1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 using namespace llvm; 33 34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 35 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 36 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 37 "controls the budget that is considered cheap (default = 4)")); 38 39 using namespace PatternMatch; 40 41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 43 /// creating a new one. 44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 45 Instruction::CastOps Op, 46 BasicBlock::iterator IP) { 47 // This function must be called with the builder having a valid insertion 48 // point. It doesn't need to be the actual IP where the uses of the returned 49 // cast will be added, but it must dominate such IP. 50 // We use this precondition to produce a cast that will dominate all its 51 // uses. In particular, this is crucial for the case where the builder's 52 // insertion point *is* the point where we were asked to put the cast. 53 // Since we don't know the builder's insertion point is actually 54 // where the uses will be added (only that it dominates it), we are 55 // not allowed to move it. 56 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 57 58 Instruction *Ret = nullptr; 59 60 // Check to see if there is already a cast! 61 for (User *U : V->users()) { 62 if (U->getType() != Ty) 63 continue; 64 CastInst *CI = dyn_cast<CastInst>(U); 65 if (!CI || CI->getOpcode() != Op) 66 continue; 67 68 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 69 // the cast must also properly dominate the Builder's insertion point. 70 if (IP->getParent() == CI->getParent() && &*BIP != CI && 71 (&*IP == CI || CI->comesBefore(&*IP))) { 72 Ret = CI; 73 break; 74 } 75 } 76 77 // Create a new cast. 78 if (!Ret) { 79 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 80 rememberInstruction(Ret); 81 } 82 83 // We assert at the end of the function since IP might point to an 84 // instruction with different dominance properties than a cast 85 // (an invoke for example) and not dominate BIP (but the cast does). 86 assert(SE.DT.dominates(Ret, &*BIP)); 87 88 return Ret; 89 } 90 91 BasicBlock::iterator 92 SCEVExpander::findInsertPointAfter(Instruction *I, Instruction *MustDominate) { 93 BasicBlock::iterator IP = ++I->getIterator(); 94 if (auto *II = dyn_cast<InvokeInst>(I)) 95 IP = II->getNormalDest()->begin(); 96 97 while (isa<PHINode>(IP)) 98 ++IP; 99 100 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 101 ++IP; 102 } else if (isa<CatchSwitchInst>(IP)) { 103 IP = MustDominate->getParent()->getFirstInsertionPt(); 104 } else { 105 assert(!IP->isEHPad() && "unexpected eh pad!"); 106 } 107 108 // Adjust insert point to be after instructions inserted by the expander, so 109 // we can re-use already inserted instructions. Avoid skipping past the 110 // original \p MustDominate, in case it is an inserted instruction. 111 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 112 ++IP; 113 114 return IP; 115 } 116 117 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 118 /// which must be possible with a noop cast, doing what we can to share 119 /// the casts. 120 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 121 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 122 assert((Op == Instruction::BitCast || 123 Op == Instruction::PtrToInt || 124 Op == Instruction::IntToPtr) && 125 "InsertNoopCastOfTo cannot perform non-noop casts!"); 126 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 127 "InsertNoopCastOfTo cannot change sizes!"); 128 129 // Short-circuit unnecessary bitcasts. 130 if (Op == Instruction::BitCast) { 131 if (V->getType() == Ty) 132 return V; 133 if (CastInst *CI = dyn_cast<CastInst>(V)) { 134 if (CI->getOperand(0)->getType() == Ty) 135 return CI->getOperand(0); 136 } 137 } 138 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 139 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 140 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 141 if (CastInst *CI = dyn_cast<CastInst>(V)) 142 if ((CI->getOpcode() == Instruction::PtrToInt || 143 CI->getOpcode() == Instruction::IntToPtr) && 144 SE.getTypeSizeInBits(CI->getType()) == 145 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 146 return CI->getOperand(0); 147 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 148 if ((CE->getOpcode() == Instruction::PtrToInt || 149 CE->getOpcode() == Instruction::IntToPtr) && 150 SE.getTypeSizeInBits(CE->getType()) == 151 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 152 return CE->getOperand(0); 153 } 154 155 // Fold a cast of a constant. 156 if (Constant *C = dyn_cast<Constant>(V)) 157 return ConstantExpr::getCast(Op, C, Ty); 158 159 // Cast the argument at the beginning of the entry block, after 160 // any bitcasts of other arguments. 161 if (Argument *A = dyn_cast<Argument>(V)) { 162 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 163 while ((isa<BitCastInst>(IP) && 164 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 165 cast<BitCastInst>(IP)->getOperand(0) != A) || 166 isa<DbgInfoIntrinsic>(IP)) 167 ++IP; 168 return ReuseOrCreateCast(A, Ty, Op, IP); 169 } 170 171 // Cast the instruction immediately after the instruction. 172 Instruction *I = cast<Instruction>(V); 173 BasicBlock::iterator IP = findInsertPointAfter(I, &*Builder.GetInsertPoint()); 174 return ReuseOrCreateCast(I, Ty, Op, IP); 175 } 176 177 /// InsertBinop - Insert the specified binary operator, doing a small amount 178 /// of work to avoid inserting an obviously redundant operation, and hoisting 179 /// to an outer loop when the opportunity is there and it is safe. 180 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 181 Value *LHS, Value *RHS, 182 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 183 // Fold a binop with constant operands. 184 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 185 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 186 return ConstantExpr::get(Opcode, CLHS, CRHS); 187 188 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 189 unsigned ScanLimit = 6; 190 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 191 // Scanning starts from the last instruction before the insertion point. 192 BasicBlock::iterator IP = Builder.GetInsertPoint(); 193 if (IP != BlockBegin) { 194 --IP; 195 for (; ScanLimit; --IP, --ScanLimit) { 196 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 197 // generated code. 198 if (isa<DbgInfoIntrinsic>(IP)) 199 ScanLimit++; 200 201 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 202 // Ensure that no-wrap flags match. 203 if (isa<OverflowingBinaryOperator>(I)) { 204 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 205 return true; 206 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 207 return true; 208 } 209 // Conservatively, do not use any instruction which has any of exact 210 // flags installed. 211 if (isa<PossiblyExactOperator>(I) && I->isExact()) 212 return true; 213 return false; 214 }; 215 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 216 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 217 return &*IP; 218 if (IP == BlockBegin) break; 219 } 220 } 221 222 // Save the original insertion point so we can restore it when we're done. 223 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 224 SCEVInsertPointGuard Guard(Builder, this); 225 226 if (IsSafeToHoist) { 227 // Move the insertion point out of as many loops as we can. 228 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 229 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 230 BasicBlock *Preheader = L->getLoopPreheader(); 231 if (!Preheader) break; 232 233 // Ok, move up a level. 234 Builder.SetInsertPoint(Preheader->getTerminator()); 235 } 236 } 237 238 // If we haven't found this binop, insert it. 239 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 240 BO->setDebugLoc(Loc); 241 if (Flags & SCEV::FlagNUW) 242 BO->setHasNoUnsignedWrap(); 243 if (Flags & SCEV::FlagNSW) 244 BO->setHasNoSignedWrap(); 245 246 return BO; 247 } 248 249 /// FactorOutConstant - Test if S is divisible by Factor, using signed 250 /// division. If so, update S with Factor divided out and return true. 251 /// S need not be evenly divisible if a reasonable remainder can be 252 /// computed. 253 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 254 const SCEV *Factor, ScalarEvolution &SE, 255 const DataLayout &DL) { 256 // Everything is divisible by one. 257 if (Factor->isOne()) 258 return true; 259 260 // x/x == 1. 261 if (S == Factor) { 262 S = SE.getConstant(S->getType(), 1); 263 return true; 264 } 265 266 // For a Constant, check for a multiple of the given factor. 267 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 268 // 0/x == 0. 269 if (C->isZero()) 270 return true; 271 // Check for divisibility. 272 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 273 ConstantInt *CI = 274 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 275 // If the quotient is zero and the remainder is non-zero, reject 276 // the value at this scale. It will be considered for subsequent 277 // smaller scales. 278 if (!CI->isZero()) { 279 const SCEV *Div = SE.getConstant(CI); 280 S = Div; 281 Remainder = SE.getAddExpr( 282 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 283 return true; 284 } 285 } 286 } 287 288 // In a Mul, check if there is a constant operand which is a multiple 289 // of the given factor. 290 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 291 // Size is known, check if there is a constant operand which is a multiple 292 // of the given factor. If so, we can factor it. 293 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 294 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 295 if (!C->getAPInt().srem(FC->getAPInt())) { 296 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 297 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 298 S = SE.getMulExpr(NewMulOps); 299 return true; 300 } 301 } 302 303 // In an AddRec, check if both start and step are divisible. 304 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 305 const SCEV *Step = A->getStepRecurrence(SE); 306 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 307 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 308 return false; 309 if (!StepRem->isZero()) 310 return false; 311 const SCEV *Start = A->getStart(); 312 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 313 return false; 314 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 315 A->getNoWrapFlags(SCEV::FlagNW)); 316 return true; 317 } 318 319 return false; 320 } 321 322 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 323 /// is the number of SCEVAddRecExprs present, which are kept at the end of 324 /// the list. 325 /// 326 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 327 Type *Ty, 328 ScalarEvolution &SE) { 329 unsigned NumAddRecs = 0; 330 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 331 ++NumAddRecs; 332 // Group Ops into non-addrecs and addrecs. 333 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 334 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 335 // Let ScalarEvolution sort and simplify the non-addrecs list. 336 const SCEV *Sum = NoAddRecs.empty() ? 337 SE.getConstant(Ty, 0) : 338 SE.getAddExpr(NoAddRecs); 339 // If it returned an add, use the operands. Otherwise it simplified 340 // the sum into a single value, so just use that. 341 Ops.clear(); 342 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 343 Ops.append(Add->op_begin(), Add->op_end()); 344 else if (!Sum->isZero()) 345 Ops.push_back(Sum); 346 // Then append the addrecs. 347 Ops.append(AddRecs.begin(), AddRecs.end()); 348 } 349 350 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 351 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 352 /// This helps expose more opportunities for folding parts of the expressions 353 /// into GEP indices. 354 /// 355 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 356 Type *Ty, 357 ScalarEvolution &SE) { 358 // Find the addrecs. 359 SmallVector<const SCEV *, 8> AddRecs; 360 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 361 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 362 const SCEV *Start = A->getStart(); 363 if (Start->isZero()) break; 364 const SCEV *Zero = SE.getConstant(Ty, 0); 365 AddRecs.push_back(SE.getAddRecExpr(Zero, 366 A->getStepRecurrence(SE), 367 A->getLoop(), 368 A->getNoWrapFlags(SCEV::FlagNW))); 369 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 370 Ops[i] = Zero; 371 Ops.append(Add->op_begin(), Add->op_end()); 372 e += Add->getNumOperands(); 373 } else { 374 Ops[i] = Start; 375 } 376 } 377 if (!AddRecs.empty()) { 378 // Add the addrecs onto the end of the list. 379 Ops.append(AddRecs.begin(), AddRecs.end()); 380 // Resort the operand list, moving any constants to the front. 