR->getStart();
2474 
2475   Type *ARTy = AR->getType();
2476   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2477   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2478 
2479   // The expression {Start,+,Step} has nusw/nssw if
2480   //   Step < 0, Start - |Step| * Backedge <= Start
2481   //   Step >= 0, Start + |Step| * Backedge > Start
2482   // and |Step| * Backedge doesn't unsigned overflow.
2483 
2484   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2485   Builder.SetInsertPoint(Loc);
2486   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2487 
2488   IntegerType *Ty =
2489       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2490   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2491 
2492   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2493   Value *NegStepValue =
2494       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2495   Value *StartValue = expandCodeForImpl(Start, ARExpandTy, Loc, false);
2496 
2497   ConstantInt *Zero =
2498       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2499 
2500   Builder.SetInsertPoint(Loc);
2501   // Compute |Step|
2502   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2503   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2504 
2505   // Get the backedge taken count and truncate or extended to the AR type.
2506   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2507   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2508                                          Intrinsic::umul_with_overflow, Ty);
2509 
2510   // Compute |Step| * Backedge
2511   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2512   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2513   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2514 
2515   // Compute:
2516   //   Start + |Step| * Backedge < Start
2517   //   Start - |Step| * Backedge > Start
2518   Value *Add = nullptr, *Sub = nullptr;
2519   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2520     const SCEV *MulS = SE.getSCEV(MulV);
2521     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2522     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2523                                 ARPtrTy);
2524     Sub = Builder.CreateBitCast(
2525         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2526   } else {
2527     Add = Builder.CreateAdd(StartValue, MulV);
2528     Sub = Builder.CreateSub(StartValue, MulV);
2529   }
2530 
2531   Value *EndCompareGT = Builder.CreateICmp(
2532       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2533 
2534   Value *EndCompareLT = Builder.CreateICmp(
2535       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2536 
2537   // Select the answer based on the sign of Step.
2538   Value *EndCheck =
2539       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2540 
2541   // If the backedge taken count type is larger than the AR type,
2542   // check that we don't drop any bits by truncating it. If we are
2543   // dropping bits, then we have overflow (unless the step is zero).
2544   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2545     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2546     auto *BackedgeCheck =
2547         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2548                            ConstantInt::get(Loc->getContext(), MaxVal));
2549     BackedgeCheck = Builder.CreateAnd(
2550         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2551 
2552     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2553   }
2554 
2555   return Builder.CreateOr(EndCheck, OfMul);
2556 }
2557 
2558 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2559                                          Instruction *IP) {
2560   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2561   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2562 
2563   // Add a check for NUSW
2564   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2565     NUSWCheck = generateOverflowCheck(A, IP, false);
2566 
2567   // Add a check for NSSW
2568   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2569     NSSWCheck = generateOverflowCheck(A, IP, true);
2570 
2571   if (NUSWCheck && NSSWCheck)
2572     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2573 
2574   if (NUSWCheck)
2575     return NUSWCheck;
2576 
2577   if (NSSWCheck)
2578     return NSSWCheck;
2579 
2580   return ConstantInt::getFalse(IP->getContext());
2581 }
2582 
2583 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2584                                           Instruction *IP) {
2585   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2586   Value *Check = ConstantInt::getNullValue(BoolType);
2587 
2588   // Loop over all checks in this set.
2589   for (auto Pred : Union->getPredicates()) {
2590     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2591     Builder.SetInsertPoint(IP);
2592     Check = Builder.CreateOr(Check, NextCheck);
2593   }
2594 
2595   return Check;
2596 }
2597 
2598 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2599   assert(PreserveLCSSA);
2600   SmallVector<Instruction *, 1> ToUpdate;
2601 
2602   auto *OpV = User->getOperand(OpIdx);
2603   auto *OpI = dyn_cast<Instruction>(OpV);
2604   if (!OpI)
2605     return OpV;
2606 
2607   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2608   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2609   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2610     return OpV;
2611 
2612   ToUpdate.push_back(OpI);
2613   SmallVector<PHINode *, 16> PHIsToRemove;
2614   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2615   for (PHINode *PN : PHIsToRemove) {
2616     if (!PN->use_empty())
2617       continue;
2618     InsertedValues.erase(PN);
2619     InsertedPostIncValues.erase(PN);
2620     PN->eraseFromParent();
2621   }
2622 
2623   return User->getOperand(OpIdx);
2624 }
2625 
2626 namespace {
2627 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2628 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2629 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2630 // instruction, but the important thing is that we prove the denominator is
2631 // nonzero before expansion.