381 SimplifyAddOperands(Ops, Ty, SE); 382 } 383 } 384 385 /// expandAddToGEP - Expand an addition expression with a pointer type into 386 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 387 /// BasicAliasAnalysis and other passes analyze the result. See the rules 388 /// for getelementptr vs. inttoptr in 389 /// http://llvm.org/docs/LangRef.html#pointeraliasing 390 /// for details. 391 /// 392 /// Design note: The correctness of using getelementptr here depends on 393 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 394 /// they may introduce pointer arithmetic which may not be safely converted 395 /// into getelementptr. 396 /// 397 /// Design note: It might seem desirable for this function to be more 398 /// loop-aware. If some of the indices are loop-invariant while others 399 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 400 /// loop-invariant portions of the overall computation outside the loop. 401 /// However, there are a few reasons this is not done here. Hoisting simple 402 /// arithmetic is a low-level optimization that often isn't very 403 /// important until late in the optimization process. In fact, passes 404 /// like InstructionCombining will combine GEPs, even if it means 405 /// pushing loop-invariant computation down into loops, so even if the 406 /// GEPs were split here, the work would quickly be undone. The 407 /// LoopStrengthReduction pass, which is usually run quite late (and 408 /// after the last InstructionCombining pass), takes care of hoisting 409 /// loop-invariant portions of expressions, after considering what 410 /// can be folded using target addressing modes. 411 /// 412 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 413 const SCEV *const *op_end, 414 PointerType *PTy, 415 Type *Ty, 416 Value *V) { 417 Type *OriginalElTy = PTy->getElementType(); 418 Type *ElTy = OriginalElTy; 419 SmallVector<Value *, 4> GepIndices; 420 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 421 bool AnyNonZeroIndices = false; 422 423 // Split AddRecs up into parts as either of the parts may be usable 424 // without the other. 425 SplitAddRecs(Ops, Ty, SE); 426 427 Type *IntIdxTy = DL.getIndexType(PTy); 428 429 // Descend down the pointer's type and attempt to convert the other 430 // operands into GEP indices, at each level. The first index in a GEP 431 // indexes into the array implied by the pointer operand; the rest of 432 // the indices index into the element or field type selected by the 433 // preceding index. 434 for (;;) { 435 // If the scale size is not 0, attempt to factor out a scale for 436 // array indexing. 437 SmallVector<const SCEV *, 8> ScaledOps; 438 if (ElTy->isSized()) { 439 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 440 if (!ElSize->isZero()) { 441 SmallVector<const SCEV *, 8> NewOps; 442 for (const SCEV *Op : Ops) { 443 const SCEV *Remainder = SE.getConstant(Ty, 0); 444 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 445 // Op now has ElSize factored out. 446 ScaledOps.push_back(Op); 447 if (!Remainder->isZero()) 448 NewOps.push_back(Remainder); 449 AnyNonZeroIndices = true; 450 } else { 451 // The operand was not divisible, so add it to the list of operands 452 // we'll scan next iteration. 453 NewOps.push_back(Op); 454 } 455 } 456 // If we made any changes, update Ops. 457 if (!ScaledOps.empty()) { 458 Ops = NewOps; 459 SimplifyAddOperands(Ops, Ty, SE); 460 } 461 } 462 } 463 464 // Record the scaled array index for this level of the type. If 465 // we didn't find any operands that could be factored, tentatively 466 // assume that element zero was selected (since the zero offset 467 // would obviously be folded away). 468 Value *Scaled = 469 ScaledOps.empty() 470 ? Constant::getNullValue(Ty) 471 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 472 GepIndices.push_back(Scaled); 473 474 // Collect struct field index operands. 475 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 476 bool FoundFieldNo = false; 477 // An empty struct has no fields. 478 if (STy->getNumElements() == 0) break; 479 // Field offsets are known. See if a constant offset falls within any of 480 // the struct fields. 481 if (Ops.empty()) 482 break; 483 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 484 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 485 const StructLayout &SL = *DL.getStructLayout(STy); 486 uint64_t FullOffset = C->getValue()->getZExtValue(); 487 if (FullOffset < SL.getSizeInBytes()) { 488 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 489 GepIndices.push_back( 490 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 491 ElTy = STy->getTypeAtIndex(ElIdx); 492 Ops[0] = 493 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 494 AnyNonZeroIndices = true; 495 FoundFieldNo = true; 496 } 497 } 498 // If no struct field offsets were found, tentatively assume that 499 // field zero was selected (since the zero offset would obviously 500 // be folded away). 501 if (!FoundFieldNo) { 502 ElTy = STy->getTypeAtIndex(0u); 503 GepIndices.push_back( 504 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 505 } 506 } 507 508 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 509 ElTy = ATy->getElementType(); 510 else 511 // FIXME: Handle VectorType. 512 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 513 // constant, therefore can not be factored out. The generated IR is less 514 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 515 break; 516 } 517 518 // If none of the operands were convertible to proper GEP indices, cast 519 // the base to i8* and do an ugly getelementptr with that. It's still 520 // better than ptrtoint+arithmetic+inttoptr at least. 521 if (!AnyNonZeroIndices) { 522 // Cast the base to i8*. 523 V = InsertNoopCastOfTo(V, 524 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 525 526 assert(!isa<Instruction>(V) || 527 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 528 529 // Expand the operands for a plain byte offset. 530 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 531 532 // Fold a GEP with constant operands. 533 if (Constant *CLHS = dyn_cast<Constant>(V)) 534 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 535 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 536 CLHS, CRHS); 537 538 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 539 unsigned ScanLimit = 6; 540 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 541 // Scanning starts from the last instruction before the insertion point. 542 BasicBlock::iterator IP = Builder.GetInsertPoint(); 543 if (IP != BlockBegin) { 544 --IP; 545 for (; ScanLimit; --IP, --ScanLimit) { 546 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 547 // generated code. 548 if (isa<DbgInfoIntrinsic>(IP)) 549 ScanLimit++; 550 if (IP->getOpcode() == Instruction::GetElementPtr && 551 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 552 return &*IP; 553 if (IP == BlockBegin) break; 554 } 555 } 556 557 // Save the original insertion point so we can restore it when we're done. 558 SCEVInsertPointGuard Guard(Builder, this); 559 560 // Move the insertion point out of as many loops as we can. 561 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 562 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 563 BasicBlock *Preheader = L->getLoopPreheader(); 564 if (!Preheader) break; 565 566 // Ok, move up a level. 567 Builder.SetInsertPoint(Preheader->getTerminator()); 568 } 569 570 // Emit a GEP. 571 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 572 } 573 574 { 575 SCEVInsertPointGuard Guard(Builder, this); 576 577 // Move the insertion point out of as many loops as we can. 578 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 579 if (!L->isLoopInvariant(V)) break; 580 581 bool AnyIndexNotLoopInvariant = any_of( 582 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 583 584 if (AnyIndexNotLoopInvariant) 585 break; 586 587 BasicBlock *Preheader = L->getLoopPreheader(); 588 if (!Preheader) break; 589 590 // Ok, move up a level. 591 Builder.SetInsertPoint(Preheader->getTerminator()); 592 } 593 594 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 595 // because ScalarEvolution may have changed the address arithmetic to 596 // compute a value which is beyond the end of the allocated object. 597 Value *Casted = V; 598 if (V->getType() != PTy) 599 Casted = InsertNoopCastOfTo(Casted, PTy); 600 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 601 Ops.push_back(SE.getUnknown(GEP)); 602 } 603 604 return expand(SE.getAddExpr(Ops)); 605 } 606 607 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 608 Value *V) { 609 const SCEV *const Ops[1] = {Op}; 610 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 611 } 612 613 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 614 /// SCEV expansion. If they are nested, this is the most nested. If they are 615 /// neighboring, pick the later. 616 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 617 DominatorTree &DT) { 618 if (!A) return B; 619 if (!B) return A; 620 if (A->contains(B)) return B; 621 if (B->contains(A)) return A; 622 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 623 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 624 return A; // Arbitrarily break the tie. 625 } 626 627 /// getRelevantLoop - Get the most relevant loop associated with the given 628 /// expression, according to PickMostRelevantLoop. 629 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 630 // Test whether we've already computed the most relevant loop for this SCEV. 631 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 632 if (!Pair.second) 633 return Pair.first->second; 634 635 if (isa<SCEVConstant>(S)) 636 // A constant has no relevant loops. 637 return nullptr; 638 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 639 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 640 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 641 // A non-instruction has no relevant loops. 642 return nullptr; 643 } 644 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 645 const Loop *L = nullptr; 646 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 647 L = AR->getLoop(); 648 for (const SCEV *Op : N->operands()) 649 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 650 return RelevantLoops[N] = L; 651 } 652 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 653 const Loop *Result = getRelevantLoop(C->getOperand()); 654 return RelevantLoops[C] = Result; 655 } 656 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 657 const Loop *Result = PickMostRelevantLoop( 658 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 659 return RelevantLoops[D] = Result; 660 } 661 llvm_unreachable("Unexpected SCEV type!"); 662 } 663 664 namespace { 665 666 /// LoopCompare - Compare loops by PickMostRelevantLoop. 667 class LoopCompare { 668 DominatorTree &DT; 669 public: 670 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 671 672 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 673 std::pair<const Loop *, const SCEV *> RHS) const { 674 // Keep pointer operands sorted at the end. 675 if (LHS.second->getType()->isPointerTy() != 676 RHS.second->getType()->isPointerTy()) 677 return LHS.second->getType()->isPointerTy(); 678 679 // Compare loops with PickMostRelevantLoop. 680 if (LHS.first != RHS.first) 681 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 682 683 // If one operand is a non-constant negative and the other is not, 684 // put the non-constant negative on the right so that a sub can 685 // be used instead of a negate and add. 686 if (LHS.second->isNonConstantNegative()) { 687 if (!RHS.second->isNonConstantNegative()) 688 return false; 689 } else if (RHS.second->isNonConstantNegative()) 690 return true; 691 692 // Otherwise they are equivalent according to this comparison. 693 return false; 694 } 695 }; 696 697 } 698 699 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 700 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 701 702 // Collect all the add operands in a loop, along with their associated loops. 703 // Iterate in reverse so that constants are emitted last, all else equal, and 704 // so that pointer operands are inserted first, which the code below relies on 705 // to form more involved GEPs. 706 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 707 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 708 E(S->op_begin()); I != E; ++I) 709 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 710 711 // Sort by loop. Use a stable sort so that constants follow non-constants and 712 // pointer operands precede non-pointer operands. 713 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 714 715 // Emit instructions to add all the operands. Hoist as much as possible 716 // out of loops, and form meaningful getelementptrs where possible. 717 Value *Sum = nullptr; 718 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 719 const Loop *CurLoop = I->first; 720 const SCEV *Op = I->second; 721 if (!Sum) { 722 // This is the first operand. Just expand it. 723 Sum = expand(Op); 724 ++I; 725 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 726 // The running sum expression is a pointer. Try to form a getelementptr 727 // at this level with that as the base. 728 SmallVector<const SCEV *, 4> NewOps; 729 for (; I != E && I->first == CurLoop; ++I) { 730 // If the operand is SCEVUnknown and not instructions, peek through 731 // it, to enable more of it to be folded into the GEP. 732 const SCEV *X = I->second; 733 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 734 if (!isa<Instruction>(U->getValue())) 735 X = SE.getSCEV(U->getValue()); 736 NewOps.push_back(X); 737 } 738 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 739 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 740 // The running sum is an integer, and there's a pointer at this level. 741 // Try to form a getelementptr. If the running sum is instructions, 742 // use a SCEVUnknown to avoid re-analyzing them. 743 SmallVector<const SCEV *, 4> NewOps; 744 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 745 SE.getSCEV(Sum)); 746 for (++I; I != E && I->first == CurLoop; ++I) 747 NewOps.push_back(I->second); 748 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 749 } else if (Op->isNonConstantNegative()) { 750 // Instead of doing a negate and add, just do a subtract. 751 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 752 Sum = InsertNoopCastOfTo(Sum, Ty); 753 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 754 /*IsSafeToHoist*/ true); 755 ++I; 756 } else { 757 // A simple add. 758 Value *W = expandCodeForImpl(Op, Ty, false); 759 Sum = InsertNoopCastOfTo(Sum, Ty); 760 // Canonicalize a constant to the RHS. 761 if (isa<Constant>(Sum)) std::swap(Sum, W); 762 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 763 /*IsSafeToHoist*/ true); 764 ++I; 765 } 766 } 767 768 return Sum; 769 } 770 771 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 772 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 773 774 // Collect all the mul operands in a loop, along with their associated loops. 775 // Iterate in reverse so that constants are emitted last, all else equal. 776 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 777 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 778 E(S->op_begin()); I != E; ++I) 779 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 780 781 // Sort by loop. Use a stable sort so that constants follow non-constants. 782 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 783 784 // Emit instructions to mul all the operands. Hoist as much as possible 785 // out of loops. 786 Value *Prod = nullptr; 787 auto I = OpsAndLoops.begin(); 788 789 // Expand the calculation of X pow N in the following manner: 790 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 791 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 792 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 793 auto E = I; 794 // Calculate how many times the same operand from the same loop is included 795 // into this power. 796 uint64_t Exponent = 0; 797 const uint64_t MaxExponent = UINT64_MAX >> 1; 798 // No one sane will ever try to calculate such huge exponents, but if we 799 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 800 // below when the power of 2 exceeds our Exponent, and we want it to be 801 // 1u << 31 at most to not deal with unsigned overflow. 802 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 803 ++Exponent; 804 ++E; 805 } 806 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 807 808 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 809 // that are needed into the result. 810 Value *P = expandCodeForImpl(I->second, Ty, false); 811 Value *Result = nullptr; 812 if (Exponent & 1) 813 Result = P; 814 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 815 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 816 /*IsSafeToHoist*/ true); 817 if (Exponent & BinExp) 818 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 819 SCEV::FlagAnyWrap, 820 /*IsSafeToHoist*/ true) 821 : P; 822 } 823 824 I = E; 825 assert(Result && "Nothing was expanded?"); 826 return Result; 827 }; 828 829 while (I != OpsAndLoops.end()) { 830 if (!Prod) { 831 // This is the first operand. Just expand it. 832 Prod = ExpandOpBinPowN(); 833 } else if (I->second->isAllOnesValue()) { 834 // Instead of doing a multiply by negative one, just do a negate. 835 Prod = InsertNoopCastOfTo(Prod, Ty); 836 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 837 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 838 ++I; 839 } else { 840 // A simple mul. 841 Value *W = ExpandOpBinPowN(); 842 Prod = InsertNoopCastOfTo(Prod, Ty); 843 // Canonicalize a constant to the RHS. 844 if (isa<Constant>(Prod)) std::swap(Prod, W); 845 const APInt *RHS; 846 if (match(W, m_Power2(RHS))) { 847 // Canonicalize Prod*(1<<C) to Prod<<C. 848 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 849 auto NWFlags = S->getNoWrapFlags(); 850 // clear nsw flag if shl will produce poison value. 851 if (RHS->logBase2() == RHS->getBitWidth() - 1) 852 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 853 Prod = InsertBinop(Instruction::Shl, Prod, 854 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 855 /*IsSafeToHoist*/ true); 856 } else { 857 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 858 /*IsSafeToHoist*/ true); 859 } 860 } 861 } 862 863 return Prod; 864 } 865 866 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 867 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 868 869 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 870 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 871 const APInt &RHS = SC->getAPInt(); 872 if (RHS.isPowerOf2()) 873 return InsertBinop(Instruction::LShr, LHS, 874 ConstantInt::get(Ty, RHS.logBase2()), 875 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 876 } 877 878 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 879 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 880 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 881 } 882 883 /// Move parts of Base into Rest to leave Base with the minimal 884 /// expression that provides a pointer operand suitable for a 885 /// GEP expansion. 886 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 887 ScalarEvolution &SE) { 888 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 889 Base = A->getStart(); 890 Rest = SE.getAddExpr(Rest, 891 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 892 A->getStepRecurrence(SE), 893 A->getLoop(), 894 A->getNoWrapFlags(SCEV::FlagNW))); 895 } 896 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 897 Base = A->getOperand(A->getNumOperands()-1); 898 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 899 NewAddOps.back() = Rest; 900 Rest = SE.getAddExpr(NewAddOps); 901 ExposePointerBase(Base, Rest, SE); 902 } 903 } 904 905 /// Determine if this is a well-behaved chain of instructions leading back to 906 /// the PHI. If so, it may be reused by expanded expressions. 907 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 908 const Loop *L) { 909 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 910 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 911 return false; 912 // If any of the operands don't dominate the insert position, bail. 913 // Addrec operands are always loop-invariant, so this can only happen 914 // if there are instructions which haven't been hoisted. 915 if (L == IVIncInsertLoop) { 916 for (User::op_iterator OI = IncV->op_begin()+1, 917 OE = IncV->op_end(); OI != OE; ++OI) 918 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 919 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 920 return false; 921 } 922 // Advance to the next instruction. 923 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 924 if (!IncV) 925 return false; 926 927 if (IncV->mayHaveSideEffects()) 928 return false; 929 930 if (IncV == PN) 931 return true; 932 933 return isNormalAddRecExprPHI(PN, IncV, L); 934 } 935 936 /// getIVIncOperand returns an induction variable increment's induction 937 /// variable operand. 938 /// 939 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 940 /// operands dominate InsertPos. 941 /// 942 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 943 /// simple patterns generated by getAddRecExprPHILiterally and 944 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 945 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 946 Instruction *InsertPos, 947 bool allowScale) { 948 if (IncV == InsertPos) 949 return nullptr; 950 951 switch (IncV->getOpcode()) { 952 default: 953 return nullptr; 954 // Check for a simple Add/Sub or GEP of a loop invariant step. 955 case Instruction::Add: 956 case Instruction::Sub: { 957 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 958 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 959 return dyn_cast<Instruction>(IncV->getOperand(0)); 960 return nullptr; 961 } 962 case Instruction::BitCast: 963 return dyn_cast<Instruction>(IncV->getOperand(0)); 964 case Instruction::GetElementPtr: 965 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 966 if (isa<Constant>(*I)) 967 continue; 968 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 969 if (!SE.DT.dominates(OInst, InsertPos)) 970 return nullptr; 971 } 972 if (allowScale) { 973 // allow any kind of GEP as long as it can be hoisted. 974 continue; 975 } 976 // This must be a pointer addition of constants (pretty), which is already 977 // handled, or some number of address-size elements (ugly). Ugly geps 978 // have 2 operands. i1* is used by the expander to represent an 979 // address-size element. 980 if (IncV->getNumOperands() != 2) 981 return nullptr; 982 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 983 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 984 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 985 return nullptr; 986 break; 987 } 988 return dyn_cast<Instruction>(IncV->getOperand(0)); 989 } 990 } 991 992 /// If the insert point of the current builder or any of the builders on the 993 /// stack of saved builders has 'I' as its insert point, update it to point to 994 /// the instruction after 'I'. This is intended to be used when the instruction 995 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 996 /// different block, the inconsistent insert point (with a mismatched 997 /// Instruction and Block) can lead to an instruction being inserted in a block 998 /// other than its parent. 999 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1000 BasicBlock::iterator It(*I); 1001 BasicBlock::iterator NewInsertPt = std::next(It); 1002 if (Builder.GetInsertPoint() == It) 1003 Builder.SetInsertPoint(&*NewInsertPt); 1004 for (auto *InsertPtGuard : InsertPointGuards) 1005 if (InsertPtGuard->GetInsertPoint() == It) 1006 InsertPtGuard->SetInsertPoint(NewInsertPt); 1007 } 1008 1009 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1010 /// it available to other uses in this loop. Recursively hoist any operands, 1011 /// until we reach a value that dominates InsertPos. 1012 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1013 if (SE.DT.dominates(IncV, InsertPos)) 1014 return true; 1015 1016 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1017 // its existing users. 1018 if (isa<PHINode>(InsertPos) || 1019 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1020 return false; 1021 1022 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1023 return false; 1024 1025 // Check that the chain of IV operands leading back to Phi can be hoisted. 