2632 //
2633 // IVUsers already checks that IV-derived expressions are safe. So this check is
2634 // only needed when the expression includes some subexpression that is not IV
2635 // derived.
2636 //
2637 // Currently, we only allow division by a nonzero constant here. If this is
2638 // inadequate, we could easily allow division by SCEVUnknown by using
2639 // ValueTracking to check isKnownNonZero().
2640 //
2641 // We cannot generally expand recurrences unless the step dominates the loop
2642 // header. The expander handles the special case of affine recurrences by
2643 // scaling the recurrence outside the loop, but this technique isn't generally
2644 // applicable. Expanding a nested recurrence outside a loop requires computing
2645 // binomial coefficients. This could be done, but the recurrence has to be in a
2646 // perfectly reduced form, which can't be guaranteed.
2647 struct SCEVFindUnsafe {
2648   ScalarEvolution &SE;
2649   bool IsUnsafe;
2650 
2651   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2652 
2653   bool follow(const SCEV *S) {
2654     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2655       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2656       if (!SC || SC->getValue()->isZero()) {
2657         IsUnsafe = true;
2658         return false;
2659       }
2660     }
2661     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2662       const SCEV *Step = AR->getStepRecurrence(SE);
2663       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2664         IsUnsafe = true;
2665         return false;
2666       }
2667     }
2668     return true;
2669   }
2670   bool isDone() const { return IsUnsafe; }
2671 };
2672 }
2673 
2674 namespace llvm {
2675 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2676   SCEVFindUnsafe Search(SE);
2677   visitAll(S, Search);
2678   return !Search.IsUnsafe;
2679 }
2680 
2681 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2682                       ScalarEvolution &SE) {
2683   if (!isSafeToExpand(S, SE))
2684     return false;
2685   // We have to prove that the expanded site of S dominates InsertionPoint.
2686   // This is easy when not in the same block, but hard when S is an instruction
2687   // to be expanded somewhere inside the same block as our insertion point.
2688   // What we really need here is something analogous to an OrderedBasicBlock,
2689   // but for the moment, we paper over the problem by handling two common and
2690   // cheap to check cases.
2691   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2692     return true;
2693   if (SE.dominates(S, InsertionPoint->getParent())) {
2694     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2695       return true;
2696     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2697       for (const Value *V : InsertionPoint->operand_values())
2698         if (V == U->getValue())
2699           return true;
2700   }
2701   return false;
2702 }
2703 
2704 SCEVExpanderCleaner::~SCEVExpanderCleaner() {
2705   // Result is used, nothing to remove.
2706   if (ResultUsed)
2707     return;
2708 
2709   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2710 #ifndef NDEBUG
2711   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2712                                             InsertedInstructions.end());
2713   (void)InsertedSet;
2714 #endif
2715   // Remove sets with value handles.
2716   Expander.clear();
2717 
2718   // Sort so that earlier instructions do not dominate later instructions.
2719   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2720     return DT.dominates(B, A);
2721   });
2722   // Remove all inserted instructions.
2723   for (Instruction *I : InsertedInstructions) {
2724 
2725 #ifndef NDEBUG
2726     assert(all_of(I->users(),
2727                   [&InsertedSet](Value *U) {
2728                     return InsertedSet.contains(cast<Instruction>(U));
2729                   }) &&
2730            "removed instruction should only be used by instructions inserted "
2731            "during expansion");
2732 #endif
2733     assert(!I->getType()->isVoidTy() &&
2734            "inserted instruction should have non-void types");
2735     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2736     I->eraseFromParent();
2737   }
2738 }
2739 }
2740