1026 SmallVector<Instruction*, 4> IVIncs; 1027 for(;;) { 1028 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1029 if (!Oper) 1030 return false; 1031 // IncV is safe to hoist. 1032 IVIncs.push_back(IncV); 1033 IncV = Oper; 1034 if (SE.DT.dominates(IncV, InsertPos)) 1035 break; 1036 } 1037 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1038 fixupInsertPoints(*I); 1039 (*I)->moveBefore(InsertPos); 1040 } 1041 return true; 1042 } 1043 1044 /// Determine if this cyclic phi is in a form that would have been generated by 1045 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1046 /// as it is in a low-cost form, for example, no implied multiplication. This 1047 /// should match any patterns generated by getAddRecExprPHILiterally and 1048 /// expandAddtoGEP. 1049 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1050 const Loop *L) { 1051 for(Instruction *IVOper = IncV; 1052 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1053 /*allowScale=*/false));) { 1054 if (IVOper == PN) 1055 return true; 1056 } 1057 return false; 1058 } 1059 1060 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1061 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1062 /// need to materialize IV increments elsewhere to handle difficult situations. 1063 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1064 Type *ExpandTy, Type *IntTy, 1065 bool useSubtract) { 1066 Value *IncV; 1067 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1068 if (ExpandTy->isPointerTy()) { 1069 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1070 // If the step isn't constant, don't use an implicitly scaled GEP, because 1071 // that would require a multiply inside the loop. 1072 if (!isa<ConstantInt>(StepV)) 1073 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1074 GEPPtrTy->getAddressSpace()); 1075 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1076 if (IncV->getType() != PN->getType()) 1077 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1078 } else { 1079 IncV = useSubtract ? 1080 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1081 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1082 } 1083 return IncV; 1084 } 1085 1086 /// Hoist the addrec instruction chain rooted in the loop phi above the 1087 /// position. This routine assumes that this is possible (has been checked). 1088 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1089 Instruction *Pos, PHINode *LoopPhi) { 1090 do { 1091 if (DT->dominates(InstToHoist, Pos)) 1092 break; 1093 // Make sure the increment is where we want it. But don't move it 1094 // down past a potential existing post-inc user. 1095 fixupInsertPoints(InstToHoist); 1096 InstToHoist->moveBefore(Pos); 1097 Pos = InstToHoist; 1098 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1099 } while (InstToHoist != LoopPhi); 1100 } 1101 1102 /// Check whether we can cheaply express the requested SCEV in terms of 1103 /// the available PHI SCEV by truncation and/or inversion of the step. 1104 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1105 const SCEVAddRecExpr *Phi, 1106 const SCEVAddRecExpr *Requested, 1107 bool &InvertStep) { 1108 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1109 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1110 1111 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1112 return false; 1113 1114 // Try truncate it if necessary. 1115 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1116 if (!Phi) 1117 return false; 1118 1119 // Check whether truncation will help. 1120 if (Phi == Requested) { 1121 InvertStep = false; 1122 return true; 1123 } 1124 1125 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1126 if (SE.getAddExpr(Requested->getStart(), 1127 SE.getNegativeSCEV(Requested)) == Phi) { 1128 InvertStep = true; 1129 return true; 1130 } 1131 1132 return false; 1133 } 1134 1135 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1136 if (!isa<IntegerType>(AR->getType())) 1137 return false; 1138 1139 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1140 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1141 const SCEV *Step = AR->getStepRecurrence(SE); 1142 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1143 SE.getSignExtendExpr(AR, WideTy)); 1144 const SCEV *ExtendAfterOp = 1145 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1146 return ExtendAfterOp == OpAfterExtend; 1147 } 1148 1149 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1150 if (!isa<IntegerType>(AR->getType())) 1151 return false; 1152 1153 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1154 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1155 const SCEV *Step = AR->getStepRecurrence(SE); 1156 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1157 SE.getZeroExtendExpr(AR, WideTy)); 1158 const SCEV *ExtendAfterOp = 1159 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1160 return ExtendAfterOp == OpAfterExtend; 1161 } 1162 1163 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1164 /// the base addrec, which is the addrec without any non-loop-dominating 1165 /// values, and return the PHI. 1166 PHINode * 1167 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1168 const Loop *L, 1169 Type *ExpandTy, 1170 Type *IntTy, 1171 Type *&TruncTy, 1172 bool &InvertStep) { 1173 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1174 1175 // Reuse a previously-inserted PHI, if present. 1176 BasicBlock *LatchBlock = L->getLoopLatch(); 1177 if (LatchBlock) { 1178 PHINode *AddRecPhiMatch = nullptr; 1179 Instruction *IncV = nullptr; 1180 TruncTy = nullptr; 1181 InvertStep = false; 1182 1183 // Only try partially matching scevs that need truncation and/or 1184 // step-inversion if we know this loop is outside the current loop. 1185 bool TryNonMatchingSCEV = 1186 IVIncInsertLoop && 1187 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1188 1189 for (PHINode &PN : L->getHeader()->phis()) { 1190 if (!SE.isSCEVable(PN.getType())) 1191 continue; 1192 1193 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1194 // PHI has no meaning at all. 1195 if (!PN.isComplete()) { 1196 DEBUG_WITH_TYPE( 1197 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1198 continue; 1199 } 1200 1201 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1202 if (!PhiSCEV) 1203 continue; 1204 1205 bool IsMatchingSCEV = PhiSCEV == Normalized; 1206 // We only handle truncation and inversion of phi recurrences for the 1207 // expanded expression if the expanded expression's loop dominates the 1208 // loop we insert to. Check now, so we can bail out early. 1209 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1210 continue; 1211 1212 // TODO: this possibly can be reworked to avoid this cast at all. 1213 Instruction *TempIncV = 1214 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1215 if (!TempIncV) 1216 continue; 1217 1218 // Check whether we can reuse this PHI node. 1219 if (LSRMode) { 1220 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1221 continue; 1222 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1223 continue; 1224 } else { 1225 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1226 continue; 1227 } 1228 1229 // Stop if we have found an exact match SCEV. 1230 if (IsMatchingSCEV) { 1231 IncV = TempIncV; 1232 TruncTy = nullptr; 1233 InvertStep = false; 1234 AddRecPhiMatch = &PN; 1235 break; 1236 } 1237 1238 // Try whether the phi can be translated into the requested form 1239 // (truncated and/or offset by a constant). 1240 if ((!TruncTy || InvertStep) && 1241 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1242 // Record the phi node. But don't stop we might find an exact match 1243 // later. 1244 AddRecPhiMatch = &PN; 1245 IncV = TempIncV; 1246 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1247 } 1248 } 1249 1250 if (AddRecPhiMatch) { 1251 // Potentially, move the increment. We have made sure in 1252 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1253 if (L == IVIncInsertLoop) 1254 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1255 1256 // Ok, the add recurrence looks usable. 1257 // Remember this PHI, even in post-inc mode. 1258 InsertedValues.insert(AddRecPhiMatch); 1259 // Remember the increment. 1260 rememberInstruction(IncV); 1261 return AddRecPhiMatch; 1262 } 1263 } 1264 1265 // Save the original insertion point so we can restore it when we're done. 1266 SCEVInsertPointGuard Guard(Builder, this); 1267 1268 // Another AddRec may need to be recursively expanded below. For example, if 1269 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1270 // loop. Remove this loop from the PostIncLoops set before expanding such 1271 // AddRecs. Otherwise, we cannot find a valid position for the step 1272 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1273 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1274 // so it's not worth implementing SmallPtrSet::swap. 1275 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1276 PostIncLoops.clear(); 1277 1278 // Expand code for the start value into the loop preheader. 1279 assert(L->getLoopPreheader() && 1280 "Can't expand add recurrences without a loop preheader!"); 1281 Value *StartV = 1282 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1283 L->getLoopPreheader()->getTerminator(), false); 1284 1285 // StartV must have been be inserted into L's preheader to dominate the new 1286 // phi. 1287 assert(!isa<Instruction>(StartV) || 1288 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1289 L->getHeader())); 1290 1291 // Expand code for the step value. Do this before creating the PHI so that PHI 1292 // reuse code doesn't see an incomplete PHI. 1293 const SCEV *Step = Normalized->getStepRecurrence(SE); 1294 // If the stride is negative, insert a sub instead of an add for the increment 1295 // (unless it's a constant, because subtracts of constants are canonicalized 1296 // to adds). 1297 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1298 if (useSubtract) 1299 Step = SE.getNegativeSCEV(Step); 1300 // Expand the step somewhere that dominates the loop header. 1301 Value *StepV = expandCodeForImpl( 1302 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1303 1304 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1305 // we actually do emit an addition. It does not apply if we emit a 1306 // subtraction. 1307 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1308 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1309 1310 // Create the PHI. 1311 BasicBlock *Header = L->getHeader(); 1312 Builder.SetInsertPoint(Header, Header->begin()); 1313 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1314 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1315 Twine(IVName) + ".iv"); 1316 1317 // Create the step instructions and populate the PHI. 1318 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1319 BasicBlock *Pred = *HPI; 1320 1321 // Add a start value. 1322 if (!L->contains(Pred)) { 1323 PN->addIncoming(StartV, Pred); 1324 continue; 1325 } 1326 1327 // Create a step value and add it to the PHI. 1328 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1329 // instructions at IVIncInsertPos. 1330 Instruction *InsertPos = L == IVIncInsertLoop ? 1331 IVIncInsertPos : Pred->getTerminator(); 1332 Builder.SetInsertPoint(InsertPos); 1333 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1334 1335 if (isa<OverflowingBinaryOperator>(IncV)) { 1336 if (IncrementIsNUW) 1337 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1338 if (IncrementIsNSW) 1339 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1340 } 1341 PN->addIncoming(IncV, Pred); 1342 } 1343 1344 // After expanding subexpressions, restore the PostIncLoops set so the caller 1345 // can ensure that IVIncrement dominates the current uses. 1346 PostIncLoops = SavedPostIncLoops; 1347 1348 // Remember this PHI, even in post-inc mode. 1349 InsertedValues.insert(PN); 1350 1351 return PN; 1352 } 1353 1354 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1355 Type *STy = S->getType(); 1356 Type *IntTy = SE.getEffectiveSCEVType(STy); 1357 const Loop *L = S->getLoop(); 1358 1359 // Determine a normalized form of this expression, which is the expression 1360 // before any post-inc adjustment is made. 1361 const SCEVAddRecExpr *Normalized = S; 1362 if (PostIncLoops.count(L)) { 1363 PostIncLoopSet Loops; 1364 Loops.insert(L); 1365 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1366 } 1367 1368 // Strip off any non-loop-dominating component from the addrec start. 1369 const SCEV *Start = Normalized->getStart(); 1370 const SCEV *PostLoopOffset = nullptr; 1371 if (!SE.properlyDominates(Start, L->getHeader())) { 1372 PostLoopOffset = Start; 1373 Start = SE.getConstant(Normalized->getType(), 0); 1374 Normalized = cast<SCEVAddRecExpr>( 1375 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1376 Normalized->getLoop(), 1377 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1378 } 1379 1380 // Strip off any non-loop-dominating component from the addrec step. 1381 const SCEV *Step = Normalized->getStepRecurrence(SE); 1382 const SCEV *PostLoopScale = nullptr; 1383 if (!SE.dominates(Step, L->getHeader())) { 1384 PostLoopScale = Step; 1385 Step = SE.getConstant(Normalized->getType(), 1); 1386 if (!Start->isZero()) { 1387 // The normalization below assumes that Start is constant zero, so if 1388 // it isn't re-associate Start to PostLoopOffset. 1389 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1390 PostLoopOffset = Start; 1391 Start = SE.getConstant(Normalized->getType(), 0); 1392 } 1393 Normalized = 1394 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1395 Start, Step, Normalized->getLoop(), 1396 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1397 } 1398 1399 // Expand the core addrec. If we need post-loop scaling, force it to 1400 // expand to an integer type to avoid the need for additional casting. 1401 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1402 // We can't use a pointer type for the addrec if the pointer type is 1403 // non-integral. 1404 Type *AddRecPHIExpandTy = 1405 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1406 1407 // In some cases, we decide to reuse an existing phi node but need to truncate 1408 // it and/or invert the step. 1409 Type *TruncTy = nullptr; 1410 bool InvertStep = false; 1411 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1412 IntTy, TruncTy, InvertStep); 1413 1414 // Accommodate post-inc mode, if necessary. 1415 Value *Result; 1416 if (!PostIncLoops.count(L)) 1417 Result = PN; 1418 else { 1419 // In PostInc mode, use the post-incremented value. 1420 BasicBlock *LatchBlock = L->getLoopLatch(); 1421 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1422 Result = PN->getIncomingValueForBlock(LatchBlock); 1423 1424 // For an expansion to use the postinc form, the client must call 1425 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1426 // or dominated by IVIncInsertPos. 1427 if (isa<Instruction>(Result) && 1428 !SE.DT.dominates(cast<Instruction>(Result), 1429 &*Builder.GetInsertPoint())) { 1430 // The induction variable's postinc expansion does not dominate this use. 1431 // IVUsers tries to prevent this case, so it is rare. However, it can 1432 // happen when an IVUser outside the loop is not dominated by the latch 1433 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1434 // all cases. Consider a phi outside whose operand is replaced during 1435 // expansion with the value of the postinc user. Without fundamentally 1436 // changing the way postinc users are tracked, the only remedy is 1437 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1438 // but hopefully expandCodeFor handles that. 1439 bool useSubtract = 1440 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1441 if (useSubtract) 1442 Step = SE.getNegativeSCEV(Step); 1443 Value *StepV; 1444 { 1445 // Expand the step somewhere that dominates the loop header. 1446 SCEVInsertPointGuard Guard(Builder, this); 1447 StepV = expandCodeForImpl( 1448 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1449 } 1450 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1451 } 1452 } 1453 1454 // We have decided to reuse an induction variable of a dominating loop. Apply 1455 // truncation and/or inversion of the step. 1456 if (TruncTy) { 1457 Type *ResTy = Result->getType(); 1458 // Normalize the result type. 1459 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1460 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1461 // Truncate the result. 1462 if (TruncTy != Result->getType()) 1463 Result = Builder.CreateTrunc(Result, TruncTy); 1464 1465 // Invert the result. 1466 if (InvertStep) 1467 Result = Builder.CreateSub( 1468 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1469 } 1470 1471 // Re-apply any non-loop-dominating scale. 1472 if (PostLoopScale) { 1473 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1474 Result = InsertNoopCastOfTo(Result, IntTy); 1475 Result = Builder.CreateMul(Result, 1476 expandCodeForImpl(PostLoopScale, IntTy, false)); 1477 } 1478 1479 // Re-apply any non-loop-dominating offset. 1480 if (PostLoopOffset) { 1481 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1482 if (Result->getType()->isIntegerTy()) { 1483 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1484 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1485 } else { 1486 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1487 } 1488 } else { 1489 Result = InsertNoopCastOfTo(Result, IntTy); 1490 Result = Builder.CreateAdd( 1491 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1492 } 1493 } 1494 1495 return Result; 1496 } 1497 1498 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1499 // In canonical mode we compute the addrec as an expression of a canonical IV 1500 // using evaluateAtIteration and expand the resulting SCEV expression. This 1501 // way we avoid introducing new IVs to carry on the comutation of the addrec 1502 // throughout the loop. 1503 // 1504 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1505 // type wider than the addrec itself. Emitting a canonical IV of the 1506 // proper type might produce non-legal types, for example expanding an i64 1507 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1508 // back to non-canonical mode for nested addrecs. 1509 if (!CanonicalMode || (S->getNumOperands() > 2)) 1510 return expandAddRecExprLiterally(S); 1511 1512 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1513 const Loop *L = S->getLoop(); 1514 1515 // First check for an existing canonical IV in a suitable type. 1516 PHINode *CanonicalIV = nullptr; 1517 if (PHINode *PN = L->getCanonicalInductionVariable()) 1518 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1519 CanonicalIV = PN; 1520 1521 // Rewrite an AddRec in terms of the canonical induction variable, if 1522 // its type is more narrow. 1523 if (CanonicalIV && 1524 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1525 SE.getTypeSizeInBits(Ty)) { 1526 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1527 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1528 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1529 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1530 S->getNoWrapFlags(SCEV::FlagNW))); 1531 BasicBlock::iterator NewInsertPt = 1532 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1533 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1534 &*NewInsertPt, false); 1535 return V; 1536 } 1537 1538 // {X,+,F} --> X + {0,+,F} 1539 if (!S->getStart()->isZero()) { 1540 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1541 NewOps[0] = SE.getConstant(Ty, 0); 1542 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1543 S->getNoWrapFlags(SCEV::FlagNW)); 1544 1545 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1546 // comments on expandAddToGEP for details. 1547 const SCEV *Base = S->getStart(); 1548 // Dig into the expression to find the pointer base for a GEP. 1549 const SCEV *ExposedRest = Rest; 1550 ExposePointerBase(Base, ExposedRest, SE); 1551 // If we found a pointer, expand the AddRec with a GEP. 1552 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1553 // Make sure the Base isn't something exotic, such as a multiplied 1554 // or divided pointer value. In those cases, the result type isn't 1555 // actually a pointer type. 1556 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1557 Value *StartV = expand(Base); 1558 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1559 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1560 } 1561 } 1562 1563 // Just do a normal add. Pre-expand the operands to suppress folding. 1564 // 1565 // The LHS and RHS values are factored out of the expand call to make the 1566 // output independent of the argument evaluation order. 1567 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1568 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1569 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1570 } 1571 1572 // If we don't yet have a canonical IV, create one. 1573 if (!CanonicalIV) { 1574 // Create and insert the PHI node for the induction variable in the 1575 // specified loop. 1576 BasicBlock *Header = L->getHeader(); 1577 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1578 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1579 &Header->front()); 1580 rememberInstruction(CanonicalIV); 1581 1582 SmallSet<BasicBlock *, 4> PredSeen; 1583 Constant *One = ConstantInt::get(Ty, 1); 1584 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1585 BasicBlock *HP = *HPI; 1586 if (!PredSeen.insert(HP).second) { 1587 // There must be an incoming value for each predecessor, even the 1588 // duplicates! 1589 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1590 continue; 1591 } 1592 1593 if (L->contains(HP)) { 1594 // Insert a unit add instruction right before the terminator 1595 // corresponding to the back-edge. 1596 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1597 "indvar.next", 1598 HP->getTerminator()); 1599 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1600 rememberInstruction(Add); 1601 CanonicalIV->addIncoming(Add, HP); 1602 } else { 1603 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1604 } 1605 } 1606 } 1607 1608 // {0,+,1} --> Insert a canonical induction variable into the loop! 1609 if (S->isAffine() && S->getOperand(1)->isOne()) { 1610 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1611 "IVs with types different from the canonical IV should " 1612 "already have been handled!"); 1613 return CanonicalIV; 1614 } 1615 1616 // {0,+,F} --> {0,+,1} * F 1617 1618 // If this is a simple linear addrec, emit it now as a special case. 1619 if (S->isAffine()) // {0,+,F} --> i*F 1620 return 1621 expand(SE.getTruncateOrNoop( 1622 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1623 SE.getNoopOrAnyExtend(S->getOperand(1), 1624 CanonicalIV->getType())), 1625 Ty)); 1626 1627 // If this is a chain of recurrences, turn it into a closed form, using the 1628 // folders, then expandCodeFor the closed form. This allows the folders to 1629 // simplify the expression without having to build a bunch of special code 1630 // into this folder. 1631 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1632 1633 // Promote S up to the canonical IV type, if the cast is foldable. 1634 const SCEV *NewS = S; 1635 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1636 if (isa<SCEVAddRecExpr>(Ext)) 1637 NewS = Ext; 1638 1639 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1640 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1641 1642 // Truncate the result down to the original type, if needed. 1643 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1644 return expand(T); 1645 } 1646 1647 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1648 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1649 Value *V = expandCodeForImpl( 1650 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1651 false); 1652 return Builder.CreateTrunc(V, Ty); 1653 } 1654 1655 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1656 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1657 Value *V = expandCodeForImpl( 1658 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1659 false); 1660 return Builder.CreateZExt(V, Ty); 1661 } 1662 1663 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1664 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1665 Value *V = expandCodeForImpl( 1666 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1667 false); 1668 return Builder.CreateSExt(V, Ty); 1669 } 1670 1671 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1672 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1673 Type *Ty = LHS->getType(); 1674 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1675 // In the case of mixed integer and pointer types, do the 1676 // rest of the comparisons as integer. 1677 Type *OpTy = S->getOperand(i)->getType(); 1678 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1679 Ty = SE.getEffectiveSCEVType(Ty); 1680 LHS = InsertNoopCastOfTo(LHS, Ty); 1681 } 1682 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1683 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1684 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1685 LHS = Sel; 1686 } 1687 // In the case of mixed integer and pointer types, cast the 1688 // final result back to the pointer type. 1689 if (LHS->getType() != S->getType()) 1690 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1691 return LHS; 1692 } 1693 1694 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1695 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1696 Type *Ty = LHS->getType(); 1697 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1698 // In the case of mixed integer and pointer types, do the 1699 // rest of the comparisons as integer. 1700 Type *OpTy = S->getOperand(i)->getType(); 1701 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1702 Ty = SE.getEffectiveSCEVType(Ty); 1703 LHS = InsertNoopCastOfTo(LHS, Ty); 1704 } 1705 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1706 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1707 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1708 LHS = Sel; 1709 } 1710 // In the case of mixed integer and pointer types, cast the 1711 // final result back to the pointer type. 1712 if (LHS->getType() != S->getType()) 1713 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1714 return LHS; 1715 } 1716 1717 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1718 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1719 Type *Ty = LHS->getType(); 1720 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1721 // In the case of mixed integer and pointer types, do the 1722 // rest of the comparisons as integer. 1723 Type *OpTy = S->getOperand(i)->getType(); 1724 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1725 Ty = SE.getEffectiveSCEVType(Ty); 1726 LHS = InsertNoopCastOfTo(LHS, Ty); 1727 } 1728 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1729 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1730 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1731 LHS = Sel; 1732 } 1733 // In the case of mixed integer and pointer types, cast the 1734 // final result back to the pointer type. 1735 if (LHS->getType() != S->getType()) 1736 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1737 return LHS; 1738 } 1739 1740 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1741 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1742 Type *Ty = LHS->getType(); 1743 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1744 // In the case of mixed integer and pointer types, do the 1745 // rest of the comparisons as integer. 1746 Type *OpTy = S->getOperand(i)->getType(); 1747 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1748 Ty = SE.getEffectiveSCEVType(Ty); 1749 LHS = InsertNoopCastOfTo(LHS, Ty); 1750 } 1751 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1752 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1753 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1754 LHS = Sel; 1755 } 1756 // In the case of mixed integer and pointer types, cast the 1757 // final result back to the pointer type. 1758 if (LHS->getType() != S->getType()) 1759 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1760 return LHS; 1761 } 1762 1763 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1764 Instruction *IP, bool Root) { 1765 setInsertPoint(IP); 1766 Value *V = expandCodeForImpl(SH, Ty, Root); 1767 return V; 1768 } 1769 1770 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1771 // Expand the code for this SCEV. 1772 Value *V = expand(SH); 1773 1774 if (PreserveLCSSA) { 1775 if (auto *Inst = dyn_cast<Instruction>(V)) { 1776 // Create a temporary instruction to at the current insertion point, so we 1777 // can hand it off to the helper to create LCSSA PHIs if required for the 1778 // new use. 1779 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1780 // would accept a insertion point and return an LCSSA phi for that 1781 // insertion point, so there is no need to insert & remove the temporary 1782 // instruction. 1783 Instruction *Tmp; 1784 if (Inst->getType()->isIntegerTy()) 1785 Tmp = 1786 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1787 else { 1788 assert(Inst->getType()->isPointerTy()); 1789 Tmp = cast<Instruction>( 1790 Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user")); 1791 } 1792 V = fixupLCSSAFormFor(Tmp, 0); 1793 1794 // Clean up temporary instruction. 1795 InsertedValues.erase(Tmp); 1796 InsertedPostIncValues.erase(Tmp); 1797 Tmp->eraseFromParent(); 1798 } 1799 } 1800 1801 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1802 if (Ty) { 1803 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1804 "non-trivial casts should be done with the SCEVs directly!"); 1805 V = InsertNoopCastOfTo(V, Ty); 1806 } 1807 return V; 1808 } 1809 1810 ScalarEvolution::ValueOffsetPair 1811 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1812 const Instruction *InsertPt) { 1813 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); 1814 // If the expansion is not in CanonicalMode, and the SCEV contains any 1815 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1816 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1817 // If S is scConstant, it may be worse to reuse an existing Value. 1818 if (S->getSCEVType() != scConstant && Set) { 1819 // Choose a Value from the set which dominates the insertPt. 1820 // insertPt should be inside the Value's parent loop so as not to break 1821 // the LCSSA form. 1822 for (auto const &VOPair : *Set) { 1823 Value *V = VOPair.first; 1824 ConstantInt *Offset = VOPair.second; 1825 Instruction *EntInst = nullptr; 1826 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1827 S->getType() == V->getType() && 1828 EntInst->getFunction() == InsertPt->getFunction() && 1829 SE.DT.dominates(EntInst, InsertPt) && 1830 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1831 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1832 return {V, Offset}; 1833 } 1834 } 1835 } 1836 return {nullptr, nullptr}; 1837 } 1838 1839 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1840 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1841 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1842 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1843 // the expansion will try to reuse Value from ExprValueMap, and only when it 1844 // fails, expand the SCEV literally. 1845 Value *SCEVExpander::expand(const SCEV *S) { 1846 // Compute an insertion point for this SCEV object. Hoist the instructions 1847 // as far out in the loop nest as possible. 1848 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1849 1850 // We can move insertion point only if there is no div or rem operations 1851 // otherwise we are risky to move it over the check for zero denominator. 1852 auto SafeToHoist = [](const SCEV *S) { 1853 return !SCEVExprContains(S, [](const SCEV *S) { 1854 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1855 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1856 // Division by non-zero constants can be hoisted. 1857 return SC->getValue()->isZero(); 1858 // All other divisions should not be moved as they may be 1859 // divisions by zero and should be kept within the 1860 // conditions of the surrounding loops that guard their 1861 // execution (see PR35406). 1862 return true; 1863 } 1864 return false; 1865 }); 1866 }; 1867 if (SafeToHoist(S)) { 1868 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1869 L = L->getParentLoop()) { 1870 if (SE.isLoopInvariant(S, L)) { 1871 if (!L) break; 1872 if (BasicBlock *Preheader = L->getLoopPreheader()) 1873 InsertPt = Preheader->getTerminator(); 1874 else 1875 // LSR sets the insertion point for AddRec start/step values to the 1876 // block start to simplify value reuse, even though it's an invalid 1877 // position. SCEVExpander must correct for this in all cases. 1878 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1879 } else { 1880 // If the SCEV is computable at this level, insert it into the header 1881 // after the PHIs (and after any other instructions that we've inserted 1882 // there) so that it is guaranteed to dominate any user inside the loop. 1883 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1884 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1885 1886 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1887 (isInsertedInstruction(InsertPt) || 1888 isa<DbgInfoIntrinsic>(InsertPt))) { 1889 InsertPt = &*std::next(InsertPt->getIterator()); 1890 } 1891 break; 1892 } 1893 } 1894 } 1895 1896 // Check to see if we already expanded this here. 1897 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1898 if (I != InsertedExpressions.end()) 1899 return I->second; 1900 1901 SCEVInsertPointGuard Guard(Builder, this); 1902 Builder.SetInsertPoint(InsertPt); 1903 1904 // Expand the expression into instructions. 1905 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1906 Value *V = VO.first; 1907 1908 if (!V) 1909 V = visit(S); 1910 else if (VO.second) { 1911 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1912 Type *Ety = Vty->getPointerElementType(); 1913 int64_t Offset = VO.second->getSExtValue(); 1914 int64_t ESize = SE.getTypeSizeInBits(Ety); 1915 if ((Offset * 8) % ESize == 0) { 1916 ConstantInt *Idx = 1917 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1918 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1919 } else { 1920 ConstantInt *Idx = 1921 ConstantInt::getSigned(VO.second->getType(), -Offset); 1922 unsigned AS = Vty->getAddressSpace(); 1923 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1924 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1925 "uglygep"); 1926 V = Builder.CreateBitCast(V, Vty); 1927 } 1928 } else { 1929 V = Builder.CreateSub(V, VO.second); 1930 } 1931 } 1932 // Remember the expanded value for this SCEV at this location. 1933 // 1934 // This is independent of PostIncLoops. The mapped value simply materializes 1935 // the expression at this insertion point. If the mapped value happened to be 1936 // a postinc expansion, it could be reused by a non-postinc user, but only if 1937 // its insertion point was already at the head of the loop. 1938 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1939 return V; 1940 } 1941 1942 void SCEVExpander::rememberInstruction(Value *I) { 1943 auto DoInsert = [this](Value *V) { 1944 if (!PostIncLoops.empty()) 1945 InsertedPostIncValues.insert(V); 1946 else 1947 InsertedValues.insert(V); 1948 }; 1949 DoInsert(I); 1950 1951 if (!PreserveLCSSA) 1952 return; 1953 1954 if (auto *Inst = dyn_cast<Instruction>(I)) { 1955 // A new instruction has been added, which might introduce new uses outside 1956 // a defining loop. Fix LCSSA from for each operand of the new instruction, 1957 // if required. 1958 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 1959 OpIdx++) 1960 fixupLCSSAFormFor(Inst, OpIdx); 1961 } 1962 } 1963 1964 /// getOrInsertCanonicalInductionVariable - This method returns the 1965 /// canonical induction variable of the specified type for the specified 1966 /// loop (inserting one if there is none). A canonical induction variable 1967 /// starts at zero and steps by one on each iteration. 1968 PHINode * 1969 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1970 Type *Ty) { 1971 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1972 1973 // Build a SCEV for {0,+,1}<L>. 1974 // Conservatively use FlagAnyWrap for now. 1975 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1976 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1977 1978 // Emit code for it. 1979 SCEVInsertPointGuard Guard(Builder, this); 1980 PHINode *V = cast<PHINode>(expandCodeForImpl( 1981 H, nullptr, &*L->getHeader()->getFirstInsertionPt(), false)); 1982 1983 return V; 1984 } 1985 1986 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1987 /// replace them with their most canonical representative. Return the number of 1988 /// phis eliminated. 1989 /// 1990 /// This does not depend on any SCEVExpander state but should be used in 1991 /// the same context that SCEVExpander is used. 1992 unsigned 1993 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1994 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1995 const TargetTransformInfo *TTI) { 1996 // Find integer phis in order of increasing width. 1997 SmallVector<PHINode*, 8> Phis; 1998 for (PHINode &PN : L->getHeader()->phis()) 1999 Phis.push_back(&PN); 2000 2001 if (TTI) 2002 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2003 // Put pointers at the back and make sure pointer < pointer = false. 2004 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2005 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2006 return RHS->getType()->getPrimitiveSizeInBits() < 2007 LHS->getType()->getPrimitiveSizeInBits(); 2008 }); 2009 2010 unsigned NumElim = 0; 2011 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2012 // Process phis from wide to narrow. Map wide phis to their truncation 2013 // so narrow phis can reuse them. 2014 for (PHINode *Phi : Phis) { 2015 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2016 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2017 return V; 2018 if (!SE.isSCEVable(PN->getType())) 2019 return nullptr; 2020 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2021 if (!Const) 2022 return nullptr; 2023 return Const->getValue(); 2024 }; 2025 2026 // Fold constant phis. They may be congruent to other constant phis and 2027 // would confuse the logic below that expects proper IVs. 2028 if (Value *V = SimplifyPHINode(Phi)) { 2029 if (V->getType() != Phi->getType()) 2030 continue; 2031 Phi->replaceAllUsesWith(V); 2032 DeadInsts.emplace_back(Phi); 2033 ++NumElim; 2034 DEBUG_WITH_TYPE(DebugType, dbgs() 2035 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 2036 continue; 2037 } 2038 2039 if (!SE.isSCEVable(Phi->getType())) 2040 continue; 2041 2042 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2043 if (!OrigPhiRef) { 2044 OrigPhiRef = Phi; 2045 if (Phi->getType()->isIntegerTy() && TTI && 2046 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2047 // This phi can be freely truncated to the narrowest phi type. Map the 2048 // truncated expression to it so it will be reused for narrow types. 2049 const SCEV *TruncExpr = 2050 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2051 ExprToIVMap[TruncExpr] = Phi; 2052 } 2053 continue; 2054 } 2055 2056 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2057 // sense. 2058 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2059 continue; 2060 2061 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2062 Instruction *OrigInc = dyn_cast<Instruction>( 2063 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2064 Instruction *IsomorphicInc = 2065 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2066 2067 if (OrigInc && IsomorphicInc) { 2068 // If this phi has the same width but is more canonical, replace the 2069 // original with it. As part of the "more canonical" determination, 2070 // respect a prior decision to use an IV chain. 2071 if (OrigPhiRef->getType() == Phi->getType() && 2072 !(ChainedPhis.count(Phi) || 2073 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2074 (ChainedPhis.count(Phi) || 2075 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2076 std::swap(OrigPhiRef, Phi); 2077 std::swap(OrigInc, IsomorphicInc); 2078 } 2079 // Replacing the congruent phi is sufficient because acyclic 2080 // redundancy elimination, CSE/GVN, should handle the 2081 // rest. However, once SCEV proves that a phi is congruent, 2082 // it's often the head of an IV user cycle that is isomorphic 2083 // with the original phi. It's worth eagerly cleaning up the 2084 // common case of a single IV increment so that DeleteDeadPHIs 2085 // can remove cycles that had postinc uses. 2086 const SCEV *TruncExpr = 2087 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2088 if (OrigInc != IsomorphicInc && 2089 TruncExpr == SE.getSCEV(IsomorphicInc) && 2090 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2091 hoistIVInc(OrigInc, IsomorphicInc)) { 2092 DEBUG_WITH_TYPE(DebugType, 2093 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2094 << *IsomorphicInc << '\n'); 2095 Value *NewInc = OrigInc; 2096 if (OrigInc->getType() != IsomorphicInc->getType()) { 2097 Instruction *IP = nullptr; 2098 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2099 IP = &*PN->getParent()->getFirstInsertionPt(); 2100 else 2101 IP = OrigInc->getNextNode(); 2102 2103 IRBuilder<> Builder(IP); 2104 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2105 NewInc = Builder.CreateTruncOrBitCast( 2106 OrigInc, IsomorphicInc->getType(), IVName); 2107 } 2108 IsomorphicInc->replaceAllUsesWith(NewInc); 2109 DeadInsts.emplace_back(IsomorphicInc); 2110 } 2111 } 2112 } 2113 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 2114 << *Phi << '\n'); 2115 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: " 2116 << *OrigPhiRef << '\n'); 2117 ++NumElim; 2118 Value *NewIV = OrigPhiRef; 2119 if (OrigPhiRef->getType() != Phi->getType()) { 2120 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2121 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2122 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2123 } 2124 Phi->replaceAllUsesWith(NewIV); 2125 DeadInsts.emplace_back(Phi); 2126 } 2127 return NumElim; 2128 } 2129 2130 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, 2131 const Instruction *At, Loop *L) { 2132 Optional<ScalarEvolution::ValueOffsetPair> VO = 2133 getRelatedExistingExpansion(S, At, L); 2134 if (VO && VO.getValue().second == nullptr) 2135 return VO.getValue().first; 2136 return nullptr; 2137 } 2138 2139 Optional<ScalarEvolution::ValueOffsetPair> 2140 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2141 Loop *L) { 2142 using namespace llvm::PatternMatch; 2143 2144 SmallVector<BasicBlock *, 4> ExitingBlocks; 2145 L->getExitingBlocks(ExitingBlocks); 2146 2147 // Look for suitable value in simple conditions at the loop exits. 2148 for (BasicBlock *BB : ExitingBlocks) { 2149 ICmpInst::Predicate Pred; 2150 Instruction *LHS, *RHS; 2151 2152 if (!match(BB->getTerminator(), 2153 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2154 m_BasicBlock(), m_BasicBlock()))) 2155 continue; 2156 2157 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2158 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2159 2160 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2161 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2162 } 2163 2164 // Use expand's logic which is used for reusing a previous Value in 2165 // ExprValueMap. 2166 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2167 if (VO.first) 2168 return VO; 2169 2170 // There is potential to make this significantly smarter, but this simple 2171 // heuristic already gets some interesting cases. 2172 2173 // Can not find suitable value. 2174 return None; 2175 } 2176 2177 bool SCEVExpander::isHighCostExpansionHelper( 2178 const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining, 2179 const TargetTransformInfo &TTI, SmallPtrSetImpl<const SCEV *> &Processed, 2180 SmallVectorImpl<const SCEV *> &Worklist) { 2181 if (BudgetRemaining < 0) 2182 return true; // Already run out of budget, give up. 2183 2184 // Was the cost of expansion of this expression already accounted for? 2185 if (!Processed.insert(S).second) 2186 return false; // We have already accounted for this expression. 2187 2188 // If we can find an existing value for this scev available at the point "At" 2189 // then consider the expression cheap. 2190 if (getRelatedExistingExpansion(S, &At, L)) 2191 return false; // Consider the expression to be free. 2192 2193 switch (S->getSCEVType()) { 2194 case scUnknown: 2195 case scConstant: 2196 return false; // Assume to be zero-cost. 2197 } 2198 2199 TargetTransformInfo::TargetCostKind CostKind = 2200 TargetTransformInfo::TCK_RecipThroughput; 2201 2202 if (auto *CastExpr = dyn_cast<SCEVCastExpr>(S)) { 2203 unsigned Opcode; 2204 switch (S->getSCEVType()) { 2205 case scTruncate: 2206 Opcode = Instruction::Trunc; 2207 break; 2208 case scZeroExtend: 2209 Opcode = Instruction::ZExt; 2210 break; 2211 case scSignExtend: 2212 Opcode = Instruction::SExt; 2213 break; 2214 default: 2215 llvm_unreachable("There are no other cast types."); 2216 } 2217 const SCEV *Op = CastExpr->getOperand(); 2218 BudgetRemaining -= TTI.getCastInstrCost( 2219 Opcode, /*Dst=*/S->getType(), 2220 /*Src=*/Op->getType(), TTI::CastContextHint::None, CostKind); 2221 Worklist.emplace_back(Op); 2222 return false; // Will answer upon next entry into this function. 2223 } 2224 2225 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 2226 // If the divisor is a power of two count this as a logical right-shift. 2227 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) { 2228 if (SC->getAPInt().isPowerOf2()) { 2229 BudgetRemaining -= 2230 TTI.getArithmeticInstrCost(Instruction::LShr, S->getType(), 2231 CostKind); 2232 // Note that we don't count the cost of RHS, because it is a constant, 2233 // and we consider those to be free. But if that changes, we would need 2234 // to log2() it first before calling isHighCostExpansionHelper(). 2235 Worklist.emplace_back(UDivExpr->getLHS()); 2236 return false; // Will answer upon next entry into this function. 2237 } 2238 } 2239 2240 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2241 // HowManyLessThans produced to compute a precise expression, rather than a 2242 // UDiv from the user's code. If we can't find a UDiv in the code with some 2243 // simple searching, we need to account for it's cost. 2244 2245 // At the beginning of this function we already tried to find existing 2246 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2247 // pattern involving division. This is just a simple search heuristic. 2248 if (getRelatedExistingExpansion( 2249 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2250 return false; // Consider it to be free. 2251 2252 // Need to count the cost of this UDiv. 2253 BudgetRemaining -= 2254 TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(), 2255 CostKind); 2256 Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()}); 2257 return false; // Will answer upon next entry into this function. 2258 } 2259 2260 if (const auto *NAry = dyn_cast<SCEVAddRecExpr>(S)) { 2261 Type *OpType = NAry->getType(); 2262 2263 assert(NAry->getNumOperands() >= 2 && 2264 "Polynomial should be at least linear"); 2265 2266 int AddCost = 2267 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2268 int MulCost = 2269 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2270 2271 // In this polynominal, we may have some zero operands, and we shouldn't 2272 // really charge for those. So how many non-zero coeffients are there? 2273 int NumTerms = llvm::count_if(NAry->operands(), 2274 [](const SCEV *S) { return !S->isZero(); }); 2275 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2276 assert(!(*std::prev(NAry->operands().end()))->isZero() && 2277 "Last operand should not be zero"); 2278 2279 // Much like with normal add expr, the polynominal will require 2280 // one less addition than the number of it's terms. 2281 BudgetRemaining -= AddCost * (NumTerms - 1); 2282 if (BudgetRemaining < 0) 2283 return true; 2284 2285 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2286 int NumNonZeroDegreeNonOneTerms = 2287 llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()), 2288 [](const SCEV *S) { 2289 auto *SConst = dyn_cast<SCEVConstant>(S); 2290 return !SConst || SConst->getAPInt().ugt(1); 2291 }); 2292 // Here, *each* one of those will require a multiplication. 2293 BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms; 2294 if (BudgetRemaining < 0) 2295 return true; 2296 2297 // What is the degree of this polynominal? 2298 int PolyDegree = NAry->getNumOperands() - 1; 2299 assert(PolyDegree >= 1 && "Should be at least affine."); 2300 2301 // The final term will be: 2302 // Op_{PolyDegree} * x ^ {PolyDegree} 2303 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2304 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2305 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2306 // FIXME: this is conservatively correct, but might be overly pessimistic. 2307 BudgetRemaining -= MulCost * (PolyDegree - 1); 2308 if (BudgetRemaining < 0) 2309 return true; 2310 2311 // And finally, the operands themselves should fit within the budget. 2312 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2313 NAry->operands().end()); 2314 return false; // So far so good, though ops may be too costly? 2315 } 2316 2317 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 2318 Type *OpType = NAry->getType(); 2319 2320 int PairCost; 2321 switch (S->getSCEVType()) { 2322 case scAddExpr: 2323 PairCost = 2324 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2325 break; 2326 case scMulExpr: 2327 // TODO: this is a very pessimistic cost modelling for Mul, 2328 // because of Bin Pow algorithm actually used by the expander, 2329 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2330 PairCost = 2331 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2332 break; 2333 case scSMaxExpr: 2334 case scUMaxExpr: 2335 case scSMinExpr: 2336 case scUMinExpr: 2337 PairCost = TTI.getCmpSelInstrCost(Instruction::ICmp, OpType, 2338 CmpInst::makeCmpResultType(OpType), 2339 CostKind) + 2340 TTI.getCmpSelInstrCost(Instruction::Select, OpType, 2341 CmpInst::makeCmpResultType(OpType), 2342 CostKind); 2343 break; 2344 default: 2345 llvm_unreachable("There are no other variants here."); 2346 } 2347 2348 assert(NAry->getNumOperands() > 1 && 2349 "Nary expr should have more than 1 operand."); 2350 // The simple nary expr will require one less op (or pair of ops) 2351 // than the number of it's terms. 2352 BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1); 2353 if (BudgetRemaining < 0) 2354 return true; 2355 2356 // And finally, the operands themselves should fit within the budget. 2357 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2358 NAry->operands().end()); 2359 return false; // So far so good, though ops may be too costly? 2360 } 2361 2362 llvm_unreachable("No other scev expressions possible."); 2363 } 2364 2365 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2366 Instruction *IP) { 2367 assert(IP); 2368 switch (Pred->getKind()) { 2369 case SCEVPredicate::P_Union: 2370 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2371 case SCEVPredicate::P_Equal: 2372 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2373 case SCEVPredicate::P_Wrap: { 2374 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2375 return expandWrapPredicate(AddRecPred, IP); 2376 } 2377 } 2378 llvm_unreachable("Unknown SCEV predicate type"); 2379 } 2380 2381 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2382 Instruction *IP) { 2383 Value *Expr0 = 2384 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2385 Value *Expr1 = 2386 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2387 2388 Builder.SetInsertPoint(IP); 2389 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2390 return I; 2391 } 2392 2393 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2394 Instruction *Loc, bool Signed) { 2395 assert(AR->isAffine() && "Cannot generate RT check for " 2396 "non-affine expression"); 2397 2398 SCEVUnionPredicate Pred; 2399 const SCEV *ExitCount = 2400 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2401 2402 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); 2403 2404 const SCEV *Step = AR->getStepRecurrence(SE); 2405 const SCEV *Start = AR->getStart(); 2406 2407 Type *ARTy = AR->getType(); 2408 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2409 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2410 2411 // The expression {Start,+,Step} has nusw/nssw if 2412 // Step < 0, Start - |Step| * Backedge <= Start 2413 // Step >= 0, Start + |Step| * Backedge > Start 2414 // and |Step| * Backedge doesn't unsigned overflow. 2415 2416 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2417 Builder.SetInsertPoint(Loc); 2418 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2419 2420 IntegerType *Ty = 2421 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2422 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2423 2424 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2425 Value *NegStepValue = 2426 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2427 Value *StartValue = expandCodeForImpl(Start, ARExpandTy, Loc, false); 2428 2429 ConstantInt *Zero = 2430 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2431 2432 Builder.SetInsertPoint(Loc); 2433 // Compute |Step| 2434 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2435 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2436 2437 // Get the backedge taken count and truncate or extended to the AR type. 2438 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2439 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2440 Intrinsic::umul_with_overflow, Ty); 2441 2442 // Compute |Step| * Backedge 2443 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2444 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2445 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2446 2447 // Compute: 2448 // Start + |Step| * Backedge < Start 2449 // Start - |Step| * Backedge > Start 2450 Value *Add = nullptr, *Sub = nullptr; 2451 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2452 const SCEV *MulS = SE.getSCEV(MulV); 2453 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2454 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2455 ARPtrTy); 2456 Sub = Builder.CreateBitCast( 2457 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2458 } else { 2459 Add = Builder.CreateAdd(StartValue, MulV); 2460 Sub = Builder.CreateSub(StartValue, MulV); 2461 } 2462 2463 Value *EndCompareGT = Builder.CreateICmp( 2464 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2465 2466 Value *EndCompareLT = Builder.CreateICmp( 2467 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2468 2469 // Select the answer based on the sign of Step. 2470 Value *EndCheck = 2471 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2472 2473 // If the backedge taken count type is larger than the AR type, 2474 // check that we don't drop any bits by truncating it. If we are 2475 // dropping bits, then we have overflow (unless the step is zero). 2476 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2477 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2478 auto *BackedgeCheck = 2479 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2480 ConstantInt::get(Loc->getContext(), MaxVal)); 2481 BackedgeCheck = Builder.CreateAnd( 2482 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2483 2484 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2485 } 2486 2487 return Builder.CreateOr(EndCheck, OfMul); 2488 } 2489 2490 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2491 Instruction *IP) { 2492 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2493 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2494 2495 // Add a check for NUSW 2496 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2497 NUSWCheck = generateOverflowCheck(A, IP, false); 2498 2499 // Add a check for NSSW 2500 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2501 NSSWCheck = generateOverflowCheck(A, IP, true); 2502 2503 if (NUSWCheck && NSSWCheck) 2504 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2505 2506 if (NUSWCheck) 2507 return NUSWCheck; 2508 2509 if (NSSWCheck) 2510 return NSSWCheck; 2511 2512 return ConstantInt::getFalse(IP->getContext()); 2513 } 2514 2515 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2516 Instruction *IP) { 2517 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2518 Value *Check = ConstantInt::getNullValue(BoolType); 2519 2520 // Loop over all checks in this set. 2521 for (auto Pred : Union->getPredicates()) { 2522 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2523 Builder.SetInsertPoint(IP); 2524 Check = Builder.CreateOr(Check, NextCheck); 2525 } 2526 2527 return Check; 2528 } 2529 2530 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2531 assert(PreserveLCSSA); 2532 SmallVector<Instruction *, 1> ToUpdate; 2533 2534 auto *OpV = User->getOperand(OpIdx); 2535 auto *OpI = dyn_cast<Instruction>(OpV); 2536 if (!OpI) 2537 return OpV; 2538 2539 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2540 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2541 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2542 return OpV; 2543 2544 ToUpdate.push_back(OpI); 2545 SmallVector<PHINode *, 16> PHIsToRemove; 2546 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2547 for (PHINode *PN : PHIsToRemove) { 2548 if (!PN->use_empty()) 2549 continue; 2550 InsertedValues.erase(PN); 2551 InsertedPostIncValues.erase(PN); 2552 PN->eraseFromParent(); 2553 } 2554 2555 return User->getOperand(OpIdx); 2556 } 2557 2558 namespace { 2559 // Search for a SCEV subexpression that is not safe to expand. Any expression 2560 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2561 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2562 // instruction, but the important thing is that we prove the denominator is 2563 // nonzero before expansion. 2564 // 2565 // IVUsers already checks that IV-derived expressions are safe. So this check is 2566 // only needed when the expression includes some subexpression that is not IV 2567 // derived. 2568 // 2569 // Currently, we only allow division by a nonzero constant here. If this is 2570 // inadequate, we could easily allow division by SCEVUnknown by using 2571 // ValueTracking to check isKnownNonZero(). 2572 // 2573 // We cannot generally expand recurrences unless the step dominates the loop 2574 // header. The expander handles the special case of affine recurrences by 2575 // scaling the recurrence outside the loop, but this technique isn't generally 2576 // applicable. Expanding a nested recurrence outside a loop requires computing 2577 // binomial coefficients. This could be done, but the recurrence has to be in a 2578 // perfectly reduced form, which can't be guaranteed. 2579 struct SCEVFindUnsafe { 2580 ScalarEvolution &SE; 2581 bool IsUnsafe; 2582 2583 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2584 2585 bool follow(const SCEV *S) { 2586 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2587 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2588 if (!SC || SC->getValue()->isZero()) { 2589 IsUnsafe = true; 2590 return false; 2591 } 2592 } 2593 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2594 const SCEV *Step = AR->getStepRecurrence(SE); 2595 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2596 IsUnsafe = true; 2597 return false; 2598 } 2599 } 2600 return true; 2601 } 2602 bool isDone() const { return IsUnsafe; } 2603 }; 2604 } 2605 2606 namespace llvm { 2607 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2608 SCEVFindUnsafe Search(SE); 2609 visitAll(S, Search); 2610 return !Search.IsUnsafe; 2611 } 2612 2613 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2614 ScalarEvolution &SE) { 2615 if (!isSafeToExpand(S, SE)) 2616 return false; 2617 // We have to prove that the expanded site of S dominates InsertionPoint. 2618 // This is easy when not in the same block, but hard when S is an instruction 2619 // to be expanded somewhere inside the same block as our insertion point. 2620 // What we really need here is something analogous to an OrderedBasicBlock, 2621 // but for the moment, we paper over the problem by handling two common and 2622 // cheap to check cases. 2623 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2624 return true; 2625 if (SE.dominates(S, InsertionPoint->getParent())) { 2626 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2627 return true; 2628 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2629 for (const Value *V : InsertionPoint->operand_values()) 2630 if (V == U->getValue()) 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 SCEVExpanderCleaner::~SCEVExpanderCleaner() { 2637 // Result is used, nothing to remove. 2638 if (ResultUsed) 2639 return; 2640 2641 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2642 #ifndef NDEBUG 2643 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2644 InsertedInstructions.end()); 2645 (void)InsertedSet; 2646 #endif 2647 // Remove sets with value handles. 2648 Expander.clear(); 2649 2650 // Sort so that earlier instructions do not dominate later instructions. 2651 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2652 return DT.dominates(B, A); 2653 }); 2654 // Remove all inserted instructions. 2655 for (Instruction *I : InsertedInstructions) { 2656 2657 #ifndef NDEBUG 2658 assert(all_of(I->users(), 2659 [&InsertedSet](Value *U) { 2660 return InsertedSet.contains(cast<Instruction>(U)); 2661 }) && 2662 "removed instruction should only be used by instructions inserted " 2663 "during expansion"); 2664 #endif 2665 assert(!I->getType()->isVoidTy() && 2666 "inserted instruction should have non-void types"); 2667 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2668 I->eraseFromParent(); 2669 } 2670 } 2671 } 2672